1,183 research outputs found

    Evaluating Prolog environments

    Get PDF

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas

    Exploiting path parallelism in logic programming

    Get PDF
    This paper presents a novel parallel implementation of Prolog. The system is based on Multipath, a novel execution model for Prolog that implements a partial breadth-first search of the SLD-tree. The paper focusses on the type of parallelism inherent to the execution model, which is called path parallelism. This is a particular case of data parallelism that can be efficiently exploited in a SPMD architecture. A SPMD architecture oriented to the Multipath execution model is presented. A simulator of such system has been developed and used to assess the performance of path parallelism. Performance figures show that path parallelism is effective for non-deterministic programs.Peer ReviewedPostprint (published version

    A new module system for prolog

    Get PDF
    It is now widely accepted that separating programs into modules has proven very useful in program development and maintenance. While many Prolog implementations include useful module systems, we feel that these systems can be improved in a number of ways, such as, for example, being more amenable to effective global analysis and allowing sepárate compilation or sensible creation of standalone executables. We discuss a number of issues related to the design of such an improved module system for Prolog. Based on this, we present the choices made in the Ciao module system, which has been designed to meet a number of objectives: allowing sepárate compilation, extensibility in features and in syntax, amenability to modular global analysis, etc
    • …
    corecore