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Abstract- A secure, user-convenient approach to authenticate 

users on their mobile devices is required as current approaches 

(e.g., PIN or Password) suffer from security and usability issues. 

Transparent Authentication Systems (TAS) have been 

introduced to improve the level of security as well as offer 

continuous and unobtrusive authentication (i.e., user friendly) by 

using various behavioural biometric techniques. This paper 

presents the usefulness of using smartwatch motion sensors (i.e., 

accelerometer and gyroscope) to perform Activity Recognition 

for the use within a TAS. Whilst previous research in TAS has 

focused upon its application in computers and mobile devices, 

little attention is given to the use of wearable devices - which tend 

to be sensor-rich highly personal technologies. This paper 

presents a thorough analysis of the current state of the art in 

transparent and continuous authentication using acceleration 

and gyroscope sensors and a technology evaluation to determine 

the basis for such an approach. The best results are average 

Euclidean distance scores of 5.5 and 11.9 for users' intra 

acceleration and gyroscope signals respectively and 24.27 and 

101.18 for users' inter acceleration and gyroscope activities 

accordingly. The findings demonstrate that the technology is 

sufficiently capable and the nature of the signals captured 

sufficiently discriminative to be useful in performing Activity 

Recognition. 

Keywords- activity recognition; mobile authentication; 
accelerometer; smartwatch authentication. 

I. INTRODUCTION 

Over 9.5 billion mobile devices, including smartphones 
and tablets, are currently utilized for various purposes (e.g., 
personal communication, online payment, and office work); 
also these devices have increased amount of access to 
sensitive information such as financial or health records [1]. 
The data that is stored in the mobile device is often considered 
more valuable than the cost of the device itself [2]. Therefore, 
securing information on these devices from unauthorized 
access in an effective and usable fashion is essential. 
However, current user authentication approaches (such as 
password and PIN) are considered as intrusive that hinders 
their usability and subsequently the security of the mobile 
device and its data [3, 4]. According to a survey, 72% of their 
participants disabled the PIN code on their smartphones [5]; 
thus critical information that is stored on the device could be 
misused if it is lost or stolen. The use of Transparent 
Authentication Systems (T AS) is proposed in order to remove 
the user inconvenience (as the user is mainly transparently 
authenticated) and to improve the overall security in a 
continuous fashion [6]. Nevertheless, one of the key 
challenges for using transparent authentication is the lack of 
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appropriate biometric modalities. In addition, previous 
research in this domain also encounters a perfonnance issue 
due to the reliability of behavioural biometrics (i.e., the 
performance can be influenced by external environmental 
factors (e.g., mood)) [7]. 

Wearable computing becomes more prevalent in the 
market and it is predicted that the trend will continue as the 
technology improves. A survey showed that more than 80% of 
smartwatch consumers said that healthy living and medical 
care access are major benefits of wearable technology [8]. Due 
to their fixed contact with individuals (i.e., either left or right 
wrist), it is envisaged that smartwatches (e.g., LG and 
Microsoft Band 2) have the ability to capture more accurate 
personal data (e.g., acceleration and heart rate) than 
smartphones do. Therefore, wearables could be used to 
enhance the mobile security in a more effective way. Most 
modem smartwatches contain Micro Electro Mechanical 
System (MEMS) sensors, which are based upon a single chip 
that offers both tri-axial gyroscope and accelerometer 
capabilities. Normally, gyroscopes (offering rotational 
velocities) and accelerometers (measuring non-gravitational 
accelerations) are used on their own for a biometric system 
[9]. It is envisaged that the system perfonnance can be 
improved if both of them are used together. 

To this end, this paper explores the use of wearable 
computing for transparent authentication and in particular 
aims to investigate the feasibility of a novel Activity 
Recognition biometric modality. The rest of the paper is 
structured as follows: Section 11 reviews the state of the art in 
transparent and continuous authentication that uses 
acceleration and gyroscope sensors. A comprehensive 
evaluation on wearable technology is provided in Section Ill. 
Sections IV and V present the data collection, feature 
extraction, preliminary results and the proposed approach. 
Section VI presents the conclusions and future research 
directions. 

