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Abstract—Type-2 fuzzy sets and systems can better handle
uncertainties compared to its type-1 counterpart, and the widely
applied Mamdani and TSK fuzzy inference approaches have
been both extended to support interval type-2 fuzzy sets. Fuzzy
interpolation enhances the conventional Mamdani and TKS
fuzzy inference systems, which not only enables inferences
when inputs are not covered by an incomplete or sparse
rule base but also helps in system simplification for very
complex problems. This paper extends the recently proposed
fuzzy interpolation approach TSK+ to allow the utilization of
interval type-2 TSK fuzzy rule bases. One illustrative case based
on an example problem from the literature demonstrates the
working of the proposed system, and the application on the cart
centering problem reveals the power of the proposed system.
The experimental investigation confirmed that the proposed
approach is able to perform fuzzy inferences using either dense
or sparse interval type-2 TSK rule bases with promising results
generated.

Keywords—Interval type-2 TSK+, TSK fuzzy inference system,
sparse rule base, imbalanced data set, fuzzy interpolation

I. INTRODUCTION

Fuzzy inference systems are mechanisms that use fuzzy
logic and fuzzy set theory to map inputs and outputs, which
has been successfully applied in many application areas, such
as decision making, robotic control, intrusion detection, and
computer vision. A typical fuzzy inference system consists
of a rule base and an inference engine. A number of
inference engines have been developed, with the Mamdani
inference approach [1] and TSK inference approach [2] being
most intensively studied and widely applied. In particular,
Mamdani fuzzy inference approach is more intuitive and
suitable for handling human linguistic inputs, which usually
leads to fuzzy outputs and thus a defuzzification process is
typically required to convert the fuzzy outputs to crisp values
for general system use. In contrast, crisp outputs are directly
produced by the TSK approach, as polynomials (often 0-
order or 1-order) are used as the rule consequences in TSK
fuzzy model.

These conventional fuzzy inference systems have both
been extended to support interval type-2 (IT2) fuzzy sets
for better uncertainty management and processing. Briefly,
type-2 fuzzy sets generalize the standard type-1 fuzzy sets
by representing the membership of each element in a fuzzy
set as a standard type-1 fuzzy set, while IT2 fuzzy sets
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representing the membership as a crisp interval bounded by
[0, 1]. Such extension can handle rule uncertainties in a
more flexible and effective way, but generally requires more
computational power at the same time. Regardless of the
type of fuzzy sets used, a complete dense rule base which
covers the entire input domains, is always required by either
Mamdani or TSK fuzzy inference approaches; otherwise, no
rule can be fired and consequently no result can be generated
when a given input does not overlap with any rule antecedent
in the rule base.

Fuzzy interpolation, firstly proposed in [3], relaxes the
requirement of dense rule bases, and thus improves the
applicability of fuzzy models [4]. Given an input or ob-
servation, which does not overlap with any rule antecedent,
fuzzy interpolation can still approximate the conclusion by
considering the neighboring rules in the rule base by means
of fuzzified polynomial (often linear) interpolation. Fuzzy
interpolation has also been used to reduce the complexity of
fuzzy models by removing the rules that can be approximated
by their neighbors. For instance, a curvature-based rule base
simplification method has been proposed to support FRI
in [5], and a sparse TSK rule base generation approach was
developed in [6] to support TSK fuzzy inference.

Various fuzzy interpolation approaches have been devel-
oped and applied in real world applications [7], [8]. For
instance, fuzzy models reported in [3], [4], [9], [10], [11],
[12], [13], [14], [15], [16], [17] were developed based on
Mamdani fuzzy rule bases, and [6] and [18] were proposed
to perform fuzzy inferences based on sparse TSK rule bases.
Fuzzy interpolation has been employed to deal with real
world applications in the field of home heating manage-
ment, computer network, cyber security, and manufacturing
amongst others [19], [20], [21], [22] and [23]. However, all
the existing fuzzy interpolation approaches were originally
proposed based on the type-1 fuzzy sets, although some have
been further developed to deal with type-2 fuzzy sets and
fuzzy rules.

