3,050 research outputs found

    Factors determining patients’ intentions to use point-of-care testing medical devices for self-monitoring: The case of international normalised ratio self-testing

    Get PDF
    This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. - Copyright @ 2012 Dove Medical Press LtdThis article has been made available through the Brunel Open Access Publishing Fund.Purpose: To identify factors that determine patients' intentions to use point-of-care medical devices, ie, portable coagulometer devices for self-testing of the international normalized ratio (INR) required for ongoing monitoring of blood-coagulation intensity among patients on long-term oral anticoagulation therapy with vitamin K antagonists, eg, warfarin. Methods: A cross-sectional study that applied the technology-acceptance model through a self-completed questionnaire, which was administered to a convenience sample of 125 outpatients attending outpatient anticoagulation services at a district general hospital in London, UK. Data were analyzed using descriptive statistics, factor analyses, and structural equation modeling. Results: The participants were mainly male (64%) and aged ≥ 71 years (60%). All these patients were attending the hospital outpatient anticoagulation clinic for INR testing; only two patients were currently using INR self-testing, 84% of patients had no knowledge about INR self-testing using a portable coagulometer device, and 96% of patients were never offered the option of the INR self-testing. A significant structural equation model explaining 79% of the variance in patients’ intentions to use INR self-testing was observed. The significant predictors that directly affected patients' intention to use INR self-testing were the perception of technology (β = 0.92, P < 0.001), trust in doctor (β = −0.24, P = 0.028), and affordability (β = 0.15, P = 0.016). In addition, the perception of technology was significantly affected by trust in doctor (β = 0.43, P = 0.002), age (β = −0.32, P < 0.001), and affordability (β = 0.23, P = 0.013); thereby, the intention to use INR self-testing was indirectly affected by trust in doctor (β = 0.40), age (β = −0.29), and affordability (β = 0.21) via the perception of technology. Conclusion: Patients’ intentions to use portable coagulometers for INR self-testing are affected by patients' perceptions about the INR testing device, the cost of device, trust in doctors/clinicians, and the age of the patient, which need to be considered prior to any intervention involving INR self-testing by patients. Manufacturers should focus on increasing the affordability of INR testing devices for patients’ self-testing and on the potential role of medical practitioners in supporting use of these medical devices as patients move from hospital to home testing.This study is funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) program (EPSRC grant EP/GO12393/1)

    Occupational therapists’ views of using a virtual reality interior design application within the pre-discharge home visit process

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: A key role of Occupational Therapists (OTs) is to carry out pre-discharge home visits (PHV) and propose appropriate adaptations to the home environment, to enable patients to function independently after hospital-home discharge. However, research shows that more than 50% of specialist equipment installed as part of home adaptations is not used by patients. A key reason for this is that decisions about home adaptations are often made without adequate collaboration and consultation with the patient. Consequently, there is an urgent need to seek out new and innovative uses of technology to facilitate patient/practitioner collaboration, engagement and shared decision making in the PHV process. Virtual reality interior design applications (VRIDAs) primarily allow users to simulate the home environment and visualise changes prior to implementing them. Customised VRIDAs, which also model specialist occupational therapy equipment, could become a valuable tool to facilitate improved patient/practitioner collaboration if developed effectively and integrated into the PHV process. Objective: To explore the perceptions of occupational therapists with regards to using VRIDAs as an assistive tool within the PHV process. Methods: Task-oriented interactive usability sessions, utilising the think-aloud protocol and subsequent semi-structured interviews were carried out with seven Occupational Therapists who possessed significant experience across a range of clinical settings. Template analysis was carried out on the think-aloud and interview data. Analysis was both inductive and driven by theory, centring around the parameters that impact upon the acceptance, adoption and use of this technology in practice as indicated by the Technology Acceptance Model (TAM). Results: OTs’ perceptions were identified relating to three core themes: (1) perceived usefulness (PU), (2) perceived ease of use (PEoU), and (3) actual use (AU). Regarding PU, OTs believed VRIDAs had promising potential to increase understanding, enrich communications and patient involvement, and improved patient/practitioner shared understanding. However, it was unlikely that VRIDAs would be suitable for use with cognitively impaired patients. For PEoU, all OTs were able to use the software and complete the tasks successfully, however, participants noted numerous specialist equipment items that could be added to the furniture library. AU perceptions were positive regarding use of the application across a range of clinical settings including children/young adults, long-term conditions, neurology, older adults, and social services. However, some “fine tuning” may be necessary if the application is to be optimally used in practice. Conclusions: Participants perceived the use of VRIDAs in practice would enhance levels of patient/practitioner collaboration and provide a much needed mechanism via which patients are empowered to become more equal partners in decisions made about their care. Further research is needed to explore patient perceptions of VRIDAs, to make necessary customisations accordingly, and to explore deployment of the application in a collaborative patient/practitioner-based context

