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ABSTRACT

Early prediction of disease outbreaks and seasonal epidemics such as Influenza may

reduce their impact on daily lives. Today, the web can be used for surveillance of diseases.

Search engines and Social Networking Sites can be used to track trends of different diseases

more quickly than government agencies such as Center of Disease Control and Prevention

(CDC). Today, Social Networking Sites (SNS) are widely used by diverse demographic

populations. Thus, SNS data can be used effectively to track disease outbreaks and provide

necessary warnings. Although the generated data of microblogging sites is valuable for

real time analysis and outbreak predictions, the volume is huge. Therefore, one of the main

challenges in analyzing this huge volume of data is to find the best approach for accurate

analysis in an efficient time. Regardless of the analysis time, many studies show only

the accuracy of applying different machine learning approaches. Current SNS-based flu

detection and prediction frameworks apply conventional machine learning approaches that

require lengthy training and testing, which is not the optimal solution for new outbreaks

with new signs and symptoms.

The aim of this study is to propose an efficient and accurate framework that uses SNS

data to track disease outbreaks and provide early warnings, even for newest outbreaks ac-

curately. The presented framework of outbreak prediction consists of three main modules:

text classification, mapping, and linear regression for weekly flu rate predictions. The text

classification module utilizes the features of sentiment analysis and predefined keyword
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occurrences. Various classifiers, including FastText and six conventional machine learning

algorithms, are evaluated to identify the most efficient and accurate one for the proposed

framework. The text classifiers have been trained and tested using a pre-labeled dataset

of flu-related and unrelated Twitter postings. The selected text classifier is then used to

classify over 8,400,000 tweet documents. The flu-related documents are then mapped on

a weekly basis using a mapping module. Lastly, the mapped results are passed together

with historical Center for Disease Control and Prevention (CDC) data to a linear regression

module for weekly flu rate predictions.

The evaluation of flu tweet classification shows that FastText together with the ex-

tracted features, has achieved accurate results with an F-measure value of 89.9% in addi-

tion to its efficiency. Therefore, FastText has been chosen to be the classification module

to work together with the other modules in the proposed framework, including the linear

regression module, for flu trend predictions. The prediction results are compared with the

available recent data from CDC as the ground truth and show a strong correlation of 96.2%.
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CHAPTER 1: INTRODUCTION

Public health is an important issue. Health care providers must be updated about the

public health and disease outbreaks affecting their communities in order to take correct ac-

tions at the right time. To produce outbreak reports, typical disease surveillance systems de-

pend on official statistics based on patient visits [1]. In the U.S., these reports are produced

by the Center for Disease Control and Prevention (CDC) to inform healthcare providers

about certain disease outbreaks such as Influenza outbreaks. CDC publishes flu-related

reports using the United States Influenza Like Illness Surveillance Network (ILINet) that

gathers flu-related information of outpatients from hundreds of healthcare providers around

the U.S. ILINet shows accurate results in detecting flu outbreaks, but it is costly and takes

a long time to issue the required reports. It is crucial for any disease surveillance system

to collect related data and provide the reports as early as possible to prevent the spread of

the disease. To this end, many solutions have been proposed to generate earlier outbreak

warnings. Examples include volumes of telephone calls, over-the-counter drug sales [1],

search engine logs [2, 3, 4, 5, 6, 7], and SNS data that can be used for real-time analysis for

better services [8, 9, 10, 11, 12, 13, 14, 15]. When comparing the different resources used

for surveillance, such as search engine logs, SNS data is more descriptive and available to

the public. Since SNS provides detailed demographic information, the collected data can

be used to simulate the spread of disease outbreaks with temporal analysis.

Social Networking Sites (SNS) are tools that include big data about users and their

shared thoughts and ideas, in addition to real-time data of users’ conversations and statuses.
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The amount of data, aside from the growth of SNS users, represents the important role of

SNS in real-time analysis and predictions in many areas [16, 17]. These areas include

traffic [18, 19, 20, 21], disaster prediction [22, 23, 24, 25, 26], management [27, 28, 29],

networking [30, 31], news [32, 33, 34, 35, 36], and many more. In the public health area,

SNS provides an efficient resource to conduct disease surveillance and a communication

tool to prevent disease outbreaks [37].

Based on our survey of disease outbreak detection models using social media data,

we found that most studies and models were developed to detect Influenza outbreaks from

SNS such as seasonal Influenza and the swine Influenza. The developed models can po-

tentially be deployed for other disease outbreak detections and predictions. Although pre-

diction and detection terms are used interchangeably throughout the study, the terms have

different definitions. Flu detection refers to the process of discovering flu trends or flu

cases that have already occurred. On the other hand, flu prediction collects data to pre-

dict flu trends. Furthermore, the term nowcasting refers to the process of predicting flu

cases that have happened in real time, which surveillance systems overlook. Because of the

surveillance system limitations, the need for new techniques and models, such as Google

Flu Trend (GFT), is necessary in order to predict non-reflected flu cases. This nowcasting

process is integrated into report revisions before the final reports are issued. Aside from

nowcasting, the process of forecasting is used to predict actual flu cases in the future.

In this study, we relied on the Twitter microblog to conduct minute-by-minute anal-

ysis in order to track the high frequency of posted messages. We present a framework

to track Influenza trends through Twitter postings. The framework includes preprocess-

ing, feature extraction, Twitter documents classification, documents weekly-mapping, and

weekly flu rate predictions. The preprocessing phase includes stemming and removal of

stop words and ineffective characters, which are non-alphanumeric tokens. Then, the pre-

processed data is used to extract features to be passed to a tweet classifier to distinguish
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between flu-related tweets and unrelated ones. The flu-related documents are then mapped

on a weekly basis. Finally, the mapped results are passed together with historical CDC data

to an estimator for flu trend predictions.

The Twitter Microblogging site is used in this study because it is the most widely

used Social Networking Site (SNS). It is an efficient resource to track trends for several

reasons. First, the high frequency of posted messages helps to perform minute–by–minute

analysis. Second, compared with search engine logs, Twitter posts are more descriptive

and available for the public. In addition, more analysis can be performed by analyzing the

users’ profiles such as demographic data and specific details. Third, users of Twitter are

of diverse ages, not only young people, but also middle aged, and technology savvy older

population [15].

The generated data of SNS is valuable for real-time analysis and outbreak predic-

tions, but its volume is huge. Therefore, one of the main challenges in analyzing this huge

volume of data is to find the best approach for accurate analysis in an efficient time. Current

Twitter-based flu detection and prediction frameworks apply conventional machine learn-

ing approaches that require lengthy training and testing which is not the optimal solution to

be used for a new outbreak with new signs and symptoms. Regardless of the analysis time,

many studies only report the accuracy of different machine learning approaches. Thus,

more efficient solutions are required for accurate results with less processing time. In this

study, we demonstrate that using FastText can enhance the efficiency of Twitter-based flu

outbreak prediction models. Originally, FastText became an efficient text classifier that was

proposed by Facebook. FastText performs more quickly than deep learning classifiers for

training and testing procedures and produces comparably accurate results. The FastText

classifier can train more than a billion words in about ten minutes and then predict multiple

classes within half a million sentences in less than a minute [38] .
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1.1 Research Problem and Scope

SNS postings can be seen as triggers for different event prediction such as disease

outbreaks. Discovering knowledge from the posts for flu surveillance models requires an

efficient approach of text processing. It includes gathering the related text (posts) about

the disease and then issuing necessary reports at an early stage that is crucial for outbreak

prevention. Since the gathered data is unstructured, the first step is to preprocess the un-

structured content in order to analyze the data and produce the results in an understandable

way. The second step is feature extraction, which is a key to performance enhancement.

The third step is knowledge extraction, using machine learning techniques for text classi-

fication that includes model training and testing. A post on a microblogging site is then

classified into either related or unrelated classes, for example;

Related: I’m sick, I got flu yesterday.

Unrelated: I’m sick of school.

Our literature survey indicates that most of the existing frameworks use conventional

machine learning classifiers [39]. These approaches require long time for the training pro-

cess. A new outbreak may require retraining the used prediction model with its new signs

and symptoms in order to consider the related posts. Thus, such approaches are not optimal

solutions for new deadly flu outbreaks.

The proposed framework using FastText classifier together with the extracted fea-

tures, which have not been previously used for Twitter-based flu surveillance models, aims

to extract related posts faster with a comparable accuracy. Thus, it can be used for ur-

gent cases to stop the spread of a new deadly outbreak. Improving the efficiency, along

with the accuracy of text classification, is important for text-based surveillance systems for
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generating early reports.

The scope of this study is to present an accurate and efficient FastText-based frame-

work to generate Influenza trend predictions from Twitter. In addition to the typical textual

features, the proposed framework utilizes the features of text sentiment analysis and the

occurrences of predefined topic keywords to distinguish between flu-related tweets and un-

related ones to be passed together with historical CDC data to an estimator module for

weekly flu rate predictions.

1.2 Motivation Behind the Research

Seasonal Influenza and flu can be a serious problem that may lead to death. About

250,000 to 500,000 deaths occur worldwide each year because of flu [40]. Public health

care providers must be updated about the seasonal flu or any other outbreak to take the

required actions for their communities. Getting an early warning will help to prevent the

spread of flu in the population. Typically, health care providers take the required action

to the public after getting reports of flu from the Center for Disease Control and Preven-

tion (CDC). This center collects data from health care providers to monitor Influenza–Like

Illness (ILI) and publishes the reports. This takes one to two weeks’ delay, causing the

required warning to come late to the provider’s attention [40]. The providers need to be

warned at the earliest time in order to take the appropriate actions to prevent the spread of

flu. Therefore, many solutions have been proposed to provide the warning as early as pos-

sible. These include monitoring web search queries like Google Flu Trend, monitoring call

volume to advice lines, and monitoring the sales of drugs and flu shots taken by patients.

In addition, textual and structural data mining techniques [37] have been used to track the

flu activity in Social Networking Sites (SNS). However, the literature survey shows that

the existing SNS–based models include conventional techniques of post classification with

maximum F–measure of 89.6%. For that reason, it is important to develop model with an
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efficient post classifier that is crucial for any SNS based model.

1.3 Contributions of the Proposed Research

Since the SNS-based flu prediction models rely on post classifications, it is still a

challenging task that requires more investigation for better predictions. The aim of this

research is to propose a framework with an efficient classifier for better Influenza predic-

tions using the data of Social Networking Sites and historical CDC reports as predictors.

It classifies flu–related posts using important text features, such as sentiment analysis fea-

tures, and then the related posts are passed together with historical CDC data to a linear

regression module for better weekly flu rate predictions. The contributions of this study

include the following:

• Sentiment analysis of the analyzed posts as an additional feature is considered to

improve the accuracy of the classification results.

• Simple keywords related to the disease as part of the additional features are also

considered to improve the accuracy of the classification results.

• The Term Frequency–Inverse Document Frequency (TF–IDF) weighting technique

to weigh textual features is considered to improve the accuracy of flu tweet classi-

fications.

• FastText classifier is fine–tuned in this work to improve the accuracy and efficiency

of tweet classification. FastText cuts the required time for classification model train-

ing and testing. This is very useful for critical diseases that need immediate action

such as Ebola and Corona.

• In addition, six conventional supervised classification methods are evaluated be-

side FastText to determine the one with better classification accuracy. The evalu-
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ated classifiers include Random Forest, Naïve Bayes, SVM, C4.5 Decision Tree,

K-nearest neighbors (KNN), and AdaBoost. The preprocessed labeled dataset was

used to train and test the classifiers using 10–fold cross validation as the experimen-

tal setting.

• A weekly flu rate estimator based on the linear regression model is proposed. It

considers a combination of predictors that includes the classification results and the

historical ILI rates.
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CHAPTER 2: BACKGROUND AND LITERATURE

SURVEY

2.1 Introduction

The focus of this chapter is to survey the existing tools, techniques, frameworks, and

methods of predicting Influenza trends in social media data. The studied methods evaluate

the Twitter posts that have keywords related to Influenza for faster detection in an effort to

achieve and maintain healthier communities.