This paper extends the recently proposed TKS+ [6] fuzzy
inference to allow the utilization of IT2 TSK fuzzy rule
bases. The extended fuzzy inference system TSK+ is able
to work with: 1) sparse rule bases, 2) dense rule bases, 3)
Type-1 fuzzy sets, and 4) interval type 2 fuzzy sets. The
proposed system has been applied to two problems that have
been considered in the literature. The experimental results
confirmed that the proposed system not only is workable
with both dense and sparse IT2 TSK fuzzy model, but also
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enhances the TSK inference method when the knowledge
represented in the rule base is not complete.

The rest of this paper is structured as follows. Sec-
tion II introduces (interval) type-2 fuzzy sets, and the
fuzzy inference approach TSK+ as well as its underpinning
measurement of similarity degrees. Section III details the
proposed IT2 TSK+. Section IV reports the experimentation
and analyzes the experimental results. Section V concludes
the paper and suggests probable future developments.

II. BACKGROUND

Type-2 fuzzy sets and the TSK+ fuzzy inference approach
as well as its underpinning similarity measure and are briefly
introduced in this section.

A. Type-2 Fuzzy Sets

The membership grades of each element in type-1 fuzzy
systems are crisp values, which minimizes the effect of
uncertainty handling. Type-2 fuzzy systems can handle more
uncertainty using type-2 fuzzy sets. An type-2 fuzzy set,
denoted as Ã, can be represented as:

Ã “tppx, uq, µÃpx, uqq|@x P X,@u P Jx Ď r0, 1s,

µÃpx, uq P r0, 1su ,

“

ż

xPX

ż

uPJx

µÃpx, uq{px, uq ,

(1)

where X is the primary domain, Jx is the primary mem-
bership for a given element x, and µÃpx, uq denotes the
secondary membership. When all µÃpx, uq “ 1, Ã is
deteriorated as an IT2 fuzzy set, which can be expressed
as:

Ã “

ż

xPX

ż

uPJx

1{px, uq, Jx Ď r0, 1s. (2)

An example trapezoidal IT2 fuzzy set Ã is illustrated in
Figure 1, which can be represented by a lower membership
function (LMF), Ã “ pa1, a2, a3, a4, wq, and a upper mem-
bership function (UMF), Ã “ pa1, a2, a3, a4, wq. In this case,
Ã “ă Ã, Ã ą, where pa1, a2, a3, a4q and pa1, a2, a3, a4q
are respectively the four odd points of the LMF and UMF,
and w and w denote respectively the degrees of confidence
for Ã and Ã, with 0 ă w ď w “ 1. The area between
LMF and UMF, illustrated in grey in Figure 1, thus denotes
the footprint of uncertainty (FOU), which represents the
uncertainty of the fuzzy set Ã. Obviously, a larger FOU area
implies a higher level of uncertainty; and the IT2 fuzzy set
degenerates to a type-1 fuzzy set when Ã coincides with Ã
(i.e., the area of FOUpÃq is 0).

Using the concept of FOU , Equation 2 can also be
rewritten as [24]:

Ã “ 1{FOUpÃq. (3)

Fig. 1. LMF Ã and UMF Ã of a trapezoidal IT2 fuzzy set Ã

B. TSK+

The original TSK inference system generates crisp infer-
ence results by weighted averaging the sub-consequences of
all fired rules using their firing strengths [2]. Obviously, no
rule will be fired if a given input does not overlap with any
rule antecedent, and consequently the TSK inference cannot
be performed. TSK+ inference approach addressed such issue
by redefining the fire strength and its implementation of sim-
ilarity degree [6]. Assume that two weighted convex trape-
zoidal fuzzy sets in a normalized variable domain are given
as A “ pa1, a2, a3, a4, wq and A

1

“ pa
1

1, a
1

2, a
1

3, a
1

4, w
1

q,
where 0 ă w ď 1 and 0 ă w

1

ď 1 represent the degrees
of confidence for fuzzy sets A and A

1

, respectively. Note
that the weighted fuzzy set A will deteriorate to a normal
fuzzy set when w “ 1, which is usually simply denoted as
A “ pa1, a2, a3, a4q. The similarity degree spA,A

1

q between
A and A

1

can be calculated by the following Equation:

spA,A1q “

˜

1´

4
ÿ

i“1

|ai ´ a
1
i|

4

¸

¨ d ¨
minpw,w

1

q

maxpw,w1q
,

(4)

where d represents distance factor. This factor is a function
defined below:

d “

$

’