    Validity and sensitivity of instrumented postural and gait assessment using low-cost devices in Parkinson's disease

    Full text link
    [EN] Background Accurate assessment of balance and gait is necessary to monitor the clinical progress of Parkinson's disease (PD). Conventional clinical scales can be biased and have limited accuracy. Novel interactive devices are potentially useful to detect subtle posture or gait-related impairments. Methods Posturographic and single and dual-task gait assessments were performed to 54 individuals with PD and 43 healthy controls with the Wii Balance Board and the Kinect v2 and the, respectively. Individuals with PD were also assessed with the Tinetti Performance Oriented Mobility Assessment, the Functional Gait Assessment and the 10-m Walking Test. The influence of demographic and clinical variables on the performance in the instrumented posturographic and gait tests, the sensitivity of these tests to the clinical condition and phenotypes, and their convergent validity with clinical scales were investigated. Results Individuals with PD in H&Y I and I.5 stages showed similar performance to controls. The greatest differences in posture and gait were found between subjects in H&Y II.5 and H&Y I-I.5 stage, as well as controls. Dual-tasking enhanced the differences among all groups in gait parameters. Akinetic/rigid phenotype showed worse postural control and gait than other phenotypes. High significant correlations were found between the limits of stability and most of gait parameters with the clinical scales. Conclusions Low-cost devices showed potential to objectively quantify posture and gait in established PD (H&Y >= II). Dual-tasking gait evaluation was more sensitive to detect differences among PD stages and compared to controls than free gait. Gait and posture were more impaired in akinetic/rigid PD.This study has been funded by project VALORA, Grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain) and the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029) to RL, and Alter Laboratories SA to PP.Álvarez, I.; Latorre, J.; Aguilar, M.; Pastor, P.; Llorens Rodríguez, R. (2020). Validity and sensitivity of instrumented postural and gait assessment using low-cost devices in Parkinson's disease. Journal of NeuroEngineering and Rehabilitation. 17(1):1-10. https://doi.org/10.1186/s12984-020-00770-7S110171Nussbaum RL, Ellis CE. Alzheimer’s Disease and Parkinson’s Disease. N Engl J Med. 2003;13:56–64.Hass CJ, Malczak P, Nocera J, Stegemöller EL, Shukala A, Malaty I, et al. Quantitative normative Gait data in a large cohort of ambulatory persons with parkinson’s disease. PLoS ONE. 2012;2:12.Hass CJ, Bishop M, Moscovich M, Stegemöller EL, Skinner J, Malaty IA, et al. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J Neurol Phys Ther. 2014;38:233–8.Koh S, Park K, Lee D. Gait analysis in patients with Parkinson ’ s disease: relationship to clinical features and freezing. J Mov Disord. 2008;1:6.Nanhoe-Mahabier W, Snijders AH, Delval A, Weerdesteyn V, Duysens J, Overeem S, et al. Walking patterns in Parkinson’s disease with and without freezing of gait. Neuroscience. 2011;182:217–24. https://doi.org/10.1016/j.neuroscience.2011.02.061.Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Park Relat Disord. 2019;62:28–35.Panyakaew P, Bhidayasiri R. The spectrum of preclinical gait disorders in early Parkinson’s disease: Subclinical gait abnormalities and compensatory mechanisms revealed with dual tasking. J Neural Transm. 2013;120:1665–72.Bloem BR, Marinus J, Almeida Q, Dibble L, Nieuwboer A, Post B, et al. Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: Critique and recommendations. Mov Disord. 2016;31:1342–55.Delval A, Snijders AH, Weerdesteyn V, Duysens JE, Defebvre L, Giladi N, et al. Objective detection of subtle freezing of gait episodes in Parkinson’s disease. Mov Disord. 2010;25:1684–93. https://doi.org/10.1002/mds.23159.Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol Ser A Biol Sci Med Sci. 2009;64A:896–901.Schlachetzki JCM, Barth J, Marxreiter F, Gossler J, Kohl Z, Reinfelder S, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE. 2017;12:1–18.Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13:1–10. https://doi.org/10.1186/s12984-016-0136-7.Micó-Amigo ME, Kingma I, Faber GS, Kunikoshi A, van Uem JMT, van Lummel RC, et al. Is the assessment of 5 meters of gait with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-associated gait? Ann Biomed Eng. 2017;45:1266–78.Rovini E, Maremmani C, Cavallo F. How wearable sensors can support parkinson’s disease diagnosis and treatment: a systematic review. Front Neurosci. 2017;9:12.Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J Biomed Health Inform. 2016;9:1521–37.Díaz S, Stephenson JB, Labrador MA. Use of wearable sensor technology in gait, balance, and range of motion analysis. Appl Sci. 2020;10(1):234.Park DS, Lee G. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation. J Neuroeng Rehabil. 2014;11:99.Holmes JD, Jenkins ME, Johnson AM, Hunt MA, Clark RA. Validity of the Nintendo Wii balance board for the assessment of standing balance in Parkinson’s disease. Clin Rehabil. 2013;27:361–6.Llorens R, Latorre J, Noé E, Keshner EA. Posturography using the Wii Balance BoardTM. A feasibility study with healthy adults and adults post-stroke. Gait Posture. 2016;43:228–32.Bower KJ, McGinley JL, Miller KJ, Clark RA. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: Reliability and association with clinical tests. PLoS ONE. 2014;9:32321.Eltoukhy M, Kuenze C, Andersen MS, Oh J, Signorile J. Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model. Med Eng Phys. 2017;50:75–82.Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7.Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38:952–8.Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, et al. Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48:2166–70.Cao Y, Li BZ, Li QN, Xie JD, Cao BZ, Yu SY. Kinect-based gait analyses of patients with Parkinson’s disease, patients with stroke with hemiplegia, and healthy adults. CNS Neurosci Ther. 2017;9:447–9.Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39:1062–8.Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19:1020–8.Escribano-Aparicio MV, Pérez-Dively M, García-García FJ, Pérez-Martín A, Romero L, Ferrer G, et al. Validación del MMSE de Folstein en una población española de bajo nivel educativo1. Rev Esp Geriatr Gerontol. 1999;34:319–26.Latorre J, Colomer C, Alcañiz M, Llorens R. Gait analysis with the Kinect v2: Normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J Neuroeng Rehabil. 2019;16:12.Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83. https://doi.org/10.1016/j.gaitpost.2016.10.001.Rajput AH, Voll A, Rajput ML, Robinson CA, Rajput A. Course in parkinson disease subtypes: a 39-year clinicopathologic study. Neurology. 2009;73:206–12.Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O. Globus pallidus dopamine and Parkinson motor subtypes: Clinical and brain biochemical correlation. Neurology. 2008;70(16 Pt 2):1403–10.Fahn S. Unified Parkinson’s disease rating scale. Recent Dev Park Dis. 1987;2:153–64.Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a Brief Clinical Form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci. 2000;12:233–9. https://doi.org/10.1176/jnp.12.2.233.Chaudhuri KR, Martinez-Martin P, Brown RG, Sethi K, Stocchi F, Odin P, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007;22:1901–11.Christenson GA, Faber RJ, De Zwaan M, Raymond NC, Specker SM, Ekern MD, et al. Compulsive buying: descriptive characteristics and psychiatric comorbidity. J Clin Psychiatry. 1994;55:5–11.Peto V, Jenkinson C, Fitzpatrick R, Greenhall R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual life Res. 1995;4:241–8.Lang JT, Kassan TO, Devaney LL, Colon-Semenza C, Joseph MF. Test-retest reliability and minimal detectable change for the 10-meter walk test in older adults with Parkinson’s disease. J Geriatr Phys Ther. 2016;39:165–70.Woodhull-McNeal AP. Changes in posture and balance with age. Aging Clin Exp Res. 1992;4:219–25.Terrier P, Reynard F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41:170–4.Bohannon RW, Williams AA. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–9.Elbaz A, Artaud F, Dugravot A, Tzourio C, Singh-Manoux A. The gait speed advantage of taller stature is lost with age. Sci Rep. 2018;8:12.Laroche DP, Marques NR, Shumila HN, Logan CR, Laurent RS, Goncąlves M. Excess body weight and gait influence energy cost of walking in older adults. Med Sci Sports Exerc. 2015;47:1017–25.Stylianou AP, McVey MA, Lyons KE, Pahwa R, Luchies CW. Postural sway in patients with mild to moderate parkinson’s disease. Int J Neurosci. 2011;121:614–21.Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Park Relat Disord. 2011;17:557–62.Morris M, Iansek R, Smithson F, Huxham F. Postural instability in Parkinson’s disease: a comparison with and without a concurrent task. Gait Posture. 2000;12:205–16.Schoneburg B, Mancini M, Horak F, Nutt JG. Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord. 2013;89:1474–82.Doná F, Aquino CC, Gazzola JM, Borges V, Silva SMCA, Ganança FF, et al. Changes in postural control in patients with Parkinson’s disease: a posturographic study. Physiother. 2016;102:272–9.Rossi M, Soto A, Santos S, Sesar A, Labella T. A Prospective Study of Alterations in Balance among Patients with Parkinson’s Protocol of the Postural Evaluation. Eur Neurol. 2009;11:171–6.Ganesan M, Kumar P, Gupta A, Sathyaprabha TN. Dynamic posturography in evaluation of balance in patients of Parkinson ’ s disease with normal pull test : Concept of a diagonal pull test q. Park Relat Disord. 2010;16:595–9. https://doi.org/10.1016/j.parkreldis.2010.08.005.Kim SM, Kim DH, Yang Y, Ha SW, Han JH. Gait Patterns in Parkinson’s Disease with or without Cognitive Impairment. Dement Neurocognitive Disord. 2018;17:57.Galletly R, Brauer SG. Does the type of concurrent task affect preferred and cued gait in people with Parkinson’s disease? Aust J Physiother. 2005;51:175–80.O’Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002;82:888–97.Penko AL, Streicher MC, Koop MM, Dey T, Rosenfeldt AB, Bazyk AS, et al. Dual-task interference disrupts parkinson’s gait across multiple cognitive domains. Neuroscience. 2018;379:375–82.Yogev-seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23:329–42.Giladi GYN. The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res. 2013;226:81–93.Micó-Amigo ME, Kingma I, Heinzel S, Nussbaum S, Heger T, van Lummel RC, et al. Dual vs single tasking during circular walking: what better reflects progression in Parkinson’s disease? Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.00372/full.Duncan RP, Combs-Miller SA, McNeely ME, Leddy AL, Cavanaugh JT, Dibble LE, et al. Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease? Gait Posture. 2017;52:178–82.Robles-García V, Corral-Bergantiños Y, Espinosa N, Jácome MA, García-Sancho C, Cudeiro J, et al. Spatiotemporal gait patterns during overt and covert evaluation in patients with Parkinson’s disease and healthy subjects: Is there a Hawthorne effect? J Appl Biomech. 2015;31:189–94.Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, et al. Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov Disord. 2016;31:1527–34.Ospina BM, Chaparro JAV, Paredes JDA, Pino YJC, Navarro A, Orozco JL. Objective arm swing analysis in early-stage Parkinson’s disease using an RGB-D Camera (Kinect ®). J Parkinsons Dis. 2018;8:563–70.Song J, Sigward S, Fisher B, Salem GJ. Altered dynamic postural control during step turning in persons with early-stage Parkinson’s disease. Parkinsons Dis. 2012. https://doi.org/10.1155/2012/386962.Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13:428–37.Lamberti P, Armenise S, Castaldo V, De Mari M, Iliceto G, Tronci P, et al. Freezing gait in parkinson’s disease. Eur Neurol. 1997;38:297–301.Thenganatt MA, Jankovic J. Parkinson disease subtypes JAMA Neurol. 2014;71:499–504.Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41:2021–5.McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation. Arch Phys Med Rehabil. 2001;82:419–25.Greenberg M, Gronley J, Perry J, Lawthwaite R. Concurrent validity of observational gait analysis using the vicon motion analysis system. Gait Posture. 1996;4:167–8

