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Abstract 
 Securing smartphones has increasingly become inevitable due to their massive popularity and significant 
storage and access to sensitive information. The gatekeeper of securing the device is authenticating the user. 
Amongst the many solutions proposed, gait recognition has been suggested to provide a reliable yet non-
intrusive authentication approach – enabling both security and usability. Whilst several studies exploring mobile-
based gait recognition have taken place, studies have largely been preliminary, with various methodological 
restrictions that have limited the number of participants, samples and type of features. Furthermore, prior 
studies have relied upon evaluating the approach on a limited number of activities - namely walking and running, 
and there is some concern over the capacity of the approach to correctly verify individuals when the nature of 
the signals across a wider range of activities is likely to be more variable. This paper has sought to overcome 
these weaknesses and provide a comprehensive evaluation, including an analysis of motion sensors 
(accelerometer and gyroscope), an investigation and analysis of features, understanding the variability of feature 
vectors during differing activities across a multi-day collection involving 60 participants. This is framed into two 
experiments involving five types of activities: normal, fast, with a bag, downstairs, and upstairs walking. The first 
experiment explores the classification performance of individual activities in order to understand whether a 
single classifier or multi-algorithmic approach would provide a better level of performance. The second 
experiment explored the features vector (comprising of a possible 304 unique features) to understand how its 
composition affects performance and for a comparison a more selective set of the minimal features are involved. 
Overall, results from the experimentation has shown an EER of 4.40/12.2% for a single classifier (using 
same/cross day methodologies). The multi-algorithmic approach achieved EERs of 0.70%/6.3%, 0.80%/12.68% 
and 1.10%/6.46% for normal, fast and with a bag walk respectively (using the Same/ Cross Day methodology) 
using both accelerometer and gyroscope based features – showing a significant improvement over the single 
classifier approach and thus a more effective approach to managing the problem of feature vector variability. 

Keywords: Activity recognition; mobile authentication, gait biometrics; accelerometer; gyroscope. 

1. Introduction 

During the last decade, smartphones have become a ubiquitous technology with more than 9.5 billion users 
globally(THE RADICATI GROUP 2015). Currently, smartphones provide a wide range of services and features (e.g. 
personal communications, entertainment, and business) and are used to access/store sensitive and confidential 
information such as financial data and more recently health-based records. Indeed, it is highly likely that the 
stored information is far more valuable than the device itself (Saevanee et al 2015). As a result, smartphones 
should be kept secure against any illegitimate access. Current authentication approaches (e.g. password or 
fingerprint) that are deployed upon smartphones are typically intrusive, insecure and fail to take in to account 
user satisfaction and convenience (Furnell and Clarke 2013). Therefore, transparent and continuous biometric 
authentication systems have been proposed to provide more convenient and secure protections for mobile 
devices (Muaaz 2013). 
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Gait recognition distinguishes people by the way in which they walk or jog. Many studies in the fields of 
psychology, medicine, and biometrics suggest that every person’s gait is unique (M. O. Derawi 2012); and it can 
be deployed as a transparent technique for user identification and verification purposes (Gafurov 2008). 
Currently, the majority of smartphones have built-in sensors (e.g. accelerometer and gyroscope) that can be 
used to record the user’s gait information (e.g. non-gravitational accelerations and rotational paces) (Rana 
2015). By using gait recognition, the user does not need an explicit action for mobile authentication as related 
data is continuously/already recorded while the person walks. Therefore, gait based authentication can be a 
valuable approach for providing transparent and continuous protection for smartphones.  

This paper explores the use of gait information especially using acceleration and orientation data to 
transparently verify smartphone users. Whilst studies in this domain have been conducted before, this study 
seeks to further the research through using a larger population (60 participants) over multiple days; and analyse 
both the time and frequency domain features to examine their effectiveness upon system performance. 
Furthermore, a dynamic feature vector mechanism is employed to explore the optimum feature set towards the 
best performance. 

The rest of this paper is organized as follows: an analysis of the current state of the art in the use of gait 
biometrics within smartphones is highlighted in Section 2. Section 3 describes the experimental methodology, 
including the data collection process and the feature extraction technique. Section 4 presents the experimental 
results, followed by a detailed discussion in Section 5. The concluding remarks and outline areas for future work 
are presented in Section 6. 

