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Abstract

The Prolog programmer programs in an environment which provides a number of
debugging tools. There is often a mismatch between the way a programmer describes
some perceived error and the way in which a debugging tool needs to be used. Worse,
there are some problems which existing tools cannot tackle easily -if at all

The main aim of the work described is to construct a coherent framework on
which to base the design of programming tools. This paper describes a particular
classification of programming errors. Error classification is then used to provide a
natural description of the tools that can, or could, assist the programmer.

Examples are given of useful tools which are not part of well known current Prolog
implementations and suggestions are made as to how current tools can be improved
to increase their utility.

Keywords

Prolog, Logic Programming, Program Debugging, Teaching Programming, Program-
ming Environments.

1 Bugs and Tools

The sources of Prolog programming errors are numerous. Taylor has six levels at which
errors may arise [Taylor &. duBoulay 86]. Her analysis is principally concerned with the
processes entailed in starting with some problem statement, formalising this problem
and eventually producing a Prolog program. Coombs and Stell have investigated the
possibility of helping novice programmers detect misconceptions in their understanding of
backtracking in Prolog [Coombs &. Stell 85]. Other work, by van Someren, has indicated
that several programming errors result in programmers trying to write programs by using
familiar concepts from some language other than Prolog [vanSomeren 85].

Our current interest, however, lies in the problems that flow from incorrect Prolog
programs and the match between the debugging tools provided and the nature of the

programming problem.

Our aim is to motivate the construction of new and improved tools based on an
analysis of bugs and program debugging. For the moment, the term 'Prolog bug' may
be taken to refer to some error that is responsible for the creation of an incorrect Prolog
program. This necessarily weak definition is clarified and expanded in what follows.

1
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Current Prolog Tools

The available tools are divided into dfjnamic and static ones. Dynamic tools are applied
at run time and are usually bundled together inside a trace package. Static ones are
applied at consult timel.

Recent work at the Open University by Eisenstadt and his workers has focussed on
the provision of more useful tools [Eisenstadt et al84,Eisenstadt 84]. In particular, recent
work by Eisenstadt has attempted to incorporate both methods of controlling the amount
of information revealed by a dynamic tracer and some knowledge about the kinds of error
made by programmers [Eisenstadt 85]. Rajan has produced animated tracing tools for
novices along with a general set of design principles [Rajan 85].

Other workers have explored Prolog debugging techniques. Shapiro's work is well
known [Shapiro 82]. Lloyd is developing an approach based on extending the Prolog
syntax [Lloyd 86] while Pereira has extended Shapiro's ideas about Algorithmic Debugging
[Pereira 86]. Their work is important but it is based on a simple classification of errors
which needs further development.

1.2

The Classification of Bugs

The classification and listing of bugs and debugging strategies is of fundamental impor-
tance to give a foundation for motivating new, or improved, tools. In this section, the
nature of bug classification is discussed together with the methodology for obtaining it.

Different Levels of Classification

Classification can be at a number of levels. For example, the symptoms which are pre-
sented to the user, or the underlying causes for these bugs. Note that a particular symp-
tom may be caused by a chain of causes, so that there is a range of causal explanations
from shallow to deep. For instance, the symptom might be that a procedure call seems to
be taking a long time. The immediate cause of this might be that the program may be in
an infinite loop. This might be because of a programming error -for example, that the
body of a clause contains a literal identical to the head. And this might be because the
programmer has an underlying misconception about recursion. These four examples are
generalised to the four levels: symptom, program misbehaviour, program code error and
underlying misconception. These ideas are illustrated below and defined more carefully
in section 2.

A classification at the program code error level might include: missing procedure or
clause, multiple copies of procedure or clause etc. At the symptom level there is, for
example, non termination, error message, etc.

Note also that the same symptom can arise from different underlying causes, or that
the same cause can give rise to different symptoms under different circumstances, so that

1 Although some tracers provide a post mortem analysis which allows the po88ibility of easily combining

so-called dynamic and 8tatic tools
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each level will give rise to a different classification. For instance, a procedure call may
take a long time because the program is complicated, or looping or inefficient, or because
the computer is slow, or has crashed. Misconceptions about recursion can also cause the
construction of programs that fail when they they were intended to succeed, or return
with the wrong answer, etc.