’

&

’

’

%

1 ;
a1 “ a2 “ a3 “ a4

& a
1

1 “ a
1

2 “ a
1

3 “ a
1

4

1´ 1
1`ep´f¨}A,A1}`5q ; otherwise,

(5)
where }A,A1} represents the distance between two fuzzy sets
usually defined as the Euclidean distance of their represen-
tative values [9], and f (f ą 0) is an adjustable sensitivity
factor. A smaller value of s usually leads to a similarity
degree which is more sensitive to the distance between
the two fuzzy sets. According to Equation 5, the distance
factor is not considered when fuzzy sets A and A1 are both
crisp. This is because the shapes of the fuzzy sets need
to considered by the representative values as contributing
elements of the distance factor when the objects are fuzzy
sets, but there is no point to consider this if the objects are
simply crisp numbers [25].

Suppose that a type-1 TSK rule base, sparse or dense, is



comprised of n rules:

R1 : IF x1 is A1
1 and ¨ ¨ ¨xj is A1

j ¨ ¨ ¨ and xk is A1
k

THEN y “ f1px
1
1, ¨ ¨ ¨ , x

1
kq,

... ...

Rn : IF x1 is An1 and ¨ ¨ ¨xj is Anj ¨ ¨ ¨ and xk is Ank
THEN y “ fnpx

n
1 , ¨ ¨ ¨ , x

n
k q,

(6)

where Aij , pi P t1, 2, ¨ ¨ ¨ , nu and j P t1, 2, ¨ ¨ ¨ , kuq
represents a convex trapezoidal fuzzy set that can be
denoted as (aij1, a

i
j2, a

i
j3, a

i
j4, w

i). Given an input I “

pA1, A2, ¨ ¨ ¨ , Akq, either crisp or fuzzy, in the input domain,
a crisp inference result can be generated by the following
steps:

Step 1: Calculate the matching degrees between
the given input pA1, A2, ¨ ¨ ¨ , Akq and rule antecedents
(Ai1, A

i
2, ¨ ¨ ¨ , A

i
k) for each rule Ri using Equation 4.

Step 2: Determine the firing degree of each rule by
aggregating the matching degrees between its antecedent
terms and the given input values by:

αi “ spA1, A
i
1q ^ spA2, A

i
2q ^ ¨ ¨ ¨ ^ spAk, A

i
kq , (7)

where ^ is a t-norm operator usually implemented as a
minimum operator.

Step 3: Generate the final output o by integrating the
sub-consequences from all rules:

c “
n
ÿ

i“1

αi ¨ fnpx1, ¨ ¨ ¨ , xkq {
n
ÿ

i“1

αi . (8)

III. INTERVAL TYPE-2 TSK+

Many type-1 fuzzy systems have been extended to sup-
port IT2 fuzzy systems, including the TSK approach [26],
[27]. Generally speaking, the inputs and all the fuzzy sets
in the rule antecedents can but not necessarily be IT2 fuzzy
sets in a IT2 fuzzy systems; and the consequence of IT2 TSK
rules are zero or first order of polynomial functions, where
the parameters can be either crisp values or a crisp interval.
Assume that an IT2 sparse TSK rule base is comprised of n
rules as:

R1 : IF x1 is Ã1
1 and . . . and xk is Ã1

k

THEN y “ p̃10 ` p̃
1
1x

1
1 ` ¨ ¨ ¨ ` p̃

1
kx

1
k

. . .

Ri : IF x1 is Ãi1 and . . . and xk is Ãik
THEN y “ p̃i0 ` p̃

i
1x
i
1 ` ¨ ¨ ¨ ` p̃

i
kx

i
k

. . .