11. BACKGROUND LITERATURE 

Given the nature of wearable computing and its associated 
sensors, gait recognition is the modality that has the closest 
link to smartwatch-based activity recognition. Based upon 
how infonnation is collected, gait recognition can be 
categorized into three main approaches: machine vision, 
wearable sensor, and mobile sensor. For the machine vision 
based approach, the movement of the human body is captured 
by using a fixed video-camera from a distance (such as 
CCTV) and it is mainly used for the identification purpose. In 
comparison, the other two approaches focus upon capturing 
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the periodic motion of the legs by attaching physical recording 
sensors on the human body such as hip, waist, lower leg, and 
arm or by carrying a mobile on the go; they are mainly used to 
verify the identity of the carrier. It is these studies that this 
review will focus upon. A comprehensive analysis of the prior 
studies on gait authentication using wearable and mobile 
sensors is summarized in Table I. 

Table 1. Comprehensive Analysis on Gait Authentication using Wearable and 
Mobile Sensors (C: Cycle-based; S: Segment-based; SF: Statistical Features; 
CF: Coefficient Features; DTW: Dynamic Time Warping; k-NN: k-Nearest 
Neighbors; HMM: Hidden Markov Model; SVM: Support Vector Machine; 
EER: Equal Error Rate; CCR: Correct Classification Rate; SD: Same Day; 
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The use of wearable sensors that are used to collect gait 
signals created a new domain for transparent and continuous 
user authentication on mobile devices. However, these studies 
are required to use specialized devices that are expensive for 
collecting the gait information; and the volume of their data 
per user is somewhat limited (i.e. 30 to 600 seconds) as 
illustrated in Table l. Moreover, due to the complexity of the 
data collecting device, an additional cost would be required if 
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they were utilised in a real-world system. Therefore, more 
recent studies attempted to utilize the smartphone built-in 
sensors for gathering the gait signal; as no extra cost is 
required. Also, this permits the authentication task to be 
performed in a transparent and continuous manner as the 
smartphone is carried in the user's pocket [19-30]. 

A large body of research on accelerometer-based activity 
recognition by using the same-day scenario (i.e. the training 
and testing data is collected on the same day) exist. In 
comparison, little work is considered by applying the cross
day evaluation scenario (which is a more realistic test as it 
shows the variability of the human gait behaviour over the 
time). Most research claim a system resilient to the cross-day 
problem either trains on data from trials that are also used to 
test (thus not making it a true cross-day system) or has a high 
error rate, preventing the system being used practically. The 
lack of realistic data underpins a significant barrier in applying 
gait recognition in practice . 

To extract gait features from the captured signal, previous 
studies have focused upon two main approaches: cycle-based 
and segment-based. The former attempts to detect the periodic 
steps of the individuals by standardizing the number of steps 
as opposed to the amount of time represented in each instance 
(i.e. pace independent). The latter focuses on fixed-length 
blocks of data (without prior identification of the contained 
gait cycles). The literature shows that the performance varies 
significantly by using these two methods. The cycle extraction 
purportedly offers an exciting opportunity if a system is 
implemented effectively and trained in just a manner of steps; 
however, the error rate of using this approach is considered as 
high: the EER is ranging from 20.1% [19] to 33.3% [28] as 
demonstrated in the table 1. The high error rate is most likely 
caused by the result of the complicated and unclear nature of 
cycle extraction, as gait is only semi-periodic and the signals 
originating from smartphones are noisy due to a number of 
factors (e.g. the device not being securely fastened to the user, 
cheap sensors, and rounding errors). Furthermore, cycles are 
not guaranteed to be the same length and can vary widely in 
length depending on the pace of how a user walks; cycle 
extraction must be paired with a system that normalizes the 
length of each step, which adds another parameter to be 
configured and constantly refined. In contrast, the 
segmentation based method focuses on fixed-length blocks of 
gait data. While the segmentation based method is simple to 
implement, there is no guarantee on how many steps are 
completed within a given time window (there could be no full 
step at all). However, the performance of the segment based 
method appears to be more effective and stable, with studies 
reporting EERs between 6.1% and 10.1% [21, 25]. If the CCR 
were used, the performance of segment based method is even 
better: in the range of 93.3%-100% of the CCR [20, 32]. 