1.2.2 All Levels Are Potentially Interesting

All these levels are of interest:

.To evaluate dynamic debugging tools it is the symptom and program misbehaviour
levels that are of interest. The student who is wondering why his/her procedure call
is taking such a long time must chose a tool mainly on the basis of that symptom,
although they might also entertain some hypotheses at the program misbehaviour
level.

.To evaluate static debugging tools it is the program code error level that is of
interest. For instance, it would be reasonable to expect a tool which diagnosed
potential infinite loops -for example, by looking for clauses with heads identical to
a body literal. It would be nice if such tools were also capable of giving higher level
causes and remedial help to remove misconceptions, but this kind of tool requires
fundamental research.

.To advise on teaching methods it is necessary to be interested in the program code
error and underlying misconception level. For instance, to find more successful ways
to teach recursion so that students did not suffer so readily from misconceptions
about it.

,

ft
f

.To advise on language improvements/extensions it is necessary to be interested in
the program code error and the underlying misconception level. For instance, a
language might be suggested in which recursive definitions were only accepted if
they were shown to be well-founded (i.e. non-looping).

The Consequences

1.2.3

For any given bug it is likely that there is a hierarchy of strategies corresponding to the
different causal levels. This might entail a method of teaching that avoids the misconcep-
tion, a language improvement that makes the bug impossible, a static tool that detects it
at edit or compile time, and a dynamic tool that tracks it down at run time. All these are
valuable and should be passed on to teachers, language designers, and tool builders. In
the short term the low level, symptom oriented solutions will be most valuable, since they
will lead to tools that can patch the current badly engineered language and ill-educated
programmers. In the longer term the higher level solutions will be more valuable, since
they will lead to languages and teaching methods which avoid problems. However, the
world being the imperfect place it is, programmers will always make mistakes and there
will always be a role for the debugging tools.
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2

A multi-layered classification of Prolog bugs is described. This involves four layers. These
are: symptom, program misbehaviour, program code error and misconception. The latter
level is not considered in any great detail but analyses are given for the other three. The
program code error level is further expanded by means of two different classification
schemes.

A four-level description is provided. Later, each of the four levels are elaborated
separately:

Symptom Description If a prograrmner believes that something has gone wrong dur-
ing the execution of some Prolog program then there are a limited number of ways
of directly describing such evidence. For example:

.exit with Prolog/operating system error

.(apparent) non-termination

.generation of Prolog error message

.unexpected "no" or "yes"

.wrong binding of answer variable

.unexpected generation or failure to generate a side-effect

Program Misbehaviour Description The explanation offered for a symptom. The
language used is in terms of the flow of control and relates, therefore, to run-
time behaviour. For example, the hypotheses that might be entertained concerning
(apparent) non-termination:

.there is a loop

.the computer system is very heavily loaded

.the system has crashed

.the computation takes a very long time

Other potential hypotheses may involve descriptions closely related to the symptom
level but at a different level of detail --such as the unwanted success of some sub goal
followed by a cut which then causes a subsequent clause not to be used.

Program Code Error Description The explanation offered in terms of the code itself.
Such a description may suggest what fix might cure the program misbehaviour. For
example:

.there is a missing base case

.there is a clause that should have been deleted

.a test is needed to detect an unusual case
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Underlying Misconception Description The fundamental misunderstandings and false
beliefs that the programmer may have to overcome in order to come to terms with
specific features of the language. For example:

.recursion is really iteration

.if a 8ubgoal fails then the goal fails

.i81e is really assignment

.All arithmetic expressions are automatically evaluated

Each of these four levels of error description is now analysed further.

2.1 Symptom Description

It is supposed that the program under investigation is treated as a black box by the
programmer for the purposes of describing symptoms. Now 'the program' may well be a
subset of a much larger program but that does not matter2.

In the broader context of programming environments, the use of various tools will be
taken into account -such as trace packages and the cross referencer- but it is argued
that they cannot make any contribution to the program's symptom description as their
role is to open up the 'black box' to the programmer's inspection.

At the symptom description level, the classes of event that can be described permit
references to:

.Error messages

-from Prolog

-from the operating system

-from an editor which is running Prolog etc.