This chapter is organized as follows. The Article Selection Methodology and Related

Work Section first presents the method of article selection and evaluation for this review

in addition to the related work. The Method Section, then, demonstrates comprehensively

different methodologies and techniques of Influenza trends detection from social media

data. The Discussion Section presents a discussion and comparison among all the proposed

existing methodologies. Then, the Challenges Section discusses the challenges of using

social media data for detection processes. Finally, concluding remarks of the literature

survey are presented.

2.2 Article Selection Methodology and Related Work

This literature survey aims to review the published work in the past recent years that

use social media data such as Twitter to detect Influenza. Relevant articles were collected
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from various resources and publishers including IEEE, ACM, BMC, and MDPI. Different

keywords were used to collect the relevant articles such as "Influenza trend prediction using

social media data." During the collection process the initial number of retrieved articles was

671. The selection process was based on certain criteria such as:

• Being relevant to flu outbreak detection and prediction

• Analyzing social media data in the detection and prediction process

• Being in English Language.

Based on the selection criteria, 602 articles were excluded by reviewing the titles and

the abstract of the retrieved articles. Initially, the selected articles were reviewed entirely.

Out of 69 of the selected articles, 41 articles satisfied all the criteria. The final number of

selected articles that were considered for this review was 27 articles. The other 14 articles

were insufficient. Figure 2.1 summarizes the process of the article selection.

Several prediction and detection models that use other web data, such as Google Flu

Trend (GFT), have been published in the literature for flu outbreak prediction and detection.

Some of these models, such as PROFET, are included in this review to clarify that they

can potentially work with the available social media data. Some other publications in the

literature present flu surveillance related tools and web applications that don’t use social

media data for flu detections and predictions. Some of these applications and tools are

listed below:

• FluNearYou (https://flunearyou.org/): FluNearYou [41] is a web application that

uses weekly surveys to collect health status of individuals in addition to the data

obtained from CDC and GFT. By using the data from the three sources, the appli-

cation shows the spread of the disease in the form of maps and charts.

• Influenzanet (http://www.Influenzanet.eu): Influenzanet [42] is a web application

that collects real–time data about flu epidemics in several European countries through

9



more than 30,000 contributors of Internet volunteers. Volunteers are asked to report

their status weekly.

• FluOutlook (https://fluoutlook.org/): FluOutlook [43] is a web application that shows

forecasts of the current flu season in North America and Europe in form of maps

and charts. Reports are updated weekly using CDC reports. FluOutlook is based on

the compartmental epidemic model.

• Columbia Prediction of Infectious Diseases (http://cpid.iri.columbia.edu/): Columbia

Prediction of Infectious Diseases is a web application that shows forecasts of sea-

sonal flu in curve charts. It also shows the current ILI counts in the US in a map

format [44].

• HealthMap (https://www.healthmap.org/): HealthMap is an infectious disease mon-

itoring system. It uses unstructured reports of the infectious diseases from multiple

sources in the Internet, filters them, classifies, and visualizes information about im-

portant identified disease outbreaks [45].

2.3 Methods

There are many ways to discover knowledge and predict flu trends from Twitter

data. This Section glances at various existing techniques. The studies for this review were

selected to include the existing methods and techniques applied to SNS data for earlier

Influenza outbreak prediction. The studied methods and techniques are within the past

recent years that fall under one of the main categories of graph data mining, text mining,

topic models, machine learning, math/statistical models, or mechanistic models.
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Figure 2.1: Articles selection process

2.3.1 Text Mining

Different studies show that various data mining methods can be employed to extract

knowledge and detect different trends from big data such as social media data [46, 47, 1,

48, 49, 50, 51].

Text mining is a process that uses unstructured data (text) to discover intended in-

formation. Text mining techniques extract knowledge from unstructured data while data

mining extracts data from structured databases. This makes it more difficult than struc-
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tured data mining. Text mining can be used to discover Influenza trends from social media

data [37].

2.3.1.1 Co–occurrences Analysis

Co–occurrences analysis can be used to discover how frequent certain keywords are

used in a document. This analysis helps in finding related social media posts for better

flu trend predictions. In addition, more analysis could be conducted using co–occurrences

analysis such as medicine misuse analysis. Daniel Scanfeld et al. [52] demonstrated an-

tibiotic misuse analysis using co–occurrences and categorization methods on social media

data. Their study has also shown that social networks can be used by patients to share

health information. For that reason, these kinds of networks could be used to gather knowl-

edge to explore potential misuse of medicine. This indicates that the co–occurrences and

categorization methods, along with the known flu symptoms and treatment can be used to

predict flu trends in Social Networking Sites.

2.3.1.2 Historical Pattern Analysis

Since history may repeat itself, future events can be predicted using patterns of histor-

ical events such as search queries or social media posts. Kira Radinsky et al. [53] proposed

a method named PROFET that predicts future news based on patterns of historical events

collected from Google trends services. These services use large number of search queries.

PROFET algorithm extracts information from large number of web resources and

analyzes the past events pattern in order to predict future news. It uses Google Hot Trends,

which is used to obtain the important events, and Google Related Trends for the related

events. It also uses Google Trends Chart to find peaks for an event. PROFET consists of

several steps:

• The algorithm identifies a set of all extracted events: W = {w1,w2, . . . ,wk}. For
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simplicity, only the important and related events are considered for further pro-

cesses.

• The algorithm identifies a vector D to represent an ordered set of days: D =<

d1,d2, ...,dn >.

• The algorithm defines a binary vector for each event wi: g(wi) =< di
1,d

i
2, . . . ,d

i
n >.

This vector is used to indicate that the event wi appeared when di
j = 1. The Google

Trends Chart is used to find peaks for each event wi.

• The algorithm predicts the terms or events that may peak in k days.

• The algorithm returns a list of candidate terms with associated weights. The event

with a stronger weight is the event with a higher chance of happening in the future

within k days.

This algorithm together with the available social media data can help in predicting

flu trends in social media. The patterns of the historical social media posts can be used as

an extra parameter for any machine learning framework for better predictions.

2.3.2 Graph data mining

This technique is a process of discovering knowledge in structured data using graph-

ical representation and graph theories. Courtney D. Corley et al. showed how graph based

data mining can be used to discover flu affected communities and also to detect anomalies

for better trend predictions [37].

Corley et al. [37] developed a framework based on text and graph mining. Figure

2.2 shows the general overview of their proposed framework. The framework monitors

Influenza–Like Illness (ILI) mentioned in social media. It employs different data min-

ing methods: text mining, link (graphical) mining, and structural data mining methods.

The text mining method is used to identify flu trends by extracting information from large
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collection of texts from social media web. The link analysis is used to find the targeted

communities. A community is represented as a collection of vertices and edges (V, C). The

targeted community can be identified using the Girvan–Newman algorithm (GN) that helps

to identify clusters of potential communities in the studied social media [37]. The cluster-

ing process in this framework is based on content type and publisher (the first responder).

The graph–based analysis technique is also used for further detection of possible anomalies

(unusual occurrences) and informative substructure that could increase ILI. The results of

the proposed framework show high correlation between flu–related posts and CDC weekly

reports. The Girvan–Newman algorithm can be applied to any graph for the clustering

process. It is composed of several steps that should be iterated to identify clusters as com-

munities. After each iteration, the remaining components in the graph are considered as a

cluster/community. Finding targeted communities using this method helps in optimizing

the public health responses.

Figure 2.2: A method to monitor ILI and identify communities in Social Media
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2.3.3 Topic Models

2.3.3.1 Ailment Topic Aspect Model (ATAM) and Latent Dirich-
let Allocation Models

ATAM is a topic model that associates words with their hidden topics. Michael J.

Paul et al. [54] showed that the ATAM model can be used to discover health topics posted

by users in Twitter. The model is designed to discover more than a single disease. It is based

on a probabilistic topic model called LDA (Latent Dirichlet Allocation) that associates

words to hidden topics in a text such as a Twitter post and then discovers latent (hidden)

structures in the data. Each hidden topic in any document is defined by a multinomial

distribution over its words. Applying posterior inference (parameter learning) will return

the topics with the words, which frequently co–occur with them. LDA gives topics related

to disease, but it doesn’t indicate a specific ailment clearly. For example, surgery could be

discovered as a treatment, but LDA doesn’t identify clearly whether it is for an injury or

cancer. In addition to the topic model, the authors developed a structural model that uses

symptoms and treatments to discover ailments.

ATAM can be used to associate symptoms, treatments, and general words with an

ailment (disease). An ailment comprises of treatments, symptoms and general words. The

model could associate a disease with its symptoms and treatment using Social Networking

Sites. The authors use 1.6 million tweets to train the model. The model is a low cost

alternative to track public health trends. The study [54] has shown that the ATAM model

can discover more ailments than LDA. It produces more detailed analysis and tracks disease

rate that matches the statistics published by the government (CDC).

2.3.3.2 Enhanced Topic Models (ATAM+)

Paul et al. [55] proposed a variant version of ATAM model called ATAM+. It is

an enhanced model that can be used based on what can be learned from Twitter for pub-
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lic health to predict specific diseases such as Influenza among other things. The model is

improved by using prior knowledge, reports resulting from several new applications, cor-

relating behavioral risk factors with ailments, and analyzing correlation of symptoms and

treatments with ailments. The improved process consists of selecting 20 diseases and then

collecting articles related to these diseases based on prior knowledge, and in the second

step, the words in the articles were paired with the selected diseases. The results of the im-

proved model show high quantitative correlation with government data (CDC) in detecting

the flu trend using social media.

The study shows that by using ATAM+, the following could be learned from Twitter:

• Syndromic Surveillance: ATAM+ is able to discover and learn several aspects of

public health, not only flu or just specific diseases from Twitter. The correlation

between the results of the improved model and flu rate produced by CDC is high

(0.958).

• Geographical Behavioral Risk Factor: This shows how the model can be used to

mine public health information based on geographical region. In comparison with

the ATAM model, it has been shown that the ailments discovered by the enhanced

model (ATAM+) have higher correlation with the risk factors run by CDC. For

example, the correlation between cancer and tobacco use is (0.648) using ATAM+

whereas the correlation is (0.320) using ATAM. This demonstrates that the ATAM+

outperforms ATAM.

• Ailment Tracking over Time and Geography: ATAM+ model can be used to mine

data over time and different locations.

• Symptoms and Medication Analysis: The analysis of symptoms and treatment–

especially for people who don’t go to health care providers–needs a large popula-

tion sample size. Therefore, SNS is a better alternative to perform symptoms and
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treatment analysis using ATAM+. The ATAM+ is able to detect that the headache

is the most common ailment treated by pain relievers. Also it shows that Tylenol is

the most popular pain reliever on the market.

• Antibiotic usage Analysis: Medicine usage analysis such as antibiotic misuse could

be performed using ATAM+.

2.3.3.3 Hidden Flu–State from Tweet Model – HFSTM (Users
Health States Transition for Better Prediction)

Liangzhe Chen et al. [56] proposed a model called Hidden Flu–State from Tweet

Model (HFSTM) that is able to capture hidden health states of users and the associated

transitions by analyzing their tweet posts. The extracted states are used to obtain a better

prediction of trends. It aggregates the states of the users in a specific geographical region

for better prediction. The proposed model captures not only one tweet post, but also streams

of tweet posts of users in order to capture their underlining health status (different health

states from tweet posts). The used states for this study are: S (healthy), E (Exposed), I

(Infected), and R (Recovered with Immunity).

Most of the other models are coarse–grained because they don’t give any under-

standing of how health states change over time. This model links the social activity models

and the epidemiological models. This linkage improves the prediction process. The most

common Contagion–based epidemiological models are SI, SIR, SEIS. These models are

used here to predict the true flu cases by tracking the health states of a person through the

lifecycle of the infection.