With respect to features, several studies in the literature 
have suggested that both statistical features (e.g., standard 
deviation, average, and N-bin histogram) and cepstral 
coefficient features (e.g., Mel Frequency Cepstral Coefficients 
(MFCCs) and Bark Frequency Cepstral Coefficients (BFCCs)) 
can be used to produce better performance [18, 20, 21, 22, 25, 
27, 30, 31]. In addition, some studies only used the 
combination of MFCCs and BFCCs features alone and still 
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managed to produce a good level of results [21, 27]. The 
improvement on the performance of sensor based biometric 
systems can be attributed to more intricate feature vectors that 
utilize more complex features (e.g. MFCC and BFCC). 

In terms of matching/classification, several classification 
methods (e.g., Absolute, Euclidean, and Neural Networks) can 
be used for training and testing phases. Many researchers 
prefer traditional approaches where a single template is 
generated and is later tested based upon the similarity between 
the template and the test data. By using this principle, various 
EERs between 5 and 33.3% were obtained from the following 
studies [10, 11, 12, 13, 14, 16, 17, 19, 23, 26, 28]. While this 
approach works well for physiological biometric methods 
(e.g., face or fmgerprint), it is less effective for behavioural 
biometric techniques (e.g., body movement and keystroke 
dynamics). This is because the user's behaviour can change 
over time and be affected by other factors (e.g., mood and 
health). Therefore, it is more reasonable to collect user's 
mUltiple instances on multiple days and apply more complex 
algorithms (e.g., HMM and Neural Networks) upon them for 
generating the template and performing the classification 
process. Recent studies on mobile accelerometer-based gait 
authentication and smartwatch-based activity recognition 
demonstrate that by promising results are obtained by using 
advanced techniques (e.g., decision-tree based classifiers, and 
neural networks) [18, 20, 21, 22, 25, 27, 29, 30, 31]. 

Based upon the classification result, a decision on whether 
to accept or reject the output is made by the system. 
Accordingly to the literature, two standard schemas are used: 
majority or quorwn voting. A better performance is normally 
obtained by using the quorum voting technical while the 
system is more resilient to error when the majority voting is 
applied. Under the quorum voting scheme, a small number of 
correct classification outputs are required to accept a user. 
While this will improve the user convenience (i.e., the user 
will be highly likely to accept the deployment of such system), 
it will result a high false acceptance rate (i.e., there is a high 
chance for the imposter to abuse the system). In contrast, more 
discriminative user behaviour is required when utilizing the 
majority voting technique; otherwise, a high false rejection 
rate will be produced by the system. It is understood that the 
system will provide a better security when using the majority 
voting method; at the same time, the system is more intrusive 
(i.e., less user friendly). As a result, it is important that a 
proper decision logic that can balance the system security and 
user convenience is applied for the gait authentication system. 

The majority of previous studies collected the user's 
movement data by placing a smartphone in a fixed position 
(e.g., in the trouser pocket or on the hip). It is widely 
understood that smartphones suffer from several issues to 
produce a consistent and reliable data collection in real life; 
these include the problem of orientations (i.e., screen 
rotations) and off-body carry (e.g., when the device is carried 
in a handbag), making the data collection process less accurate 
or nearly impossible. In contrast, smartwatches provide a more 
consistent user's motion data collection as it is almost fixed to 
the user (i.e., it is worn on either left or right hand) regardless 
of their clothing choices. In addition, the smartwatch can 
provide a consistent orientation (i.e., it is worn in such a way 
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that the text on screen is easily readable to the user). As a 
result, smartwatches offer the opportunity to collect the user's 
motion data in a more effective and reliable fashion than 
smartphones could. With the aim of exploring the possibility 
of using smartwatches to collect user's movement data, an 
evaluation of existing wearable technology is presented in the 
following section. 

