105 research outputs found

    A multi-algorithmic approach for gait recognition

    Get PDF

    Real-World Smartphone-based Gait Recognition

    Get PDF
    As the smartphone and the services it provides are becoming targets of cybercrime, it is critical to secure smartphones. However, it is important security controls are designed to provide continuous and user-friendly security. Amongst the most important of these is user authentication, where users have experienced a significant rise in the need to authenticate to the device and individually to the numerous apps that it contains. Gait authentication has gained attention as a mean of non-intrusive or transparent authentication on mobile devices, capturing the information required to verify the authenticity of the user whilst the person is walking. Whilst prior research in this field has shown promise with good levels of recognition performance, the results are constrained by the gait datasets utilised being based upon highly controlled laboratory-based experiments which lack the variability of real-life environments. This paper introduces an advanced real-world smartphone-based gait recognition system that recognises the subject within real-world unconstrained environments. The proposed model is applied to the uncontrolled gait dataset, which consists of 44 users over a 7–10 day capture – where users were merely asked to go about their daily activities. No conditions, controls or expectations of particular activities were placed upon the participants. The experiment has modelled four types of motion normal walking, fast walking and down and upstairs for each of the users. The evaluation of the proposed model has achieved an equal error rate of 11.38%, 11.32%, 24.52%, 27.33% and 15.08% for the normal, fast, down and upstairs and all activities respectively. The results illustrate, within an appropriate framework, that gait recognition is a viable technique for real-world use

    Activity Recognition using wearable computing.

    Get PDF
    A secure, user-convenient approach to authenticate users on their mobile devices is required as current approaches (e.g., PIN or Password) suffer from security and usability issues. Transparent Authentication Systems (TAS) have been introduced to improve the level of security as well as offer continuous and unobtrusive authentication (i.e., user friendly) by using various behavioural biometric techniques. This paper presents the usefulness of using smartwatch motion sensors (i.e., accelerometer and gyroscope) to perform Activity Recognition for the use within a TAS. Whilst previous research in TAS has focused upon its application in computers and mobile devices, little attention is given to the use of wearable devices - which tend to be sensor-rich highly personal technologies. This paper presents a thorough analysis of the current state of the art in transparent and continuous authentication using acceleration and gyroscope sensors and a technology evaluation to determine the basis for such an approach. The best results are average Euclidean distance scores of 5.5 and 11.9 for users\u27 intra acceleration and gyroscope signals respectively and 24.27 and 101.18 for users\u27 inter acceleration and gyroscope activities accordingly. The findings demonstrate that the technology is sufficiently capable and the nature of the signals captured sufficiently discriminative to be useful in performing Activity Recognition

    Unobtrusive Gait Recognition Using Smartwatches

    Get PDF
    © 2017 Gesellschaft fuer Informatik. Gait recognition is a technique that identifies or verifies people based upon their walking patterns. Smartwatches, which contain an accelerometer and gyroscope have recently been used to implement gait-based biometrics. However, this prior work relied upon data from single sessions for both training and testing, which is not realistic and can lead to overly optimistic performance results. This paper aims to remedy some of these problems by training and evaluating a smartwatch-based biometric system on data obtained from different days. Also, it proposes an advanced feature selection approach to identify optimal features for each user. Two experiments are presented under three different scenarios: Same-Day, Mixed-Day, and Cross-Day. Competitive results were achieved (best EERs of 0.13% and 3.12% by using the Same day data for accelerometer and gyroscope respectively and 0.69% and 7.97% for the same sensors under the Cross-Day evaluation. The results show that the technology is sufficiently capable and the signals captured sufficiently discriminative to be useful in performing gait recognition