Rn : IF x1 is Ãn1 and . . . and xk is Ãnk
THEN y “ p̃n0 ` p̃

i
1x
n
1 ` ¨ ¨ ¨ ` p̃

n
kx

n
k ,

(9)

where Ãij , pj P t1, . . . , ku, i P t1, . . . , nuq is an IT2 fuzzy set
regarding input variable xj in the ith rule. The consequence
is a crisp polynomial function y “ fipx1, . . . , xkq “
p̃i0 ` p̃i1x

i
1 ` ¨ ¨ ¨ ` p̃ikx

i
k, where p̃ij are parameters usually

being crisp intervals with crisp singleton numbers being the
special case. For a given input OpÃ˚1 , ¨ ¨ ¨ , Ã

˚
kq, the steps

introduced in Section II-B can be generally used for the

generation of the output, but all the operations on type-1
fuzzy set involved in these steps need to be upgraded to
those based on IT2 fuzzy sets. Fortunately, such upgrading
has been extensively studied in the literature [24]; and all
the operations on IT2 fuzzy sets used in this work can be
simplified by the calculation of the FOU of the resulted
IT2 fuzzy sets based on Equation 3, which in turn can be
simplified by the calculation of the LMF and UMF. Note that
crisp numbers, sets and type-1 fuzzy sets are special cases
of IT2 fuzzy sets and thus the discussion below all based on
the general case of IT2 fuzzy sets unless only a simplified
version can be the case.

A. Firing Strength

The firing strength and similarity measure based on type-
1 fuzzy sets, as reviewed in Section II-B, is extended in
this subsection to support the development of IT2-TSK+. As
each IT2 fuzzy set can be repressed by a set of embedded
type-1 fuzzy sets, the matching degree between a crisp value
and an IT2 fuzzy sets can be calculated as the complete
set of matching degrees between the crisp value and every
embedded type-1 fuzzy set within the calculated IT2 fuzzy
set using Equation 4; and the calculated matching degree is
thus a crisp interval.

Without losing generalisation, given a crisp singleton IT2
observation item Ãj and the corresponding antecedent value
Ãij of rule Ri regarding the same antecedent variable xj ,
their matching degree S is calculated as:

s̃pÃij , Ãjq “ rspÃ
i
j , Ãjq, spÃ

i
j , Ãjqs, (10)

where Ãij and Ãij respectively indicate the UMF and LMF

of Ãij , and sp¨, ¨q represents the similarity degree between
two type-1 fuzzy sets (or specifically one crisp singleton and
one type-1 fuzzy set) as defined in Equation 4.

Once the similarity degrees between the observed values
and the rule antecedent values of rule Ri regarding every
antecedent variable x1, ..., xn are obtained, which are then
integrated as the firing strength α̃i of rule Ri. The integration
is implemented by a t-norm operator when the similarity
degrees are crisp values as in type-1 fuzzy systems, but this
needs to be extended to the meet [ operation when intervals
are used [28]:

α̃i “rα̃i, α̃is

“ [kj“1 s̃pÃ
i
j , Ãjq

“rminpA1q,maxpA1qs [ ...[ rminpAnq,maxpAnqs

“rminpminpA1q, ...,minpAnqq,

minpmaxpA1q, ...,maxpAnqqs

“rs̃pÃi1, Ã1q [ ¨ ¨ ¨ [ s̃pÃ
i
k, Ãkqs

“rrspÃi1, Ã1q, spÃi1, Ã1qs, ¨ ¨ ¨ ,

rspÃik, Ãkq, spÃ
i
k, Ãkqss

“rspÃi1, Ã1q ^ ¨ ¨ ¨ ^ spÃ
i
k, Ãkq,

spÃi1, Ã1q ^ ¨ ¨ ¨ ^ spÃik, Ãkqs,
(11)

where ^ represents a t-norm operation implemented as a
minimum operator in this work.



B. Intermediate Result from Individual Rule

As reviewed in Section II-B, the TSK+ inference ap-
proach integrates the intermediate results from every individ-
ual rules in the rule base to form the final output. Given an
observation OpÃ1, ¨ ¨ ¨ , Ãkq, the intermediate result c̃i led by
rule Ri needs to be calculated first. As intervals are usually
used as the parameters of the polynomial function in the
consequence of IT2 TSK rules and the domains of input
variables are normalized, each sub-consequence c̃i from rule
Ri in the IT2 TSK+ system is therefore a crisp interval [26],
[27]. The minimum and maximum values of c̃i can be ob-
tained based on the given observation and the corresponding
IT2 polynomial function of the rule consequence:

c̃i “p̃i0 ` p̃
i
1x
i
1 ` ¨ ¨ ¨ ` p̃

i
kx

i
k

“rp̃i0 ` p̃
i
1x1 ` ¨ ¨ ¨ ` p̃

i
kxk ,

p̃i0 ` p̃
i
1x1 ` ¨ ¨ ¨ ` p̃

i
kxks,

(12)

where p̃ij and p̃ij , pj P t0, 1, ¨ ¨ ¨ , kuq, denote the minimum
and maximum values of crisp interval p̃ij , respectively.