.Termination issues -this includes:

-unexpected 'apparent' failure to terminate

-unexpected termination -which includes the possibility of terminating the
Prolog session

-termination with an unexpected 'value' -for example, a goal succeeds when
it should fail

.Instantiation of Variables which includes:

-unexpected failure to instantiate a variable

-unexpected instantiation of a variable

-a variable is instantiated to an unexpected value

2This implies that no reference can be made to the program's internal structure.
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.'visible' side effects

-unexpected failure to produce a specific effect

-unexpected production of a side effect

-production of a side effect with an unexpected value

This analysis has imposed an obvious pattern on the possible outcomes with the exception
of the entry for error messages. There is no reason, however, why error messages cannot
also be included in the same way although it has been pointed out that an 'unexpected
failure to produce an error message' may be a rather unusual event. Nevertheless, in the
course of determining that some program functions correctly it might be expected that
Prolog ought to produce some error message.

Perhaps it is worth pointing out that this analysis does not provide for completely
determined error descriptions. In real life, it is expected that there will be a wide range of
symptom descriptions3. In particular, symptom descriptions may well be clothed in the
terminology imported by the programmer from the nature of the programming task being
undertaken. This might include terminology from the domain in which the programming
task is located, the data structures and algorithms that the programmer has in mind.
It is assumed that it is possible to translate such domain specific descriptions into the
appropriate Prolog-specific ones. As far as describing the programmer's expectations, a
totally separate effort is required to provide a suitable description language.

Program Misbehaviour

The next stage is to look into the 'black box',

The Ways in Which a Program May Misbehave

The level of symptom description treats the program as a 'black box' whereas the level
of program misbehaviour requires that the black box be opened up.

It is assumed that the programmer knows the names and arities of the various pred-
icates defined. This is consistent with the requirement that each 'black box' has some
means of identification or 'handle'.

Whatever is said here must be seen as relative to some Prolog story. A Prolog Story is
an explanation of the workings of the Prolog interpreter or compiler which a programmer
can use to understand and predict the execution of a Prolog program. The basic outline
of the 'Proposed Prolog Story' is adopted here [Bundy et aI85].

The program can be 'opened up' to examine the program behaviour as it is executed.
The program can be seen as a set of connected 'black' boxes. Examining the program

aWhen programmers comment on their code they often mix symptom description with other types of
description. This is not the point at issue.



Programming Tools for Prolog Environments 7

behaviour incorporates the symptom description behaviour in section 2.1 but includes an
extra aspect which can be termed 'flow of control'.

What is needed is some way of capturing flow which suggests that sequences are of
interest. It is suggested that the principle is adopted that sequences are the transitions
from one box to the next. This is the principle that only local flow should be considered.

The program can be considered as a set of black boxes:

.An expected transition fails to occur

.An unexpected transition occurs

.The expected transition occurs but the instantiation pattern is unexpected

The types of black box are:

.The module -the box consists of an unordered set of predicate definitions. The
module can be thought of as a complete program with no undefined predicates. A
'handle' on the box is the principle functor and arity of any procedure visible from
'outside' the module.

.The predicate -the box consists of the (ordered) set of clauses that form the
(incomplete) definition of a given predicate. The definition is incomplete if any
subgoal depends on any predicate that is not built-in. The handle on the box is the
principle functor and its arity.

A clause -the box is the head and body of a single clause. The handle is the head
of the clause.

.An argument of a predicate -the box is the (single) argument while the handle is
the name and arity of the argument4.

The simplest assumption is of the program as a set of clauses. The Byrd box model
allows for a program to be a set of predicate definitions but this model has not always
been strictly followed by implementors.

2.3 Program Code Error Descriptions

Programming errors can be described at the code level in terms of the syntactic structure
of the code itself. For this approach, the principle is adopted that no description must
refer to any particular programming techniques being used. For example, consider a
faulty version of the standard program for memberj2:

member(X,[YIZ]):-
member(X,Z).

.Provided it is not a variable or a constant in which case there are no further boxes to be opened
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This could be described by saying that the program code error description is:

missing base case

but this invokes the means for describing some programming technique for a simple re-
cursive procedure.

2.3.1 The First Code Level Classification

The program can be divided up in terms of the kinds of 'black box' discussed at the
program misbehaviour level. For division by module, there are three basic cases:

.Missing module: a module that was expected to be present was missing. This could
be the consequence of failing to load a module or consult a necessary file.

.Extra module: a module is found which was not expected to be present. This can
result from failing to edit out a redundant module.

.Wrong module: some expected module has an error description. This means that
the program code error description has to be applied recursively to the module.

A corresponding set of possibilities exists for division by predicate.