2. Related work 

Gait recognition can be captured using different sensors embedded in smartphone devices. The key advantage 
is that no additional hardware is needed; merely software needs to be developed. Hence, researchers started 
to use smartphones to record user’s gait in a user-friendly, unobtrusive, and periodic manner. Table 1 illustrates 
a comprehensive analysis of the prior studies on gait recognition systems using the smartphone sensors. 

Methodologically, all the selected studies utilised smartphones (e.g. Google G1 and Motorola Milestone) that 
are capable of collecting user’s gait activities via (principally the) accelerometer and they were placed either in 
a pouch or trousers packet. The data was collected at a rate ranging from 20 samples per second to 50 samples 
per second, with an average around 35 samples per second. The user’s gait information was gathered either on 
the same day (SD scenario) or across two different days (CD scenario). Two approaches can be utilised for pre-
processing the data: cycle-based or segment-based; in the cycle-based approach, the gait data is supposed to 
be a periodic signal in which each gait cycle begins as soon as the foot touches the ground and finishes when the 
same foot touches the ground for the second time (i.e. two steps of a human). While for the segment-based 
method, the data is divided into fixed time-length windows. Since gait is assumed to be periodic, each time 
segment is reasonably assumed to contain similar signal features; in addition, it requires less computational 
operations than the cycle-based method requires. Various features from the time domain (TD) and frequency 
domain (FD) were extracted from data samples; those samples were then processed a classification method and 
the experimental result is presented in the forms of equal error rate (EER) or correct classification rate (CCR).  

As demonstrated in Table 1, in general, studies that were carried out under the SD scenario achieved better 
performance than those were under the CD scenario; this is understandable as for the SD scenario both the 
enrolment and test or evaluation data are collected on the same day; and the change in user’s activities is smaller 
than those are collected on different days. Nonetheless, a more realistic result is demonstrated for the CD 
scenario as it is highly likely that the enrolment data and probe data are gathered on two different days in real 
life. Also, the majority of existing studies used data that was recorded under laboratory conditions. In 
comparison limited studies collected a realistic data for variant gait signal such as carrying a weight, climbing 
stairs, jogging, and running (Jennifer Kwapisz et al 2011, Jennifer R Kwapisz et al 2010, Nickel et al 2011). 

In terms of pre-processing methods, on average, results of studies employed the segment based approach 
outperform those are obtained via the cycle base method. For instance, only [30] utilised cycle based method 
achieved better performance (in terms of EER) than several segments based approach studies [1, 19, 22]; 
nonetheless, [30] was evaluated under the SD scenario while others were examined under the CD scenario. 
Regarding features and sensors, most of the existing studies investigated the TD features from samples that 



were collected via the accelerometer. Little focus has been given to the examination of feature vectors across 
both time and frequency domains. As illustrated in Table 1, several methods can be applied for the classification 
process, such as hidden Markov model and j48 decision trees. All of those classification methods, studies that 
utilised the Support Vector Network (SVM) and Neural Network achieved the best performance in terms of both 
EER and CCR.  

Table 1: Comprehensive analysis of the prior studies on gait authentication systems using the mobile sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

St
u

d
y 

D
e

vi
ce

 

A
p

p
ro

ac
h

 

Fe
at

u
re

 
D

o
m

ai
n

 

C
la

ss
if

ic
at

io
n

 

m
e

th
o

d
s 

 

U
se

rs
 

P
e

rf
o

rm
an

ce
 %

 
 

D
at

a 
d

u
ra

ti
o

n
 

(Sprager 2009) Nokia N95 C TD SVM 6 93.3 (CCR) CD 

(Mohammad Omar 
Derawi et al 2010) 

Google G1 C TD DTW 51 20 (EER) CD 

(Frank et al 2010a) HTC G1 S TD SVM 6 85.48 (CCR) CD 

(Frank et al 2010b) ? S TD Nearest-neighbours 
 

40 100 (CCR) SD 

(Jennifer R Kwapisz 
et al 2010) 