C. Final Output Generation

The final output of the TSK+ system is a fuzzified
weighted average of the sub-consequences from all rules.
In particular, based on the obtained firing strength α̃i and
corresponding sub-consequence c̃i, the final interval output
c̃ can be calculated by:

c̃ “rc̃, c̃s

“

ż

c̃1Prc̃1,c̃1s

. . .

ż

c̃nPrc̃n,c̃ns

ż

α̃1Prα̃1,α̃1s

. . .

ż

α̃nPrα̃n,α̃ns

1
N

řn
i“1 α̃

i
¨c̃i

řn
i“1 α̃

i
.

(13)
This equation can be practically implemented by computing
the two extreme values of the crisp interval, minimum c̃ and
maximum c̃, separately:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

c̃ “

L
ÿ

i“1

α̃ic̃i `
n
ÿ

j“L`1

α̃ic̃i

L
ÿ

i“1

αi `
n
ÿ

j“L`1

αj

c̃ “

R
ÿ

i“1

α̃ic̃i `
n
ÿ

j“R`1

α̃ic̃i

R
ÿ

i“1

αi `
n
ÿ

j“R`1

αj

,

(14)

where L and R are the switch points that used to make sure
c̃ is minimized and c̃ is maximized, which can be obtained
by an iterative procedure. A number of implementations on
such problem have been proposed in the literature and widely
used in the real world, such as Karnik-Mendel (KM) al-
gorithms, enhanced Karnik-Mendel algorithms (EKMA), an
iterative algorithm with stop condition (ISAC), and enhanced
ISAC [29]. In particular, the Karnik-Mendel (KM) algorithm
is adapted in this work due to its efficiency, and the details

of this approach is omitted here as this is beyond the focus
of this paper.

Once the output interval or special IT2 fuzzy set is
generated, type reduction or defuzzification needs to be
applied. This can be readily implemented by applying a
simple average operation:

c “
c̃` c̃

2
. (15)

IT2 fuzzy sets are extensions of type-1 fuzzy sets. The
above proposed IT2 fuzzy TSK+ approach deteriorates to
type-1 TKS+ when all the IT2 TSK fuzzy rules degenerate
to type-1 ones. There are variations of IT2 rule bases. For
instances, the parameters in the rule consequences can be
all crisp numbers, instead of crisp intervals. In this special
case, the intermediate result led by Equation 12 is a singleton
number. In addition, if the p̃i1 “ p̃i2 “ ¨ ¨ ¨ “ p̃ik “ 0 for
all rules in the rule base in Equation 9, the TSK+ model
will become to a 0-order one, and Equation 12 can then be
rewritten as c̃i “ rp̃i0, p̃i0s. Therefore, the proposed approach
is able to be applied to perform the inference with multiple
varied TSK rule bases.

Note that rough-fuzzy set based interpolation approaches
may also provide similar approximation functionality prac-
tically, such as [30], [31]. However, there is an obvious
theoretical difference between the two as different underpin-
ning approximation approaches are utilized. In addition, the
rough-fuzzy set based interpolation approaches are analogy-
based interpolation that considers the representative values
and the shapes of upper and lower membership functions
separately during the reasoning processes, while the proposed
approach considers the IT2 fuzzy set as signal component.
The proposed approach utilizes the similarity degree value
between the given inputs and rule antecedents as the rule
firing strength in aggregating the final result, which follows
the conventional TSK inference principle.

IV. EXPERIMENTATION

The proposed IT2 TSK+ approach is validated and eval-
uated in this section by applying it to two cases used in the
literature.