At the clause level, the program is considered as a set of clauses. The possibilities
are:

.Missing clause

.Extra clause

.Wrong clause

It is also necessary to capture the sense of order normally required by the standard Prolog
search strategy. This means that there is the extra possibility of

.Wrong clause order

At the clause level, the description of a clause can be taken to involve the sub-
components of the head of the clause and the body of the clause. The classes of error
connected with the head are:

.Missing head

.Extra 'head' (this one is effectively a syntax error)

.Wrong head
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The bod, of a clause can be handled in a similar manner but with wrong lubgoal order
as an additional pOl8ibility.

It is now necessary to account for errors at the level of a single term or single subgoal.
Given some term, the only way there can be a problem is that the term is the wrong term.
The categorisation can be further expanded by sub-dividing terms into atoms, variables
and compound terms. This, in turn, has to take into account such errors as: missing
predicate name, extra predicate name and wrong name as well as errors associated with
the argument list.

The classification of the code level described above can be described as 'syntactic'.
That is, it did not reflect any declarative or procedural semantics on the part of the
programmer, but merely lists the ways in which an actual Prolog program might differ
syntactically from some correct program.

The advantages of this classification scheme are:

.it includes all possible bugs

.it is simple and regular

.there are only a finite number of bug types

The disadvantages are:

.it demands a template giving a detailed and inflexible description of the correct
program

.in general, there is no way to know what this template is

2.3.2 A Technique Oriented Classification

Other classifications are both possible and desirable. Another basis for classification is
now suggested. It is based on the notion of programming techniques.

An example of a programming technique is a failure driven loop. Such an analyser
which takes a program and tests it to see whether there is a well formed failure driven
loop [Lynch 86]. The code contains a definition of what one is and looks for violations of
this definition.

For instance, a failure driven loop must have a clause that always fails and that
contains at least one non-deterministic literal and one that side-effects. Note that this
definition includes some procedural semantics: fail, side-effect, etc. Note that it is not
as detailed and inflexible as the template of the syntactic classification. There could be
other clauses and literals. The non-deterministic and side-effecting one could be the same
or different.

The various ways in which a program can violate the definition of a failure driven
loop constitute a technique-oriented bug classification, namely:
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.no failing clause

.no side-effecting literal

.no non-deterministic literal

The differences between this technique-oriented classification and the syntactic one

are:

.this one does not cover all possible bugs

.there are an indefinite number of techniques, and hence an indefinite number of bug
types

.this classification might get arbitrarily complex

.this one requires a flexible definition of a technique rather than a detailed and
inflexible template

.one might more readily know what definition was intended than what template was
intended.

Various program analysers are being built by Liam Lynch based on both the above
classifications [Lynch 86]. His 'tail recursion' analyser uses a fixed template and produces
a bug analysis drawn from our syntactic classification. He is now extending this to a
syntactic analyser which can take any template and produce an analysis based on the full
syntactic classification.

His 'failure driven loop' analyser uses a definition of this technique and produces a
technique-oriented bug analysis. He is building similar analysers for other techniques.
For instance, a technique-oriented tail recursion analyser, which would contrast with his
existing syntactic one and illustrate the difference between the two classification schemata.

The syntactic analyser will have the virtues of generality but the limitations of in-
flexibility. In the context of an automated programming tutor, such an analyser will be
able to criticise any student program, provided the teacher has provided a template but
will be liable to reject perfectly good answers just because they use a solution method
slightly different from that intended by the teacher.

The technique analysers will have the opposite properties. They will only be able to
criticise programs that are intended to be examples of some technique, but will be able
to accept a wide range of correct solutions -for example, any correct failure driven loop.
However, they will only be able to criticise the program on the basis of its fit to the
technique, not on other grounds ~uch as producing the wrong answer!

Such technique analysers are potentially useful debugging aids in a Prolog environ-
ment. The programmer could ask that a program be tested for 'tail-recursiveness' etc.
Such analysers fit into the range of other static tools like mode-finders, type-checkers,
etc. Note that the syntactic analyser could not be used in this way because there is no
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way that users could want their programs checked if they already knew the template they
were to fit.

Other techniques are being considered in order to build up other technique-oriented
bug classifications. In particular, the techniques of building up recursive data structures
by pattern matching in the clause head, and building them up in the clause body with
an accumulator.

Other related work at Edinburgh takes a slightly different line. Chee-Kit Looi is seek-
ing to harness a number of methods -such as symbolic evaluation, mode checking, type
checking etc. -to build a Prolog Intelligent Tutoring System [Looi 86,Looi &; Ross 86].

