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Abstract

Clique-node and closed neighborhood matrices of circular interval graphs are circular matrices. The
stable set polytope and the dominating set polytope on these graphs are therefore closely related to
the set packing polytope and the set covering polyhedron on circular matrices. Eisenbrand et al. [18]
take advantage of this relationship to propose a complete linear description of the stable set polytope
on circular interval graphs. In this paper we follow similar ideas to obtain a complete description of the
dominating set polytope on the same class of graphs. As in the packing case, our results are established
for a larger class of covering polyhedra of the form Q∗(A, b) := conv {x ∈ Z

n
+ : Ax ≥ b}, with A a circular

matrix and b an integer vector. These results also provide linear descriptions of polyhedra associated
with several variants of the dominating set problem on circular interval graphs.
Keywords: circular matrix · covering polyhedra · dominating sets · circulant minor

1 Introduction

The well-known concept of domination in graphs was introduced by Berge [6], modeling many facility location
problems in Operations Research. Given a graph G = (V,E), N [v] denotes the closed neighborhood of the
node v ∈ V . A set D ⊆ V is called a dominating set of G if D ∩ N [v] 6= ∅ holds for every v ∈ V . Given
a vector w ∈ R

V of node weights, the Minimum-Weighted Dominating Set Problem (MWDSP for short)
consists in finding a dominating set D of G that minimizes

∑

v∈D wv. MWDSP arises in many applications,
involving the strategic placement of resources on the nodes of a network. As example, consider a computer
network in which one wishes to choose a smallest set of computers that are able to transmit messages to all
the remaining computers [23]. Many other interesting examples include sets of representatives, school bus
routing, (r, d)-configurations, placement of radio stations, social network theory, kernels of games, etc. [20].

The MWDSP is NP-hard for general graphs and has been extensively investigated from an algorithmic
point of view (see, e.g., [7, 12, 16, 19]). In particular, efficient algorithms for the problem on interval and
arc circular graphs are proposed in [11].

However, only a few results about the MWDSP have been established from a polyhedral point of view.
The dominating set polytope associated with a graph G is defined as the convex hull of all incidence vectors
of dominating sets in G. In [10] the authors provide a complete description of the dominating set polytope
of cycles. As a generalization, a description of the dominating set polytope associated with web graphs of
the form W k

s(2k+1)+t, with 2 ≤ s ≤ 3, 0 ≤ t ≤ s− 1, and k ∈ N, is presented in [9].
Actually, the MWDSP can be regarded as a particular case of the Minimum-Weighted Set Covering

Problem (MWSCP). Given a {0, 1}-matrix A of order m× n, a cover of A is a vector x ∈ {0, 1}n such that
Ax ≥ 1, where 1 ∈ Z

m is the vector having all entries equal to one. The MWSCP consists in finding a cover
of minimum weight with respect to a given a weight vector w ∈ R

n. This problem can be formulated as the
integer linear program

min
{

wTx : Ax ≥ 1, x ∈ Z
n
+

}

.

The set Q∗(A) := conv
{

x ∈ Z
n
+ : Ax ≥ 1

}

is termed as the set covering polyhedron associated with A.
The closed neighborhood matrix of a graph G is the square matrix N [G] whose rows are the incidence

vectors of the sets N [v], for all v ∈ V . Observe that x is the incidence vector of a dominating set of G if and
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only if x is a cover of N [G]. Therefore, solving the MWSCP on N [G] is equivalent to solving the MWDSP
on G. Moreover, the structure of the dominating set polytope of G can be studied by considering the set
covering polyhedron associated with N [G].

The closed neighborhood matrix of a web graph is a circulant matrix. More generally, the closed neigh-
borhood matrix of a circular interval graph is a circular matrix (both terms are explained in more detail in
the next section). In this paper we are interested in studying the dominating set polytopes associated with
circular interval graphs.

Another classic set optimization problem is the Set Packing Problem: given a {0, 1}-matrix A of order
m × n, a packing of A is a vector x ∈ {0, 1}n such that Ax ≤ 1. For a weight vector w ∈ R

n, the
Maximum-Weighted Set Packing Problem (MWSPP) can be stated as the integer linear program

max
{

wTx : x ∈ {0, 1}n, Ax ≤ 1
}

.

The polytope P ∗(A) := conv
{

x ∈ Z
n
+ : Ax ≤ 1

}

is the set packing polytope associated with A.
Set packing polyhedra have been extensively studied because of their relationship with the stable set

polytope. Indeed, given a graph G, a matrix A can be defined whose rows are incidence vectors of the
maximal cliques in G. Conversely, given an arbitrary {0, 1}-matrix A, the conflict graph G of A is defined
as a graph having one node for each column of A and two nodes joined by an edge whenever the respective
columns have scalar product distinct from zero. In both cases, stable sets in G correspond to packings of A.

In [18, 28] the authors present a complete linear description of the stable set polytope of circular interval
graphs, which is equivalent to obtaining a complete linear description for the set packing polytope related
to circular matrices. The authors show that if A is a circular matrix then P ∗(A) is completely described
by three classes of inequalities: non-negativity constraints, clique inequalities, and clique family inequalities
introduced in [25]. Moreover, facet inducing clique family inequalities are associated with subwebs of the
circular interval graph [28].

Actually, their results are stated for a more general packing polyhedron P ∗(A, b), defined as the convex
hull of non-negative integer solutions of the system Ax ≤ b, with b ∈ Z

m
+ and A a circular matrix. In

the covering case, a similar polyhedron Q∗(A, b) can be defined as the convex hull of the integer points in
Q(A, b) = {x ∈ R

n
+ : Ax ≥ b}, with b ∈ Z

m
+ . When A is the closed neighborhood matrix of a graph, the

extreme points of Q∗(A, b) correspond to some variants of dominating sets in graphs. In particular, if b = k1,
they correspond to {k}- dominating functions [4] and, in the general case, they are related to L-dominating
functions [24]. Considering the symmetry in the definition of P ∗(A, b) and Q∗(A, b), it is natural to ask if
the ideas proposed in [18, 28] can be applied in the covering context.

In this paper we present a complete linear description of Q∗(A, b) for any circular matrix A and any vector
b ∈ Z

+
n . This yields a complete description of the polyhedron associated to L-dominating functions of circular

interval graphs. The linear inequalities have a particular structure when b = k1, which includes the case of
{k}-dominating functions. Finally, if k = 1, facet defining inequalities of Q∗(A) provide a characterization of
facets of the dominating set polytope on circular interval graphs. These inequalities are related to circulant
minors of A.

In the light of previous results obtained by Chudnovsky and Seymour [13], the linear description presented
in [18, 28] actually provided the final piece for establishing a complete linear description of the stable set
polytope for the much broader class of quasi-line graphs. The fact that the dominating set problem is known
to be NP-hard already for the particular subclass of line-graphs [31], discourages seeking for an analogous
result regarding domination on quasi-line graphs. Nonetheless, we present here some positive results for a
prominent subclass of them.

Some results presented in this paper appeared without proofs in [30].

2 Preliminaries

A circular-arc graph is the intersection graph of a set of arcs on the circle, i.e., G = (V,E) is a circular-arc
graph if each node v ∈ V can be associated with an arc C(v) on the circle in such a way that uv ∈ E if
and only C(u) intersects C(v). If additionally the family {C(v) : v ∈ V } can be defined in such a way that
no arc properly contains another, then G is a proper circular-arc graph. Proper circular-arc graphs are also
termed as circular interval graphs in [14] and defined in a different, but equivalent manner: take a finite set
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V of points on a circle C and a collection I of intervals from C. Then, V is the node set of G and u, v ∈ V
are adjacent if and only if there is at least one interval in I containing both u and v. Circular interval graphs
are an important subclass of quasi-line graphs. Web graphs W k

n are regular circular interval graphs having
node degree equal to 2k.

For n ∈ N, [n] will denote the additive group defined on the set {1, . . . , n}, with integer addition modulo
n. Given a, b ∈ [n], let t be the minimum non-negative integer such that a + t = b mod n. Then, [a, b]n
denotes the circular interval defined by the set {a + s : 0 ≤ s ≤ t}. Similarly, (a, b]n, [a, b)n, and (a, b)n
correspond to [a, b]n \ {a}, [a, b]n \ {b}, and [a, b]n \ {a, b}, respectively.

Unless otherwise stated, throughout this paper A denotes a {0, 1}-matrix of order m× n. Moreover, we
consider the columns (resp. rows) of A to be indexed by [n] (resp. by [m]) and denote its entries by aij with
i ∈ [m] and j ∈ [n]. Two matrices A and A′ are isomorphic, written as A ≈ A′, if A′ can be obtained from
A by a permutation of rows and columns.

In the context of this paper, a matrix A is called circular if, for every row i ∈ [m], there are two integer
numbers ℓi, ki ∈ [n] with 2 ≤ ki ≤ n − 1 such that the i-th row of A is the incidence vector of the set
[ℓi, ℓi+ki)n. The following is an example of a 3×7-circular matrix with ℓ1 = 1, ℓ2 = 2, ℓ3 = 5, k1 = 3, k2 = 5,
and k3 = 5:

A =





1 1 1 0 0 0 0
0 1 1 1 1 1 0
1 1 0 0 1 1 1





A row i of A is said to dominate a row ℓ 6= i of A if aij ≥ aℓj, for all j ∈ [n]. Moreover, a row is
dominating if it dominates some other row. A square circular matrix of order n without dominating rows
is called a circulant matrix. Observe that in this case ki = k must hold for every row i ∈ [n] and we can
assume w.l.o.g. ℓi = i for all i ∈ [n]. Such a matrix will be denoted by Ck

n.
Given N ⊂ [n], the minor of A obtained by contraction of N , denoted by A/N , is the submatrix of A

that results after removing all columns with indices in N and all dominating rows. In this work, anytime we
refer to a minor of a matrix, we mean a minor obtained by contraction. A minor of a matrix A is called a
circulant minor if it is isomorphic to a circulant matrix.

Circulant minors have an interesting combinatorial characterization in terms of circuits in a particular
digraph [17]. In fact, given a circulant matrix Ck

n, a directed auxiliary graph G(Ck
n) is defined by considering

n nodes and arcs of the form (i, i+ k) and (i, i+ k + 1) for every i ∈ [n]. The authors prove that if N ⊂ [n]
induces a simple circuit in G(Ck

n), then the matrix Ck
n/N is a circulant minor of Ck

n. In a subsequent work,
Aguilera [1] shows that Ck

n/N is isomorphic to a circulant minor of Ck
n if and only if N induces d ≥ 1 disjoint

simple circuits in G(Ck
n), each one having the same number of arcs of length k and k + 1.

