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Abstract

We outline the progress we have made in connection with the Alvey Grant "Eval-
uating Prolog Environments" (SERC GRJDJ44287 and Alvey IKBS 136). This grant
runs for three years from 1st November 1985. The grant holders are Professor Alan
Bundy and Dr Helen Pain and it employs Dr Paul Brna as a Research Fellow.

Background1

At the start of the grant period, the Alvey Logic Programming Initiative chose to promote
expertise in Prolog. It was felt that Prolog, being a relatively young computing language,
had not accumulated the kind of interactive development environment that was commonly
found, for instance, in Lisp systems. The provision of such environments was widely seen
as essential if the full potential of Prolog was to be realised.

As part of the development of new, sophisticated Prolog environments it is vital to evalu-
ate tools, to identify problems with them, and to draw attention to omissions and needs.
In particular, it is known that many tools do not meet user's needs for debugging large
programs. Empirical study is seen as vital to discover what kind of bugs occur, how they
are currently fixed, and what tools could improve user productivity.

Goals2

Our main goal is to inform and influence long term activities in the UK Prolog community
by the evaluation of extant tools and the identification of problems with them. We also
set out to draw attention to omissions and needs.

In particular, our concerns include:

1. Do the user interfaces present consistent stories about how Prolog programs are
run and are these stories consistent with available teaching materials?
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2. Are these stories consistent with the Logic Programming phil~phy of Prolog? Is
it p~ible to maintain an entirely declarative story for the programmer?

3. To what extent do the debugging tools, error messages, etc., help users avoid or
cope with the kind of bugs which arise in practice? Do there remain commonly
occurring bugs for which existing tools are inadequate?

4. Do the tools help eliminate misconceptions about the Prolog virtual machine?

We had paid attention to the problem of presenting consistent stories (concerning items 1
and 2 above) in previous papers [Bundy 84, Pain &. Bundy 87, Bundy et al 85]. This in-
cludes an examination of the early Prolog teaching materials to extract the Prolog stories
they used and the development of a complete story that covers all the aspects of Prolog in
a uniform and coherent manner [Bundy et al 85]. This has had some influence on teaching
materials (e.g. 2nd edition of [Clocksin &. Mellish 84] and [Eisenstadt &. Brayshaw 87])
and tracers (e.g.[Eisenstadt &. Brayshaw 86]). Our recent work has mainly focussed on
the issues of bug-avoidance and bug-elimination (item 3 above).

In order to confront these issues we set out to evaluate a number of Prolog environments
with a view to producing the following:

.Some classifications of Prolog programming errors (bugs) and lists of commonly

occurring Prolog bugs.

.An account of bug-avoiding and debugging strategies used on these bugs.

.An account of how various environmental tools are used in these strategies.

.The identification of gaps, i.e. bugs for which no efficient strategies exist and no
tools are useful.

.Suggestions about new environmental tools to plug these gaps.

.Suggestions about language improvements/extensions that would avoid certain bugs.

.Suggestions about teaching methods that would enable students to avoid certain

bugs.

.An evaluation of how available environments score on the above, e.g. identification
of those offering novel, useful tools.

3

Achievements

At this point we have made some progress on all these goals -although much still needs
to be done. We have set up a framework for the description of Prolog bugs. This is fun-
damental as we want both to motivate the construction of new and improved tools based
on an analysis of bugs (and program debugging) and to evaluate Prolog environments
with respect to the practical requirements of programmers.
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This framework -see figure 1- can be viewed in two distinct ways. The first way
(program generation), as a means of describing stages through which a programmer goes
from the start of coding to the moment that the programmer realises that the program
is 'buggy'. The other way (bug detection), as the path by which the programmer might
track down the essential cause of the problem.

We now briefly 8ummarise the different layers of description. More detail can be found
in [Brna et al 87].

Symptom Description If a programmer believes that something has gone wrong dur-
ing the execution of some Prolog program then there are a limited number of ways
of directly describing such evidence ~.g.

.(apparent) non-termination

.exit with operating system error

.generation of Prolog error message

.unexpected generation or failure to generate a side-effect

.unexpected "no" or "yes"

.wrong binding of answer variable

Program Misbehaviour Description The explanation offered for a symptom. The
language used is in terms of the flow of control and relates, therefore, to run-time
behaviour --e.g.

.the unexpected failure of some clause

.the unwanted success of some clause -e.g. with a cut then causing a subse-
quent clause not to be called

.a missing clause

.etc.

Program Code Error Description The explanation offered in terms of the code itself.
Such a description may suggest what fix might cure the program misbehaviour -

e.g.