2.4 Misconception Description

As yet, no attempt has been made to produce some higher level bug classifications in
terms of misconceptions. To uncover the deeper bugs we will need to take into account
on-going research into the misconceptions of novice Prolog programmers such as that
by Taylor and van Someren [Taylor &; duBoulay 86, vanSomeren 85]. It is expected that
some empirical studies will be necessary to uncover misconceptions and link them with
the lower level bugs already identified.

3 Debugging Strategies in Prolog

In previous sections the classification of Prolog bugs was considered at each of four levels:
symptom, program misbehaviour, program code error and misconception: Here the be-
ginnings of an investigation into debugging strategies are described in terms of the first
two levels of description.

A Prolog programmer's first indication of a run time bug is one of the types of
symptom described in section 2. Typically, s/he will then try to identify a bug at the
program misbehaviour level to account for this symptom, and hence to a code error which
can be corrected5.

The focus is now the step from a symptom level description to a program misbehaviour
level description. For each error type, the question is asked: "Using existing environmen-
tal tools, do efficient bug avoiding or debugging strategies exist?" If the answer is no,
the next question is "can better dynamic or static tools be suggested?"

Since the immediate symptoms of run time bugs are under investigation then most
debugging strategies will involve the tracer and the discussion will be almost exclusively
procedural. The role of declarative solutions is in static bug avoiding tools or program-
ming and teaching strategies.

The bugs associated with 'exit with Prolog/operating system error' will not be dis-
cussed here.

&However, at AAAI-86, an example was given of going straight from symptom to code error. Given an
unexpected -no. the programmer would immediately turn on an 'undefined procedure' mode and look
for one.
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Current Tools for Inspecting Program Behaviour

In some sense there is only one possible tool available for looking at run-time program
behaviour -the trace package. Therefore the trace package can be switched on, the
execution of some n port mode16 followed or a 'spy' point set etc. A number of other
tools such as XREF (cross referencer) and MODGEN (mode generator) are potentially
useful -and there has been some consideration as to whether they can be tied into the
trace package- but they generally apply to the (static) code rather than the (dynamic)
run-time behaviour.

The 'standard' trace package is not a uniform entity. A 'trace package' is a collection
of facilities built to form a coherent whole. The tracer provides facilities to enable the
programmer to 'walk over' some abstraction of the program's behaviour7 --often a tree-
like representation- and provide various possibilities at each node in the representation.
Through an analysis of the ways in which a program can misbehave it is possible to
identify (at least some of) the gaps in the provisions for each environment.

(Apparent) Non-Termination

Suppose the program seems to be taking a long time to return. The problem might be:

1. a loop

2. the computer is slow today

3. the computer has died

4. 

the program just takes a long time

Items two and three can probably be tested by some operating system command. Con-
sideration is now given to testing item one.

In most Prologs the only way to test for non-termination is to interrupt the program
run and then use the tracer to look for repeated goals, etc. This is most inefficient.
The combination of inefficiency and uncertainty makes this one of the the worst bugs to
diagnose.

One exception is Logicware's MProlog8. It has a user defined exception handling
facility which allows one to recover gracefully from most bugs. This has a default setting
to go into a break state at depth lOk. Often, such a symptom suggests a loop. To track
it down the programmer can enter the tracer and search around for duplicated goals, etc.

6Where n=4 for Quintus, DEC-IO Prolog, n=3 for micro-Prolog and n=7 for Dave Plummer's SODA
debugger -citesoda.

TSuch as the execution AND/OR tree, the AND/OR 'search space' or the Byrd Box execution model
'Only an informal investigation has been made of the facilities provided by a number of Prolog im-

plementations. Some of the following is based on discussions with Prolog suppliers at AAAI-86. Further
work has yet to be done to detail both strengths and weaknesses of various systems.
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The MProlog tracer allows tracing back from this break point. This is useful to find out
why Prolog got into the current state.

A useful bug avoiding tool would be a static analyser to detect potential loops in
code. Several groups either have or are working on such tools9. Such static tools are
useful but a dynamic tool can handle situations that the static tool can never detect. A
dynamic tool to search for loops at run time would therefore be most useful. For instance,
a subsumption checker would go a long way to meeting this need. Subsumption checking
is very expensive in general, so one would want to be able to turn it on and off at will,
i.e. Prolog should be runnable in subsumption mode. It might be useful to have it on
automatically after some prearranged time or at some prearranged point in the program
in order not to waste time on checking bits of the search space suspected to be correct.
Such a tool would be more useful than the MProlog depth bound, because it would locate
the problem more accurately and involve the programmer in less search.

