233 research outputs found

    Data Fusion for Materials Location Estimation in Construction

    Get PDF
    Effective automated tracking and locating of the thousands of materials on construction sites improves material distribution and project performance and thus has a significant positive impact on construction productivity. Many locating technologies and data sources have therefore been developed, and the deployment of a cost-effective, scalable, and easy-to-implement materials location sensing system at actual construction sites has very recently become both technically and economically feasible. However, considerable opportunity still exists to improve the accuracy, precision, and robustness of such systems. The quest for fundamental methods that can take advantage of the relative strengths of each individual technology and data source motivated this research, which has led to the development of new data fusion methods for improving materials location estimation. In this study a data fusion model is used to generate an integrated solution for the automated identification, location estimation, and relocation detection of construction materials. The developed model is a modified functional data fusion model. Particular attention is paid to noisy environments where low-cost RFID tags are attached to all materials, which are sometimes moved repeatedly around the site. A portion of the work focuses partly on relocation detection because it is closely coupled with location estimation and because it can be used to detect the multi-handling of materials, which is a key indicator of inefficiency. This research has successfully addressed the challenges of fusing data from multiple sources of information in a very noisy and dynamic environment. The results indicate potential for the proposed model to improve location estimation and movement detection as well as to automate the calculation of the incidence of multi-handling

    Task-Driven Integrity Assessment and Control for Vehicular Hybrid Localization Systems

    Get PDF
    Throughout the last decade, vehicle localization has been attracting significant attention in a wide range of applications, including Navigation Systems, Road Tolling, Smart Parking, and Collision Avoidance. To deliver on their requirements, these applications need specific localization accuracy. However, current localization techniques lack the required accuracy, especially for mission critical applications. Although various approaches for improving localization accuracy have been reported in the literature, there is still a need for more efficient and more effective measures that can ascribe some level of accuracy to the localization process. These measures will enable localization systems to manage the localization process and resources so as to achieve the highest accuracy possible, and to mitigate the impact of inadequate accuracy on the target application. In this thesis, a framework for fusing different localization techniques is introduced in order to estimate the location of a vehicle along with location integrity assessment that captures the impact of the measurement conditions on the localization quality. Knowledge about estimate integrity allows the system to plan the use of its localization resources so as to match the target accuracy of the application. The framework introduced provides the tools that would allow for modeling the impact of the operation conditions on estimate accuracy and integrity, as such it enables more robust system performance in three steps. First, localization system parameters are utilized to contrive a feature space that constitutes probable accuracy classes. Due to the strong overlap among accuracy classes in the feature space, a hierarchical classification strategy is developed to address the class ambiguity problem via the class unfolding approach (HCCU). HCCU strategy is proven to be superior with respect to other hierarchical configuration. Furthermore, a Context Based Accuracy Classification (CBAC) algorithm is introduced to enhance the performance of the classification process. In this algorithm, knowledge about the surrounding environment is utilized to optimize classification performance as a function of the observation conditions. Second, a task-driven integrity (TDI) model is developed to enable the applications modules to be aware of the trust level of the localization output. Typically, this trust level functions in the measurement conditions; therefore, the TDI model monitors specific parameter(s) in the localization technique and, accordingly, infers the impact of the change in the environmental conditions on the quality of the localization process. A generalized TDI solution is also introduced to handle the cases where sufficient information about the sensing parameters is unavailable. Finally, the produce of the employed localization techniques (i.e., location estimates, accuracy, and integrity level assessment) needs to be fused. Nevertheless, these techniques are hybrid and their pieces of information are conflicting in many situations. Therefore, a novel evidence structure model called Spatial Evidence Structure Model (SESM) is developed and used in constructing a frame of discernment comprising discretized spatial data. SESM-based fusion paradigms are capable of performing a fusion process using the information provided by the techniques employed. Both the location estimate accuracy and aggregated integrity resultant from the fusion process demonstrate superiority over the employing localization techniques. Furthermore, a context aware task-driven resource allocation mechanism is developed to manage the fusion process. The main objective of this mechanism is to optimize the usage of system resources and achieve a task-driven performance. Extensive experimental work is conducted on real-life and simulated data to validate models developed in this thesis. It is evident from the experimental results that task-driven integrity assessment and control is applicable and effective on hybrid localization systems

    Earth Resources, A Continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    From Accessibility and Exposure to Engagement: A Multi-scalar Approach to Measuring Environmental Determinants of Children’s Health Using Geographic Information Systems