Ill. TECHNOLOGY EVALUATION 

Despite a wide variety of manufacturers existing in the 
wearable market, the functionalities and available sensors 
within various smartwatches are similar. Developers can 
collect data from these devices and transmit it to a smartphone 
via Bluetooth, enabling the data to be further analysed. A 
comparison of several important features on the smartwatches 
(e.g., the embedded sensors, cost, and battery life) is presented 
in Table 11. 

Table H. Comprehensive Evaluation of Wearable Technology 

Features 
Microsoft Samsung 

LG Urbane 
Apple 

Band 2 Gear Watch 

Accelerometer 
(Accel) Accel 

Gyroscope Accel Gyroscope 

Compass 
Accel Gyroscope Heart rate 

Sensors Heart rate 
Gyroscope 

Compass Ambient 

Ambient light 
Compass 

PPG light 
ECG sensors 

GPS Barometer Pulse 
Skin oximeter 

temperature 

Android 4.3 
Android 4.3 

Smartphone 
and later , iOS Android 

and later , 
iOS 8.2 

compatibility 
8.2 or newer, 4.3 and 

iOS 8.2 or 
and 

Windows 8.1 later newer 
or later 

newer 

Battery life two days one day one day two days 
OS Android Tizen Android iOS 

Price (in £) 150 190 160 340 

As shown in Table 11, all of the selected smartwatches 
offer the basic sensors: accelerometer and gyroscope. It is 
apparent that Microsoft Band 2 has more sensors (e.g., GPS 
and Skin temperature) compared to other smartwatches. These 
sensors offer the opportunity to capture various personal based 
biometric-based data which can be useful for a transparent and 
continuous based biometric system. Also, it can be connected 
to multiple mobile platforms (i.e., Android, iPhone and 
Windows Phone); therefore, there are no restrictions in order 
to collect data from a large pool of participants that have 
different types of smartphones. Unlike other smartwatch 
technologies, Microsoft Band 2 offer the opportunity to collect 
data in a continuous manner for at least 4 hours without 
recharging and thus offer the potential to collect a huge 
amount of real life data. 

IV. PRELIMINARY ANALYSIS OF ACTIVITY RECOGNITION 

With the aim of investigating the feasibility of using 
wearable computing for transparent user authentication, a 
preliminary study is conducted to capture and analyse the 
user's movement data. Details of the study, including data 
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collection, feature extraction and analysis are presented in the 
following subsections. 

A. Data Collection and Transformation 
In order to collect user's movement data, the Microsoft 

band 2 is utilized due to its wide range of built-in sensors. In 
addition to acceleration and gyroscope data (which are 
collected at a rate of 30-32 samples per second for the x, y and 
z axes). As soon as the data is collected by the smartwatch, it 
is sent to a smartphone residing in the user's pocket via 
Bluetooth. In total, 10 users participated for the data 
collection; each user is required to walk in two five-minute 
sessions on flat floor on two different days with their natural 
walking style. Also, users are free to choose which arm they 
wear the smartwatch on. 

Once the data collection phase is completed, initial 
analysis on the data is carried out. Users' gait data (presented 
in the tri-axial raw format for both acceleration and gyroscope 
signals) are segmented into 10-second segments by using a 
sliding window approach with no overlapping. Examples of 
the acceleration and gyroscope data along the X, Y, and Z 

axes of two users are illustrated in Figures 1 and 2 
respectively. Discriminating patterns can be clearly observed 
between the acceleration and gyroscope data of the selected 
two users across the X, Y and Z axes, preliminarily suggesting 
users have distinctive movements that would be used to 
transparently and continuously authenticate individuals. 

Fig 1: Acceleration Sample of Three Different Axes for Subject A and B 

Figure 2. Gyroscope Sample of Three Different Axes for Subject A and B 
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Also, a feature extraction process is carried out on both the 
acceleration and gyroscope data segments of each user. In 
total 88 unique features are created. Details of these features 
(e.g., what they are and how they are calculated) are presented 
below; also the number of generated features for each type is 
specified in brackets. 

• Average (3): the mean of the values in the segment 
(each axis) 

• Standard Deviation (3): the Standard Deviation of 
the values in the segment (each axis) 

• Average Absolute Difference (3): the average 
absolute distance of all values in the segment from the 
mean value over the number of data point in the 
segment (each axis). 