Checking for non-termination is an undecidable problem in general, so no perfect tool
could be provided -neither a static nor a dynamic one. Improvements would always
be possible and the programmer would always have to be prepared to resort to 'hand'
checking of the tracer output. However, most non-terminations are caused by simple goal
repetition, so a simple loop checker would go a long way.

3.3 Prolog Error Messages

By its very nature, Prolog provides few error messages. Typically, error messages are
mostly for inappropriate arguments to system predicates, e.g. =.., is, etc, or for ex-
haustion of some system resource, e.g. stack overflow. Some errors are fatal and some
not.

For system resource exhaustion errors one is mainly concerned to distinguish program
looping from (genuine' exhaustion. Looping tests were discussed in the last section and
will not be repeated here. A major problem with this kind of error is that they are likely to
make it difficult to continue to run Prolog and thus to provide any Prolog debugging tools.
Something like the MProlog solution seems to be required, i.e. of predicting a problem
before the resource is actually exhausted and going into a break to allow investigation.

In many Prologs the standard way to test for system predicate bugs is to discover
which system predicate they refer to, and which procedures call this predicate, and then
to trace these procedures to try to spot which one is at fault. If many procedures call the
offending system predicate, or if any of these procedures is itself called often, then this is
a most inefficient debugging strategy.

Since the Prolog interpreter (knows' exactly which procedure call caused the error
message to be printed, it should be simple to arrange for the tracer to be invoked at
precisely the right point. In fact, MProlog allows just this but this is not the case with
either Quintus Prolog vl.6 or Edinburgh Prolog (NIP).

DFor example, McCabe and his colleagues incorporate the idea in their proposal to Alvey
IMcCabe et al 86].
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Having found the offending system predicate call, the programmer will then probably
want to trace back up the program run, looking for the point at which the trouble started.
Most tracers 10 do not currently allow this: 'redoing' only being possible back to where

the tracer was invoked. The 'debug' mode in Edinburgh Prolog or Quintus ensures that
information is kept which can be used to provide such facilities.

This search backwards for the point of trouble could also be automated, e.g. an
uninstantiated input to 'is' might be identified and the tracer requested to backtrack to
where this was first introduced. Back-searches for the point of variable introduction or
binding is a general requirement.

Side-Effects

Unexpected generation of side-effects is much like system predicate error messages -it
is desirable to get into the tracer at the point at which the side effect happened and then
root around. The main difference is that Prolog cannot be expected to do this without
the programmer specifying which side-effects are regarded as unexpected and unwanted.
Some way is needed of stating that writing this term or asserting that one is unwanted
and then to be put into the tracer at the point at which these events are happening.

Failure to produce side effects can be tackled initially by spying the procedure which
should have produced the side effect. If this fails because this procedure was never called
then it is a case such as 'unexpected no' and the remarks in the next section can be
adapted.

Unexpected 'No' or 'Yes'

Prolog has been called "the language that likes to say no". 'No' when it was expecting
'yes' or some output binding is certainly one of the most common symptoms of trouble.
It is also one of the hardest to debug, since there are so many potential causes and so
little evidence to go on.

The normal debugging technique is to use the tracer to compare the actual search
space with the one expected. The main goal has failed and one is trying to trace that
failure down through the search space to the lowest failing subgoal. This may be caused
by:

.the unexpected failure of some clause

.the unwanted success of some clause -with a cut then causing a subsequent clause
not to be called

.a missing clause

lOMPro}og, again, being a rare exception.
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The programmer might suspect some particular procedure to be at fault, e.g. if it
has just been added to or edited in a previously correct program. In this case a/he
will spy this procedure. Failing such suspicions, the programmer must resort to a more
exhaustive search. Most programmers either step through the program top down, or test
each subprocedure in turn working bottom up, or try some middle out variant.

Exactly where the tracer should initially enter in the execution history is a difficult
problem. One of the simplest possibilities is to enter the tracer at the point at which the
first goal failed in the chain of most recently failing goals. Either this goal should not
have failed and selective backwards tracing can now be attempted to pinpoint why, or this
goal should never have been called and selective backwards tracing can now be used to
discover how this part of the search space was reached. Note that this technique requires
the ability to re-enter the tracer after a top level call has been exited -no Prolog system
currently provides such an ability 11 but it should not be hard to implement provided

one is prepared to go into a special mode before making the call.