    Get PDF
    A growing body of research suggests that increasing the accessibility to health-related environmental features and increasing exposure to and engagement in outdoor environments leads to positive benefits for the overall health and well-being of children. Additionally, research over the last twenty-five years has documented a decline in the time children spend outdoors. Outdoor activity in children is associated with increased levels of physical fitness, and cognitive well-being. Despite acknowledging this connection, problems occur for researchers when attempting to identify the child’s location and to measure whether a child has made use of an accessible health-related facility, or where, when and for how long a child spends time outdoors. The purpose of this thesis is to measure children’s accessibility to, exposure to, and engagement with health-promoting features of their environment. The research on the environment-health link aims to meet two objectives: 1) to quantify the magnitude of positional discrepancies and accessibility misclassification that result from using several commonly-used address proxies; and 2) to examine how individual-level, household-level, and neighbourhood-level factors are associated with the quantity of time children spend outdoors. This will be achieved by employing the use of GPS tracking to objectively quantify the time spent outdoors using a novel machine learning algorithm, and by applying a hexagonal grid to extract built environment measures. This study aims to identify the impact of positional discrepancies when measuring accessibility by examining misclassification of address proxies to several health-related facilities throughout the City of London and Middlesex County, Ontario, Canada. Positional errors are quantified by multiple neighbourhood types. Findings indicate that the shorter the threshold distance used to measure accessibility between subject population and health-related facility, the higher the proportion of misclassified addresses. Using address proxies based on large aggregated units, such as centroids of census tracts or dissemination areas, can result in vast positional discrepancies, and therefore should be avoided in spatial epidemiologic research. To reduce the misclassification, and positional errors, the use of individual portable passive GPS receivers were employed to objectively track the spatial patterns, and quantify the time spent outdoors of children (aged 7 to 13 years) in London, Ontario across multiple neighbourhood types. On the whole, children spent most of their outdoor time during school hours (recess time) and the non-school time outdoors in areas immediately surrounding their home. From these findings, policymakers, educators, and parents can support children’s health by making greater efforts to promote outdoor activities for improved health and quality of life in children. This thesis aims to advance our understanding of the environment and health-link and suggests practical steps for more well-informed decision making by combining novel classification and mapping techniques

    Studies on Sensor Aided Positioning and Context Awareness

    Get PDF
    This thesis studies Global Navigation Satellite Systems (GNSS) in combination with sensor systems that can be used for positioning and obtaining richer context information. When a GNSS is integrated with sensors, such as accelerometers, gyroscopes and barometric altimeters, valuable information can be produced for several applications; for example availability or/and performance of the navigation system can be increased. In addition to position technologies, GNSS devices are integrated more often with different types of technologies to fulfil several needs, e.g., different types of context recognition. The most common integrated devices are accelerometer, gyroscope, and magnetometer but also other sensors could be used.More specifically, this thesis presents sensor aided positioning with two satellite signals with altitude assistance. The method uses both pseudorange and Doppler measurements. The system is required to be stationary during the process and a source of altitude information, e.g., a MEMS barometer, is needed in addition to a basic GNSS receiver. Authentic pseudorange and Doppler measurements with simulated altitude were used used to test the algorithm. Results showed that normally the accuracy of couple of kilometers is acquired. Thesis also studies on what kind of errors barometric altimeter might encounter especially in personal positioning. The results show that barometers in differential mode provide highly accurate altitude solution (within tens of centimeters), but local disturbances in pressure need to be acknowledged in the application design. For example, heating, ventilating, and air conditioning in a car can have effect of few meters. Thus this could cause problems if the barometer is used as a altimeter for under meter-level positioning or navigation.We also explore methods for sensor aided GNSS systems for context recognition. First, the activity and environment recognition from mobile phone sensor and radio receiver data is investigated. The aim is in activity (e.g., walking, running, or driving a vehicle) and environment (e.g., street, home, or restaurant) detection. The thesis introduces an algorithm for user specific adaptation of the context model parameters using the feedback from the user, which can provide a confidence measure about the correctness of a classification. A real-life data collection campaign validate the proposed method. In addition, the thesis presents a concept for automated crash detection to motorcycles. In this concept, three different inertial measurement units are attached to the motorist’s helmet, torso of the motorist, and to the rear of the motor cycle. A maximum a posteriori classifier is trained to classify the crash and normal driving. Crash dummy tests were done by throwing the dummy from different altitudes to simulate the effect of crash to the motorist and real data is collected by driving the motorcycle. Preliminary results proved the potential of the proposed method could be applicable in real situations. In all the proposed systems in this thesis, knowledge of the context can help the positioning system, but also positioning system can help in determining the context

    Observing travel behaviour from GPS data - A tool comparison survey in the Torino metropolitan area