A. Illustrative Example

A two inputs and one output fuzzy inference problem,
which has been used as an illustration example in the work
of [32], is re-considered here. In particular, the domains of
the two inputs are each fuzzy partitioned and represented by
two trapezoidal IT2 fuzzy sets, and thus the rule base consists
of 4 rules which covers the entire problem domain. The
consequence of each rule is a crisp interval. The complete
rule base is listed in Table I, where each IT2 fuzzy set is
represented as Ã “ pa1, a2, a3, a4, w; a1, a2, a3, a4, wq, and
pa1, a2, a3, a4, wq denotes the UMF of the IT2 fuzzy set with
degree of confidence w, pa1, a2, a3, a4, wq indicates the LMF
with w being the confidence level. Given an input vector
O “ p´0.3, 0.6q, the calculation of the final crisp inference
output is detailed below.



TABLE I. RULE BASE FOR THE ILLUSTRATIVE EXAMPLE

No. Inputs Output
x1 x2 y

R1 (-1.5,-1.5,-0.5,1.5,1;-1.5,-1.5,-1.5,0.5,1) (-1.5,-1.5,-0.5,1.5,1;-1.5,-1.5,-1.5,0.5,1) p̃10 “ r´1,´0.9s
R2 (-1.5,-1.5,-0.5,1.5,1;-1.5,-1.5,-1.5,0.5,1) (-1.5, 0.5, 1.5, 1,5,1;-0.5, 1.5, 1.5, 1.5,1) p̃20 “ r´0.6,´0.4s
R3 (-1.5, 0.5, 1.5, 1,5,1;-0.5, 1.5, 1.5, 1.5,1) (-1.5,-1.5,-0.5,1.5,1;-1.5,-1.5,-1.5,0.5,1) p̃30 “ r0.4, 0.6s
R4 (-1.5, 0.5, 1.5, 1,5,1;-0.5, 1.5, 1.5, 1.5,1) (-1.5, 0.5, 1.5, 1,5,1;-0.5, 1.5, 1.5, 1.5,1) p̃40 “ r0.9, 1s

The matching degree between each given input item
and each antecedent item of every rule is calculated using
Equation 10, with the results shown in the 2nd and 3rd

columns in Table II. Note that Equation 10 is an extension
of Equation 4, and the sensitive factor is set to 8, which
is determined empirically. Having computed the matching
degrees, the firing strength of each rule is obtained using
Equation 11, and the results are listed in the 4th column in
Table II.

TABLE II. FIRING STRENGTH FOR EXPERIMENTATION 1

i
x1 x2 Firing Strength

s̃pÃi
1, Oq s̃pÃi

2, Oq α̃i

1 [0.3975, 0.6259] [0.0443, 0.4195] [0.0443, 0.4195]
2 [0.3975, 0.6259] [0.5063, 0.6608] [0.3975, 0.6259]
3 [0.1115, 0.5008] [0.0443, 0.4195] [0.0443, 0.4195]
4 [0.1115, 0.5008] [0.5063, 0.6608] [0.1115, 0.5008]

The intermediate result led by each rule is the correspond-
ing rule consequence as the given rule base only consists of
0-order TSK fuzzy rules. By applying the KM algorithm,
the switching point L “ 1 and R “ 3 can be calculated.
From this, the final inference output interval c̃ “ rc̃, c̃s can
be computed as:

c̃ “
α̃1p̃10 ` α̃

2p̃20 ` α̃
3p̃30 ` α̃

4p̃40

α̃1 ` α̃2 ` α̃3 ` α̃4

“
0.42 ¨ p´1q ` 0.40 ¨ p´0.6q ` 0.04 ¨ 0.4` 0.11 ¨ 0.9

0.42` 0.40` 0.04` 0.11
“ ´0.5636

(16)

c̃ “
α̃1p̃10 ` α̃

2p̃20 ` α̃
3p̃30 ` α̃

4p̃40
α̃1 ` α̃2 ` α̃3 ` α̃4

“
0.04 ¨ p´0.9q ` 0.40 ¨ p´0.4q ` 0.04 ¨ 0.6` 0.50 ¨ 1

0.04` 0.40` 0.04` 0.50
“ 0.4064

(17)

The final system output can be derived by applying a
fuzzy type reduction method such as Equation 15:

c “
c̃` c̃

2

“
´0.5636` 0.4064

2
“ ´0.0786

(18)

This example demonstrates the working of the proposed
TSK+ system with an IT2 fuzzy rule base. Note that the
result generated by the conventional IT2 TSK inference
approach as reported in the work of [32] is c̃ “ ´0.6316, c̃ “
0.4897 and c “ ´0.0710. The final output led by the
proposed IT2 TSK+ approach is very similar to the final
result reported in [32], but the generated output interval is
only a subset of the one reported in [32].