For a matrix A, the fractional set covering polyhedron is given by Q(A) := {x ∈ R
n : Ax ≥ 1, x ≥ 0}. The

term boolean inequality denotes each one of the inequalities defining Q(A). The covering number τ(A) of A
is the minimum cardinality of a cover of A. When A is the closed neighborhood of a graph G, τ(A) coincides
with the domination number γ(G) of G. The inequality

∑n
j=1 xj ≥ τ(A) is called the rank constraint, and

it is always valid for Q∗(A). When A = Ck
n it is known that τ(Ck

n) =
⌈

n
k

⌉

and the rank constraint is a
facet of Q∗(Ck

n) if and only if n is not a multiple of k [27]. In a more general sense, given a matrix A and
a vector b ∈ Z

m, we define τb(A) := min{1Tx : x ∈ Q∗(A, b)} and the rank constraint
∑n

j=1 xj ≥ τb(A),
which is always valid for Q∗(A, b). When A is the closed neighborhood matrix of a graph G and b = k1,
τb(A) = γ{k}(G) is the {k}-domination number of G. For general b ∈ Z

+
n , τb(A) is the L-domination number

of G, for the corresponding list L associated to b.
The class of row family inequalities (rfi) was proposed in [3] as a counterpart to clique family inequalities

in the set packing case [25]. We describe them at next, slightly modified to fit in our current notation.
Let F ⊂ [m] be a set of row indices of A, s := |F | ≥ 2, p ∈ [s− 1] such that s is not a multiple of p, and

r := s− p
⌊

s
p

⌋

. Define the sets

I(F, p) =

{

j ∈ [n] :
∑

i∈F

aij ≤ p

}

, O(F, p) =

{

j ∈ [n] :
∑

i∈F

aij = p+ 1

}

.
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Then, the row family inequality (rfi) induced by (F, p) is

(r + 1)
∑

j∈O(F,p)

xj + r
∑

j∈I(F,p)

xj ≥ r

⌈

s

p

⌉

. (1)

Row family inequalities generalize several previously known classes of valid inequalities for Q∗(A). How-
ever, in contrast to clique family inequalities, not all of them are valid for Q∗(A). In [3] it is proved that
inequality (1) is valid for Q∗(A) if the following condition holds for every cover B of A:

p |B ∩ I(F, p)|+ (p+ 1) |B ∩O(F, p)| ≥ s. (2)

In particular, if p∗ := maxj∈[n]

∑

i∈F aij − 1, the row family inequality induced by (F, p∗) is always valid
for Q∗(A). Throughout this article, we are going to refer to this inequality simply as the row family inequality
induced by F .

In the particular case when A = Ck
n , facet defining inequalities of Q∗(Ck

n) related to circulant minors
were studied in [2, 8, 9, 29, 30]. Given N ⊂ [n] such that Ck

n/N ≈ Ck′

n′ , let W := {j ∈ N : j − (k + 1) ∈ N}.
Then, the inequality

2
∑

j∈W

xj +
∑

j /∈W

xj ≥

⌈

n′

k′

⌉

(3)

is valid for Q∗(Ck
n), and facet defining if n′ − k′

⌊

n′

k′

⌋

= 1. This inequality is termed as the minor inequality

induced by N [2, 8].
For a general circular matrix A, if A/N ≈ Ck′

n′ and F ⊂ [m] is the set of rows of A/N , then the rfi induced
by F will be termed as minor related row family inequality. These inequalities were introduced in [30] for the
specific case when A is a circulant matrix. In this setting, the inequalities can be seen as a generalization of
the minor inequalities (3), as they have the form:

(r + 1)
∑

j∈W

xj + r
∑

j /∈W

xj ≥ r

⌈

n′

k′

⌉

. (4)

with r = n′ − k′
⌊

n′

k′

⌋

.

In this paper we follow many of the ideas proposed in [18, 28] for describing the stable set polytope of
circular interval graphs. Actually, the construction detailed below was originally presented by Bartholdi,
Orlin and Ratliff [5] in the context of an algorithm to solve the cyclic staffing problem, which is equivalent
to the task of minimizing a linear function over Q∗(A, b).

We associate with a circular matrix the digraph defined as follows:

Definition 2.1. Given a circular matrix A, let D(A) := (V,E) where V := [n] and E is the union of the
following four sets:

E+
1 := {ai := (ℓi − 1, ℓi + ki − 1) : i ∈ [m]} ,

E+
2 := {am+j := (j − 1, j) : j ∈ [n]} ,

E−
1 := {āi := (ℓi + ki − 1, ℓi − 1) : i ∈ [m]} ,

E−
2 := {ām+j := (j, j − 1) : j ∈ [n]} .

The arcs in E+
1 ∪ E+

2 are called forward arcs, while the arcs in E−
1 ∪ E−

2 are reverse arcs. Moreover, arcs
in E+

1 ∪ E−
1 are termed as row arcs, and arcs in E+

2 ∪ E−
2 are short arcs.

For any path P in D(A), E(P ) denotes the set of arcs from P , whereas E+
1 (P ), E+

2 (P ), E−
1 (P ), and

E−
2 (P ) denote the sets E+

1 ∩ E(P ), E+
2 ∩ E(P ), E−

1 ∩ E(P ), an E−
2 ∩ E(P ), respectively.

The (oriented) length l(ai) (resp. l(āi)) of an arc ai ∈ E+
1 (resp. āi ∈ E−

1 ) is equal to ki (resp. to −ki).
Arcs in E+

2 have length of 1, while the length of arcs in E−
2 is equal to -1.

Simple directed circuits in D(A) play a important role in the description of the set packing polytope
associated with A and the more general packing polytope P ∗(A, b) defined in the last section [18, 28]. In
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this paper we show that similar results hold for the corresponding covering polyhedra Q∗(A) and Q∗(A, b).
Throughout this article we will use the term circuit to refer to a simple directed circuit.

Consider the invertible linear map T : Rn → R
n represented by a {0, 1,−1}-matrix T having the elements

on the diagonal all equal to 1, the elements on the first subdiagonal equal to -1 and all other elements equal
to zero, i.e.,

T :=











1
−1 1

. . .
. . .

−1 1











. (5)

For a circular matrix A, let Ã :=

(

A
I

)

∈ {0, 1}(m+n)×n, with I being the identity matrix of order n. If

B := ÃT and M denotes the submatrix consisting of the first n − 1 columns of B, it is straightforward to
verify that the node-arc incidence matrix H of the digraph D(A) is given by

H :=











MT −MT

−1TMT 1TMT











. (6)

The remaining of this article is structured as follows. In the next section, we review some constructions
and results presented in [18, 28] in the context of the covering case. In Section 4 we introduce a class of
valid inequalities for Q∗(A, b) induced by circuits in D(A) and show that these inequalities are sufficient for
describing Q∗(A, b), for any b ∈ Z

m
+ . From this result we obtain a complete description of the polyhedron

of L-dominating functions on circular interval graphs. In Section 5 we consider polyhedra of the form
Q∗(A, k1) with k ∈ N, which include the set covering polyhedron as a particular case. We prove that, for
this class of polyhedra, the circuits in D(A) inducing facet defining inequalities have no reverse row arcs.
In Section 6 we further study the structure of such circuits, obtaining as a result that the corresponding
inequalities have full support and only two consecutive positive integer coefficients. In the particular case
of the set covering problem, these inequalities are row family inequalities. Finally, in Section 7 we prove
that the relevant inequalities are related to circulant minors. As we have observed in the introduction,
the description of Q∗(A, k1) yields a complete description of the polyhedra associated with {k}-dominating
functions on circular interval graphs, whereas a complete description for the dominating set polytope on
those graphs can be obtained from the description of Q∗(A).

3 Following the ideas of the packing case

As we have mentioned, the study of the covering polyhedra of circular matrices closely follows the ideas
proposed in [18, 28] for the corresponding packing polytopes. Some of these ideas can be straightforwardly
translated to the covering case. In this section we review them, including the corresponding proofs for the
sake of completeness.

Given a circular matrix A, b ∈ Z
m
+ and β ∈ N, the slice of Q(A, b) defined by β is the polyhedron:

Qβ(A, b) := Q(A, b) ∩
{

x ∈ R
n : 1Tx = β

}

.

Remind that Ã =

(

A
I

)

, B = ÃT , and M is the submatrix consisting of the first n − 1 columns of B.

Moreover let d =

(

b
0

)

and let v be the last column of Ã.

Lemma 3.1. For any circular matrix A, b ∈ Z
m
+ and β ∈ N, the polytope Qβ(A, b) is integral.

5



Proof. Let Rβ(A, b) be the image of Qβ(A, b) under the inverse of matrix T defined in (5), i.e., Rβ(A, b) =
{

T−1x : x ∈ Qβ(A, b)
}

. Then if y := T−1x we have

Rβ(A, b) = {y ∈ R
n : By ≥ d, yn = β}

= {y ∈ R
n : Mŷ + βv ≥ d}

= {(ŷ, β) ∈ R
n : Mŷ ≥ dβ} ,

where dβ := d−βv ∈ Z
m+n and ŷ ∈ R

n−1 denotes the vector obtained from y by dropping its last coordinate
yn. Since MT is a submatrix of the node-arc incidence matrix of digraph D(A), it follows that M is totally
unimodular. Thus, Rβ(A, b) is integral. Moreover, since T maps integral points onto integral points, it
follows that Qβ(A, b) is also integral. �

Corollary 3.2. If A is a circular matrix and b ∈ Z
m
+ then

Q∗(A, b) = conv





⋃

β∈N

Qβ(A, b)



 .

The last result states that the split-rank of the polyhedron Q(A, b) is equal to one. This fact can be used
to address the problem of separating a point from Q∗(A, b). To do that, we need the following definitions:

Definition 3.3. Let A be a circular matrix, b ∈ Z
m
+ and x∗ ∈ Q(A, b). Consider the slack vector s∗ :=

Ãx∗ − d ≥ 0 and let µ :=
⌈

1Tx∗
⌉

− 1Tx∗. We define the cost vectors c+(x∗), c−(x∗) ∈ R
m+n by

c+(x∗) := µ(s∗ − (1− µ)v),

c−(x∗) := (1 − µ)(s∗ + µv).
(7)

From now on, D(A, x∗) denotes the digraph D(A) with cost c+(x∗) on its forward arcs and cost c−(x∗)
on its reverse arcs. For any path P in D(A), c(P, x∗) denotes the cost of P in D(A, x∗).

Remark 3.4. Observe that if 1Tx∗ ∈ Z then c+(x∗) = 0, c−(x∗) = s∗ ≥ 0 and then D(A, x∗) cannot contain
a negative cost circuit.