    Transparent Authentication Utilising Gait Recognition

    Get PDF
    Securing smartphones has increasingly become inevitable due to their massive popularity and significant storage and access to sensitive information. The gatekeeper of securing the device is authenticating the user. Amongst the many solutions proposed, gait recognition has been suggested to provide a reliable yet non-intrusive authentication approach – enabling both security and usability. While several studies exploring mobile-based gait recognition have taken place, studies have been mainly preliminary, with various methodological restrictions that have limited the number of participants, samples, and type of features; in addition, prior studies have depended on limited datasets, actual controlled experimental environments, and many activities. They suffered from the absence of real-world datasets, which lead to verify individuals incorrectly. This thesis has sought to overcome these weaknesses and provide, a comprehensive evaluation, including an analysis of smartphone-based motion sensors (accelerometer and gyroscope), understanding the variability of feature vectors during differing activities across a multi-day collection involving 60 participants. This framed into two experiments involving five types of activities: standard, fast, with a bag, downstairs, and upstairs walking. The first experiment explores the classification performance in order to understand whether a single classifier or multi-algorithmic approach would provide a better level of performance. The second experiment investigated the feature vector (comprising of a possible 304 unique features) to understand how its composition affects performance and for a comparison a more particular set of the minimal features are involved. The controlled dataset achieved performance exceeded the prior work using same and cross day methodologies (e.g., for the regular walk activity, the best results EER of 0.70% and EER of 6.30% for the same and cross day scenarios respectively). Moreover, multi-algorithmic approach achieved significant improvement over the single classifier approach and thus a more practical approach to managing the problem of feature vector variability. An Activity recognition model was applied to the real-life gait dataset containing a more significant number of gait samples employed from 44 users (7-10 days for each user). A human physical motion activity identification modelling was built to classify a given individual's activity signal into a predefined class belongs to. As such, the thesis implemented a novel real-world gait recognition system that recognises the subject utilising smartphone-based real-world dataset. It also investigates whether these authentication technologies can recognise the genuine user and rejecting an imposter. Real dataset experiment results are offered a promising level of security particularly when the majority voting techniques were applied. As well as, the proposed multi-algorithmic approach seems to be more reliable and tends to perform relatively well in practice on real live user data, an improved model employing multi-activity regarding the security and transparency of the system within a smartphone. Overall, results from the experimentation have shown an EER of 7.45% for a single classifier (All activities dataset). The multi-algorithmic approach achieved EERs of 5.31%, 6.43% and 5.87% for normal, fast and normal and fast walk respectively using both accelerometer and gyroscope-based features – showing a significant improvement over the single classifier approach. Ultimately, the evaluation of the smartphone-based, gait authentication system over a long period of time under realistic scenarios has revealed that it could provide a secured and appropriate activities identification and user authentication system

    Sensing Movement on Smartphone Devices to Assess User Interaction for Face Verification

    Get PDF
    Unlocking and protecting smartphone devices has become easier with the introduction of biometric face verification, as it has the promise of a secure and quick authentication solution to prevent unauthorised access. However, there are still many challenges for this biometric modality in a mobile context, where the user’s posture and capture device are not constrained. This research proposes a method to assess user interaction by analysing sensor data collected in the background of smartphone devices during verification sample capture. From accelerometer data, we have extracted magnitude variations and angular acceleration for pitch, roll, and yaw (angles around the x-axis, y-axis, and z-axis of the smartphone respectively) as features to describe the amplitude and number of movements during a facial image capture process. Results obtained from this experiment demonstrate that it can be possible to ensure good sample quality and high biometric performance by applying an appropriate threshold that will regulate the amplitude on variations of the smartphone movements during facial image capture. Moreover, the results suggest that better quality images are obtained when users spend more time positioning the smartphone before taking an image

    Activity-Based User Authentication Using Smartwatches

    Get PDF
    Smartwatches, which contain an accelerometer and gyroscope, have recently been used to implement gait and gesture- based biometrics; however, the prior studies have long-established drawbacks. For example, data for both training and evaluation was captured from single sessions (which is not realistic and can lead to overly optimistic performance results), and in cases when the multi-day scenario was considered, the evaluation was often either done improperly or the results are very poor (i.e., greater than 20% of EER). Moreover, limited activities were considered (i.e., gait or gestures), and data captured within a controlled environment which tends to be far less realistic for real world applications. Therefore, this study remedies these past problems by training and evaluating the smartwatch-based biometric system on data from different days, using large dataset that involved the participation of 60 users, and considering different activities (i.e., normal walking (NW), fast walking (FW), typing on a PC keyboard (TypePC), playing mobile game (GameM), and texting on mobile (TypeM)). Unlike the prior art that focussed on simply laboratory controlled data, a more realistic dataset, which was captured within un-constrained environment, is used to evaluate the performance of the proposed system. Two principal experiments were carried out focusing upon constrained and un-constrained environments. The first experiment included a comprehensive analysis of the aforementioned activities and tested under two different scenarios (i.e., same and cross day). By using all the extracted features (i.e., 88 features) and the same day evaluation, EERs of the acceleration readings were 0.15%, 0.31%, 1.43%, 1.52%, and 1.33% for the NW, FW, TypeM, TypePC, and GameM respectively. The EERs were increased to 0.93%, 3.90%, 5.69%, 6.02%, and 5.61% when the cross-day data was utilized. For comparison, a more selective set of features was used and significantly maximize the system performance under the cross day scenario, at best EERs of 0.29%, 1.31%, 2.66%, 3.83%, and 2.3% for the aforementioned activities respectively. A realistic methodology was used in the second experiment by using data collected within unconstrained environment. A light activity detection approach was developed to divide the raw signals into gait (i.e., NW and FW) and stationary activities. Competitive results were reported with EERs of 0.60%, 0% and 3.37% for the NW, FW, and stationary activities respectively. The findings suggest that the nature of the signals captured are sufficiently discriminative to be useful in performing transparent and continuous user authentication.University of Kuf
    • …
    corecore