Nexus One, 
HTC Hero, 
Motorola  

S TD J48 decision trees 
&Neural network 

36 90 (CCR) SD 

(Jennifer Kwapisz 
et al 2011) 

Nexus One, 
HTC Hero, 
Motorola 

S TD J48 decision trees 
&Neural network 

5 100 (CCR) SD 

(Nickel, Brandt, et 
al 2011a) 

Google G1 S FD SVM 48 EER (6.1) CD 

(Nickel, Brandt, et 
al 2011b) 

Motorola 
milestone  

S TD&F
D 

SVM, HMM 36 EER (10& 12.36) CD 

(Nickel et al 2011) 
 

Motorola C TD Manhattan & DTW 48 EER (21.7) 
 

CD 

(Nickel et al 2011) Google G1 
 

S TD HMM 48 EER (6.15) 
 

CD 

(Hestbek et al 
2012)  

Motorola 
Milestone 

S TD&F
D 

SVM 36 EER (10.1) CD 

(Nickel et al 2012) Motorola 
Milestone 

S TD& 
FD 

K-NN 36 EER (8.24) CD 

(Wolfe 2013) 
 

HTC Nexus 
One 

S TD& 
FD 

SVM 38 EER (1.95) SD 

(Muaaz and Nickel 
2012) 
 

WS &Google 
G1 
 

C TD DTW 48 EER (29.39) CD 

(Thang Hoang et al 
2013) 

Google 
Nexus 

C TD SVM 32 CCR (100) SD 

(Mohammad 
Derawi and Bours 
2013) 

Samsung 
Nexus  

C TD Euclidean distance 
and DTW 

5 CCR (89.3) SD 

(Muaaz and 
Mayrhofer 2013) 
 

Google G1 C TD DTW 51 EER (33.3) CD 

(Thang Hoang et al 
2013) 

 

HTC Nexus 
One & LG 
Optimus G 

C TD&F
D 

SVM& RBF                                                                                                                                                                                                                          14 CCR (91.33) SD 

(Nickel and Busch 
2013) 

Google G1 S FD HMM 48 EER (6.15) CD 

(Watanabe 2014) IOS  
iPhone? 

S TD Neural Network 5 EER (1.82) SD 

(Thang Minh 
Hoang et al 2012) 

 

HTC Google 
Nexus one 

C TD Hamming distance 34 8.09 (EER) SD 

(Watanabe 2015) iOS 
iPhone 5 

S TD Neural Network 8 CCR (97.9)  SD 



Legend: C: Cycle-based; S: Segment-based; TD: Time Domain; FD: Frequency Domain; DTW: Dynamic Time 
Warping; HMM: Hidden Markov Model; SVM: Support Vector Machine; K-NN: k-nearest Neighbour; EER: 
Equal Error Rate; CCR: Correct Classification Rate; SD: Same-Day; CD: Cross-Day; ?: not defined. 

The prior work has shown some significant promise; however, with a number of limitations that require further 
investigation. The results from the same-day and cross-day experiments demonstrate a high-degree of variance 
within the feature vector, which raises the concern whether successful classification could be achieved in 
practice over time and across a range of differing activities. The composition of the feature vector itself will also 
play a significant role in recognition performance; however, few studies have explored this across accelerometer 
and gyroscope sensors in both time and frequency domains. Finally, studies have sought to evaluate their 
approaches using relatively few activities and user populations – thereby limiting the extent to which the results 
can be generalised. 

3. Experimental Methodology 

The paper aims to further explore the following: 
 

 To investigate the composition of the feature vector using both accelerometer and gyroscope sensors. 

 To evaluate the performance of gait recognition across a wider range of user walking activities.  
 

The experiment will be conducted in both the same-day and cross-day methodologies using a user population 
of 60. Each participant was asked to perform a range of activities during each session in order to provide 
sufficient samples for analysis. This provided the basis for exploring classification strategies. Following on from 
the prior work, all activities were applied to a single classifier; however, each activity was also separated and 
applied to different classifiers. Given the variability in the gait signal and subsequently resulting feature vector, 
it was felt a multi-algorithmic approach to classification (i.e. each activity having its own classifier) might provide 
a more refined classification and thus improve recognition performance. 