Unlike the proposed model, the existing topic models (LDA, ATAM+, Makovian, and

non-Markov) do not solve the problem of flu state changing. The model uses unsupervised

topic modeling that can capture the transition (changes) between consecutive messages of

a user.
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The study [56] has shown that the HFSTM model can learn meaningful word distri-

bution. Each word in the list belongs to one of the three states (S, E, I). It can also learn the

state transition as shown in Figure 2.3. The HFSTM model is able to classify the state of

tweets and captures the transitions. It is also capable of predicting flu trends. The results of

HFSTM model were compared to the Pan American Health Organization (PAHO) weekly

records and the results of other two models: Google Flu Trend (GFT) and the baseline

model that is based on word count and linear regression. GFT is a Flu trend prediction

system that uses the volume of flu related search queries for the prediction process. Many

studies have been conducted to evaluate and improve GFT [57, 58, 59, 60, 61, 62]. The

study has shown that the HFSTM model is better than the baseline model and is compa-

rable with GFT. In some cases, HFSTM outperforms GFT. Results have shown that GFT

overestimates the number of flu cases.

Figure 2.3: Health state transition diagram
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2.3.4 Machine Learning Techniques

2.3.4.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning method. Based on our sur-

vey, SVM is the most commonly used machine learning algorithm for the purpose of flu

related posts classifications [63, 64, 65, 66, 67].

David A. Broniatowski, et al. [65] proposed a model that consists of three levels

of classification using SVM for better distinction between the actual tweets about flu and

the tweets that seem related but are not actually flu tweets (named "chatter" posts). The

first classifiers is used to classify the collected posts to health–related/unrelated posts. The

second one is used to extract the flu related posts, and the third one is used for infection

classifications. The proposed algorithm was tested using a collection of tweets from Sep.

30, 2012 to May 31, 2013 (covering the season flu of 2012–2013) for the NYC location

and the USA in general (local and national). To measure the performance, the results of

the proposed algorithm was observed to have correlated with the CDC data (r = 0.93) and

also with the data of the Department of Health and Mental Hygiene of New York City

(r = 0.88).

It has been shown that the distinction between the infection and awareness tweets

enhances the accuracy of the results. The goal of this distinction is to consider the infection

posts only. Alex Lamb, et al. [68] proposed a machine learning based model that con-

sists of two phases of classification to differentiate between the infection and awareness

tweets. The accuracy of the model showed high correlation with CDC data using Pearson

Correlation (r = 0.9897).

Eiji Aramaki, et al. [64] proposed a framework that consists of two parts. First, a

crawler that works together with Twitter API to collect tweets was used, and then they were

filtered for only flu–related ones. Second, an SVM–based classifier was used to extract

only the actual Influenza tweets (positive tweets) and exclude the unrelated ones such as
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news and questions (negative tweets). The initial dataset for this study was collected from

Nov 2008 to June 2010. It included 300 million general tweets. Then, this dataset was

filtered using "Influenza" keyword to get a set of only flu related tweets which contained

400,000 tweets. The flu–related dataset was divided into two parts: a training dataset,

which contained 5,000 tweets (November 2008) and a test dataset, which contained all

the remaining tweets from Dec 2008 to June 2010. The training dataset was assigned to

a human annotator to label each tweet as either positive or negative. A tweet is labeled

positive if it met two conditions. First, the flu tweet should concern the person who posted

the tweet or about another person in a nearby area (maximum an area of the city). If the

distance is unknown, the tweet is considered negative. Second, the flu tweet should be an

affirmative sentence in the present tense or past tense with maximum period of 24 hours

which can be checked using specific keywords such as "yesterday". The SVM classifier

was implemented using the Bag–of–Words feature representation. The authors compared

the accuracy of the SVM–based classifier with other six different machine learning methods

and they found that the SVM was the most accurate method. For the purpose of evaluation,

a Pearson Correlation was used to correlate between the results of this framework and the

Japanese government data provided by the Infection Disease Surveillance Center (IDSC).

The results of this framework showed high correlation (r = 0.89). The results also showed

that news could impact the accuracy of the results. It has been shown that the swine flu

related news in 2009 led to poor performance of this method and other methods.

José Carlos Santos, et al. [67] also applied SVM–based classifier to detect flu–like

illness in Portugal using Twitter posts. For the purpose of training and testing, a dataset

with 2,704 posts was manually annotated with 650 textual features. A subset of the an-

notated dataset was used to train the classifier. The classified tweets together with search

queries were applied to a regression model as predictors. The results of the used model

was evaluated and compared with the reports provided by Influenzanet: a system that mon-

20



itors Influenza Like Illness activities in Europe. The highest correlation ratio between the

results of this method and Influenzanet data is 0.89 (r = 0.89). The classifier was imple-

mented using the Bag–of–Words feature representation, and the feature selection process

was based on a Mutual Information (MI) value that is used to pick the best set of features.

Each feature is applied to a true class, and then MI value is assigned to the feature. The

value of MI is based on how the feature is related to the true class. A feature with high MI

value is more related to the true class.

Nanhai Yang, et al. [66] proposed a SVM–based method to predict flu trends from

Chinese Social Networking Sites in Beijing. The authors claim that this is the first study to

predict flu trend from Chinese Social Networking Sites. The collected data for this study

included 3,505,110 posts from Sep. 2013 to Dec. 2013. Among those, 5,000 random posts

were selected for manual annotation (sick and not sick labels) to be used for training and

testing purposes-285 of sick posts and 285 of not sick posts were picked for training. For

higher accuracy, word based features were used instead of character based features. Among

the four types of word weighting techniques: Boolean weighting, term frequency weight-

ing (TF), inverted document frequency weighting (IDF) and term frequency–inverted doc-

ument frequency weighting (TFIDF), the TFIDF method was considered for classification

purposes. Different classifiers were compared to decide the best one for the problem. The

authors found that SVM was the best for big data problems. This method was able to

predict the flu trend five days earlier than the China Nation Influenza Center (CNIC).

Mauricio Santillana, et al. [63] proposed a machine learning–based method that was

capable of predicting flu related activities. In addition to CDC ILI reports that have been

used as the ground truth, the method used data from different sources for better results. The

sources included Google searches, Google Flu Trends, Twitter posts, hospital visits records

collected from AthenaHealth, and a surveillance system called FluNearYou. This study has

shown that the results of prediction methods using combined data sources outperform the
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results when using a single data source. The method utilizes well–known machine learning

algorithms including support vector machine, stacked linear regression and AdaBoost with

decision trees regression. The study has also shown that the three algorithms work perfectly

together in combining the information from different sources for real time analysis and then

better forecasting. It has been shown that this method can predict one week faster than the

Google Flu Trend (GFT) with accurate and comparable results.

2.3.4.2 Neural Network

Vasileios Lampos et al. [69] proposed a method to track flu in the population us-

ing Social Networking Sites. The method analyzed flu–related and flu–symptoms–related

keywords in Twitter. The extracted information was converted to flu–score using machine

learning techniques. Computing the flu score from Twitter includes several steps. First,

a set of selected keywords M is identified to represent the search keywords to look for in

Twitter posts: mi; where i ∈ [1,k]. Second, a set of daily tweets is identified as τ = t j where

j ∈ [1,n]. When the marker mi appears in the tweet t j : mi(t j) = 1, otherwise mi(t j) = 0.

The number of markers appeared in t j divided by the total number of markers is denoted as

s(t j) and calculated using Equation 2.1.

S(t j) =
∑i mi(t j)

k
(2.1)

The flu–score of the daily tweet corpus f (τ,M) equals to the sum of all the flu–score

of the tweets s(t j) of that day divided by the total number of the tweets n (Equation 2.2).

f (τ,M) =
∑ j s(t j)

n
=

∑ j ∑i mi(t j)

k×n
(2.2)

An extension was made to the previous model in order to make a better prediction of

Health Protection Agency (HPA) flu rate by adding weight wi to each marker mi (Equation

2.3). Therefore, the weighted flu–score for each tweet is:
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Sw(t j) =
∑i wi×mi(t j)

k
(2.3)

Then, the weighted flu scores of all tweets of a day is summed up to get the weighted

flu–score of the daily tweet corpus fw(τ,M) (Equation 2.4):

fw(τ,M) =
∑ j sw(t j)

n
=

∑ j ∑i w×mi(t j)

k×n
(2.4)

The contribution of the marker mi in the daily tweet flu–score fw is considered as

flu–subscore f(wi)(τ,mi) (Equation 2.5):

fwi(τ,mi) = wi×
∑ j mi(t j)

k×n
(2.5)

Using the flu–subscore fwi(τ,mi), the daily tweet flu–score (Equation 2.6) could be

represented as a vector of flu–subscore Fw of all the markers (keywords):

Fw = [ fw1(τ,mi), ......., fwk(τ,mk)]
T (2.6)

The weights wi of markers mi can be learned by:

(1) Initially, the unweighted flu–score vector Fw that is the sum of unweighted flu–

subscore smoothed with 7–point moving average is found (Equation 2.7).

F = [ f (τ,m1), ......., f (τ,mk)]
T (2.7)

(2) The least square linear regression between F from the smoothed version, F from

the expanded one, and smoothed HPA flu rate is performed.

To maximize the correlation with HPA flu rate, Vasileios Lampos et al. [69] also

proposed a method to extract the markers (keywords) automatically. This method consisted

of two steps. First, a list of candidates was created by extracting them from trusted web

documents related to Influenza. Second, the most informative ones were picked using
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the Least Absolute Shrinkage and Selection Operator (LASSO) method that discards the

redundant features of the candidates. The use of LASSO method is explained in detail in

[69].

Another machine learning technique that can be used in early trend prediction is

neural network. Disease outbreaks can be predicted using Neural Network (NN) based

approaches to analyze web data. Wei Xu et al. [70] proposed a model to detect Influenza

outbreaks by analyzing web search queries using a neural network approach. Figures 2.4

and 2.5 show an overview of their proposed approach. This approach consists of several

steps. The first step is to collect data from search engine queries and ILI data from the CDC.

The second step is to select features automatically by reducing the dimension of the query

and keeping only the most important features. The third step is to find the relationship

between the Influenza Like Illness (ILI) and web data (query data) using different NN with

different algorithms and architectures to measure the fitness values. The NN used with this

model are: NN–GDX (Gradient descent with momentum and adaptive learning rate back

propagation), NN–OSS (One–step secant back propagation), and NN–RP (Resilient back

propagation). The 10–fold cross validation method is used to validate the different NN

algorithms. The fourth step is to select the best NN as a detector using the cross validation

method. The fifth step is to use the selected NN (detector) with the best features subset

to predict flu activities. The accuracy (ACC) of the results of each NN is measured using

Equation 2.8. If Ai are the actual values, Di the detection values, and N the number of given

pairs (Ai,Di), then

ACC =
1
N

N

∑
i=1

Di

Ai
(2.8)

Results show that NN–RP was the best to be used for Influenza detection. NN–RP

had the best average of ACC values.
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Figure 2.4: A framework for Influenza outbreak detection

2.3.4.3 Naïve Bayes

Kenny Byrd, et al. [71] proposed a framework based on Naïve Bayes classifier. The

framework consisted of several steps. The first step was tweets collection with a location

filter. The collected tweets were from Oct. 27 to Nov. 30 of 2015. The dataset included

a total of 1,848,130 tweets. The used location filter was provided as latitudes and longi-

tudes pairs (a comma separated list) to specify a bounding box of a required area. The

Google Maps Developer tool was used to determine the bounding boxes of the required

areas (cities). For this study, the used location was the area of Ottawa and its surrounding
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Figure 2.5: The process of Neural Networks based detection

areas. The second step was flu–related tweets filtration. The used keywords for the filtra-

tion process were "sick", "flu" and "cough". The total of filtered tweets were 4,696 posts.

The third step was pre–processing which included: stop words elimination, URL’s remov-

ing, words stemming, and retweets removing. The fourth step was sentiment analysis by

applying machine learning techniques for classification (positive, negative, neutral). Three

machine learning algorithms were evaluated, and this study found that the highest accuracy

method was the Naïve Bayes classifier. The Naïve Bayes classifier was implemented us-
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ing the Stanforn core NLP (Natural Language Processing) and trained using the OpenNLP

training dataset which includes 100 annotated tweets. The sentiment analysis is considered

accurate when there is a matching between the predicted sentiment polarity with the man-

ual assigned opinion of the sentiment. The authors found that Naïve Bayes was the most

accurate one with 70% matching.