.there is a missing base case

.there is a clause that should have been deleted

.a test is needed to detect an unusual case

Underlying Misconception Description The fundamental misunderstandings and false
beliefs that the programmer may have to overcome in order to come to terms with
specific features of the language -e.g.

.recursion is really iteration

.if a subgoal fails then the goal fails
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Program Generation

That Prolog always tries to
use facts before rules in the
resolution process

Underlying Misconception

factori~(I.in.):-
1..1 i. 1-1.
factori~(...I in.).
in. i. I*...in..factori~(O.l).

Program Code Error

factorial(1.11)factorial(O, 

12)factorial(-1,13) Program Misbehaviour

Local Stack Overflow Symptom

Bug Detection

Figure 1: Four Levels of Description of Prolog Bugs
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.isle is really assignment

To illustrate that Prolog bugs can be classified at a number of levels consider the symptom
that a query seems to be taking a long time. The immediate cause of this might be that
the program may be in an infinite loop -described at the level of program misbehaviour.
This looping might be because of a programming error -for example, that the body of a
clause contains a literal identical to the head. And this might be because the programmer
has an underlying misconception about recursion. This example illustrates the four levels:
symptom, program misbehaviour, program code error and underlying misconception.

We have examined the Symptom Description and Program Misbehaviour Description lev-
els in some detail. The Program Code Error Description level is interesting because it
admits of at least two quite different approaches: a syntactic classification and a technique-
based one.

An example of such a programming technique is a failure driven loop.

PREDICATE(.~.Xl,...X2,...):-
NON .DETERMINISTICYREDICATE( ...Xl,...X2,...),

SIDE.EFFECT .YREDICATE(...Xl,...X2,...),
fail.

PREDICATE(...Xl,...X2,...

In the above schema, ellipsis is used to indicate missing sub-goals, arguments. Observe
that the schema is not sufficient to capture the full range of clauses that exhibit the
properties of a failure driven loop. For example, the side-effecting predicate may not
require the same list of arguments as the non-deterministic one.

A necessary requirement for a failure driven loop is that it has a clause that always fails.
It also should contain at least one non-deterministic literal and one that side-effects. Note
that this definition includes some procedural semantics: fail, side-effect, etc. There could
be other clauses and literals. The non-deterministic and side-effecting one could be the
same or different.

The various ways in which a program can violate the definition of a failure driven loop
constitute a technique-oriented bug classification, include:

.No failing clause

.No side-effecting literal

.No non-deterministic literal

A catalogue of techniques are being considered in order to build up other technique-
oriented bug classifications [Bundy et al 87]. In particular, the techniques of building up
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Algorithm

'"

"'"

~

,I
ProgramSpecification

/

Techniques

Figure 2: Techniques and Software Production

recursive data structures by pattern matching in the clause head, and building them up
in the clause body with an accumulator.

We contrast techniques with both the notion of algorithm and that of programming
cliches (see the work on the Programmers' Apprentice [Waters 85]). An algorithm is a
language independent procedure which meets some specification, e.g. sorts the element of
a list. In contrast, our techniques are language dependent (i.e. Prolog), but specification
independent -e.g. the same technique might be used in sorting a list or in finding the
maximum of two numbers. Furthermore, a technique might apply to only part of a
complete procedure, and many techniques may be combined together in a procedure.

Figure 2 illustrates a formalisation of some aspects of the software production process.
Algorithms are selected according to the nature of the specifications. Techniques are not
directly related to the specification but they are related to the algorithms selected.

The Underlying Misconception Level description has not been developed to any significant
extent.

4 Current Status

The next stage in our work requires the evaluation of current Prolog systems and tools.
Systems have been selected for a variety of reasons: because they are influential (e.g.
DEC-IO Prolog, MicroProlog) , because they offer novel tools relating to bug avoidance or
debugging (e.g. BIM, ESI Prolog II, NU-Prolog, LPA Sigma Prolog), or because they are
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readily widely used (e.g. LPA MacProlog, C-Prolog). Not every important Prolog system
is necessarily included. SICSTUS Prolog, for example, is a significant fast, new Prolog
system but appears to have few, if any, new tools. We hope to provide an evaluation
based on about twenty systems.

So far, we have concentrated on producing a systems/tools survey. Following on from
this, our bug description framework will be used as part of the basis of the evaluation of
current Prolog systems that we are undertaking. Various identified debugging strategies
will also be part of our evaluation framework.

We expect that the bug description system, the list of bug-avoidance strategies and the
known debugging strategies will be subject to further revision and development. This
necessarily requires that the evaluation evolve. The preliminary set of results, however,
are expected by the middle of 1988.
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