B. Cart Centering Application

In this experiment, the well-known cart centering prob-
lem, which has been considered in [26], was used for system
evaluation. In this particular problem, a cart can only move
along a line on a frictionless plane, and the goal is to drive
the cart to the center position of the line from a given initial
position on the line, which forms a typical control problem.
The inputs of the controller for this problem are the current
position coordinates of the cart x and the current velocity of
the cart v; and the output of this fuzzy model is the force
F that should be applied on the cart. In [26], the domain of
cart position x was restricted from ´0.75m to 0.75m; the
range of cart velocity v was restricted from ´0.75m{s to
0.75m{s; the output force F was defined between ´0.18m{s
and 0.18m{s; and the sampling time used was t “ 0.1s. This
set of parameters and constraints were also utilized in this
experiment reported herein.

Based on the problem described above, a 0-order IT2
TSK fuzzy model has been designed and created in [26].
In particular, five linguistic values, represented as IT2 fuzzy
sets, were used to cover every domain of input variables x
and v, which are negative large (NL), negative small (NS),
zero (0), positive small (PS) and positive large (PL), as shown
in Figure 2. Five crisp interval values were used as the output,
which are labeled as NL, NS, 0, PS and PL, as listed in
Table III. A dense rule base for this cart centering problem
was generated in [26], as shown in Table IV.
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(a) IT2 fuzzy partition for the domain of Position
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(b) IT2 membership function for the domain of Velocity

Fig. 2. Fuzzy partition on input domain

In order to evaluate the proposed IT2 TSK+ approach



TABLE III. FUZZY PARTITION OF OUTPUT DOMAIN

Output label Value Linguistic value
NL [-0.18 -0.14] NL
NS [-0.10 -0.06] NS
0 [-0.02 0.02] 0

PS [0.06 0.10] PS
PL [0.14 0.18] PL

TABLE IV. DENSE RULE BASE WITH 25 RULES USED IN [26]

Position (x)
NL NS 0 PS PL

Velocity (v)

NL PL PL PL PS 0
NS PL PL PS 0 NS
0 PL PS 0 NS NL

PS PS 0 NS NL NL
PL 0 NS NL NL NL

working with a sparse rule base, two fuzzy sets from each
input domain as shown in Figure 2 were manually removed
to simulate a lack of information, and the result is shown in
Figure 3. Consequently, from the incomplete information, a
sparse rule base with only 9 rules was generated, as listed in
Table V.
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(a) Reduced number of IT2 linguistic values for Position
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(b) Reduced number of IT2 linguistic values for Velocity

Fig. 3. Reduced number of IT2 linguistic values for input domain

TABLE V. MODIFIED SPARSE RULE BASE WITH 9 RULES

Position (x)
NL NS PL

Velocity (v)
NL PL PL 0
PS PS 0 NL
PL 0 NS NL

Given an initial state of the cart x “ 0.5m and v “
0.5m{s, the conventional IT2 TSK approach and the pro-
posed IT2 TKS+ were both applied in this experiment using
the dense and sparse rule bases, if applicable, for system
performance comparison, with the results demonstrated in
Figure 4. In particular, the results led by the conventional
IT2 TSK, of course based on the dense rule base, are shown
in Figures 4(a) and 4(b); the results led by the proposed IT2
TSK+ based on the dense rule base are shown in Figures 4(c)
and 4(d); and the results generated by the proposed IT2

TSK+ approach using the sparse rule base are illustrated in
Figures 4(e) and 4(f).

This experiment reveals that the proposed IT2 TSK+
approach is able to generate reasonable results using either a
dense or sparse rule base. From Figure 4, it is clear that the
proposed IT2 TSK+ with the dense rule base took less time
to drive the cart from the initial position to the goal position
with relatively smooth control, compared to the performance
from the conventional TSK approach based on of course the
dense rule base. This indicates that the proposed IT2 TSK+
system outperforms the conventional IT2 TSK method when
the dense rule base is used. Also interestingly, the proposed
approach took longer to change the moving direction, which
might be useful in real-world control for better dynamic
stability.