Non-negativity of all circuits in D(A, x∗) is a sufficient condition for a point x∗ ∈ Q(A, b) to be in
Q∗(A, b), as shown at next.

Lemma 3.5. Let A be a circular matrix, b ∈ Z
m
+ and x∗ ∈ Q(A, b) such that every circuit in D(A, x∗) has

non-negative cost. Then x∗ ∈ Q∗(A, b).

Proof. From Corollary 3.2 it is sufficient to consider the case 1Tx∗ /∈ Z. Let τ∗ :=
⌊

1Tx∗
⌋

and µ :=
τ∗ + 1− 1Tx∗ > 0.

Since D(A, x∗) does not contain a negative cost circuit, there exists a vector of node potentials z ∈ R
n,

such that zi − zj is at most the cost of arc (i, j), for every arc (i, j) ∈ E (see, e.g. [15, Chapter 2] for a proof
of this well-known result). Considering the node-arc incidence matrix H defined in (6), this property can be
written as

HT z ≤

(

c+(x∗)
c−(x∗)

)

or equivalently,
− c−(x∗) ≤ Mẑ − znM1 ≤ c+(x∗), (8)

where ẑ denotes the vector obtained from z by dropping its last coordinate zn.
Now define

x1 := x∗ −
1

µ
Tz +

zn
µ
e1 − (1− µ)en,

x2 := x∗ +
1

1− µ
Tz −

zn
1− µ

e1 + µen.

6



It is straightforward to verify that x∗ = µx1+(1−µ)x2. Thus, if x1, x2 ∈ Q∗(A, b) then x∗ ∈ Q∗(A, b) follows
from convexity of this polyhedron. Moreover, since 1TTz = zn, we have 1Tx1 = 1Tx∗ − (1 − µ) = τ∗ ∈ N

and 1Tx2 = 1Tx∗ + µ = τ∗ + 1 ∈ N. Hence, due to Corollary 3.2, it suffices to show that x1, x2 ∈ Q(A, b).
Indeed,

Ãx1 = Ãx∗ −
1

µ
(ÃT z − znÃe1)− (1 − µ)Ãen,

= Ãx∗ −
1

µ

(

Mẑ − zn(Ãe1 − v)
)

− (1− µ)v,

= Ãx∗ −
1

µ
(Mẑ − znM1)− (1− µ)v,

≥ Ãx∗ −
1

µ
c+(x∗)− (1− µ)v = Ãx∗ − s∗ = d

where the third equality follows from the fact that

M1 = B(1− en) = ÃT (1− en) = ÃT1− v = Ãe1 − v,

and the inequality in the fourth row is obtained from (8). With a similar argument, Ãx2 ≥ d follows, and
the proof is completed. �

As an immediate consequence of the previous result, if x∗ ∈ Q(A, b)\Q∗(A, b) then there exists a negative
cost circuit in D(A, x∗). It follows that, similarly as observed in [18] in the packing context, the membership
problem for Q∗(A, b) can be reduced to a minimum cost circulation problem in D(A).

In the next section, we present valid inequalities for Q∗(A, b) associated with circuits in D(A). We will
see that, given x∗ ∈ Q(A, b), if c(Γ, x∗) < 0 holds for some circuit Γ in D(A, x∗), then there is a separating
split cut for x∗ associated with Γ. In this way, we will prove that Q∗(A, b) can be described by these circuit
inequalities together with the inequalities defining Q(A, b).

4 A complete linear description of Q∗(A, b)

Consider a circular matrix A and the directed graph D(A) defined in Section 2. Recall from Definition 2.1
that for any arc a in D(A), l(a) denotes its (oriented) length.

Given a closed directed (not necessarily simple) path Γ = (V (Γ), E(Γ)) in D(A), its winding number is
the integer p(Γ) such that:

p(Γ)n =
∑

a∈E(Γ)

l(a).

For every i ∈ [m], let P+
i (resp. P−

i ) be the path of short forward (resp. reverse) arcs in D(A) connecting
li − 1 with li + ki − 1 (resp. li + ki − 1 with li − 1).

We say that a forward row arc ai = (ℓi − 1, ℓi+ ki − 1) ∈ E+
1 jumps over a node j ∈ V if j ∈ [li, li + ki)n

and the only forward short arc jumping over j is the arc (j− 1, j). A reverse arc is said to jump over a node
j ∈ [n] if and only if the corresponding (antiparallel) forward arc jumps over j.

Let p+(Γ, j) and p−(Γ, j) the number of forward and reverse arcs of Γ jumping over a node j ∈ [n],
respectively. We have the following result:

Lemma 4.1. Let A be a circular matrix and Γ be a closed directed path in D(A). For any j ∈ [n],

p+(Γ, j)− p−(Γ, j) = p(Γ).

Proof. Let us start with the case when Γ has only short arcs. For any j ∈ [n], the arcs in Γ that may leave
j are (j, j + 1) and (j, j − 1). Then the number of arcs in Γ leaving j is p+(Γ, j + 1) + p−(Γ, j). Similarly,
the number of arcs in Γ entering j is p+(Γ, j) + p−(Γ, j + 1). Since Γ is a closed path, we have:

p+(Γ, j + 1) + p−(Γ, j) = p+(Γ, j) + p−(Γ, j + 1)
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or, equivalently,
p+(Γ, j)− p−(Γ, j) = p+(Γ, j + 1)− p−(Γ, j + 1).

Hence, γ = p+(Γ, j)− p−(Γ, j) is a fixed value for all j ∈ [n].
For each j ∈ [n], let δ+(j) be the set of arcs of Γ leaving j. We have:

p(Γ)n =
∑

a∈E(Γ)

l(a) =
∑

j∈[n]

∑

a∈δ+(j)

l(a) =
∑

j∈[n]

[p+(Γ, j + 1)− p−(Γ, j)]

=
∑

j∈[n]

p+(Γ, j + 1)−
∑

j∈[n]

p−(Γ, j) =
∑

j∈[n]

[p+(Γ, j)− p−(Γ, j)] = nγ.

Then, p(Γ) = γ = p+(Γ, j)− p−(Γ, j) for all j ∈ [n].
Now consider any closed path Γ in D(A) and let Γ′ be the path obtained from Γ by replacing each forward

row arc ai = (ℓi − 1, ℓi + (ki − 1)) (resp. reverse row arc āi = (ℓi + (ki − 1), ℓi − 1)) by the path P+
i (resp.

P−
i ). Observe that p(Γ) = p(Γ′). Moreover, for each j ∈ [n], as each row arc jumping over j is replaced by a

path containing exactly one short arc jumping over j, we have p+(Γ, j) = p+(Γ′, j) and p−(Γ, j) = p−(Γ′, j).
This completes the proof. �

Given a closed directed path Γ in D(A), denote by π+ ∈ Z
m+n
+ (resp. π

−
∈ Z

m+n
+ ) the vector whose

components are the number of times each forward (resp. reverse) arc in D(A) occurs in Γ. In particular,
if Γ is a circuit then π+, π−

∈ {0, 1}m+n. Observe that, for any j ∈ [n], if ej is the j-th canonical vector,

p+(Γ, j) = πT
+
Ãej and p−(Γ, j) = πT

−
Ãej, where Ã =

(

A
I

)

. Hence, as a consequence of Lemma 4.1, we

have:

Corollary 4.2. Let A be a circular matrix. Then, for any circuit Γ in D(A),

(π+ − π
−
)T Ã = p(Γ)1T .

As a consequence of Lemma 3.5, for any x∗ ∈ Q(A, b) \ Q∗(A, b), there exists a negative cost circuit in
D(A, x∗). As we see at next, this circuit has positive winding number.

Lemma 4.3. Let A be a circular matrix, b ∈ Z
+
m, x∗ ∈ Q(A, b) \Q∗(A, b), and Γ a circuit with negative cost

in D(A, x∗). Then p(Γ) > 0.

Proof. Let p = p(Γ). From definition we have that c(Γ, x∗) = πT
+
c+(x∗)+πT

−
c−(x∗). Since c+(x∗)+c−(x∗) =

s∗, we have
c(Γ, x∗) = πT

−
s∗ + (πT

+
− πT

−
)c+(x∗).

In addition
(πT

+
− πT

−
)c+(x∗) = (πT

+
− πT

−
)(µs∗ − µ(1− µ)v).

Since (πT
+

− πT
−
)v = p holds from Corollary 4.2, we have that

c(Γ, x∗) = πT
−
s∗ + µ(πT

+
− πT

−
)s∗ − µ(1− µ)p

or, equivalently,
c(Γ, x∗) = (1− µ)πT

−
s∗ + µπT

+
s∗ − µ(1− µ)p.

Observe that πT
−
s∗ ≥ 0, πT

+
s∗ ≥ 0 and 0 < µ < 1. It follows that

c(Γ, x∗) ≥ −µ(1− µ)p.

If p ≤ 0 then c(Γ, x∗) ≥ 0, contradicting the assumption. Therefore, p > 0. �
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Given a circuit Γ in D(A), b ∈ Z
+
m, and d =

(

b
0

)

, we introduce the following parameters:

t(Γ, b) :=
∑

i∈E+

1
(Γ)

bi −
∑

i∈E−

1
(Γ)

bi = (π+ − π
−
)T d,

β(Γ, b) :=

⌊

t(Γ, b)

p(Γ)

⌋

, and

r(Γ, b) := t(Γ, b)− β(Γ, b)p(Γ).

The parameters above are involved in the next definition:

Definition 4.4. Let A be a circular matrix, b ∈ Z
m
+ and Γ be a circuit in D(A). If β = β(Γ, b) and

r = r(Γ, b), the Γ-inequality is defined as

∑

j∈[n]

[p−(Γ, j) + r]xj ≥ r (β + 1) +
∑

i∈E−

1
(Γ)

bi. (9)

We say that an inequality is a circuit inequality if it is a Γ-inequality for some circuit Γ in D(A).

The next result shows that every Γ-inequality with p(Γ) > 0 is valid for the slices Qβ(A, b) and Qβ+1(A, b)
for β = β(Γ, b) i.e., it is a disjunctive cut for Q(A, b) and then, it is valid for Q∗(A, b).

Theorem 4.5. Let A be a circular matrix, b ∈ Z
+
m and Γ be a circuit in D(A) with p(Γ) > 0. Then, the

Γ-inequality is valid for Q∗(A, b).