    Limits of Normality and Symmetry in Standing Back Shape and Posture: 3D Mapping and Analysis of Young Adults

    Get PDF
    Abnormalities of posture are a common cause of pain and disability. Objective measurement systems for postural evaluation are not widely accessible in the UK especially on the National Health Service. Within physiotherapy practice one of the most common methods of assessing posture and/or back shape is by visual observation which is prone to error and lacks objectivity. The study has sought to produce normative values for back shape and posture indices in young asymptomatic adults. A convenience sample of 100 Teesside University (TU) students were recruited. This study used a 3‐D Digitizer. Data was analyzed using SPSS. The acromion and the inferior scapular angle in the dorsal frontal plane differed between the right and left shoulders of the back in females. The distance between the inferior angle of the scapula and the apical thoracic vertebrae also differed. No other statistically significant differences were found in distances between key landmarks. Overall young adults are very symmetrical. Frontal plane angles showed that overall healthy young adults have relatively straight spines. The left inferior angle of the scapula in females was found to be rotated anteriorly in comparison to the right shoulder. Results will provide a normative database for clinicians who routinely assess back posture

    Physiotherapeutic management strategies for the treatment of cystic fibrosis in adults

    Get PDF
    Physiotherapy has long been considered a cornerstone of condition management for people with cystic fibrosis (CF). The presentation of CF has changed over time with an increased life expectancy and increased expectations of people with CF to have a complete lifestyle. In turn, the scope of strategies used in physiotherapy for CF have also changed dramatically over the years, moving away from routine postural drainage and manual techniques toward an individualized regimen including the choice of many different forms of airway clearance, such as both independent and assisted, exercise, treatments to promote continence and good posture, inhalation therapy, oxygen, and noninvasive ventilation. This article describes the techniques and overall strategies used by physiotherapists in helping people with CF to manage the symptoms and progression of their condition

    Evaluation of home-based rehabilitation sensing systems with respect to standardised clinical tests

    Get PDF
    With increased demand for tele-rehabilitation, many autonomous home-based rehabilitation systems have appeared recently. Many of these systems, however, suffer from lack of patient acceptance and engagement or fail to provide satisfactory accuracy; both are needed for appropriate diagnostics. This paper first provides a detailed discussion of current sensor-based home-based rehabilitation systems with respect to four recently established criteria for wide acceptance and long engagement. A methodological procedure is then proposed for the evaluation of accuracy of portable sensing home-based rehabilitation systems, in line with medically-approved tests and recommendations. For experiments, we deploy an in-house low-cost sensing system meeting the four criteria of acceptance to demonstrate the effectiveness of the proposed evaluation methodology. We observe that the deployed sensor system has limitations in sensing fast movement. Indicators of enhanced motivation and engagement are recorded through the questionnaire responses with more than 83% of the respondents supporting the system’s motivation and engagement enhancement. The evaluation results demonstrate that the deployed system is fit for purpose with statistically significant ( ϱc&gt;0.99 , R2&gt;0.94 , ICC&gt;0.96 ) and unbiased correlation to the golden standard