The IT2 TSK+ also successfully drive the cart to the goal
position with a relatively smooth curve, although the conver-
gence time taken by the proposed IT2 TSK+ with sparse
rule base was longer than those with the dense rule base by
either approaches. However, if the size of utilized rule bases
are taken into account, the proposed approach can solve the
same control problem with only 9 rules, while a dense rule
with 25 rules is required by the conventional approach. This
clearly demonstrates the power of the proposed system in
system complexity reduction.

C. Discussions

Although many fuzzy interpolation approaches have been
proposed to enable fuzzy inference with sparse rule base,
the majority of them were developed based on Mamdani
rule bases with some being extended to support IT2 fuzzy
sets. The proposed system is the first attempt to extend the
TSK fuzzy system with wider applicability supporting either
type-1 or IT2 fuzzy rule bases which are either dense or
sparse. This will significantly improve the performance of the
widely applied TSK fuzzy inference systems in real-world
applications with better uncertainty management. The system
also at the same time providing an effective way in system
complexity reduction, especially in the ear of big data.

The sparse rule base used in the second experiment was
generated by manually removing some linguistic values from
each variable domain rather arbitrarily, and thus the sparse
rule base and correspondingly the inferred results may not be
optimal. Therefore, better performance is expected from an
optimal sparse rule base. Note that developments on sparse
rule base generation have been reported in the literature [5],
[6]. Although these approaches only targeted type-1 fuzzy
models, the underpinning principle can be readily extended
to generate sparse IT2 TSK rule base, which remains an
active future work. Also, the cart is limited its movement
along a straight line only in this experiment. Note that fuzzy
controllers have been applied to mobile robot control with no
restriction on the cart movement [33]. Such complex control
problem may better reveal the capability of the proposed
approach.

The proposed IT2 TSK+ approach can be employed to
address some real-world problems. For instance, a wall-
following mobile-robot controller has been proposed in [34].
In this system, an IT2 TSK fuzzy model is designed for
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(a) Cart position by conventional TSK with dense rule
base [26]

(b) Cart velocity by conventional TSK with dense rule
base [26]
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(c) Cart position by IT2 TSK+ with dense rule base
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(d) Cart velocity by IT2 TSK+ with dense rule base
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(e) Cart position by IT2 TSK+ with sparse rule base
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(f) Cart velocity by ITS TSK+ with sparse rule base

Fig. 4. Performance comparison

mobile robot control; and the reinforcement method Q-
learning is adopted to learn the IT2 TSK fuzzy rule base.
The proposed IT2 TSK+ approach can be readily applied
to the mobile-robot system to make the best guess of the
next action rather than simply a random one, when the rule
base is extremely sparse. Consequently, the total number
of trials in the learning process is expected to be reduced.
The proposed approach may also be used to other real-
world applications which were developed based on type-1

fuzzy sets, such as [35], in an effort to boost the system
performance. The implementation and the evaluation of such
applications remain as a piece of future work.

V. CONCLUSION

This paper extended the recently proposed TSK+ fuzzy
inference approach by allowing the utilization of sparse
IT2 TSK rule bases as well as dense ones. Thanks to the



extensive research carried out in the field of IT2 fuzzy sets
and the corresponding computing approaches, this work also
presented a practically feasible computing approach for real-
world applications. IT2 TSK+ is therefore able to perform
inferences with dense, sparse, type-1, or IT2 fuzzy rule
bases. Two experiments adapted from the literature have been
used for system validation and evaluation, with the first one
illustrating the working of the system and the second one
demonstrating the power of the proposed fuzzy inference
system in mobile cart control.

Although promising, this work can be further improved
in the following areas. Noting that the value of sensitivity
factor (f ) in the similarity measure needs to be empirically
determined; it would be worthwhile to investigate how this
parameter can be intelligently auto-determined. Also, it is
interesting to study how the proposed approach can be
further extended to work with general type-2 TSK fuzzy
sets theoretically and practically. In addition, more evaluation
on scaled-up real-world applications are required to fully
discover the potential of the proposed IT2 TSK+ fuzzy
inference system.
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