Proof. In the following we denote p(Γ), t(Γ, b), β(Γ, b), and r(Γ, b) simply by p, t, β, and r, respectively.
Remind that t = (π+ − π

−
)T d and let t− =

∑

i∈E−(Γ) bi = πT
−
d. Moreover, observe that p > 0 implies r ≥ 0

and t < p(β + 1).
Let x∗ be an extreme point of Q∗(A, b). Applying π

−
as a vector of multipliers on the system Ãx∗ ≥ d,

we obtain
πT
−
Ãx∗ ≥ πT

−
d. (10)

Since β =
⌊

t
p

⌋

∈ Z, x∗ satisfies the disjunction

1Tx∗ ≥ β + 1 or 1Tx∗ ≤ β.

Assume at first that 1Tx∗ ≥ β + 1. Multiplying this inequality by the non-negative factor r and adding it
with inequality (10) yields

πT
−
Ãx∗ + r1Tx∗ ≥ πT

−
d+ (β + 1)r = t− + (β + 1)r. (11)

By using the fact that πT
−
Ãej = p−(Γ, j) for every j ∈ [n], we conclude that x∗ satisfies the Γ-inequality

(9).
Now suppose 1Tx∗ ≤ β. Multiplying this inequality by the negative factor t− (β + 1)p and adding the

valid inequality πT
+
Ãx∗ ≥ πT

+
d, we obtain

πT
+
Ãx∗ + [t− (β + 1)p]1Tx∗ ≥ πT

+
d+ β[t− (β + 1)p]. (12)

By Corollary 4.2 we have that πT
+
Ãx∗ = πT

−
Ãx∗ + p1Tx∗ and then the left-hand side of this inequality is:

πT
+
Ãx∗ + [t− (β + 1)p]1Tx∗ = πT

−
Ãx∗ + r1Tx∗.

Moreover, as πT
+
d = t+ t− the right-hand side of (12) can be written as:

πT
+
d+ β[t− (β + 1)p] = t+ t− + βt− β(β + 1)p

= t− + (β + 1)r.

Hence, x∗ does also fulfill (9) when 1Tx∗ ≤ β. �

9



The following lemma establishes a necessary condition for a circuit Γ so that the Γ-inequality defines a
facet of Q∗(A, b).

Lemma 4.6. Let Γ be a circuit in D(A) such that the Γ-inequality induces a facet of Q∗(A, b). Then,

p(Γ) does not divide t(Γ, b) and 2 ≤ p(Γ) ≤ t(Γ, b)− 1. (13)

Then, every circuit inequality defining a facet of Q∗(A, b) has full support (i.e., non zero coefficients for all
variables).

Proof. Note that if p(Γ) divides t(Γ, b) then r(Γ, b) = 0 and the Γ-inequality (9) reduces to πT
−
Ãx ≥ t−(Γ),

which is redundant since it is Ãx ≥ d multiplied by the vector πT
−
. It follows that p(Γ) ≥ 2.

Moreover, if β ≤ 0, the inequality 1Tx ≥ β+1 is implied by any of the inequalities in the system Ax ≥ b
and the Γ-inequality is valid for Q(A, b). Thus, β ≥ 1 and since p(Γ) ≥ 2 we obtain p(Γ) ≤ t(Γ, b)− 1. �

Observe that if x∗ ∈ Q(A, b)\Q∗(A, b) and Γ is a circuit with negative cost in D(A, x∗), then from Lemma
4.3 and Theorem 4.5 the Γ-inequality is valid for Q∗(A, b). We see at next that x∗ violates this inequality.

Lemma 4.7. Let A be a circular matrix, b ∈ Z
+
m, x∗ ∈ Q(A, b) \Q∗(A, b) and Γ be a circuit with negative

cost in D(A, x∗). Then, the Γ-inequality is violated by x∗.

Proof. In the following we denote p(Γ), t(Γ, b), β(Γ, b), and r(Γ, b) simply by p, t, β, and r, respectively.
Remind that t = (π+ − π

−
)Td and let t− =

∑

i∈E−(Γ) bi = πT
−
d.

Let us call f(Γ, x∗) = πT
−
Ãx∗ − t− + r(1Tx∗ − β − 1). It is easy to see that x∗ violates the Γ-inequality

(9) if and only if f(Γ, x∗) < 0. We will prove that f(Γ, x∗) = c(Γ, x∗).
On one hand, we have

f(Γ, x∗) = πT
−
Ãx∗ − t− + r(1Tx∗ − β − 1),

= πT
−
(Ãx∗ − d)− r(β + 1− 1Tx∗),

= πT
−
s∗ − r(β + 1− 1Tx∗). (14)

On the other hand, we have already seen in Lemma 4.3 that

c(Γ, x∗) = πT
−
s∗ + (πT

+
− πT

−
)(µs∗ − µ(1 − µ)v).

From Corollary 4.2 it follows that πT
−
s∗ = πT

+
s∗ − p1Tx∗ + t. Hence, we can write

c(Γ, x∗) = πT
−
s∗ − µ[t− (1Tx∗ + µ− 1)p]. (15)

Similarly, if we consider that
c(Γ, x∗) = πT

+
s∗ − (πT

+
− πT

−
)c−(x∗),

it is not hard to see that
c(Γ, x∗) = πT

+
s∗ − (1− µ)[p(1Tx∗ + µ)− t]. (16)

Let τ∗ :=
⌊

1Tx∗
⌋

, i.e., 1Tx∗ + µ = τ∗ + 1. Since c(Γ, x∗) < 0, it follows from (15) that t − τ∗p > 0 or,

equivalently, τ∗ < t
p . Similarly, from (16) we obtain t− (τ∗ +1)p < 0, i.e., τ∗ +1 > t

p . Thus, τ
∗ =

⌊

t
p

⌋

= β.

This fact together with (14) and (15) imply

f(Γ, x∗) = πT
−
s∗ − (τ∗ + 1− 1Tx∗)r = πT

−
s∗ − µ(t− τ∗p) = c(Γ, x∗) < 0.

�

As a consequence of the previous results we obtain a complete linear description of Q∗(A, b).

Theorem 4.8. For any circular matrix A and any vector b ∈ Z
m
+ , the polyhedron Q∗(A, b) is completely

described by the inequalities defining Q(A, b) and circuit inequalities induced by circuits Γ in D(A) with
p(Γ) ≥ 2 such that p(Γ) does not divide t(Γ).

Observe that the above theorem and Lemma 4.6 imply that any facet of Q∗(A, b) not in the system
Ax ≥ b, x ≥ 0 must have full support. This fact has already been observed in [2] for the particular case of
the set covering polyhedron related to circulant matrices. In contrast, there are non-boolean facets of the
packing polytope of circular matrices which do not have full support. As a further consequence of Theorem
4.8 and the polynomiality of the Minimum Cost Circulation Problem, we also obtain that the Weighted
L-Domination Problem is polynomial time solvable on circular interval graph.
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5 The case of homogeneous right-hand side

In this section, we consider polyhedra Q∗(A, b) for a circular matrix A and b = α1 with α ∈ N. Observe that
for these class of polyhedra dominating rows of the matrix A are associated with redundant constraints.For
this reason, in the remaining of this article we always assume that A has no dominating rows.

We will prove that in this case, relevant circuit inequalities are induced by circuits in D(A) without
reverse row arcs.

Remind that, for every i ∈ [m], P+
i (resp. P−

i ) is the path of short forward (resp. reverse) arcs connecting
li − 1 with li + ki − 1 (resp. li + ki − 1 with li − 1). We start with the following result.

Lemma 5.1. Let A be a circular matrix and x∗ ∈ Q(A,α1) with α ∈ N. Then, for every i ∈ [m] the
following statements hold in D(A, x∗):

(i) The cost of the forward row arc ai = (ℓi − 1, ℓi + ki − 1) is smaller than the cost of P+
i by the amount

−µα; i.e., c+i (x
∗)− c+(P+

i , x∗) = −µα.

(ii) The cost of the reverse row arc āi = (ℓi + ki − 1, ℓi − 1) is smaller than the cost of P−
i , by the amount

−(1− µ)α; i.e., c−i (x
∗)− c−(P+

i , x∗) = −(1− µ)α.

Proof. Let i ∈ [m] and u := ei−
∑ℓi+ki−1

j=ℓi
em+j ∈ R

m+n, where ek denotes the k-th canonic vector in R
m+n.

Let us first prove that, uT s∗ = uT (Ãx∗ − d) = −α and uT v = 0. Indeed,

uT Ã = uT

(

A
I

)

= eTi A−
ℓi+ki−1
∑

j=ℓi

eTj = 0T ,

as the i-th row of A is the incidence vector of [ℓi, ℓi + ki)n ⊂ [n]. Thus,

uT s∗ = −uTd = −uT

(

α1
0

)

= −α. (17)

Let us now analyze the product uT v. Since v is the last column of the matrix Ã, we have that vi = 1 if
and only if n ∈ [ℓi, ℓi + ki)n. Furthermore, vm+j = 1 if and only if j = n. Hence,

uTv = vi −
ℓi+ki−1
∑

j=ℓi

vm+j = 0. (18)

Finally, since c+(x∗) = µs∗ − µ(1− µ)v and c+(P+
i , x∗) =

∑ℓi+ki−1
j=ℓi

c+m+j(x
∗),

c+i (x
∗)− c+(P+

i , x∗) = uT c+(x∗) = µ(uT s∗)− µ(1− µ)(uT v),

replacing (17) and (18) in the last equation we have:

c+i (x
∗)− c+(P+

i , x∗) = −µα.

The proof of part (ii) is similar, considering that c−(x∗) = (1− µ)s∗ + µ(1− µ)v. �

To prove that circuit inequalities induced by circuits with reverse row arcs are redundant, we state at
first the following result.

Lemma 5.2. Let A be a circular matrix and Γ be a circuit in D(A) with p(Γ) > 0. Let α ∈ N and
x∗ ∈ Q(A,α1). Then, there exists a circuit Γ′ without reverse row arcs, such that p(Γ′) > 0 and c(Γ′, x∗) ≤
c(Γ, x∗).

Proof. If Γ contains no reverse row arcs then Γ′ = Γ. Otherwise, let ā ∈ E−
1 (Γ).

Observe that in this case Γ must also contain at least one forward row arc, too. Indeed, from p(Γ) > 0
and Lemma 4.1 it follows that any node jumped by ā must also be jumped by at least two forward arcs.
But then, since Γ is simple, at least one of these have to be a row arc. Hence, we can choose two row arcs
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ℓr + kr − 1

ℓi − 1

ℓr − 1

ℓi + ki − 1

ar

āi

P2

P

Figure 1: Case (i): P consists of arcs from E−
2 .

āi, ar ∈ E(Γ), i 6= r, such that ar is the first row arc preceding āi in Γ. Then, the circuit must contain a
simple path P from ℓr + kr − 1 to ℓi + ki − 1, consisting only of short arcs. We distinguish between the two
possible cases.