• Time Between Peaks (3): during the user's walking, 
repetitive peaks are generated in the signal. Thus, the 
time between consecutive peaks was calculated and 
averaged (each axis). 

• Binned Distribution (30): relative histogram 
distribution in linear spaced bins between the 
minimum and the maximum acceleration in the 
segment. Ten bins are used for each axis. 

• Average Resultant Acceleration (1): for each value 
in the segment of x, y, and z axes, the square roots of 
the sum of the values of each axis squared over the 
segment size (i.e., 10 seconds) is calculated. 

• MFCC (39): The first 13 Mel Frequency Cepstral 
Coefficients (each axis). 

• Variance (3): The second-order moment of the data 
(each axis). 

• Covariance (3): All pairwise covariances between 
axes. 

B. Validatingfeatures extracted from the smartwatch 
In order to validate the effectiveness of the 88 generated 

features for a promising authentication technique, the data set 
is divided to form both reference and testing templates for all 
users in two scenarios (i.e., Same-Day and Cross-Day). The 
average Euclidean distance between the reference template 
and testing templates is calculated; this distance value 
represents the similarity between the two templates: the 
smaller the value, the more similar between the reference and 
testing templates and vice versa. As a result, in order for this 
technique to work, a small distance value should be presented 
when the reference and testing templates are from the same 
user; while a large distance value should be expected when 
these templates are from different users - representing the 
intra and inter sample variances. Results on 10 users' 
movement data for the Same-Day and Cross-Day scenarios are 
presented in Tables 3 and 4 respectively. 

As shown in Table Ill, for the Same-Day, the average 
Euclidean distance scores for acceleration templates of the 
same user are relative small: ranging from 5.5 (Subject 5) to 
12.13 (Subject 3). Also, the distance scores for gyroscope 
templates of the same user are generally small in the range of 
11.90 - 23.66, apart from two: Subject 4 (35.08) and Subject 6 
(61.53). In comparison, average Euclidean distance scores for 
reference and testing templates of different users that are 
extracted on the same day are much larger: 10.69 (Subject 6) 
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to 24.27 (Subject 9) for acceleration and 3 l.85 (Subject 3) to 
101.18 (Subject 5) for gyroscope. Table III shows that the 
results are completely based on the subject. The acceleration 
templates for all subjects, except subject 3, show that the 
user's arm movement is highly consistent and each subject has 
distinctive arm pattern characteristics. For gyroscope 
templates, some subjects (e.g., subjects 4 and 6) are difficult to 
recognize as their distance scores are very high while some are 
always recognized. It is also noted that the accelerometer is 
the better source sensor than gyroscope as the distance scores 
between the reference and test templates of the genuine user is 
small (i.e., low intra-variance), whereas the gyroscope data 
provides a significant distinguish between the genuine user 
and imposters (i.e., high inter-variance). 

Table /TT. Results of Same-Day Scenario 

Subject Avg. Dist to Self Avg. Dist to Others 

ID Accel Gyro Accel Gyro 

I 6.70 18.18 12.58 47.35 
2 8.58 20.86 15.77 94.49 
3 12.13 13.27 19.50 31.85 
4 8.68 35.08 19.08 56.77 
5 5.50 23.66 15.40 101.18 
6 6.80 61.53 10.69 85.44 
7 6.86 12.43 15.99 87.70 
8 8.65 11.90 23.68 49.13 
9 9.30 15.35 24.27 34.61 

10 9.45 19.79 24.21 51.07 

Table IV. Results of Cross-Day Scenario 

Subject Avg. Dist to Self Avg. Dist to Others 

ID Accel Gyro Accel Gyro 

I 8.69 24 15.88 55.20 
2 11.23 21.34 17.55 89.24 
3 13.57 23.84 21.30 44.09 
4 11.50 51.51 18.07 69.89 
5 7.10 42.86 20.40 178.69 
6 7.63 78.23 14.64 92.10 
7 6.54 14.18 16.47 155.49 
8 1l.l8 16.83 22.44 69.33 
9 11.55 28.75 22.51 47.63 