    Postural control differences among collision, contact, and non-contact sport female athletes

    Get PDF
    Postural control is defined as the act of maintaining balance, which is a foundational skill in nearly every sport. Postural control can be enhanced with practice or degraded following a neurological insult. Since balance tests are a standard practice to assess neuromotor dysfunction following a suspected concussion, understanding how postural control is affected across different sports that emphasize different skills and have different probabilities of neurological insult from head trauma would help determine whether sport specificity needs to be taken into account within concussion management. In a first step to determine whether differences exist in postural control in relation to sport, adult females actively participating in a variety of sports will be recruited. This study was focused on female athletes for the follow reasons: (1) females are underrepresented in the concussion literature, (2) females experience concussions at a higher rate than males, and (3) concussion symptoms are stronger and last longer in female athletes. Thus, focusing on female athletes helped to close a critical gap in the literature relative to female postural control and concussion management. The purpose of this study was to determine the extent to which postural control in female athletes differs between four distinct sports. The dependent variables were derived from center of pressure (CoP) profiles recorded during three 20 second static stance tasks on a force plate with eyes closed. The average path length of the CoP displacement time series was examined. Further, the CoP displacement time series were differentiated into a CoP velocity time series and three variables were derived: (1) the average (velocity mean), the magnitude of the variability (velocity standard deviation), and structure of the variability (velocity sample entropy). Poorer postural control was defined as greater CoP movement (increased displacement path length), greater CoP rate of movement (increased velocity mean), greater magnitude in the variation of the CoP rate of movement (increased velocity standard deviation), and less complexity in the variation of the CoP rate of movement (decreased velocity sample entropy). It was hypothesized that the poorest postural control would be exhibited in the sports with the most potential for head trauma. To address this hypothesis, a one-way ANOVA was used to determine if athletes in each sport exhibit different postural control. A main effect for sample entropy was observed, F(3, 84) = 6.3, p = .05). These findings indicate that females in different sports exhibit different postural control strategies, which could be due to the balance skills required for their sport and/or the potential for head trauma. This study helps to start filling in the gaps of literature to better understand postural control in female athletes participating in a variety of sports and who are older than athlete cohorts typically studied within the concussion space

    The acceptance of the clinical photographic posture assessment tool (CPPAT)

    Get PDF
    Abstract Background There is a lack of evidence-based quantitative clinical methods to adequately assess posture. Our team developed a clinical photographic posture assessment tool (CPPAT) and implemented this tool in clinical practice to standardize posture assessment. The objectives were to determine the level of acceptance of the CPPAT and to document predictors as well as facilitators of and barriers to the acceptance of this tool by clinicians doing posture re-education. Methods This is a prospective study focussing on technology acceptance. Thirty-two clinician participants (physical therapists and sport therapists) received a 3–5 h training workshop explaining how to use the CPPAT. Over a three-month trial, they recorded time-on-task for a complete posture evaluation (photo - and photo-processing). Subsequently, participants rated their acceptance of the tool and commented on facilitators and barriers of the clinical method. Results Twenty-three clinician participants completed the trial. They took 22 (mean) ± 10 min (SD) for photo acquisition and 36 min ± 19 min for photo-processing. Acceptance of the CPPAT was high. Perceived ease of use was an indirect predictor of intention to use, mediated by perceived usefulness. Analysis time was an indirect predictor, mediated by perceived usefulness, and a marginally significant direct predictor. Principal facilitators were objective measurements, visualization, utility, and ease of use. Barriers were time to do a complete analysis of posture, quality of human-computer interaction, non-automation of posture index calculation and photo transfer, and lack of versatility. Conclusion The CPPAT is perceived as useful and easy to use by clinicians and may facilitate the quantitative analysis of posture. Adapting the user-interface and functionality to quantify posture may facilitate a wider adoption of the tool
    corecore