2.3.4.4 Prediction Market Using Support Vector Machine Re-
gression Algorithm (SVR)

The prediction market is a mechanism that can be used for future prediction based on

creating shares for an event. People can trade these shares with prices determined by the

market. The prices can be used as probability of the event occurrence. This is considered

as one of the optimal prediction solutions, and it is less expensive than other prediction

methods. Disease outbreak can be predicted using the prediction market together with the

Support Vector Machine regression algorithm (SVR) using share prices [72]. Joshua Ritter-

man et al. [72] have shown that the prediction of swine flu in 2009 was more accurate when

adding some features extracted from Social Networking Sites to the SVR. The prediction

market is modeled in two different ways: internal market and external market.

Internal Market The internal market is based on time series. It uses historical prices for

today’s price prediction. Technically, the prediction for a given day Fn is achieved by using

the average price of the previous day AvgPn−1 divided by the sum of the average prices for

the previous 5 days (Equation 2.9).

Fn =
AvgPn−1

∑
6
i=2 AvgPn−i

(2.9)

The SVR is trained using extra features. The first feature is to use the Short–Term

history feature F(n) = AvgP(n−1) that is the average price of the previous day. It gives a

quick overview of the price movement. The second feature is the Mid–Term history feature
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that is the moving average price, calculated using Equation 2.9. This determines a longer

period than the first feature. The third extra feature is the Long–Term feature that is the

sum of a vector of binary values M, as shown in Equation 2.10. The Long–Term feature is

used to indicate the market direction for a long time.

F(n) =
n−1

∑
i=0

Mi,Mi =

 Mi−1 +1 if Avg(Pi)≥ Avg(Pi−1)

Mi−1−1 if Avg(Pi)< Avg(Pi−1)
(2.10)

External Market This way of modeling considers the fundamental products of the com-

pany and the events occurring around the world. The SVR classifier is trained using social

media data. By using the social media data, SVR is trained with unigram and bigram

features and their frequencies using social media data (i.e. daily counts of unigrams and

bigrams). No internal market is given for training. This gave lower performance compared

to training with only a subset of data. For better performance, the system should be trained

with only relevant data. This can be accomplished by training the SVR with unigrams and

bigrams for a specific period of time based on historical context provided to the system.

The length of the period is decided by the system using the historical context to determine

the news cycle.

Joshua Ritterman et al. [72] have shown that combining the prediction market with

features extracted from Social Networking Sites leads to better results. This demonstrates

that social media data played an important role in the 2009 swine flu trend prediction.

2.3.5 Math/Statistical Based Models

2.3.5.1 Autocorrelation Function (ACF)

ACF finds the correlation of the values of the same variables at different times

(xi,x(i+1)). Therefore, this method can be used for disease outbreak predictions. Disease

outbreak trends in Social Networking Sites can be monitored by tracking a sudden high
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frequency of disease–content posts using ACF. It compares the averaged disease–related

posts per day with the actual number of the same disease posts of that day. Courtney D

Corley et al. [73] proposed a method to track ILI in social media using ACF and to identify

possible web and social media communities [73]. This method tracks a sudden high fre-

quency of flu–content posts using ACF. The method defines a seven-day period as a period

cycle for better accuracy and anomaly detection. The period starts on Sundays and ends on

Saturdays.

The results of this methodology showed strong correlation with CDC reports. The

Pearson Correlation coefficient is used for evaluation. The value of r was 0.767 with a

confidence level of 95%.

Web Social Media (WSM) community identification and analysis was used as a part

of their methodology for better results by using link analysis. Link analysis was also used

to identify the first responder or influential user of a community. Only the links between flu

posts are considered. The links between a flu–related post and non-flu-related post are not

considered in the defined community. Closeness, Betweenness and Page Rank measures

were used to rank flu communities to tell how a blog’s influence disseminates flu informa-

tion. Blogs with high closeness and page rank can spread flu–information (response) more

quickly.

Closeness It is used to find the average of the shortest paths between actor v and the other

reachable actors. It is defined as shown in Equation 2.11 [74]. Let i and j be actors, d(i, j)

be the distance function that finds the number of geodesics between i and j, and ∑
N
j=1 d(i, j)

be the total distance of i from all other actors. Closeness is defined as follows:

Cc(i) =

[
N

∑
j=1

d(i, j)

]−1

(2.11)
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Betweenness It measures how a blog is central among other blogs. It is defined as shown

in Equation 2.12 [74]. Let g jk be the number of geodesics between j and k, and g jk(i) be

the number of geodesics between j and k that contain actor i. Betweenness is defined by

the following formula:

CB(i) = ∑
j<k

g jk(i)
g jk

(2.12)

Page Rank It is an eigenvector centrality that measures the importance of a node. It is

defined as shown in Equation 2.13 [73]. Let d = 0.85 be a factor, where the pages are

represented using the symbol Pn, the set of pages linked to Pn is represented using M(pn),

and the out links on page Pj is represented using L(p j). Page Rank relationship is shown

as follows:

Rpn =
1−d

N
+d ∑

p j∈M(pn)

PR(p j)

L(Pj)
(2.13)

2.3.5.2 Auto Regression Moving Average (ARMA)/SNEFT

ARMA is a stochastic model that is composed of two forms: Auto Regression (AR)

model and Moving Average (MA) model. The AR model is a prediction model. Its output

depends linearly on the past values, a random value as an error, and a constant value. The

MA model is used to represent the correlation between the past values and the white noise

using linear regression.

Based on the ARMA model, Harshvardhan Achreckar et al. [40] proposed a frame-

work called Social Network Enabled Flu Trends (SNEFT) that utilizes the ARMA model

and the data obtained from CDC. Both are used in collaboration for better flu prediction

trends. The architecture of the SNEFT framework is shown in Figure 2.6. The architecture

consists of two main parts. The first part is used to predict Influenza and Influenza Like
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Illness (ILI) using CDC data. The second part is used to provide flu warnings using Twitter

data. The Auto regression Moving Average (ARMA) model is used to predict ILI incidence

as a linear function of current and old Social Network data and historical ILI data (CDC

data). The results indicated that Twitter data improved the output of the statistical models

that were used for prediction. The SNEFT framework was tested with and without Twitter

data together with CDC reports. The study has found that the Twitter data improved the

accuracy of the prediction model. Based on the authors’ findings, it is clear that Twitter

could provide real time measurement of Influenza activity in the population.

Figure 2.6: SNEFT architecture

2.3.5.3 Numerical–Based Analysis

Sangeeta Grover, et al. [75] proposed a framework to detect flu outbreak with respect

to three stages of epidemics (beginning of epidemic, spread of epidemic, absence of epi-

demic) using the Bag–Of–Words (BOW) technique. The BOW is a technique that learns a

vocabulary from all the documents, then models each document by counting the number of

times each word appears. The implementation of this framework consists of the following

steps:

• Collect tweets using Twitter API.

• Store the collected tweets in MangoDB.
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• Build Bag–Of–Words (BOW) for each stage of epidemic (beginning of epidemic,

spread of epidemic, absence of epidemic)

• Apply the Swine Epidemic Hint Algorithm (SEHA) on the tweets. The text of

a tweet is tokenized for numerical analysis. The numerical analysis checks how

relevant the tweet is to the epidemic stages.

• Classify the tweets into the 3 stages of the epidemics. The classification process is

based on the numerical results from the previous step.

• Evaluate the results of this framework using 6 cross validation of Gaussian regres-

sion and prediction model. The results show that the framework was fairly accurate

since the average value of the error rate was about 1.1.

2.3.6 Mechanistic disease models

Mechanistic disease models are used to provide a better understanding of any epi-

demic dynamics. Unlike statistical models, the mechanistic models consider different fea-

tures to estimate key epidemic parameters such as intensity and severity that impact public

health decision responses [76, 77]. Within the various mechanistic models, metapopulation

models, compartmental models, and agent–based models provide information on popula-

tion epidemic states and individual progress of an epidemic.

2.3.6.1 Metapopulation models

Metapopulation models, such as Global Epidemic and Mobility (GLEAM) model,

are spatial, stochastic, and individual based models that can simulate the spread of epi-

demic diseases at worldwide scale. The model divides the world into smaller regions defin-

ing subpopulation networks and connections between the subpopulation that represent the

individual fluxes because of the transportation and mobility infrastructure [78].
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Qian Zhang, et al. [77] proposed a seasonal flu forecasting framework based on

mechanistic disease model (GLEAM). The framework was validated and tested by compar-

ing the results from the framework with the official government data in the U.S., Italy, and

Spain in the 2014–2015 season and 2015–2016 season. The framework is a combination

of the social media data, official surveillance data and mechanistic modeling approach. It

consists of three stages. In the first stage, data from official surveillance systems and Twit-

ter is used for model initialization. A set of English ILI–related tweets for a given region

is used as an initial condition of relative flu incidences and as an input for the framework.

The data from official surveillance systems is used to evaluate the coefficient of determi-

nation of the used ILI search keywords. The second stage consists of exploring important

parameters: population, infectious period and the effective reproduction number (number

of infected individuals in a region). The third stage is parameter selection and prediction.

The study has shown that the framework provides reliable results for epidemic intensity

and peak timing up to six weeks in advance. The accuracy of the framework showed high

correlation with official surveillance data using Pearson Correlation (the highest r value is

0.98 for the flu prediction with one week in advance).

2.3.6.2 Compartmental models

Compartmental models define the rate at which individuals move between defined

compartments and divide the population into subpopulation based on disease states. Exam-

ples include Susceptible- Infectious-Recovered (SIR) and Susceptible-Infections-Recovered-

Susceptible (SIRS) [79].

Liangzhe Chen et al. [56] proposed a model called Hidden Flu–State from Tweet

Model (HFSTM) based on the concept of epidemiological compartmental models. It ana-

lyzes a stream of a user’s tweets and captures the disease states and the associated transi-

tions.
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Jeffrey Shaman, et al. [44] proposed a framework that predicts a seasonal flu us-

ing the compartmental model (SIRS) along with common used techniques in numerical

weather predictions. Epidemic disease dynamics are non-linear that are similar to weather

dynamics. The non-linearity of the epidemics makes the prediction systems sensitive to

the initial and current conditions. Like any non-linear system, it is possible that the error

rate of the system will grow with further uses that leads to inaccurate results. To overcome

the growth of error rates with the non-linear systems, data assimilation techniques such as

filtering are used to update and adjust the system using the latest available observations.

The applied data assimilation method in the presented framework is the Ensemble Adjust-

ment Kalman Filter (EAKF) method for the updating process using weekly observations

obtained from Google Flu Trend (GFT). This method combines the weekly GFT observa-

tions with the Susceptible Infections Recovered Susceptible (SIRS) model. The EAKF is

a recursive filtering technique to estimate the state of the model using a combination of

the observations and the evolving ensemble of the model simulations. The framework was

validated and then used to perform simulation of Influenza prediction in the New York City

for the 2004–2005 and 2007–2008 flu seasons. The study has shown that the proposed

framework is able to predict the peak timing up to seven weeks in advance.

2.3.6.3 Agent–Based models

Agent–based models define entities (agents) that interact with each other and the sur-

rounding environment based on specific rules. These models provide better understanding

of the change of individual behaviors during an epidemic which help in outbreak predic-

tions [79].

Suruchi Deodhar, et al. [80] developed a large scale web application called Flu-

Caster for flu epidemic forecasting using agent–based models. This model can distinguish

FluCaster from other available systems. It produces fine–grained results that helps decision

34



makers in performing detailed analysis. For example, filtering the results of the flu forecast

by a specific location for a specific age sub–population in a specific time can be provided

by this model. FluCaster was implemented using CDC surveillance data and Google Flu

Trend (GFT).