Case (i): P contains only reverse arcs. Figure 1 depicts this situation.
Observe that in this case ℓr − 1 is jumped by āi, as otherwise, row r dominates row i in A. Let P1 be

the path from ℓr − 1 to ℓi − 1 in Γ, i.e. P1 is the concatenation of ar, P and āi. Consider the alternative
path P2 in D(A) that connects ℓr − 1 with ℓi − 1 using only reverse short arcs.

Define Φ to be the closed (not necessarily simple) path obtained from Γ by replacing P1 by P2. Clearly,
Φ has the same winding number and one fewer reverse row arc than Γ. Moreover, the cost c(Φ, x∗) is smaller
than or equal to the cost c(Γ, x∗). Indeed,

c(Γ, x∗)− c(Φ, x∗) = c(P1, x
∗)− c(P2, x

∗)

= c+r + c(P, x∗) + c−i − c(P2, x
∗)

= c+r + c−i + (c(P, x∗)− c(P2, x
∗)).

Observe that
c(P, x∗)− c(P2, x

∗) = c(P−
r , x∗)− c(P−

i , x∗).

By Lemma 5.1 (ii), c(P−
r , x∗)− c(P−

i , x∗) = c−r − c−i . Then,

c(Γ, x∗)− c(Φ, x∗) = c+r + c−i + c−r − c−i = c+r + c−r = s∗r ≥ 0.

Case (ii): P contains only forward arcs. This situation is shown in Figure 2.
In this case, ℓi − 1 is jumped by ar, as otherwise row i dominates row r. Again, let P1 be the path from

ℓr − 1 to ℓi − 1 in Γ, and consider the alternative path P2 in D(A) consisting only from arcs of E+
2 . Let Φ

be the closed (not necessarily simple) path obtained from Γ by replacing P1 by P2. This path has the same
winding number, one fewer reverse row arc than Γ, and its cost c(Φ, x∗) is no larger than c(Γ, x∗). Indeed,

c(Γ, x∗)− c(Φ, x∗) = c(P1, x
∗)− c(P2, x

∗)

= c+r + c(P, x∗) + c−i − c(P2, x
∗)

= c+r + c−i + (c(P, x∗)− c(P2, x
∗)).

Observe that
c(P, x∗)− c(P2, x

∗) = c(P+
i , x∗)− c(P+

r , x∗)

and from Lemma 5.1 (i) it follows that c(Γ, x∗)− c(Φ, x∗) = s∗i ≥ 0.
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ℓi + ki − 1

ℓr − 1

ℓi − 1

ℓr + kr − 1

āi

ar

P2

P

Figure 2: Case (ii): P consists of arcs from E+
2 .

In both cases, we have proven the existence of a closed path Φ with strictly fewer reverse row arcs than
Γ, and such that c(Γ, x∗) ≥ c(Φ, x∗) and p(Γ) = p(Φ) > 0. But then, Φ contains at least one circuit Γ(2)

with strictly fewer reverse row arcs than Γ, positive winding number, and such that c(Γ, x∗) ≥ c(Γ(2), x∗).
Iterating this argument a finite number of times, we prove the existence of a circuit Γ′ without reverse

row arcs and positive winding number such that c(Γ, x∗) ≥ c(Γ′, x∗). �

As a consequence of the last lemma, we obtain the main result of this section:

Theorem 5.3. For any circular matrix A and any α ∈ N, the polyhedron Q∗(A,α1) is completely described
by the inequalities defining Q(A,α1) and circuit inequalities induced by circuits Γ in D(A) without reverse
row arcs, with p(Γ) ≥ 2, and such that p(Γ) does not divide t(Γ, α1).

Proof. Let x∗ ∈ Q(A,α1) \ Q∗(A,α1). Due to Lemma 3.5 there exists at least one circuit Γ such that
c(Γ, x∗) < 0. From Lemma 5.2 there exists a circuit Γ′ without reverse row arcs such that c(Γ′, x∗) ≤
c(Γ, x∗) < 0. By Lemma 4.7, x∗ violates the Γ′-inequality. Then, Q∗(A,α1) is completely described by
boolean inequalities and circuit inequalities induced by circuits Γ in D(A) without reverse row arcs. By
Theorem 4.8, we only need to consider Γ-inequalities such that p(Γ) ≥ 2 and p(Γ) does not divide t(Γ, α1). �

In the following we further study combinatorial properties of circuits without reverse row arcs in D(A)
and the implications for the related inequalities. In particular, in the case of the set covering polyhedron,
we show that these circuit inequalities reduce to row family inequalities.

6 Circuits without reverse row arcs and their inequalities

Given a circular matrix A, let us call F (A) the digraph with nodes in [n] and all arcs in D(A) except for
reverse row arcs. Moreover, let Γ be a circuit in F (A). Keeping the same notation introduced in [28], we
consider the partition of the nodes of F (A) into the following three classes:

(i) circles ◦(Γ) := {j ∈ [n] : (j − 1, j) ∈ E(Γ)},

(ii) crosses ⊗(Γ) := {j ∈ [n] : (j, j − 1) ∈ E(Γ)}, and

(iii) bullets •(Γ) := [n] \ (◦(Γ) ∪ ⊗(Γ)).

Observe that circle (resp. cross) nodes are the heads (resp. tails) of forward (resp. reverse) short arcs of
Γ. A bullet node is either a node outside Γ, or it is the tail or the head of a row arc. We say that a bullet is
an essential bullet if it is reached by Γ.

Remind that a forward row arc (u, v) jumps over a node j ∈ [n] if j ∈ (u, v]n. Also, the only forward
(resp. reverse) short arc jumping over j is the arc (j − 1, j) (resp. (j, j − 1)).

The number of row arcs of Γ jumping over a given node depends on which partition class it belongs to.
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Lemma 6.1. Let A be a circular matrix and Γ be a circuit in F (A) with winding number p. For each node
j ∈ [n], let r(j) be the number of row arcs of Γ that jump over j. Then,

r(j) =







p− 1 if j ∈ ◦(Γ),
p+ 1 if j ∈ ⊗(Γ),
p if j ∈ •(Γ).

Proof. From Lemma 4.1 we know that, for all j ∈ [n], p = p+(Γ, j)− p−(Γ, j).
If j ∈ ◦(Γ), there is exactly one forward short arc jumping over j. Since Γ is a circuit there is no reverse

short arcs that jump over this node. Hence, there are exactly p− 1 forward row arcs that jump over j.
If j ∈ ⊗(Γ), again from the assumption that Γ is a circuit there is exactly one reverse short arc and no

forward short arcs that jump over j. It follows that p+ 1 forward row arcs must jump over this node.
Finally, if j ∈ •(Γ), neither forward nor reverse short arcs can jump over j and then r(j) = p. �

From the previous results, the relevant circuit inequalities of Q∗(A,α1) have a particular structure.

Theorem 6.2. Let A be a circular matrix and α ∈ N. Let Γ be a circuit in F (A) with s row arcs and

winding number p, fulfilling the conditions of Lemma 4.6. If r := αs− p
⌊

αs
p

⌋

, the Γ-inequality of Q∗(A,α1)

has the form:

r
∑

j 6∈⊗(Γ)

xj + (r + 1)
∑

j∈⊗(Γ)

xj ≥ r

⌈

αs

p

⌉

. (19)

Moreover, if α = 1 and ⊗(Γ) 6= ∅, this inequality is the row family inequality induced by F := {i ∈ [m] :
ai is a row arc of Γ}.

Proof. Recall from Definition 4.4 that the Γ-inequality has the form

∑

j∈[n]

[p−(Γ, j) + r(Γ, b)]xj ≥ r(Γ, b) (β(Γ, b) + 1) +
∑

i∈E−

1
(Γ)

bi.

Clearly, since Γ has no reverse row arcs,
∑

i∈E−

1
(Γ) bi = 0 and t(Γ, b) =

∑

i∈E+

1
(Γ) bi = αs. Then,

β(Γ, b) =
⌈

αs
p

⌉

− 1 and r(Γ, b) = r. Then, the Γ-inequality (9) has the form

∑

j∈[n]

[p−(Γ, j) + r]xj ≥ r

⌈

αs

p

⌉

. (20)

In order to obtain (19), it only remains to observe that, since E−(Γ) contains only short reverse arcs, we
have:

p−(Γ, j) =

{

1 if j ∈ ⊗(Γ),
0 otherwise.

Now assume that α = 1 and ⊗(Γ) 6= ∅.
Since s = |F | to prove that (19) is the row family inequality induced by F , it suffices to show that

p = maxj∈[n]{
∑

i∈F aij}−1 and O(F, p) = ⊗(Γ). Indeed, it is not hard to see that, for any j ∈ [n],
∑

i∈F aij
coincides with r(j) defined in Lemma 6.1. Moreover, since ⊗(Γ) 6= ∅,

max
j∈[n]

{
∑

i∈F

aij} − 1 = (p+ 1)− 1 = p and O(F, p) = {j ∈ [n] :
∑

i∈F

aij = p+ 1} = ⊗(Γ).

Then, the Γ-inequality is the row family inequality induced by F and the proof is complete. �

In the particular case when A is a circulant matrix, relevant circuit inequalities correspond to circuits
without circle nodes.

Lemma 6.3. Let n, k ∈ N such that 2 ≤ k ≤ n − 2 and Γ be a circuit in F (Ck
n) with s row arcs, winding

number p, ⊗(Γ) 6= ∅ and ◦(Γ) 6= ∅. Then, for any α ∈ N, the Γ-inequality is not a facet of Q∗(Ck
n, α1).
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Proof. Since ⊗(Γ) 6= ∅ and ◦(Γ) 6= ∅, there is a path in Γ connecting a cross with a circle. Let P be a
shortest path in Γ with this condition. Assume that P starts at u ∈ ⊗(Γ), has h ≥ 1 row arcs and ends at
v ∈ ◦(Γ). Then, the nodes of P are u, u− 1, (u− 1)+ jk with 1 ≤ j ≤ h, and (u− 1)+ hk+1 = u+ hk = v.

Consider P ′ the path of row arcs in F (A) from u to u + hk = v and let Γ′ be the closed path obtained
by replacing P by P ′ in Γ. We will see that Γ′ is a circuit. To do that, we only need to prove that internal
nodes in P ′ do not belong to Γ. Clearly, the internal nodes in P ′ are u+ jk with 1 ≤ j ≤ h− 1.