    Get PDF
    Travel surveys help researchers to paint a clear picture of specific aspects of travel behaviour. In the transport field, data quality is largely dictated by the data requirements of mathematical models, and by the rising complexity of individuals' travel behaviour. Beginning with an illustration of the most common transport models, this thesis will first present an overview of traditional survey tools, in order to understand their structural biases and current developments in the transport survey field. One of the recent solutions to common data collection problems has been the implementation of passive data collection tools in household and personal travel surveys. Passive data collection tools allow researchers to derive travel behaviour information from positional and navigational data, collected with devices that use location-aware technologies, such as GPS, GSM, and RFid. Passive data collection tools - in particular, GPS devices - have proven useful in household and personal travel surveys, and have shown themselves capable of providing researchers with high-quality travel data. The objective of this research is to evaluate the use of GPS as a survey tool in household and personal travel surveys. Technological advances and decreasing costs have helped GPS to achieve wide use in the survey field. Furthermore, GPS-equipped devices allow surveyors to collect high-quality data on the time and position of individuals and vehicles - data that are more difficult to ascertain using traditional survey tools, such as self-administered questionnaires and telephonic interviews. A research team at the Politecnico di Torino designed and carried out a multi-instrumental personal travel survey, in order to assess the context-specific problems of a GPS-based survey in the metropolitan area of Torino. Survey methods included both a paper-and-pencil travel diary, and locational data collected using GPS devices. The survey effort consisted of a 4-day pilot survey with a sample of 4 individuals, and a successive 14-day GPS survey with a sample of 8 individuals. Results from self-administered travel diaries and GPS-derived data provided surveyors with valuable data for assessing the quality and completeness of travel information, and for determining the data's ability to accurately describe respondents' travel behaviour. The final outcomes of the GPS survey effort and of supplementary passive data collection tests allowed researchers to identify strengths and weaknesses of the implementation of passive data collection tools. Actual trends and future developments in the field will supplement the overvie

    Investigation of Context Determination for Advanced Navigation using Smartphone Sensors

    Get PDF
    Navigation and positioning is inherently dependent on the context, which comprises both the operating environment and the behaviour of the host vehicle or user. The environment determines the type and quality of radio signals available for positioning, while the behaviour can contribute additional information to the navigation solution. Although many navigation and positioning techniques have been developed, no single one is capable of providing reliable and accurate positioning in all contexts. Therefore, it is necessary for a navigation system to be able to operate across different types of contexts. Context adaptive navigation offers a solution to this problem by detecting the operating contexts and adopting different positioning techniques accordingly. This study focuses on context determination with the available sensors on smartphone, through framework design, behavioural and environmental context detection, context association, comprehensive experimental tests, and system demonstration, building the foundation for a context-adaptive navigation system. In this thesis, the overall framework of context determination is first designed. Following the framework, the behavioural contexts, covering different human activities and vehicle motions, are recognised by different machine learning classifiers in hierarchy. Their classification results are further enhanced by feature selection and a connectivity dependent filter. Environmental contexts are detected from GNSS measurements. Indoor and outdoor environments are first distinguished based on the availability and strength of GNSS signals using a hidden Markov model based method. Within the model, the different levels of connections between environments are exploited as well. Then a fuzzy inference system is designed to enable the further classification of outdoor environments into urban and open-sky. As behaviours and environments are not completely independent, this study also considers context association, investigating how behaviours can be associated within environment detection. Tests in a series of multi-context scenarios have shown that the association mechanism can further improve the reliability of context detection. Finally, the proposed context determination system has been demonstrated in daily scenarios

    Safe navigation for vehicles

    Get PDF
    La navigation par satellite prend un virage très important ces dernières années, d'une part par l'arrivée imminente du système Européen GALILEO qui viendra compléter le GPS Américain, mais aussi et surtout par le succès grand public qu'il connaît aujourd'hui. Ce succès est dû en partie aux avancées technologiques au niveau récepteur, qui, tout en autorisant une miniaturisation de plus en plus avancée, en permettent une utilisation dans des environnements de plus en plus difficiles. L'objectif aujourd'hui est de préparer l'utilisation de ce genre de signal dans une optique bas coût dans un milieu urbain automobile pour des applications critiques d'un point de vue sécurité (ce que ne permet pas les techniques d'hybridation classiques). L'amélioration des technologies (réduction de taille des capteurs type MEMS ou Gyroscope) ne peut, à elle seule, atteindre l'objectif d'obtenir une position dont nous pouvons être sûrs si nous utilisons les algorithmes classiques de localisation et d'hybridation. En effet ces techniques permettent d'avoir une position sans cependant permettre d'en quantifier le niveau de confiance. La faisabilité de ces applications repose d'une part sur une recherche approfondie d'axes d'amélioration des algorithmes de localisation, mais aussi et conjointement, sur la possibilité, via les capteurs externes de maintenir un niveau de confiance élevé et quantifié dans la position même en absence de signal satellitaire. ABSTRACT : Satellite navigation has acquired an increased importance during these last years, on the one hand due to the imminent appearance of the European GALILEO system that will complement the American GPS, and on the other hand due to the great success it has encountered in the commercial civil market. An important part of this success is based on the technological development at the receiver level that has rendered satellite navigation possible even in difficult environments. Today's objective is to prepare the utilisation of this kind of signals for land vehicle applications demanding high precision positioning. One of the main challenges within this research domain, which cannot be addressed by classical coupling techniques, is related to the system capability to provide reliable position estimations. The enhancement in dead-reckoning technologies (i.e. size reduction of MEMS-based sensors or gyroscopes) cannot all by itself reach the necessary confidence levels if exploited with classical localization and integration algorithms. Indeed, these techniques provide a position estimation whose reliability or confidence level it is very difficult to quantify. The feasibility of these applications relies not only on an extensive research to enhance the navigation algorithm performances in harsh scenarios, but also and in parallel, on the possibility to maintain, thanks to the presence of additional sensors, a high confidence level on the position estimation even in the absence of satellite navigation signals

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    corecore