2.3.7 Detection Based on Filtered Keywords and Documents

Simple flu related keywords can be used to produce accurate results with a high

correlation with CDC weekly reports. The method of selecting search keywords is very

important. It impacts the accuracy of the results. Selecting keywords based on correlation

with national statistics may cause inaccurate results. For example, the "flu shot" term

has a high correlation, but it does not necessarily reflect the spread of flu. It could be

just a general discussion about it or an advertisement. Therefore, a document classifier to

remove spurious matches (such as advertisements) can be used to get more accurate results

and reduce the error rates [38]. Aron Culotta [38] presented a method of correlating the

keywords with ILI rates from CDC. Let P be the ILI symptoms reported by providers,

W = {w1,w2, ...,wk} be the set of keywords, D be a document collection, Dw be a set of

documents that at least contain a keyword in W , B1 and B2 be coefficients, e be error terms,

and Q(w,D) = |Dw|/|D| be a query fraction, then

log(P) = B1(log(Q(w,D))+B2 + e (2.14)

Removing spurious keywords such as a keyword within government announcements

and advertisements may also help produce better results and improve the correlation with

ILI reports. Aron Culotta [38] also proposed a document classifier that can be used for

document filtration. It labels the messages as ILI related or not. Then, the classifier cal-

culates the probability of the ILI reporting messages. This classifier should be trained

using logistic regression (Equation 2.15) with a parameter θ that can be computed using
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the limited memory quasi–Newton method for large scale optimization (L–BFGS). Details

of the L–BFGS method and its implementation are discussed in [81]. Let yi be a binary

random variable where (1) is a positive document and (0) otherwise, xi =
{

xi j
}

be a vector

of random values where xi j is the number of times word j appears in document i, D be a

document collection, θ can be computed using L–BFGS gradient descent [81]

P(yi = 1|xi;θ) =
1

1+ e(−xi.θ)
(2.15)

The filtration process was combined with regression in Equation 2.14 by considering

two kinds of classifying methods: soft classification and hard classification. The soft clas-

sification finds Qs(W,D) of positive documents using Equation 2.16. This method assigns

the probability as a weight to each matched document in Dw. The hard classification finds

Qh(W,D) by considering and counting only the documents with probability of positive

class> 0.5 using Equation 2.17. Afterwards, the value Q(w,D) is substituted in Equation

2.14.

Qs(W,D) =
∑di∈Dw P(yi = 1|xi;θ)

|D|
(2.16)

Qh(W,D) =
∑di∈Dw(P(yi = 1|xi;θ)> 0.5)

|D|
(2.17)

The results show strong correlation for most of the picked keywords (e.g. flu, cough,

sore throat, and headache). Comparing the results with another study’s results by Lampose

and Christianini (2010) [69] has shown that the results are competitive and yield less com-

plexity. This concludes that flu trends could be predicted in a population by using simple

methods.
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2.4 Discussion

A summary of the used data sets in the reviewed studies is shown in Table 2.1. The

performance of the discussed methods is shown in Table 2.2. Most studies use Pearson Cor-

relation and Root Mean Squared Error (RMSE) for performance measurement. Therefore,

in Table 2.2, the Person correlation measure is included for comparison.

Pearson Correlation is a metric that evaluates the correlation between two datasets

using the symbol r. It ranges between (1) and (-1): the value of r = 1 when both datasets

exactly match and the value of r = 0 when there is no correlation between the two datasets.

Let yi be the observed value of the ground truth (CDC ILINet data), xi be the predicted value

by a proposed model, and y and x be the average values of {yi} and {xi}, respectively. Using

these notations, Pearson Correlation value r is defined as shown in Equation 2.18 [63].

r =
∑

n
i=1(yi− y)(xi− x)√

∑
n
i=1(yi− y)2

√
∑

n
i=1(xi− x)2

(2.18)

Root Mean Squared Error (RMSE) is an evaluation metric that provides an indicator

of comparison between predicted and real values. Lower value of RMSE indicates more

accurate results of the used model and less errors. Using the same notations for Pearson

Correlation, the RMSE value is defined as shown in Equation 2.19 [63].

RMSE =

√
1
n

n

∑
i=1

(yi− xi)2 (2.19)

As shown in Table 2.2, the SNEFT yields a very high correlation coefficient with

the used ground truth (0.9846). The study [40] has shown that the best results is obtained

when the dataset is filtered to not include redundant posts (retweet) as well as posts from

the same user within one week. In addition, the authors use Root Mean Squared Error

(RMSE) to evaluate the accuracy of SNEFT. It has been found that the value of RMSE of

the same filtered dataset is 0.318. Further enhancement of the accuracy can be achieved
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by considering only the tweets about infection as shown in [68]. The distinction between

the infection and awareness tweets shows high correlation with CDC data using Pearson

Correlation (r = 0.9897). The other methods were evaluated using different measures.

The neural network approach was evaluated by comparing the accuracy of different neural

network algorithms using the ACC measure which is calculated using Equation 2.8. The

study [70] has shown that the best average value of ACC is 0.9532. The HFSTM model

was evaluated by comparing it with the Google Flu Trend (GFT). The study [56] has shown

that the HFSTM model outperforms the GFT even with no optimization. The evaluation of

the prediction market was conducted using Mean Square Error (MSE) measure. The study

[72] has shown that the MSE was lowered dramatically when using historical context with

the bigram model. The best value of MSE is 40.67. For the Historical pattern method, the

study [53] has shown that the precision for 1–day prediction is 0.8 (with mean of 0.52) and

0.6 (with mean of 0.46) for 7–days prediction. The Journal/conference backgrounds of the

reviewed studies are listed in Table 2.3
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2.5 Challenges

Using social media data for disease outbreak detections calls for certain challenges

to be addressed [82, 83, 84, 85, 86].

2.5.1 Data Collection

The first challenge is the restriction on data collection. Social media providers use

unknown and undocumented sampling filtration algorithms that allow for collecting only a

sample of the overall data. In addition, there are restrictions on some private data that may

be needed for the detection process. Also, users may not include some other important

information. This may lead to inaccurate results produced by the tools of disease trend

detection.

2.5.2 Data Size

The size of social media data is another challenge. Today, Social Networking Sites

have become very popular and have millions of users. This challenge would make it diffi-

cult to process such size of data by certain techniques.

2.5.3 Language

The used language in Social Networking Sites is usually informal and sometimes

with spelling errors. Users may spell one word in different ways.

2.5.4 Heterogeneity

Social Networking Sites are heterogeneous. They have different kinds of users with

different capabilities, activities, ages, and languages. This leads to the need for awareness

of what to analyze using the data of Social Networking Sites.
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2.5.5 Sampling bias

One of the serious challenges is the bias of data samples. The user population of

Social Networking Sites may not represent a sample of a society [84, 85, 86]. Alan Mislove

et al. [84] analyzed the data of a very large number of Twitter users from United States to

compare the Twitter population to the actual one. The study has shown that the Twitter users

are not a random sample of the whole population and misrepresent the real distribution

of race or ethnicity. Understanding this challenge will help in correcting the prediction

process using social networking data if there is any bias. The correction process includes

using different methods of bias quantification for further analysis and adjustment [85].

2.5.6 Dataset Consistency

Social media providers such as Twitter do not allow sharing collected datasets. This

is a limitation when it comes to comparing a new proposed method and the existing ones.

Consistent datasets are required for fair comparisons.

2.5.7 User Location

There is a lack of accurate user locations in SNS. A user may not share location

information. In addition, the users who release this information may not update it when

moving or visiting a different place.

2.5.8 Proxy Population

There are difficulties of defining a target population for the purpose of analysis. Pop-

ulations are not self–labeled. Therefore, researchers tend to use proxy populations such

as all users who use pain relievers to study the impact of pain. Using proxy population is

biased and may lead to incorrect results [85].

43



2.5.9 Spams

There are many spam accounts that appear as normal and are frequently used to post

different topics. Researchers should be aware of these accounts and find a way to exclude

them when analyzing SNS data.

2.5.10 Evaluation

Evaluation is a challenging process. CDC ILINet data can be used as a ground truth

for the Influenza trend detections but there is lack of ground truth for some other diseases.

2.6 Concluding Remarks

Social Networking Sites have become part of people’s lives. This has provided re-

searchers with the opportunity to conduct different studies and researches to enhance event

detection and prediction process from the data of Social Networking Sites. In the public

health area, the data of Social Networking Sites can be used to provide early warnings of

disease outbreaks such as seasonal Influenza. The survey shows that the researchers have

developed various methods and frameworks of flu trend detection from Social Networking

Sites. From the survey, we conclude that the research in this area is still active. More meth-

ods and frameworks may be developed to improve the efficiency of the detection processes,

and the accuracy of the results that can potentially be used for new disease outbreaks for

better public health.
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CHAPTER 3: RESEARCH METHODOLOGY

The proposed framework consists of three main modules: text classification, map-

ping, and a linear regression–based estimator for weekly flu rate predictions. Figure 3.1

shows a general overview of the proposed framework. The classification module, which

is used to classify flu-related tweets, is implemented using the Cross Industry Standard

Process for Data Mining (CRISP–DM). CRISP–DM is a well–known standard for imple-

menting data mining frameworks. This standard includes six steps [87]:

• Business understanding

• Data understanding

• Data preparation

• Modeling

• Evaluation

• Deployment

Based on the CRISP–DM standard, the methodology for this study is presented in

Figure 3.2.
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Figure 3.1: Proposed framework overview
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3.1 Data Collection and Preparation

3.1.1 Classification Model Data

For classification model training and testing, we prepared a labeled dataset that is

a combination of multiple manually labeled datasets obtained from [68, 88]. This makes

the total instances of the merged dataset 10,592 tweets (5,249 flu–related and 5,343 flu–

unrelated posts). Because of Twitter guidelines, the tweets in the obtained datasets were

released with tweet IDs instead of the text of the tweets. Therefore, we developed a script

that works together with the Twitter API to retrieve the corresponding tweet texts using

the given IDs. The collected tweets were cleaned to include only the texts for training

and testing purposes. Then, we divided the merged dataset into two parts: training set and

testing set.

3.1.1.1 Twitter Influenza surveillance dataset

The labeled dataset obtained from [68] was initially filtered to contain any posts that

have flu–related keywords. Then, every post in the dataset was labeled manually. The

dataset was prepared to train and test three flu–related classifiers that were used as a part of

an algorithm for seasonal flu predictions. The dataset was divided into three sets, one for

each classifier. The first set consisted of tweets that were labeled as either flu–related tweets

or unrelated. The second one had tweets with labels of flu infections or flu awareness. The

tweets in the last set were labeled as either the flu tweet being about the author or about

someone else. For the training dataset, we consider the tweets in the second and third

datasets as flu–related tweets and combine all of them with only two labels: flu–related or

unrelated.
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3.1.1.2 Sanders dataset

The labeled dataset obtained from [88] was prepared manually to train and test sen-

timent analysis algorithms. Each record in the dataset is annotated with a sentiment label,

indicating a feeling toward either Google, Twitter, Microsoft, or Apple. The labels are:

positive, neutral, negative, and irrelevant. Since this dataset was prepared for sentiment

analysis of topics that are not related to flu, we used all the tweets in this dataset except the

ones with irrelevant labels as flu–unrelated tweets.

3.1.2 Application Dataset

For validation purposes, we prepared an application dataset by collecting a set of

Twitter posts for the first 20 weeks of the year 2018 within the boundary box of the state of

Connecticut as a location filter using its associated longitude and latitude. The data was col-

lected from Twitter SNS using a crawler that works with the Twitter API to stream tweets.

The crawler is designed to filter the tweets based on keywords that are directly related to flu

and verified by healthcare professionals. The list contains 11 flu–related keywords: fever,

headache, sick, respiratory virus, ache, stuffy nose, dehydration, flu, Influenza, contagious,

and cough. Because of some technical problems, we were able to collect few Twitter doc-

uments for the 10th week. Therefore, we did not include the period of the 10th week in our

experiments. The total number of tweets over the 19 weeks is 8,440,670.

3.1.3 CDC ILINet Data

ILI weekly rate produced by the CDC ILINet is used as a gold standard for com-

parison. The official ILI rates consider outpatients with symptoms of Influenza who have

visited any location of ILINet–participated healthcare providers around the United States.