Assume there exists j with 1 ≤ j ≤ h − 1 such that u + jk is a node of Γ. Let t = min{j : u + jk ∈
V (Γ), 1 ≤ j ≤ h − 1}. Clearly, u + tk /∈ ◦(Γ) (resp. u + tk /∈ ⊗(Γ)), otherwise there are two arcs from Γ
leaving (resp. entering) (u − 1) + tk. Then, either (u + tk + 1, u + tk) or (u + (t − 1)k, u+ tk) is an arc of
Γ. If (u+ tk + 1, u+ tk) is an arc of Γ, u+ tk + 1 ∈ ⊗(Γ) and the path in Γ from u+ tk + 1 to v is shorter
than P , a contradiction. If (u+ (t− 1)k, u+ tk) is an arc of Γ, u+ (t− 1)k is a node of Γ. If t = 1, we have
two arcs in Γ leaving u. If t ≥ 2, we have a contradiction with the definition of t.

Then, Γ′ is a circuit in F (A). Moreover, Γ′ has s row arcs, winding number p, and ⊗(Γ′) is strictly
contained in ⊗(Γ). Hence, the Γ′-inequality implies the Γ-inequality. �

Observe that if Γ is a circuit in F (A) such that ⊗(Γ) = ∅, the Γ-inequality is implied by the rank
constraint. As a consequence we have:

Theorem 6.4. For any positive numbers n and k, with 2 ≤ k ≤ n−2 and α ∈ N, a complete linear description
for the polyhedron Q∗(Ck

n , α1) is given by the inequalities defining Q(Ck
n, α1), the rank constraint, and circuit

inequalities corresponding to circuits in F (A) without short forward arcs.

In the next section we will see that relevant inequalities for the set covering polyhedron of circular matrices
are minor induced row family inequalities.

7 Set covering polyhedron of circular matrices and circulant mi-

nors

Throughout this section, we restrict our attention to the set covering polyhedron of circular matrices. Remind
that we have assumed that the matrix A has no dominating rows.

Let Γ be a circuit of F (A) with winding number p and s essential bullets {bj : j = 1, . . . , s}, with
1 ≤ b1 < b2 < . . . < bs ≤ n.

Clearly, if [u,w]n ⊂ ◦(Γ) and u − 1, w + 1 /∈ ◦(Γ) (resp. [u,w]n ⊂ ⊗(Γ) and u − 1, w + 1 /∈ ⊗(Γ)) then
u− 1 is an essential bullet and w + 1 ∈ •(Γ).

For each j ∈ [s] we define vj as the node of Γ in [bj , bj+1) such that:

(i) if bj + 1 ∈ ◦(Γ) then [bj + 1, vj]n ⊂ ◦(Γ) and vj + 1 /∈ ◦(Γ),

(ii) if bj + 1 ∈ ⊗(Γ) then [bj + 1, vj]n ⊂ ⊗(Γ) and vj + 1 /∈ ⊗(Γ),

(iii) if bj + 1 ∈ •(Γ) then vj = bj .

Then, for each j ∈ [s] we define the block Bj = [bj, vj ]n which can be a circle block, a cross block or a
bullet block depending on if bj + 1 is a circle, a cross or a bullet of Γ. It is easy to check that the blocks
{Bj : j = 1, . . . , s} define a partition of nodes of Γ. Figure 3 illustrates these three type of blocks.

Remark 7.1. For each j ∈ [s] there exists one row arc leaving Bj and another row arc entering Bj. Let
B−

j ∈ Bj be the tail of the arc leaving Bj, while B+
j ∈ Bj denotes the head of the arc entering in Bj. In

particular, if Bj is a cross block, B−
j = bj and B+

j = vj. If Bj is a circle block, B−
j = vj and B+

j = bj.

Finally, if Bj is a bullet block, B−
j = B+

j = bj = vj.
Observe that if Bj is a circle block (cross block) then there is always a path of forward (reverse) short

arcs in Γ that joins B+
j with B−

j . Moreover, the nodes of every path in Γ consisting only of short arcs belong
to the same block.

We have the following result:
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vj

bj
⊗ ⊗

vj

bj ⊗
⊗

bj = vj

Figure 3: All three possible block types: (a) circle block, (b) cross block, (c) bullet block.

Lemma 7.2. Let A be a circular matrix, Γ be a circuit of F (A) with winding number p and s essential
bullets {bj : j ∈ [s]}, with 1 ≤ b1 < b2 < . . . < bs ≤ n. Then, Γ has s row arcs and each row arc in Γ jumps
over p essential bullets, i.e., it has the form (B−

i , B+
i+p) for some i ∈ [s]. Moreover, gcd(s, p) = 1.

Proof. Since there are s blocks and each row arc of Γ is the leaving arc of exactly one block, Γ has s row
arcs.

Consider the row arc (B−
i , B+

i+t) of Γ. Clearly, it jumps over the t essential bullets bi+ℓ with 1 ≤ ℓ ≤ t.

Moreover, since A has no dominating rows, then (B−
i+1, B

+
i+1+t) is also a row arc of Γ. Iterating this argument,

one can verify that the row arcs of Γ jumping over bi+t are exactly (B−
i+ℓ, B

+
i+ℓ+t) with 0 ≤ ℓ ≤ t− 1. From

Lemma 6.1, it follows that t = p. Thus, (B−
i , B+

i+t) jumps over p essential bullets.

Let D̃(A,Γ) = (Ṽ , Ẽ) be the directed graph where Ṽ = [s] and (i, j) ∈ Ẽ if (B−
i , B+

j ) is a row arc of Γ.

Hence, j = i + p and D̃(A,Γ) is a circuit with s arcs of length p. But then, gcd(s, p) = 1 must holds. �

Lemma 7.2 also establishes a relationship between circuits in F (A) and some circulant submatrices of A.

Corollary 7.3. Let A be a circular matrix and Γ be a circuit in F (A) with winding number p and s row
arcs. Let L ⊂ [n] be the set of essential bullets of Γ and F ⊂ [m] be the set of rows of A corresponding to
the row arcs of Γ. Then, the submatrix of A induced by rows in F and columns in L is isomorphic to the
circulant matrix Cp

s with gcd(s, p) = 1.

Proof. Let A′ be the submatrix of A induced by the rows in F and the columns in L. From Lemma 7.2, all
the row arcs in Γ jump over p essential bullets. Then, each row of A′ has exactly p entries equal to one and
there is no pair of equal rows in A′. Hence, A′ is isomorphic to Cp

s . �

Observe that the submatrix mentioned in the corollary above is not necessarily a circulant (contraction)
minor of A. Indeed, after deleting the columns from N = [n] \ L, there might be rows in [m] \ F that are
dominated by rows in F . This only happens when there is a row arc in F (A) that jumps over less than p
essential bullets of Γ. Inspired by the results in [28], we say that a row arc in F (A) is a bad arc (with respect
to Γ) if it jumps over less than p essential bullets of Γ.

Then, we have:

Corollary 7.4. Let A be a circular matrix and Γ be a circuit in F (A) with winding number p and s row
arcs. Let L ⊂ [n] be the set of essential bullets of Γ and F ⊂ [m] be the set of rows of A corresponding to
the row arcs of Γ. If Γ has no bad arcs, then the minor A/N of A is isomorphic to the circulant matrix Cp

s .
Moreover, the Γ-inequality for Q∗(A) is a minor related row family inequality.

The following result gives a characterization of bad arcs in terms of their endpoints:

Theorem 7.5. Let A be a circular matrix and Γ be a circuit of F (A) with s essential bullets 1 ≤ b1 < . . . <
bs ≤ n, and winding number p. Let (u, v) be a row arc in F (A) that jumps over k essential bullets of Γ.
Then, k ∈ {p−1, p, p+1}. Moreover, (u, v) jumps over p−1 essential bullets of Γ if and only if the following
two conditions hold:

(i) u belongs to a circle block of Γ

(ii) v ∈ ◦(Γ) or v is not a node of Γ.
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In addition, if u ∈ Bi then u 6= vi. In this case, if v ∈ ◦(Γ), Bi+p−1 is a circle block and v ∈ Bi+p−1\{bi+p−1}.
If v is not a node of Γ, v ∈ (vi+p−1, bi+p)n.

Proof. Due to Lemma 7.2 if (u, v) is a row arc of Γ, k = p. Now consider a row arc (u, v) not in Γ.
If u is not a node of Γ, then it is between two consecutive blocks in Γ, i.e., there exists i ∈ [s] such that

u ∈ (vi−1, bi)n. Since there are no dominating rows in A and (B−
i−1, B

+
i+p−1), (B

−
i , B+

i+p) are row arcs of Γ
then v ∈ (bi+p−1, vi+p)n. But then, (u, v) jumps either over p essential bullets when v ∈ (bi+p−1, bi+p)n, or
over p+ 1 essential bullets when v ∈ [bi+p, vi+p)n. Hence, if (u, v) is a bad arc, u has to be a node of Γ.

Now assume u is a node of Γ and u ∈ Bi, for some i ∈ [s]. Again, since there is no dominating rows in
A, and (B−

i−1, B
+
i+p−1), (B

−
i+1, B

+
i+p+1) are row arcs of Γ then v ∈ (bi+p−1, vi+p+1)n. Therefore, (u, v) jumps

either over p− 1, p or p+ 1 essential bullets, depending on whether v ∈ (bi+p−1, bi+p)n, v ∈ [bi+p, bi+p+1)n
or v ∈ [bi+p+1, vi+p+1)n, respectively.

Thus, any row arc in F (A) jumps over k essential bullets of Γ with k ∈ {p− 1, p, p+1}. Moreover, (u, v)
is a bad arc if it jumps over exactly p − 1 essential bullets. In this case, u is a node of Γ and if u ∈ Bi,
v ∈ (bi+p−1, bi+p)n. Let us analyze this last case.

Since v ∈ (bi+p−1, bi+p)n then B+
i = vi, as otherwise the row of A corresponding to the arc (B−

i , B+
i+p) is

dominated by the row corresponding to (u, v). Therefore, Bi is a circle block and u 6= vi. Moreover, if v is a
node of Γ then B+

i+p−1 = bi+p−1, as otherwise the row corresponding to the arc (B−
i−1, B

+
i+p−1) is dominated

by the row corresponding to (u, v). As a consequence, Bi+p−1 is a circle block and v ∈ ◦(Γ). �

Figure 4 depicts the two possible situations for a row arc that jumps over one essential bullet in a circuit
with winding number two.

vu

⊗⊗

⊗

v

⊗

u

⊗

Figure 4: (a) Case v is not a node of Γ. (b) Case v is a circle of Γ.

Clearly, if ◦(Γ) = ∅, there is no bad arc with respect to Γ. Then, as a consequence of Theorem 6.4 and
Corollary 7.4 we obtain the following result that was conjectured in [30]:

Corollary 7.6. For any positive numbers n and k, with 2 ≤ k ≤ n− 2 a complete linear description for the
set covering polyhedron Q∗(Ck

n) is given by boolean inequalities, the rank constraint, and minor related row
family inequalities induced by circulant minors Cp

s of Ck
n, with gcd(s, p) = 1.

