Efficient Text Classification with Linear Regression Using a Combination of Predictors for Flu Outbreak Detection

Abstract

Early prediction of disease outbreaks and seasonal epidemics such as Influenza may reduce their impact on daily lives. Today, the web can be used for surveillance of diseases.Search engines and Social Networking Sites can be used to track trends of different diseases more quickly than government agencies such as Center of Disease Control and Prevention(CDC). Today, Social Networking Sites (SNS) are widely used by diverse demographic populations. Thus, SNS data can be used effectively to track disease outbreaks and provide necessary warnings. Although the generated data of microblogging sites is valuable for real time analysis and outbreak predictions, the volume is huge. Therefore, one of the main challenges in analyzing this huge volume of data is to find the best approach for accurate analysis in an efficient time. Regardless of the analysis time, many studies show only the accuracy of applying different machine learning approaches. Current SNS-based flu detection and prediction frameworks apply conventional machine learning approaches that require lengthy training and testing, which is not the optimal solution for new outbreaks with new signs and symptoms. The aim of this study is to propose an efficient and accurate framework that uses SNS data to track disease outbreaks and provide early warnings, even for newest outbreaks accurately. The presented framework of outbreak prediction consists of three main modules: text classification, mapping, and linear regression for weekly flu rate predictions. The text classification module utilizes the features of sentiment analysis and predefined keyword occurrences. Various classifiers, including FastText and six conventional machine learning algorithms, are evaluated to identify the most efficient and accurate one for the proposed framework. The text classifiers have been trained and tested using a pre-labeled dataset of flu-related and unrelated Twitter postings. The selected text classifier is then used to classify over 8,400,000 tweet documents. The flu-related documents are then mapped ona weekly basis using a mapping module. Lastly, the mapped results are passed together with historical Center for Disease Control and Prevention (CDC) data to a linear regression module for weekly flu rate predictions. The evaluation of flu tweet classification shows that FastText together with the extracted features, has achieved accurate results with anF-measure value of 89.9% in addition to its efficiency. Therefore, FastText has been chosen to be the classification module to work together with the other modules in the proposed framework, including the linear regression module, for flu trend predictions. The prediction results are compared with the available recent data from CDC as the ground truth and show a strong correlation of 96.2%

    Similar works