3.1 Data Collection  
Due to its wide range of built-in sensors (e.g. Accelerometer, Barometer, Gesture Sensor, GPS, Gyroscope, Heart 
Rate Monitor, and Proximity Sensor), the Samsung Galaxy S6 smartphone was employed to gather individuals’ 
data.  A user was requested to place the smartphone in the belt pouch while their data was continuously 
collected at a rate of 30-32 samples per second for the x, y, and z-axes of both accelerometer and gyroscope 
sensors. During the data collection process, the user was asked to walk normally, fast, and normally with a bag 
on flat ground for three minutes for each activity, and then to walk down stairs for three levels and upstairs for 
three levels on a predefined route. The user was also asked to stop for 15 to 20 seconds between activities in 
order to easily separate those activities later. For more realistic scenarios, the participant had to stop in order 
to open the door, and walked along the corridor back and forth many times for 3 minutes across each of the 
activities. Ten sessions of user’s activities were collected per user:  5 sessions were from one day and the other 
5 sessions were collected a week later. The users were free to change their footwear and clothes for the second 
day’s data collection. In total, 60 users participated the data collection exercise; 35 participants were male, and 
25 participants were female, and they were aged between 18 and 56. 
 
Upon completing the data collection process, user’s activities were divided into five datasets aligned to each 
activity (normal walk, fast walk, walk with a bag, downstairs walking, and upstairs walking). Then the tri-axial 
raw accelerometer and gyroscope signals were segmented into 10 second segments by using a sliding window 
approach with no overlapping. As a result, 68 samples were collected for each user per day; and in total 8,160 
samples were collected for the entire dataset. 

3.2 Feature Extraction 
Regarding the feature extraction process, both time domain and frequency domain features were extracted 
from user’s data segments. The time domain features were calculated directly from the raw data samples while 
a Fourier transform was applied upon the samples before frequency domain features were gathered. Details of 
those feature (including name and description) are demonstrated in Table 2. In total, drawing upon the prior 
art, 304 unique features were generated from both the accelerometer and gyroscope data samples. 
 



Table 2: Presents the time and frequency domain features 

Features  Domain Description  

Mean (3) TD, FD The mean values in the segment. 

Standard Deviation (3) TD, FD The standard deviation of the data in the segment. 

Median (3) TD, FD The median values of the data points in the segment. 

Variance (3) TD, FD A measure of how far each value in the segment points is from the mean. 

Covariance (3) TD, FD A measure of how much two variables change together. 

Zero crossing rate Minimum TD, FD The rate value of sign changes in the segment. 

Interquartile range TD, FD The range amidst the data. It is the distinction between the upper and lower 
quartiles in the segment. 

Average Absolute Difference (3) TD, FD Average absolute difference between the value of each of the segment points 
from the mean value over the segment values (for each axis). 

Root mean square (3) TD, FD Square root of the mean of the squares of the acceleration values of the segment. 

Skewness (3) TD, FD A measure of the symmetry of distributions around the mean value of the 
segment. 

Kurtosis (3) TD, FD A measure of the shape of the curve for the segment point’s values. 

Percentile 25 (3) TD, FD The percentile rank is measured by the following formula: R= (P/100)*(N+1). 
Where R is the rank order of values, P percentile rank, N total number of the data 
points in the segment. 

Percentile 50 (3) TD, FD Similar to the Percentile 25feature; but with the setting of P=50. 

Percentile 75 (3) TD, FD Similar to the percentile 25 feature but with the setting of P=75. 

Maximum (3) TD, FD The largest four values of the segment are calculated and averaged. 

Minimum (3) TD, FD The largest four values of the segment are calculated and averaged. 

Correlation coefficients (3) TD, FD The relationship between two axes is calculated. The correlation coefficient is 
measured between X and Y axes, X and Z axes and Y and Z axes. 

Average resultant acceleration (1) TD, FD Average of the square roots of the sum of the values of each x, y and z axes in the 
segment squared. 

Difference (3) TD Difference of maximal and minimal value of the segment (each axes). 

Maximum value (4) TD The largest four values of the segment are calculated and averaged. 

Minimum value (4) TD The smallest four values of the segment are calculated and averaged. 