In addition, recall that any circulant matrix Ck
n with k odd corresponds to the closed neighborhood matrix

of a web graph and conversely. Then, the last result yields a complete description of the dominating set
polyhedron of web graphs by boolean inequalities and row family inequalities induced by circulant minors Cp

s

with gcd(s, p) = 1. Moreover, the corollary above can be seen as the counterpart of the complete description
of the stable set polytope of web graphs given in [28], proving a previous conjecture stated in [26]. Therein,
the polytope is obtained by clique inequalities and clique family inequalities associated with subwebs W p−1

s

with gcd(s, p) = 1.

In the remaining of this section, we will see that minor related row family inequalities are sufficient for
describing the set covering polyhedron of any circular matrix. In order to do so, we prove that for every
circular matrix A, the inequalities induced by circuits without bad arcs are sufficient for describing the set
covering polyhedron Q∗(A).
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Let x and y be two nodes of Γ that belong to a same block Bi, for some i ∈ [s]. Denote by Π(x, y) the
path of short arcs in Γ that goes from node x to node y. If x = y then Π(x, y) is the emptyset. Observe that
Π(x, y) is contained in Π(B+

i , B−
i ).

In addition, if x and y are two distinct nodes in [n], let π(x, y) be the path of short forward arcs in F (A)
that goes from node x to node y. It is clear π(x, y) is nonempty and simple.

Let (u, v) be a bad arc with respect to Γ. From Theorem 7.5 it holds that u belongs to a circle block and
v is either a node in another circle block or it is outside Γ.

We will first see that if v is a node of Γ, the Γ-inequality is not a facet of Q∗(A) or it coincides with
a Γ′-inequality where Γ′ is a circuit in F (A) having less bad arcs than Γ. For this purpose, we need some
technical previous results.

Assume w.l.o.g. that u ∈ B1 and consequently B1 is a circle block. Since v is a node of Γ, from Theorem
7.5, v ∈ Bp and Bp is a circle block. Moreover, u ∈ [b1, v1)n and v ∈ (bp, vp]n.

Let P1 be the path in Γ that goes from B−
p+1 to B+

s and P2 be the path in Γ that goes from v to u. An
example is illustrated in Figure 5.

v

⊗

u

⊗

v

⊗

u

⊗

Figure 5: Paths P1 (left figure, black lines), P2 (rigth figure, black lines) in a circuit Γ (continuous lines)
with a bad arc (u, v) (dashed line).

Clearly, Γ can be seen as the concatenation of P2, Π(u, v1), the row arc (v1, B
+
p+1), Π(B

+
p+1, B

−
p+1), P1,

Π(B+
s , B−

s ), the row arc (B−
s , bp) and Π(bp, v). It follows that P1 and P2 are node disjoint paths.

Define Γ1 as the circuit in F (A) obtained by joining P1 with π(B+
s , u), the row arc (u, v), and π(v,B−

p+1).
Similarly, we define Γ2 as the circuit obtained by joining P2 together with the row arc (u, v) (see Figure 6).

v

⊗

u

⊗

v

⊗

u

⊗

Figure 6: Circuits Γ1 (left) and Γ2 (right).

Observe that, in Γ1, nodes v and B+
s are essential bullets but u and B−

p+1 are circles. Meanwhile, the
internal nodes of path P1 belong to the same class with respect to Γ1 and to Γ.

Concerning Γ2, v is an essential bullet and u together with the internal nodes of P2 belong to the same
class with respect to Γ2 and to Γ. Hence, every node in the set {b2, . . . , bp−1} is an essential bullet for either
Γ1 or Γ2.

In the following, it is convenient to make the next assumptions:
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Assumption 7.7. A is a circular matrix, Γ is a circuit in F (A) with s row arcs and winding number p ≥ 2,

β =
⌊

s
p

⌋

and r = s− pβ ≥ 1. Moreover, (u, v) is a bad arc with respect to Γ such that u and v belong to the

circle blocks B1 and Bp of Γ, respectively. For i = 1, 2, Pi and Γi are the path and the circuit, respectively,
defined above. Finally, si and pi denote, respectively, the number of row arcs and the winding number of Γi,

βi =
⌊

si
pi

⌋

, and ri = si − βipi.

Circuits Γ1 and Γ2 satisfy the following properties:

Lemma 7.8. Under Assumption 7.7, it holds:

(i) ⊗(Γ1) ∩ ⊗(Γ2) = ∅ and ⊗(Γ1) ∪ ⊗(Γ2) ⊆ ⊗(Γ).

(ii) s = s1 + s2.

(iii) p = p1 + p2.

Proof. Let i = 1, 2. Then:

(i) Since P1 and P2 are disjoint, ⊗(Γ1) ∩⊗(Γ2) = ∅. Moreover, every cross node of Γi is an internal node
of Pi and then it is a cross node of Γ.

(ii) Clearly every row arc of Γi different from (u, v) is a row arc of Γ contained in the path Pi. Besides, Γ
contains the two row arcs (B−

s , bp) and (v1, B
+
p+1), which are neither in Γ1 nor in Γ2.

(iii) From construction, (u, v) jumps over each node in the set {b2, . . . , bp−1} ∪ {v}. Let Ri = •(Γi) ∩
{b2, . . . , bp−1}. Since (u, v) belongs to Γi, by Lemma 7.2 (u, v) jumps over pi bullets of Γi: one of them
is v and the other pi − 1 bullets belong to {b2, . . . , bp−1}. Thus, pi = |Ri|+ 1.

It is clear that R1 ∩ R2 = ∅ and R1 ∪ R2 = {b2, . . . , bp−1}. Then, p1 + p2 = |R1| + |R2| + 2 =
| {b2, . . . , bp−1} |+ 2 = p.

�

Lemma 7.9. Under Assumption 7.7, it holds that:

(i) if r = 1 then the Γ-inequality is not facet defining for Q∗(A), or it coincides with the Γ2-inequality,

(ii) if r = p− 1 then the Γ-inequality is not facet defining for Q∗(A).

Proof. (i) Since r = 1, the path P1 connecting B−
p+1 with B+

s in Γ contains exactly β− 1 row arcs. Thus,
from construction, s1 = β and p1 = 1. Therefore, by Lemma 7.8, the circuit Γ2 contains exactly
s2 = s− s1 = s− β = β(p− 1) + 1 row arcs and p2 = p− 1.

Finally, we have
⌈

s2
p2

⌉

= β + 1 =
⌈

s
p

⌉

, r2 = s2 − p2

⌊

s2
p2

⌋

= 1 = r, and ⊗(Γ2) ⊆ ⊗(Γ). As a

consequence, if ⊗(Γ2) ⊂ ⊗(Γ) then the Γ-inequality cannot be facet defining, as it is implied by the
stronger Γ2-inequality. Otherwise, both inequalities coincide.

(ii) Since r = p− 1, the path P2 connecting v with u in Γ contains exactly β row arcs and hence s2 = β+1

and p2 = 1. Then, by Lemma 7.8, p1 = p− 1 and s1 = (p− 1)(β+1)− 1, implying
⌈

s1
p1

⌉

= β+1 =
⌈

s
p

⌉

and r1 = s1 − p1

⌊

s1
p1

⌋

= p− 2 = r − 1.

The Γ1-inequality has the form:

(r − 1)
∑

j 6∈⊗(Γ1)

xj + r
∑

j∈⊗(Γ1)

xj ≥ (r − 1)

⌈

s

p

⌉

. (21)

On the other hand, if we add the s2 inequalities from Q(A) corresponding to the row arcs of Γ2, by
Lemma 6.1, we obtain the following valid inequality for Q∗(A):

(p2 − 1)
∑

j∈◦(Γ2)

xj + p2
∑

j∈•(Γ2)

xj + (p2 + 1)
∑

j∈⊗(Γ2)

xj ≥ s2 = β + 1 =

⌈

s

p

⌉
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which implies the valid inequality:

p2
∑

j 6∈⊗(Γ2)

xj + (p2 + 1)
∑

j∈⊗(Γ2)

xj ≥

⌈

s

p

⌉

.

Since p2 = 1 and, from Lemma 7.8 (i), we have ⊗(Γ1)∩⊗(Γ2) = ∅ and ⊗(Γ1)∪⊗(Γ2) ⊆ ⊗(Γ), it follows
that the Γ-inequality is implied by the sum of (21) and the last inequality. Hence, the Γ-inequality is
not facet defining.

�

It remains to consider the case r ∈ {2, . . . , p− 2}.

Lemma 7.10. If Assumption 7.7 and 2 ≤ r ≤ p− 2 hold then β1 = β2 = β and r1 + r2 = r.

Proof. As in the proof of Lemma 7.8(iii), for i = 1, 2, let Ri = •(Γi)∩{b2, . . . , bp−1}. Recall that pi = |Ri|+1.
Since 2 ≤ r ≤ p−2 then br, br+1 ∈ R1∪R2. Define R−

i := {bℓ ∈ Ri : ℓ < r} and R+
i := {bℓ ∈ Ri : ℓ > r + 1}.

Observe that, from Lemma 7.2, for every ℓ ∈ [s] and every α ∈ Z+, the path in Γ starting at B−
ℓ that uses

α row arcs, arrives at the block Bℓ+αp. It follows that the path in Γ starting at node B−
ℓ for some ℓ ∈ R−

i

reaches the node B+
ℓ+p−r after β + 1 row arcs. It is straightforward to verify that ℓ+ p− r ∈ {2, . . . , p− 1}.

In addition, a path in Γ starting at node B−
ℓ for some ℓ ∈ R+

i reaches the node B+
ℓ−r after β row arcs. Since

r+2 ≤ ℓ ≤ p− 1 and r ≥ 2 it follows that 2 ≤ ℓ− r ≤ p− 3. In both cases, such paths may belong to either
Γ1 or Γ2.

Now, the path in Γ starting at the node B−
r reaches the node B+

s after β row arcs, since βp+r = s. Hence,
this path belongs to Γ1. It follows that br ∈ R1, |R1| ≥ 1, and

∣

∣R−
1

∣

∣ < |R1|. Moreover, from construction,

Γ1 continues with the arc (u, v) and then, by following a path of short arcs, it reaches B−
p+1. From this last

node and after β row arcs it reaches B+
p+1−r. It is clear that 3 ≤ p+ 1 − r ≤ p− 1. Hence, the path in Γ1

that connects B−
r with B+

p+1−r contains 2β + 1 row arcs.

