20 research outputs found

    On the Recognition of Fuzzy Circular Interval Graphs

    Get PDF
    Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.Comment: 12 pages, 2 figure

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Connected k-Partition of k-Connected Graphs and c-Claw-Free Graphs

    Get PDF
    w_k. In particular for the balanced version, i.e. w? = w? == w_k, this gives a partition with 1/3w_i ? w(T_i) ? 3w_i

    On dominating set polyhedra of circular interval graphs

    Get PDF
    Clique-node and closed neighborhood matrices of circular interval graphs are circular matrices. The stable set polytope and the dominating set polytope on these graphs are therefore closely related to the set packing polytope and the set covering polyhedron on circular matrices. Eisenbrand et al. [18] take advantage of this relationship to propose a complete linear description of the stable set polytope on circular interval graphs. In this paper we follow similar ideas to obtain a complete description of the dominating set polytope on the same class of graphs. As in the packing case, our results are established for a larger class of covering polyhedra of the form Q ∗ (A, b) := conv {x ∈ Z n + : Ax ≥ b}, with A a circular matrix and b an integer vector. These results also provide linear descriptions of polyhedra associated with several variants of the dominating set problem on circular interval graphs.Fil: Bianchi, Silvia María. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuado
    corecore