299 research outputs found

    Identification and characterization of diseases on social web

    Get PDF
    [no abstract

    When Infodemic Meets Epidemic: a Systematic Literature Review

    Full text link
    Epidemics and outbreaks present arduous challenges requiring both individual and communal efforts. Social media offer significant amounts of data that can be leveraged for bio-surveillance. They also provide a platform to quickly and efficiently reach a sizeable percentage of the population, hence their potential impact on various aspects of epidemic mitigation. The general objective of this systematic literature review is to provide a methodical overview of the integration of social media in different epidemic-related contexts. Three research questions were conceptualized for this review, resulting in over 10000 publications collected in the first PRISMA stage, 129 of which were selected for inclusion. A thematic method-oriented synthesis was undertaken and identified 5 main themes related to social media enabled epidemic surveillance, misinformation management, and mental health. Findings uncover a need for more robust applications of the lessons learned from epidemic post-mortem documentation. A vast gap exists between retrospective analysis of epidemic management and result integration in prospective studies. Harnessing the full potential of social media in epidemic related tasks requires streamlining the results of epidemic forecasting, public opinion understanding and misinformation propagation, all while keeping abreast of potential mental health implications. Pro-active prevention has thus become vital for epidemic curtailment and containment

    Sentiment Analysis of Twitter Data for Predicting Stock Market Movements

    Full text link
    Predicting stock market movements is a well-known problem of interest. Now-a-days social media is perfectly representing the public sentiment and opinion about current events. Especially, twitter has attracted a lot of attention from researchers for studying the public sentiments. Stock market prediction on the basis of public sentiments expressed on twitter has been an intriguing field of research. Previous studies have concluded that the aggregate public mood collected from twitter may well be correlated with Dow Jones Industrial Average Index (DJIA). The thesis of this work is to observe how well the changes in stock prices of a company, the rises and falls, are correlated with the public opinions being expressed in tweets about that company. Understanding author's opinion from a piece of text is the objective of sentiment analysis. The present paper have employed two different textual representations, Word2vec and N-gram, for analyzing the public sentiments in tweets. In this paper, we have applied sentiment analysis and supervised machine learning principles to the tweets extracted from twitter and analyze the correlation between stock market movements of a company and sentiments in tweets. In an elaborate way, positive news and tweets in social media about a company would definitely encourage people to invest in the stocks of that company and as a result the stock price of that company would increase. At the end of the paper, it is shown that a strong correlation exists between the rise and falls in stock prices with the public sentiments in tweets.Comment: 6 pages 4 figures Conference Pape

    Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance

    Get PDF
    We investigate the use of Twitter data to deliver signals for syndromic surveillance in order to assess its ability to augment existing syndromic surveillance efforts and give a better understanding of symptomatic people who do not seek healthcare advice directly. We focus on a specific syndrome—asthma/difficulty breathing. We outline data collection using the Twitter streaming API as well as analysis and pre-processing of the collected data. Even with keyword-based data collection, many of the tweets collected are not be relevant because they represent chatter, or talk of awareness instead of an individual suffering a particular condition. In light of this, we set out to identify relevant tweets to collect a strong and reliable signal. For this, we investigate text classification techniques, and in particular we focus on semi-supervised classification techniques since they enable us to use more of the Twitter data collected while only doing very minimal labelling. In this paper, we propose a semi-supervised approach to symptomatic tweet classification and relevance filtering. We also propose alternative techniques to popular deep learning approaches. Additionally, we highlight the use of emojis and other special features capturing the tweet’s tone to improve the classification performance. Our results show that negative emojis and those that denote laughter provide the best classification performance in conjunction with a simple word-level n-gram approach. We obtain good performance in classifying symptomatic tweets with both supervised and semi-supervised algorithms and found that the proposed semi-supervised algorithms preserve more of the relevant tweets and may be advantageous in the context of a weak signal. Finally, we found some correlation (r = 0.414, p = 0.0004) between the Twitter signal generated with the semi-supervised system and data from consultations for related health conditions

    A Review of Influenza Detection and Prediction Through Social Networking Sites

    Get PDF
    Early prediction of seasonal epidemics such as influenza may reduce their impact in daily lives. Nowadays, the web can be used for surveillance of diseases. Search engines and social networking sites can be used to track trends of different diseases seven to ten days faster than government agencies such as Center of Disease Control and Prevention (CDC). CDC uses the Illness-Like Influenza Surveillance Network (ILINet), which is a program used to monitor Influenza-Like Illness (ILI) sent by thousands of health care providers in order to detect influenza outbreaks. It is a reliable tool, however, it is slow and expensive. For that reason, many studies aim to develop methods that do real time analysis to track ILI using social networking sites. Social media data such as Twitter can be used to predict the spread of flu in the population and can help in getting early warnings. Today, social networking sites (SNS) are used widely by many people to share thoughts and even health status. Therefore, SNS provides an efficient resource for disease surveillance and a good way to communicate to prevent disease outbreaks. The goal of this study is to review existing alternative solutions that track flu outbreak in real time using social networking sites and web blogs. Many studies have shown that social networking sites can be used to conduct real time analysis for better predictions.https://doi.org/10.1186/s12976-017-0074-

    Efficient Text Classification with Linear Regression Using a Combination of Predictors for Flu Outbreak Detection

    Get PDF
    Early prediction of disease outbreaks and seasonal epidemics such as Influenza may reduce their impact on daily lives. Today, the web can be used for surveillance of diseases.Search engines and Social Networking Sites can be used to track trends of different diseases more quickly than government agencies such as Center of Disease Control and Prevention(CDC). Today, Social Networking Sites (SNS) are widely used by diverse demographic populations. Thus, SNS data can be used effectively to track disease outbreaks and provide necessary warnings. Although the generated data of microblogging sites is valuable for real time analysis and outbreak predictions, the volume is huge. Therefore, one of the main challenges in analyzing this huge volume of data is to find the best approach for accurate analysis in an efficient time. Regardless of the analysis time, many studies show only the accuracy of applying different machine learning approaches. Current SNS-based flu detection and prediction frameworks apply conventional machine learning approaches that require lengthy training and testing, which is not the optimal solution for new outbreaks with new signs and symptoms. The aim of this study is to propose an efficient and accurate framework that uses SNS data to track disease outbreaks and provide early warnings, even for newest outbreaks accurately. The presented framework of outbreak prediction consists of three main modules: text classification, mapping, and linear regression for weekly flu rate predictions. The text classification module utilizes the features of sentiment analysis and predefined keyword occurrences. Various classifiers, including FastText and six conventional machine learning algorithms, are evaluated to identify the most efficient and accurate one for the proposed framework. The text classifiers have been trained and tested using a pre-labeled dataset of flu-related and unrelated Twitter postings. The selected text classifier is then used to classify over 8,400,000 tweet documents. The flu-related documents are then mapped ona weekly basis using a mapping module. Lastly, the mapped results are passed together with historical Center for Disease Control and Prevention (CDC) data to a linear regression module for weekly flu rate predictions. The evaluation of flu tweet classification shows that FastText together with the extracted features, has achieved accurate results with anF-measure value of 89.9% in addition to its efficiency. Therefore, FastText has been chosen to be the classification module to work together with the other modules in the proposed framework, including the linear regression module, for flu trend predictions. The prediction results are compared with the available recent data from CDC as the ground truth and show a strong correlation of 96.2%
    • …
    corecore