Finally, the path in Γ that starts at the node B−
r+1 reaches the node B+

1 after β row arcs. Since B1 is

a circle block, B+
1 = b1 and thus the path belongs to Γ2. Thus, br+1 ∈ R2, |R2| ≥ 1, and

∣

∣R−
2

∣

∣ < |R2|.
Moreover, the circuit Γ2 continues with (u, v) and another path of short arcs until it reaches B−

p = vp. From

this node and after β row arcs, Γ2 reaches B+
p−r. Hence, the path that connects B−

r+1 with B+
p−r in Γ2

contains 2β + 1 row arcs.
For i = 1, 2, let Pi be the set of simple directed paths obtained by splitting Γi at the nodes in Ri, i.e.,

the end nodes of each path in Pi belong to Ri and no node of Ri is an internal node of the path. As we have
just observed, |Ri| ≥ 1 holds. If |Ri| = 1, Pi contains one closed path, which coincides with Γi. Hence, the
number of row arcs of Γi can be computed by adding up the number of row arcs in each path in Pi:

si =
∣

∣R−
i

∣

∣ (β + 1) +
∣

∣R+
i

∣

∣β + 2β + 1

= (
∣

∣R−
i

∣

∣+
∣

∣R+
i

∣

∣+ 2)β +
∣

∣R−
i

∣

∣+ 1

= piβ +
∣

∣R−
i

∣

∣+ 1.

Observe that 1 ≤
∣

∣R−
i

∣

∣ + 1 ≤ pi − 1. Hence,
⌊

si
pi

⌋

= β and ri = si − piβ =
∣

∣R−
i

∣

∣ + 1. But then,

r1 + r2 =
∣

∣R−
1

∣

∣+
∣

∣R−
2

∣

∣+ 2 = |{b2, . . . , br−1}|+ 2 = r. Similarly, βi = β =
⌊

s
p

⌋

. �

As a consequence of the previous lemma we have:

Corollary 7.11. Under Assumption 7.7 and 2 ≤ r ≤ p − 2 hold, the Γ-inequality is not facet defining for
Q∗(A).

Proof. For i ∈ {1, 2}, the Γi-inequality has the form

ri
∑

j 6∈⊗(Γi)

xj + (ri + 1)
∑

j∈⊗(Γi)

xj ≥ ri

⌈

si
pi

⌉

.
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Adding the inequalities corresponding to Γ1 and Γ2, from Lemma 7.10 together with Lemma 7.8(i), we have:

r
∑

j 6∈⊗(Γ)

xj + (r + 1)
∑

j∈⊗(Γ)

xj ≥ (r1 + r2)
∑

j 6∈⊗(Γ1)∪⊗(Γ2)

xj + (r1 + r2 + 1)
∑

j∈⊗(Γ1)∪⊗(Γ2)

xj

=

2
∑

i=1



ri
∑

j 6∈⊗(Γi)

xj + (ri + 1)
∑

j∈⊗(Γi)

xj





≥
2

∑

i=1

ri

⌈

si
pi

⌉

= (r1 + r2)

⌈

s

p

⌉

= r

⌈

s

p

⌉

.

�

Finally we obtain the following result:

Theorem 7.12. Under Assumption 7.7, if the Γ-inequality is facet defining for Q∗(A), then there exists a
circuit in F (A) defining the same circuit inequality and having less bad arcs than Γ.

Proof. Assume that the Γ-inequality is facet defining for Q∗(A). By Lemma 7.9(ii) and Corollary 7.11, r = 1.
By Lemma 7.9(i), the Γ-inequality coincides with the Γ2-inequality. We will prove that Γ2 has less bad arcs
than Γ. Clearly, (u, v) is a bad arc for Γ which is not a bad arc for Γ2. Thus, it suffices to prove that every
bad arc for Γ2 is a bad arc for Γ.

Assume there is a bad arc (u′, v′) for Γ2 which is not a bad arc for Γ. Since Γ2 has winding number p−1,
(u′, v′) jumps over p− 2 essential bullets of Γ2 and at least p essential bullets of Γ. Then, (u′, v′) must jump
over at least two essential bullets of Γ that are not essential bullets of Γ2. By construction of Γ2, the only
essential bullets of Γ that are not essential bullets of Γ2 are the nodes in the set S = {bp} ∪ {b1+tp : t =
1, . . . , β − 1}. The only pair in S that can be jumped over by the same row arc is the pair bp, bp+1. But,
if (u′, v′) jumps over this pair of nodes, it must also jump over v, as v ∈ (bp, bp+1)n. Finally, since v is an
essential bullet of Γ2, but not an essential bullet of Γ, (u′, v′) must jump over a third essential bullet in S,
which is not possible. �

Now consider the case where (u, v) is a bad arc with respect to Γ and v /∈ V (Γ). The following result
holds.

Lemma 7.13. Let A be a circular matrix and Γ be a circuit in F (A) with winding number p ≥ 2, s row arcs
and essential bullets 1 ≤ b1 < . . . ≤ bs ≤ n. Let (u, v) be a bad arc with respect to Γ with u ∈ Bi = [bi, vi)n
and v ∈ (vi+p−1, bi+p)n, for some i ∈ [s]. If the block Bi+p is a cross block, the Γ-inequality is not a facet
defining inequality for Q∗(A).

Proof. Assume w.l.o.g. that i = 1 and Bp+1 is a cross block. Therefore, B−
p+1 = bp+1. Since (u, v) is a bad

arc, B1 is a circle block. Consider the path P1 in Γ from node bp+1 to node b1.
Let Γ1 be the circuit obtained by joining the path P1 with the path Π(b1, u) together with arc (u, v), and

Π(v, bp+1). Note that Γ and Γ1 have the same number of row arcs and the same winding number p. Let us
analyze the relationship between ⊗(Γ1) and ⊗(Γ).

Observe that all nodes that are essential bullets of Γ, except for bp+1, are essential bullets of Γ1. Addi-
tionally, v is an essential bullet of Γ1 which is not an essential bullet of Γ.

If we call B′
i with i ∈ [s] the blocks of Γ1, we have that Bi = B′

i for i ∈ [s]\{1, p+1}. Moreover, B′
1 ⊂ B1

and B′
p+1 is a circle block. Then, ⊗(Γ1) is strictly contained in ⊗(Γ) and the Γ1-inequality is stronger than

the Γ-inequality. Hence, the Γ-inequality does not define a facet of Q∗(A). �

Now, we can prove:

Lemma 7.14. Let A be a circular matrix and Γ be a circuit in F (A) with ⊗(Γ) 6= ∅, such that the Γ-
inequality is a facet defining inequality for Q∗(A). Let (u, v) be a bad arc with respect to Γ with v 6∈ V (Γ).
Then, there is a circuit in F (A) defining the same circuit inequality and having less bad arcs than Γ.
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Proof. We assume w.l.o.g. that u belongs to the circle block B1 and then v ∈ (vp, bp+1)n. From the previous
lemma, we know that the block Bp+1 is not a cross block, as otherwise the Γ-inequality is not facet defining.
Consider the circuit Γ1 in F (A) as defined in the previous lemma.

Since the Γ-inequality is facet defining, ⊗(Γ1) = ⊗(Γ) and the Γ1-inequality coincides with the Γ-
inequality. If Γ1 has less bad arcs than Γ, the statement follows.

Otherwise, since (u, v) is a bad arc with respect to Γ but not with respect to Γ1, there exists a bad arc
(u1, v1) with respect to Γ1 which is not a bad arc with respect to Γ. Since the sets of essential bullets from
Γ and Γ1 differ only in the nodes bp+1 and v, it follows that (u1, v1) must jump over bp+1 but not over v,
i.e., we must have u1 ∈ [v, bp+1)n and v1 ∈ (b2p, b2p+1)n.

If v1 ∈ V (Γ1), by Theorem 7.12, there exists a circuit in F (A) with less bad arcs than Γ1 defining the
same circuit inequality and the statement follows.

Now, consider the case v1 6∈ V (Γ1). By the previous lemma, B2p+1 is not a cross block. Applying
iteratively the previous reasoning, either we find a circuit with less bad arcs than Γ defining the same circuit
inequality, or we obtain that none of the blocks induced by Γ is a cross block, contradicting the hypothesis
⊗(Γ) 6= ∅. �

Corollary 7.15. Let A be a circular matrix, Γ be a circuit in F (A) with ⊗(Γ) 6= ∅ such that the Γ-inequality
is a facet defining inequality for Q∗(A). Let (u, v) be a bad arc with respect to Γ. Then, there is a circuit Γ′

without bad arcs such that the Γ′-inequality coincides with the Γ-inequality.

Proof. Due to Theorem 7.12 and Lemma 7.14 it follows that there is a circuit inducing the same inequality
as Γ and with a less number of bad arcs. Iterating this argument a finite number of times, we prove that
there is a circuit Γ′ without bad arcs which induces the same circuit inequality as Γ. �

Observe that if a circuit Γ in F (A) has no crosses then the Γ-inequality is implied by the rank constraint
of Q∗(A). Hence, as a consequence of the previous results, we obtain for the set covering polyhedron of
circular matrices a counterpart of the result obtained by Stauffer [28] for the stable set polytope of circular
interval graphs.

Theorem 7.16. Let A be a circular matrix. A complete linear description for the set covering polyhedron
Q∗(A) is given by boolean inequalities, the rank constraint, and Γ-inequalities with Γ a circuit in F (A) without
bad arcs. Moreover, the relevant inequalities for the set covering polyhedron Q∗(A) are minor related row
family inequalities induced by circulant minors Cp

s of A, with gcd(s, p) = 1.
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[26] Pêcher, A. and Wagler ,A.K., Almost all webs are not rank-perfect, Mathematical Programming Vol
105, 2 (2006), 311–328.

[27] A. Sassano: On the facial structure of the set covering polytope, Mathematical Programming Vol 44
(1989), 181–202.

23



[28] G. Stauffer, On the Stable Set Polytope of Claw-free Graphs, PhD Thesis EPF Lausanne (2005).

[29] P. Tolomei and L.M. Torres, Generalized minor inequalities for the set covering polyhedron related to
circulant matrices, Discrete Applied Mathematics (2016) 210, 214–222.

[30] L.M. Torres, Minor related row family inequalities for the set covering polyhedron of circulant matrices,
Electronic Notes in Discrete Mathematics Vol 50 (2015), 325–330.

[31] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. (1980) 38(3),
364–372.

24


	1 Introduction
	2 Preliminaries
	3 Following the ideas of the packing case
	4 A complete linear description of Q*(A,b)
	5 The case of homogeneous right-hand side
	6 Circuits without reverse row arcs and their inequalities
	7 Set covering polyhedron of circular matrices and circulant minors