The data is obtained from the official CDC website:

(https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html).
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3.1.4 Data of Hospital Emergency Department Syndromic Surveil-
lance (HEDSS) System

This data consists of the number of patients who have visited any location of the

Emergency Departments (ED) of the hospitals in Connecticut. HEDSS generates daily

reports about the daily patient visits based on the information received from the Emergency

departments. The generated reports include a percentage of patient visits for Influenza [89].

This data is used to train the linear regression model for the final flu rate prediction for the

state of Connecticut.

3.2 Preprocessing

During data preprocessing, stop–words, punctuations and symbols were removed

before the training and testing processes using the Natural Language Processing Toolkit

(NLTK) [90]. Stop words such as “the" or “are" are very frequent and may lead to inaccu-

rate classification results if used as features. The preprocessing also includes stemming that

is used to reduce words to their roots. There are many stemming algorithms available for

use. For this study, the stemming algorithm employed is Porter Stemming. It is one of the

most commonly used stemming algorithms. It is a rule–based algorithm with five steps that

is designed based on the idea that English suffixes are made of smaller and simpler ones. A

suffix is removed if a rule in the five steps passes the conditions and is then accepted [91].

Figure 3.3 shows the overall preprocessing steps that are used for this study.
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Figure 3.3: Text preprocessing

URL’s, Hashtags, and Mentions in the tweets were kept in the corpus. They can

be used as features for classification. URL’s were replaced with the keyword (url), and

Mentions were replaced with the keyword (mn) to be used as one feature for classification.

3.3 Feature Extraction

A maximum classification accuracy can be achieved by selecting the best set of fea-

tures. Therefore, feature selection is a crucial process in any classification problem. In text

classification, the set of features is a subset of words (n–gram) that can be used to distin-

guish different classes [92]. The selected words should provide useful information to be

used for classification purposes. Thus, it is important to consider different techniques to

convert the text in a way that can be processed to gain the required information. In this

work, we consider additional features to enhance the classification accuracy. The addi-

tional features are sentiment based features, stylometric features, and flu–related keyword

features (Algorithm 1).
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3.3.1 Textual Features

The default features in text classification are the terms and words that make up the

document/text. Text classifiers are trained and tested using n–gram features, as basic fea-

tures, by breaking down the documents/texts into single words (uni–grams), terms com-

posed of two words (bi–grams), and terms composed of three words (tri–grams) and/or

more. A basic technique in text classification is to count n–gram features including the

un–informative ones that may yield inaccurate results. Therefore, using smarter techniques

is important. One of these techniques is the word/term weighting technique, which weighs

the count for every word/term in the text. There are different techniques of word weight-

ing that include Boolean weighting, Term Frequency weighting (TF), Inverse Document

Frequency weighting (IDF) and Term Frequency–Inverse Document Frequency weighting

(TF–IDF). Among the four types of word weighting techniques, only the IDF and TF–IDF

techniques consider the importance of a word/term in the entire corpus instead of the im-

portance of the word/term in only a document. The study [66] has shown that TF–IDF is

more accurate than IDF. Therefore, TF–IDF has been used to weigh the n–gram features

for the conventional machine learning classifiers.

TF–IDF value is obtained by multiplying the value of the Term–Frequency value by

the value of Inverse Document–Frequency (Equation 3.1). TF is the ratio between the term

t with frequency nt in a given document d and the total numbers of terms n in the document

d (Equation 3.2). IDF is the inverse of the number of documents that has the term t at least

once. IDF is calculated using Equation 3.3, which is the ratio between the frequency Nd of

the documents d that have term t, and the total number N of documents d in the analyzed

corpus.

T F-IDF(t,d) = T F(t,d)× IDF(t) (3.1)
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T F(t,d) =
nt

n
(3.2)

IDF(t) =
Nd

N
(3.3)

For the FastText classifier, the representations of textual features of a document are

averaged and weighted to be fed to the classifier. For word ordering, FastText utilizes only

partial information about the order by using bag of n–grams instead of bag–of–words with

the full information of the word ordering [93].

3.3.2 Stylometric features

Stylometric features of Twitter posts include Retweets (RT), Mentions, and URL

links. These features were kept in the corpus to be used for classification. URL links and

Mentions to others were preprocessed by replacing them to url and mn keywords.

3.3.3 Topic–related keywords based features

It is common to use seed words in text classification. For example, in sentiment

analysis, a list of words, including nice and good, is used for positive sentiment and another

list of words, including bad and poor, can be used for negative sentiment. In this study, a set

of flu–related keywords/terms was used as a set of features for flu–related tweets. The list

includes some important Influenza–related keywords, symptoms, and treatments. The list

of the keywords is kept in an array and then each tweet is compared against these keywords

to keep track of their occurrences.

3.3.4 Sentiment based features

Sentiment analysis is the process of extracting the sentiment of a text using con-

textual polarity. Sentiment analysis is commonly used in classifying reviews of different
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products on the Internet such as the sentiment of movies. In this study, we used TextBlob

library to assign a sentiment to each tweet [94]. TextBlob is a Python library that is used to

analyze textual data. Based on the polarity score of a tweet, a sentiment value is assigned

to the text: positive or negative.

Algorithm 1 Additional Feature Extraction
twt_txt← tweet_document.text
txtlen← length of twt_txt
Feature Set1 : . %Preprocessing and stylometric Feature Extraction
if URL in twt_txt then

twt_txt← replace URL with a keyword url
if Mention in twt_txt then

twt_txt← replace Mention with a keyword mn
token← tokenize(twt_txt)
for (i = 0; i < txtlen ; i = i+1) do

if (token(i) is ineffective char) OR ( token(i) in Stop_Word_lst) then
remove token(i)

stem ( lower (token (i))
twt_txt← token
Feature Set2 : . %Sentiment Feature Extraction
sent_ f t← 0
Polarity_score← find_polarity(twt_txt)
if Polarity_score > 0 then

sent_ f t = 1
else

sent_ f t = 0
Feature Set3 : . %Keyword Occurrences Feature Extraction
hsKwrd_ f t← 0
kwrd_lst_len← length of keyword_lst
for (i = 0; i < kwrd_lst_len ; i = i+1) do

if keyword_lst(i) in twt_txt) then
hsKwrd_ f t = 1

twt_txt_w_features← concatenate(twt_txt, _sent_(sent_ft), _hsKwrd_(hsKwrd_ft) )
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3.4 Classification Model Building - Training and Testing

For the sake of accuracy and efficiency, various classifiers are evaluated, including

FastText and six conventional machine learning algorithms [95, 96]:

3.4.1 FastText

FastText (FT) was proposed by Facebook for word embeddings and text classifica-

tion. In this study, FastText is used for text classification. FT produces accurate clas-

sification results that are comparable with the results produced by deep neural network

classifiers. In addition, the processes of FT training and classification are very fast using a

standard computer with a multicore processor. A FastText model can be trained using a bil-

lion of words in just a few minutes and can classify about five hundred thousand sentences

in less than a minute [93].

FastText utilizes several techniques to enhance the efficiency. It is a linear–based

model, scaled to very large data and large output space using a rank constraint and a fast

loss approximation. It uses a hierarchal softmax function for a faster search. In addition,

only partial information about the word order is utilized for prediction. Furthermore, FT

utilizes the technique of hashing for textual feature mapping [93].

3.4.2 Conventional Machine Learning Classifiers

For training and testing, several supervised classification methods were evaluated to

determine the one with better classification accuracy [95]. The evaluated conventional clas-

sifiers include Random Forest, Naïve Bayes, SVM, C4.5 Decision Tree, K–nearest neigh-

bors classifier (KNN) using the Instance Based learning algorithm (IBK), and AdaBoost.

The preprocessed labeled dataset was used to train and test the model of different classifiers

using 10–fold cross validation as the experimental setting. The 10–fold cross validation is
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a method to validate the studied/built model by iterating through the labeled data 10 times

with different subsets of training and testing for each iteration.

3.4.2.1 Support Vector Machines (SVM)

SVM was proposed in 1998 by Vapnik [97]. It uses the features of the provided

training dataset to decide the classification boundary (hyperplane) that divides the space

into regions, one for each class. SVM only chooses part of training samples that are close

to the boundary to form the support vector instead of using the whole feature space in order

to distinguish between the classes.

3.4.2.2 K–Nearest Neighbor (KNN)

KNN is a simple classifier. It uses the provided training set as an input vector to

form different regions for different classes. Each sample in the training dataset is mapped

to a point in the feature space. When a new unlabeled sample requires classification, KNN

identifies the approximate distances between its associated point and k–neighbors in the

space and then assigns the point to the class of the majority of the k–nearest neighbors.

The K value plays an important role in the performance of KNN classifiers [98]. A large

value may increase the classification accuracy, but it requires more computation time. In

this study, we use an extended version of KNN that is implemented based on Instance–

Based learning algorithm (IBK) [99].

3.4.2.3 Random Forest (RF)

RF consists of several decision trees (n). Each tree is trained separately using a

random feature subset of the training dataset T . The decision trees altogether make an

accurate classifier. An unlabeled instance is classified by all the trees separately. Then, the

final decision about the class of the unlabeled instance is decided by the majority voting
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technique [100].

3.4.2.4 C4.5 Decision Tree

For this study, J48 that has been used is an implementation of the C4.5 decision tree

[101]. It consists of decision and leaf nodes. A decision node (internal node) is the node

that has a child and a leaf (terminal) node is the node that specifies the class value. The

decision nodes are used to represent different attributes. When a decision node represents a

discrete attribute, its child nodes indicate different possible values of the discrete attribute.

A decision node for a continuous attribute has two child nodes. Each child indicates a

certain range of the continuous attribute that is determined by using a threshold value.

Lastly, the terminal nodes (leaves) represent the final value of the class labels. A decision

tree is constructed and tested using a training dataset. Then, a new instance is classified by

the tree based on the values of the attribute (features) [101, 102].

3.4.2.5 Naïve Bayes

Naïve Bayes is a supervised classifier that uses the conditional probability formula

for classification. It is constructed using a training dataset with a prior knowledge about

the relationships between the attributes (features), and a directed acyclic graph (DAG) that

is used to represent conditionally independent features for a given class and their relation-

ships. Each feature is represented by a node, and each relationship is represented by a link

in the graph. The links indicate the influences between different variables [103].

3.4.2.6 Ensemble classifier

An ensemble classifier is a combination of multiple classifiers that work together

to enhance the accuracy of classification. Each classifier can be trained individually with

different subset of a training dataset to improve the performance of classification [104, 105,
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106]. In this study, we evaluate the AdaBoost ensemble classifier.

AdaBoost was introduced by Freund et al. [106]. Boosting is an enhanced version of

bagging. It consists of multiple base learners that are trained sequentially. The first learner

is trained using a subset (bag) of random selected instances n from a training dataset T .

The trained model is then tested using the training dataset T . During the testing process,

weights are assigned to the examined instances with high weight values for the misclas-

sified instances. Based on the weight values, the instances are picked for the next bag.

Thus, instances with higher weights should be picked to train the next base learner in the

sequence.

3.5 Mapping

The flu-related classified documents must be summarized on a weekly basis by

counting all the documents that belong to the same week to be passed to the estimator

to find the weekly flu rate. The mapping method takes an input as a pair (week number and

post), groups all the posts associated with the same week number, and then merges all the

pairs with the same week number by counting the associated posts.

Since Social Networking Sites have enormous data, Hadoop systems could be uti-

lized for the mapping process. These tools and techniques can be used to parallelize the

MapReduce Programming approach that allows programmers to utilize the resources of

large distributed systems [107]. A MapReduce (MR) approach can be used to process the

large dataset of tweets. MR consists of two main functions: Map and Reduce. The Map

function takes an input as a pair (week number and post), groups all the posts associated

with the same week number, and generates intermediate pairs to be passed to the Reduce

function. The Reduce function merges all the pairs with the same week number after pro-

cessing the associated values such as counting or summing them up [108]. Figure 3.4 shows

a general overview of the flow of Hadoop MapReduce programming approach.