Unexpected 'yes' when 'no' was expected is very rare but can be dealt with in a similar
way to the above.

Wrong Binding3.6

The wrong binding of an answer variable is currently similar to the previous case of
unexpected 'no'. However, the additional information implicit in the erroneous binding
gives us much more to go on. The tracer could be made to back up in turn through each
unification which contributed to the binding. At each stage it is known what the binding
was before the procedure call and what new instantiations were made. The user can then
choose whether to go on up or root around at this point. Note that this requires the
ability (originally suggested in the 'error messages' section) to trace variable bindings, as
well as the ability (originally suggested in the 'unexpected no' section) to trace back into
a terminated program.

It has been suggested that answer variables could be traced forwards instead of back-
wards. This avoids the problem of tracing backwards and re-entering terminated pro-
grams, but it is less efficient as a debugging strategy. Forwards tracing forces the pro-
grammer to enter and search bits of the search tree which will ultimately fail, whereas
backwards tracing will enter only the ultimately successful branch of the tree.

This completes the survey of the symptom level bugs descriptions. Now, attention is
given to the second level: program misbehaviour.

3.'1 Program Misbehaviour

Debugging at the program misbehaviour level consists mainly of tracking the immediate
cause of the symptom to its 'initial' cause12. When the 'initial' cause is found it can

llTo the best of our knowledge.
12The term 'initial' is odd because, as will be seen, it is initial only at the program misbehaviour level

and itself has a cause at the code level. That is why it is in, and will remain in, scare quotes.
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be identified because its cause can be found in some corresponding code level bug. For
instance, the immediate cause may be some Prolog error message. This might be caused
by an unbound variable, caused by a clause being unexpectedly called, caused by an
earlier clause unexpectedly failing, caused by its head not matching the goal. This last
is the 'initial' cause at the program misbehaviour level because its cause is a code level
bug, say a mistyped function name.

It is assumed that the test for an 'initial' cause can be done by inspection of the code
corresponding to the erring clause, i.e. without any special tools beyond the ability to
access source code from the tracer IS However, the tracer might be augmented to assist

in the tracking of the causal chain between immediate and 'initial'.

M~t such augmentations have already been mentioned above:

.the ability to search for nested identical goals or, more generally, subsumption

.the ability to trace backwards ('redo') from a break point

.the ability to trace back into a terminated program

.the ability to name a variable and have the tracer look for its last binding or its
introduction

.the ability to drop into the tracer at the point where an error message or unwanted
side effect were generated

The reason that most of these augmentations have already been considered is that,
for that most part, the program misbehaviour bug classification echoes the symptom
level one but within the search space rather than external to it. The main exception
is unexpected calling or non-calling of a clause, but this does not seem to require any
augmentations or tools beyond those discussed above.

4 Conclusion

Examination of available debugging strategies for each of the bug types at the symptom
level has been a fruitful activity in terms of revealing the shortcomings of existing Prolog
environments and suggesting improvements. The normal debugging strategies available
in DEC-IOjQuintus type environments are very inefficient for many bug types, although
the situation is a little better in some other Prologs, e.g. ESI's Prolog-2 and especially

Logicware's MProlog.

A little thought suggests some dramatic improvements over the current situation:
in the main improvements to the tracer to make it more selective and to enable kinds
of tracing not currently allowed. These suggestions are listed at the end of the previous
section. These could be implemented, although some of them would be costly in resources
and one would want to switch them on specially rather than always pay the overhead.

18Sadly lacking in most tracers. A rare exception is Dave Plummer's SODA debugger [Plummer 85].
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The proposal by McCabe, Wilk, Thwaites and Ramsay indicates an intention to provide
tools to do a post mortem analysis of the stack which would make implementation of
some of the above ideas feasible [McCabe et al 86].

The debugging strategies used by Prolog experts for each Prolog bug symptom and
for bugs at other levels will be investigated further. More ideas will emerge as further
Prolog bug types are considered 14 and further relations between them. More work is

especially needed on the code level and static tools, and about declarative classifications
and tools.

Much work is still needed to develop the classification of program code errors. In the
near future, there will be a more thorough investigation of the range of programming

techniques.
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