10 12.78 19.80 32.19 54.07 

A more realistic test for a behavioural based-biometric 
comes when the cross-day scenario is applied to show the 
influence of the variation of human movement over time. 
Therefore, the cross-day scenario is also evaluated and the 
results shown in Table IV. While the distance scores under 
this more realistic evaluation scenario for acceleration and 
gyroscope templates of the genuine user is increased, they are 
actually still viable to be used for discriminating users: 
ranging from 6.54 (Subject 7) to 13.57 (Subject 3) for 
acceleration and from 14. l8 to 28.75 for gyroscope (apart 
from two: subject 4 (5 l.51) and subject 6 (78.23)). In 
comparison, the resulting distance scores for reference and 
probe templates of imposters are generally quite high: 14.64 
(Subject 6) to 32.19 (Subject 10) for acceleration and 44.09 
(Subject 3) to 178.69 (Subject 5) for gyroscope, which is an 
indication that imposters are more likely to be rejected by the 
system. The results also show the necessity of using a sensor 
fusion approach (i.e., combining the smartwatch sensors data) 
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in order to have a balance between security and usability (i.e., 
low false acceptance rate and low false rejection rate). The 
former shows the percentage in which the system incorrectly 
accepts an imposter as the legitimate user while the latter 
displays the percentage in which the authorized user is 
wrongly rejected by the system. 

V. PROPOSED ARCHITECTURE TO SUPPORT SMARTWATCH-

BASED ACTIVITY RECOGNITION 

A high-level architecture of the proposed system is 
presented in Figure 3. The prior art has established that 
managing the complex and varying signals of real-life use is a 
significant barrier. In order to overcome this, a context aware 
approach will be used in order to predict the user's activity at 
a specific point of time. This can be achieved by obtaining 
information from other smartwatch sensors (e.g., GPS) and 
using the information to create a multi-classifier approach that 
is trained to specific activities. This should result in reducing 
the variability in the feature set and provide better 
classification performance. 

ISm ule I 

Figure3. The Proposed Architecture for the Motion-based Activity 
Recognition 

Unlike most of the prior studies that utilized information 
from a single sensor only (i.e., accelerometer or gyroscope), 
the proposed system aims to collect the movement data of 
both sensors as well as GPS information. It is possible that the 
fusion of acceleration and gyroscope data would offer a 
greater level of accuracy than either sensor alone. Thereafter, 
feature selection needs to be sophisticated enough before the 
classification phase takes place. This can be achieved by 
selecting the features that are more resistant to changes of the 
user's behaviour. Finally, a set of classification methods will 
be evaluated to create a model for each individual activity. 

VI. CONCLUSION AND FUTURE WORK 

In the experimental study, the raw movement data is 
collected from 10 subjects on two different days within a 
controlled environment (i.e., walking on flat floor only and 
each subject is asked to walk using their natural pace). Based 
on the results presented, this paper suggests that the user's 
movement data could be sufficient to be used for smartwatch 
based activity recognition but a thorough evaluation is 
required. It is expected that the performance from the cross
day scenario would not be as good as the result from the same
day scenario. Therefore, more experimental work should be 
carried out to investigate the impact of the selected features; 
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and the outcome will be used to improve the performance on 
the realistic situation (i.e., cross-day scenario). 

Future work will include a scientifically valid experiment 
that involves collecting data from a large number of users over 
multiple days. Unlike most existing motion-based 
authentication studies implemented within a controlled 
environment (i.e., all participants were asked to perform 
specific activities in an indoor environment), a methodology 
will be developed to collect real life data (i.e., users do not 
need to perform certain activities, but to wear the smartwatch) 
to make sure that data can be used for real practical system. 
Moreover, each user will be asked to undertake mUltiple 
activities (e.g., different walking paces and typing on 
smartphone touch screen). As the nature of the real life signals 
is likely to be noisy, data from other smartwatch sensors (e.g. 
GPS) will be used in order to develop a context-aware 
approach (which will be useful to predict the user's activity). 
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