58



Figure 3.4: General flow of Hadoop MapReduce programming approach

The mapping process can also be achieved by employing features of other big data

tools such as Hadoop Eco Systems, and Apache Spark:

Hadoop Eco Systems Hadoop Eco Systems such as Hive are data analytic tools to man-

age and query large datasets. They are built on top of Hadoop to provide an easy way

to query and manage data. Hive allows users to query large datasets using a SQL-Like

script (HiveQL) instead of MapReduce programming. The performance of queries written

in HiveQL are similar to the ones written in MapReduce framework [109].
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Apache Spark Spark was developed in 2009. It supports real time streaming data and

fast queries. Spark runs on top of Hadoop to replace the data batch process of the traditional

MapReduce model in order to support real time streaming data processes. Spark performs

tasks based on two concepts. The first concept is the Resilient Distributed Dataset (RDD),

which is an abstract collection of an element that can be processed in parallel. It is a

read-only collection of objects partitioned across a set of nodes. RDD supports two kinds

of operations: Transformations and Actions. Transformation operations take RDDs and

only return new RDDs and nothing evaluated. Transformation functions include map, filter

and reduceByKey. Action operations are also applied on RDDs that include evaluation

and returning new values. Action functions include reduce, collect and take. The second

concept concerns the Directed Acyclic Graph (DAG), which is an engine that supports

cyclic data flow. Spark creates a DAG for each job that consists of task stages (map and

reduce) to be performed on a cluster [110].

3.6 Weekly Flu Rate Estimation

To predict the Influenza rate for a certain week, a proposed estimator based on a re-

gression model is used as a component of the framework. The predictors for the regression

model include a combination of the rate of flu tweets and the average ILI rate of the same

week number of past years (from 1998 to 2016). The proposed flu rate estimator has been

evaluated using different regression models to determine the one with better estimation

accuracy.

A regression model is trained (fitted) using available data of flu rates, such as the data

obtained from FluNearYou [111]–a web application that uses weekly surveys to collect the

health status of individuals–or the data of flu emergency visits obtained from HEDSS. For

this study, we used the data of HEDSS for regression models training, where the average

ILI rates of previous years and rates of flu–related tweets obtained from the classification

60



results are passed to the regression models as predictors. The regression models are then

tested and validated using CDC ILINet data.

3.6.1 Linear Regression Model

Linear Regression is used when the dependent variable (response) is continuous and

the independent variables (predictors) are either continuous or discrete, and the relationship

between the dependent and independent variable(s) is linear. The linear regression indicates

that the rate in the change of the mean of the response value is constant with respect to the

value of the predictor(s). Therefore, the relationship is represented by an equation of a line

[112].

Using the proposed combination of predictors for the weekly rate estimator, our pro-

posed linear regression model has the following form:

Fw = β +α1
1

2016−1998

2016

∑
y=1998

Fy
w +α2Tw (3.4)

where Fw indicates the flu rate at week w, β is the intercept which is the mean value of Fw

when all predictors are 0, αi values represent the regression coefficients, Fy
w is the actual

rate of flu incidents in week w of year y, and Tw is the rate of flu tweets in week w.

3.6.2 Other Regression Models

In addition to our proposed linear regression model, three different regression tech-

niques were evaluated to determine the technique with better estimation accuracy. The

evaluated techniques are Polynomial Regression, Logistic Regression, and Support Vector

Regression. The measure of Pearson Correlation, which is discussed in Chapter 4, is used

to find the most accurate model to be used for the final weekly flu rate estimation.
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Logistic Regression Logistic regression is commonly used for binary classification prob-

lems. It is used with a binomial distribution of dependent variables. Thus, it includes a

function of Logit transformation that is suitable for the distribution. The Logit function is

applied to handle different types of relationships between the dependent and independent

variables.

The logistic regression finds the probability of the categorical values of the dependent

variables [112]. In this study, the probability values, which ranges between 0 and 1, have

been used to indicate the weekly flu rates.

Polynomial Regression Polynomial Regression is used when the dependent variable

(response) is continuous and the independent variables (predictors) are either continuous

or discrete, and the relationship between the dependent and independent variable(s) is not

linear. The polynomial regression indicates that the rate in the change of the mean of the

response value is not constant when the value of predictors increase or decrease [112].

Support Vector Regression Support Vector Regression (SVR) is a technique, which

uses the same concepts of the classification method (SVM), for regression. It predicts

the continuous values of dependent variables with respect to the values of independent

variables (predictors). SVR can be used for both linear and non-linear problems [113].
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CHAPTER 4: IMPLEMENTATION AND TESTING

The proposed framework consists of data preprocessing, which includes stemming

and removal of stop words and ineffective characters. The preprocessing phase is imple-

mented using the Python Natural Language Processing Toolkit (NLTK). The framework

also consists of text classification module that utilizes the features of sentiment analysis

and predefined keyword occurrences. This module is evaluated by using various classifiers

to identify the most efficient and accurate one. The framework has been trained and tested

using a pre-labeled dataset of flu-related and unrelated Twitter postings. The classification

results demonstrate that FastText improves the accuracy and the efficiency of flu disease

surveillance systems using SNS data. The trained classification model is then used to clas-

sify over 8,400,000 tweet documents that are collected using a developed crawler. The

crawler works together with the Twitter API to stream tweets for the first 20 weeks of the

year 2018 within the boundary box of the state of Connecticut. The flu-related documents

are then mapped on a weekly basis using a mapping module that groups all the posts as-

sociated with the same week number and then merges all the ones with the same week

number by counting them. The results are passed together with historical CDC data, as a

combination of predictors, to an estimator module for weekly flu rate predictions. Finally,

the weekly prediction results are compared to the available recent data from CDC.
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4.1 Flu Post Classification

To build a classification model with better accuracy and efficiency, FastText and

several supervised classification methods using the proposed additional features were eval-

uated. In addition to FastText, the evaluated classifiers are Random Forest, Naïve Bayes,

SVM, C4.5 decision tree, K-nearest neighbors classifier using the Instance Based learn-

ing algorithm (IBK), and AdaBoost. The preprocessed labeled dataset was used to train

and test models of the different classifiers with the TF-IDF based n-gram features and the

proposed additional ones that are presented in the Feature Extraction Section (3.3).

For a better FastText model, we evaluated 28 different feature settings using FastText

with the parameter values of learning rate = 0.8 and epoch = 8, to determine the best feature

set. Initially, the model was trained and tested using one setting of n-gram features (n=1

to 6), which are tokens of (n) words including the stylometric features. Then, different

settings of the additional features are combined with the tweet text for training and testing

using n-grams (n=1 to 6). The settings include a combination of text and sentiment fea-

tures, a combination of the text and keyword occurrence features, and a combination of all

additional features (text + sentiment + hasKeyword):

_label_<related/unrelated> TEXT _sent_<neg/pos> _hasKeywrd_<yes/no>

With a standard computer (2.6 GHz Intel Core i7 processor, and 16 GB RAM), the

preprocessed labeled dataset was used to train and test the models using 10-fold cross

validation as well. The 10-fold cross validation is a method to validate the studied/built

model by iterating through the labeled data ten times with different subsets of training and

testing for each iteration.

Baseline Classifier The literature shows that most of the existing models are based on

Support Vector Machine (SVM) for the text classification to distinguish between related
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and unrelated flu tweets. Therefore, SVM with basic textual features have been considered

as a baseline classifier for comparison purposes.

4.2 Performance Metrics

4.2.1 Text Classification

This section presents the used performance metrics. The performance of the clas-

sifiers are evaluated using different metrics: accuracy (Equation 4.1), precision (Equation

4.2), recall (Equation 4.3), and F-measure (Equation 4.4). These metrics are used to pro-

vide a better overview of the model performance. The accuracy measure by itself is not a

perfect measure if the dataset is not balanced. Precision and recall are better measures in

the case of imbalanced datasets. The selected metrics can be computed using true positive

(T P), true negative (T N), false positive (FP), and false negative (FN) measures, where

T P refers to the rate of correctly classified instances as positive, T N refers to the rate of

correctly classified instances as negative, FP refers to the rate of incorrectly classified in-

stances as positive, and FN refers to the rate of incorrectly classified instances as negative.

In this work, we mainly use F-measure as a performance metric for evaluation and com-

parison. F-measure is a weighted average of two different performance metrics: precision

and recall. Its value ranges between 0 (worst) and 1 (best).

Accuracy Accuracy is a measure to evaluate the performance of a prediction model. It is

the rate of the correctly classified labels. It is calculated by using Equation 4.1 :

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

Precision Precision measures the true positive predictions. The precision of a model is

calculated by using Equation 4.2:
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Precision =
T P

T P+FP
(4.2)

Recall Recall is a sensitivity measure. It is used to evaluate a model’s performance in

predicting positive labels. It is calculated by using Equation 4.3:

Recall =
T P

T P+FN
(4.3)

F-Measure F-Measure takes into account both measures: recall and precision. It can be

considered as a weighted average of precision and recall measures with a value ranging

between 0 (worst) and 1 (best). F-measure is calculated using Equation 4.4:

F-Measure = 2× Precision×Recall
Precision+Recall

(4.4)

4.2.2 Flu Rate Estimation

The performance of flu rate estimation is evaluated using Pearson Correlation. This

measure is used to evaluate the performance of the flu rate estimator using different regres-

sion models. CDC weekly reports are used as the ground truth to be correlated with the

output of the proposed estimator.

Pearson Correlation Pearson Correlation is a metric that evaluates the correlation be-

tween two datasets. Let yi be the observed value of the ground truth (CDC ILINet data), xi

be the predicted value (estimated weekly flu rate), and y and x be the average values of {yi}

and {xi}, respectively. Using these notations, the Pearson Correlation value r is defined as

shown in Equation 4.5 [63].

r =
∑

n
i=1(yi− y)(xi− x)√

∑
n
i=1(yi− y)2

√
∑

n
i=1(xi− x)2

(4.5)
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CHAPTER 5: RESULTS

5.1 Classification Results

The results show that the proposed model improves the performance of flu post clas-

sifications using a combination of the additional features. The performance results of the

evaluated classifiers are shown in Table 5.1 using the discussed metrics in the previous

chapter. The Random Forest method achieved the highest accuracy results, with an F-

measure of 90.1%. In addition, we used the Receiver Operating Characteristic (ROC) met-

ric to evaluate the utilized classifiers. ROC is a curve with points that represent the pair

of true positive rate (Sensitivity) and false positive rate (Specificity). A perfect curve is

the one that passes through the upper left corner representing 100% sensitivity and 100%

specificity. Thus, the closer the curve is to that corner, the better the accuracy is [114]. As

shown in Figure 5.1, Random Forest appears to be the best classifier. The high accuracy

results demonstrate the efficiency and effectiveness of the extracted features.

Moreover, the performance results of FastText with different sets of features is pre-

sented in Figure 5.2. The overall accuracy using the F-measure metric ranges between

86.47% and 89.9%. The results demonstrate the efficiency of the FastText classifier. The

highest classification accuracy is achieved by using the 5-gram features together with all

the proposed additional features (F-measure = 89.9%) in only 21.53 seconds for training

and testing using 10-fold cross validation on a standard computer (2.6 GHz Intel Core i7

processor, and 16 GB RAM). It has been shown that FastText can produce, in a short time,
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accurate results that are comparable to the results produced by the state-of-the-art deep

neural network classifiers [93]. The high accuracy together with the efficiency of FastText

make it an optimal classifier for flu disease surveillance models/systems with very large

data. Therefore, FastText will be used for our further analysis.

Figure 5.1: Performance comparison using ROC
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Table 5.1: Performance of classifiers

Classifier name Precision Recall F-measure

C4.5 Decision Tree 0.876 0.85 0.873

Random Forest 0.905 0.902 0.901

SVM 0.883 0.883 0.883

Naïve Bayes 0.846 0.826 0.824

AdaBoost 0.867 0.864 0.864

KNN 0.874 0.872 0.872

FastText 0.899 0.899 0.899

Figure 5.2: FastText performance using different sets of features

Many studies have utilized the available data from Twitter to build faster Influenza

surveillance systems [39]. All the reviewed studies use conventional machine learning
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methods to distinguish between flu-relevant and irrelevant posts for further analysis. A

summary of the performance results of previous works, which include tweet classification

for Twitter-based flu surveillance systems, and a comparison between the performance re-

sults of the proposed framework and the baseline are shown in Table 5.2. The metrics are

reported as percentages. The evaluation of flu tweet classification using the F-measure

shows that the proposed framework using FastText together with the extracted features, has

achieved high accuracy with F-measure value of 89.9% in only 21.53 seconds for train-

ing and testing using 10-fold cross validation. This is while the F-measure value of the

baseline is 86.6 and requires more than 30 minutes for training and testing using the same

settings.

Table 5.2: Summary of the reviewed flu posts classifiers (Flu-Relevant / Flu-Irrelevant)

Reference Classifier name Precision Recall F-measure Note

[65]
SVM and Logistic Regression 67 87 75.62

Multi-level

[68] classification

[67] Naïve Bayes and SVM N/A N/A 83

[64] SVM N/A N/A 75.6

[66] SVM 87.49 92.28 89.68

[71] Naïve Bayes N/A N/A N/A Accuracy= 70

Baseline
SVM 86.6 86.6 86.6

Classifier

Proposed
Random Forest 90.5 90.2 90.1

Framework

Proposed
FastText 89.9 89.9 89.9

Framework
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5.2 Weekly Flu Rate Estimation Results

The framework was evaluated by applying the trained FastText model on the applica-

tion data, which includes over 8,400,000 tweets, for classification. Then, the classification

results together with the historical CDC data were passed on to the proposed regression-

based estimator as predictors to obtain weekly flu-rates. The results of the flu estimator

show a highly correlated output to the gold standard data (CDC). The estimator was eval-

uated using several regression models. Every model was fitted using the data of flu emer-

gency visits obtained from HEDSS. Then, it was tested on CDC ILINet data from January

1, 2018 to May 19, 2018.

The performance results of the proposed flu rate estimator based on different regres-

sion models are shown in Table 5.3. The table demonstrates the accuracy results using the

Pearson Correlation measure that has been discussed in the previous chapter. The Linear

Regression based estimator achieved the highest accuracy results, with a Pearson Correla-

tion of 96.2%. Figure 5.3 also shows that Linear Regression is the most correlated model

with the ground truth (CDC). In addition to the efficiency of linear regression, the experi-

mental results demonstrate the model accuracy and confirm the linear relationship between

the rates of weekly flu (dependent variable) and flu-related tweets (independent variable).

Therefore, the linear regression model is used for the module of weekly flu rate estimation.

Table 5.3: Performance of Flu rate estimator using different regression models

Regression Model r Value
Polynomial Regression r=0.895

Logistic Regression r=0.917

Support Vector Regression r=0.930

Linear Regression r=0.962
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Figure 5.4 shows the normalized rate of ILI patients obtained from CDC and the nor-

malized rate of ILI Twitter posts obtained from the output of our proposed solution during

the period of January through May of 2018 for the state of Connecticut. The rate values of

the proposed framework and ILINet are normalized to a common scale for comparision.

Figure 5.3: Correlation between the proposed framework and CDC ILI rate using different

regression models

Figure 5.4: Correlation between the proposed framework and CDC ILI rate
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CHAPTER 6: DISCUSSION AND VALIDATION

The performance of weekly flu rate estimation is evaluated using Pearson Corre-

lation. It measures the correlation between two datasets using the symbol r that ranges

between (1) and (-1): the value of r = 1 when both datasets exactly match and the value of

r = 0 when there is no correlation between the two datasets. An available ground truth is

usually used to evaluate the quality of the results of the proposed methods and frameworks.

This study used recent CDC weekly reports as the ground truth to be compared with the

proposed solution. The Pearson Correlation value r is defined as shown in Equation 4.5

[63].

As shown in Table 6.1 and depicted in Figure 5.4, the results show a strong correla-

tion (96.2% Pearson Correlation) between the output of the proposed framework and the

CDC reports. This correlation percentage shows that our proposed solution provides accu-

rate results on a par with the best results in our survey, while being more efficient (faster).

In addition, we believe that this study is the first work that utilizes Twitter postings for

flu trend predictions in the state of Connecticut with strong correlated results. To the best

of our knowledge, this is also the first work that shows a Twitter-based solution for flu

prediction using recent data that is collected in the year of 2018.

6.1 Computational Complexity

The experiments show that FastText produces accurate classification results in only

21.53 seconds for training and testing using 10-fold cross validation on a standard com-
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Table 6.1: Summary of the reviewed studies with reported Pearson Correlation

Study Reference TimeFrame Location r Value
[65] Sep 2012-May 2013 US r=0.93
[64] Nov 2008-Jun 2010 Japan r=0.89
[67] Mar 2010-Feb 2012 Portugal r=0.89
[68] May 2009-Oct 2010 US r=0.9897
[66] Sep 2013-Dec 2013 China N/A
[71] Oct 2015-Nov 2015 Ottawa N/A

Proposed Framework Jan 2018 -May 2018 CT, US r=0.962

puter (2.6 GHz Intel Core i7 processor, and 16 GB RAM). FastText is an efficient linear

based model. It uses a hierarchal softmax function that reduces the computational com-

plexity to become logarithmic O(logn), leading to faster classification training and testing

[93]. For word ordering, only partial information about the order is utilized by using a bag

of n-grams instead of a bag-of-words with the full information of the word ordering. For

more efficiency, the bag of n-grams are mapped using hashing techniques [93]. On the

other hand, the experiments show that Random Forest, which is the most accurate conven-

tional classifier in our experiment with F-measure value of 90.1, requires a longer time (39

minutes and 26 seconds) for training and testing using the experimental settings. The worst

time complexity of Random Forest is quadratic for training O(n2logn) and linear for pre-

diction O(n) [115]. This together with the experimental results demonstrate the efficiency

and the accuracy of FastText classifier. FT is an optimal classifier to detect new outbreaks

with new signs and symptoms published in posts of Social Networking Sites. Therefore,

FastText has been used for our further analysis.

6.2 Statistical Power Analysis

The power analysis has been performed to justify and ensure the appropriateness of

the number of instances that are used for this study. Experimental results show that the
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accuracy of flu tweet classification component using FastText with the proposed additional

features outperform FastText with only textual features. Therefore, the power analysis is

also used to prove this hypothesis that is stated as an alternative hypothesis Ha, whereas

the null hypothesis H0 is the hypothesis where there is no change in the accuracy using

proposed features with respect to only textual features. With the power analysis, a statis-

tical test rejects the null hypothesis when it is false. With this, we can conclude that there

is a difference between the accuracies (better accuracy) using additional features and can

confirm our alternative hypothesis Ha. If the null hypothesis is not rejected, then the alter-

native hypothesis should be rejected. The opposing hypotheses for our work can be stated

as follows:

H0 : µproposed = µtextual (6.1)

Ha : µproposed > µtextual (6.2)

where µproposed is the accuracy average of FastText using the proposed additional features

and µtextual is the accuracy average of FastText using only textual features for flu tweet

classification.

To determine the required sample size n, four parameters/factors must be known or

estimated:

• α : Significance level (1% or 5%)

• p : Desired power of the test (80%)

• σ : Population standard deviation.

• d : Effect size (the difference between the two groups)

The values of the first two parameters are generally fixed. The parameter of signifi-

cance level α is usually set to either 0.05 or 0.01 and is the probability of rejecting the null
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hypothesis when it is true. The power parameter p is the probability that the effect will be

detected and is usually set to either 0.8 or 0.9. On the other hand, the last two parameters

are problem dependent. For our analysis, the last two parameters are estimated based on

our previous experiments. Thus, the values of all the four required parameters are stated

below:

• α = 5%

• p = 80%

• σ = 0.27

• d = 0.012

Using these parameters together with the z-test model to obtain z-scores, the sample

size n can be computed by using Equation 6.3.

Sample size(n) = 2×
(

σ ×
z1−α

2
+ zp

d

)2

(6.3)

Given the estimated values of the required parameters, we will have:

Sample size(n) = 2×
(

0.27×
z1− 0.05

2
+ z0.8

0.012

)2

Sample size(n) = 2×
(

0.27× 1.959+0.8416
0.012

)2

Sample size(n) = 7941

Using the obtained sample size n and the significance level α , the below parameters

can be computed in order to apply the z-test and then make a decision on accepting or

rejecting our alternative hypothesis:

Mean(x̂) =
∑x
n

=
7292
7941

= 0.918 (6.4)
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Variance(σ2) =
∑(x− x̂)2

n
= 0.075 (6.5)

Standard Deviation(σ) =
√

σ2 = 0.27 (6.6)

Critical z = z1−α

2
= 1.96 (6.7)

Standard Error(Sx) =
σ√

n
= 0.003 (6.8)

Lower limit = x̂−Critical z×Sx = 0.912 (6.9)

U pper limit = x̂+Critical z×Sx = 0.923 (6.10)

Null Hypothesis (H0) : µproposed = µtextual = 0.864 (6.11)

Z_test (Z) =
x̂−µtextual

Sx
= 18 (6.12)

Since the obtained value of the z-test (18) is higher than the critical value (18> 1.96),

the observed difference is significant and shows that the additional features enhance the

accuracy of FastText to classify flu tweets. In other words, results of the z-test show that

the null hypothesis (H0) should be rejected, and the sample set of 7,941 tweets is sufficient

to prove that FastText with the proposed additional features is more accurate than FastText

with only textual features for flu tweet classification. Our experimental results included

over 10,000 tweets which is more sufficient to prove the hypothesis claims.
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CONCLUSION

For disease surveillance models, gathering related information about diseases and

then issuing necessary reports at an early stage is crucial for outbreak prevention. Data

of microblogging sites, such as Twitter, have become popular to be used as triggers for

different event prediction such as disease outbreaks. Recently, many studies have utilized

this data to build faster epidemic prediction models such as flu outbreak prediction. The

literature indicates that most of the models utilize conventional machine learning methods

to filter and distinguish between the flu-relevant and irrelevant posts for further analysis. In

our study, we introduced a framework based on FastText, a state-of-the-art text classifier,

that utilizes the features of sentiment analysis and flu keyword occurrences for classifica-

tion. Then, a combination of the classified Twitter documents and historical CDC data

is passed to a linear regression-based module for weekly flu rate predictions. The results

demonstrate the efficiency and the accuracy of the proposed framework. The final pre-

dicted flu trend using Twitter documents show a strong Pearson Correlation of 96.2% with

the ground truth data of CDC for the first few months of 2018.

For future directions, more application data can be collected to cover a longer period

of time to validate the regression model for flu rate estimation. In addition, other regression

predictors, such as the data of FluNearYou, can also be investigated for further enhance-

ment of the weekly flu rate estimation. Moreover, our classification model can be trained

with a larger training dataset that includes more posts of Social Networking Sites for better

classification accuracy. Furthermore, additional features and classifiers can be examined
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for further accuracy and efficiency enhancement of the proposed framework. Lastly, our

proposed framework can be fine-tuned to predict different outbreaks and events using the

data of Social Networking Sites.
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APPENDIX A: More Application Data

More application data is collected for validation purposes. This data includes a set

of Twitter posts that are collected during the period of four consecutive weeks from Octo-

ber 29, 2018 to November 25, 2018 within the boundary box of the state of Connecticut.

The collected posts were passed on to the proposed framework for weekly flu-rate estima-

tion. Figures A.1 and A.2 show the output of the framework based on different regression

models. Using the linear regression model, the predicted weekly rates produced by the

framework are highly correlated to the gold standard data (CDC) with 94.2% Pearson Cor-

relation.

Figure A.1: Correlation between the proposed framework and CDC ILI rates (Nov. 2018)
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Figure A.2: Correlation between the proposed framework and CDC ILI rates using different
regression models (Jan.-May, Nov. 2018)
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