Binned distribution (3)  TD Relative histogram distribution in linear spaced bins be- tween the minimum and 
the maximum acceleration in the segment. Ten bins are used for each segment. 

Maximum peaks (3) TD The average of the largest 4 peaks in the segment. 

Minimum peaks (3) TD The average of the smallest 4 peaks in the segment. 

Peak Occurrence (3) TD Calculate how many peaks are in the segment. 

Time between peaks (3) TD Time in milliseconds between peaks in the sinusoidal waves associated with most 
activities is calculated and averaged (for each axis). 

Interquartile range (3) TD Calculating the median of the lower and upper half of the data. 

Entropy (3)  FD The average amount of information produced by a probabilistic stochastic source 
of data 

Energy (3)  FD The signal energy is equal to the summation across all frequency components of 
the signal's spectral energy density. 

 
The large number of features would place a burden on the classification (particularly on processing/battery 
limited mobile devices) and therefore a dynamic feature selection approach was devised that can select features 
based upon their uniqueness for individual users. It is envisaged that the effectiveness of each feature towards 
the classification can vary; with some features having a more significant impact for some users over others. The 
dynamic feature selection mechanism selects features based upon a calculation of the standard deviation of 
user’s features with the smaller standard deviation being selected. Standard deviation was utilised due to the 
need to reduce the variability of the feature vector and improve the permanence.  

3.3 Methodology  
The effectiveness of the 304 created features for authentication methods were examined in two scenarios; same 
day (SD) and cross day (CD). In the SD scenario, the dataset was split in 60-40: 60% of the data was used for the 
classifier training and the remaining 40% was utilised for testing. In the CD scenario, the first day data was used 
for training and the second day data was utilised for testing. For each scenario, all user’s gait activities were 
treated as a single dataset; then each activity was studied individually. Due to the prior art and preliminary 
experiments the Support Vector Machine (SVM) classifier was employed as the default classifier. The system 
performance was evaluated by using the standard Equal Error Rate (EER) metric.  
 Results  



The first experiment was conducted to investigate the impact of the dynamic feature selection technique and 
the effectiveness of TD and FD domain features upon the system performance. The results on users’ 
accelerometer (Acc) and gyroscope (Gyro) data for all activities under both the SD and CD scenarios are 
presented in Table 3 and Figure 2. 

Table 3: The EER results on Acc and Gyro data for all activities by using SD and CD scenarios 

 

 

 

Figure 1: The EER results on Acc and Gyro data for all activities by using SD and CD scenarios 

Both the Figure 1 and Table 3 demonstrate that better performances are achieved regarding user’s gait activity 
(both Acc and Gyro data) when the dynamic feature selection technique is applied (the table presents the best 
results achieved under a complete set of experiments involving various feature vector lengths). Indeed, the best 
performance of 7.80% EER is shown by using user’s accelerometer data with 45 features under the SD scenario. 
Also, when the dynamic feature selection method is used, the biggest performance gap can be observed on the 
user’s gyroscope data under the SD scenario: 8.70% EER is obtained by using the 45 dynamic selected features 
while 12.50% EER is achieved by utilising the whole 152-feature set.   

Regarding to the performance of the SD and CD scenarios, the SD scenario always outperforms its CD 
counterpart regardless whether the dynamic feature selection process is used; this is understandable as human 
walking behaviour will change overtime due to various reasons, including changing in shoes, clothes, mood, or 
health and is in line with what the prior-art has found. However, notably the better performance is achieved 
using fewer features in both SD and CD scenarios – although the CD required a larger number of features than 
the SD. This phenomenon suggests that more gait features are required as the variability of the signal increases 
and therefore additional features would be required when the technique is applied in real life. 

With the aim of investigating the impact of individual gait activities upon the classification performance, a multi-
algorithmic approach was evaluated across the different activities (i.e. normal walking, fast walking, walk with a 
bag, walk down stairs and walk upstairs). All user’s activities from both accelerometer and gyroscope sensors 
were examined to set a benchmark for comparison purposes. The experimental results are fully presented in 
Table 4.   

Table 4: Results of user’s Acc and Gyro data and all activities by using SD and CD scenario. 

Features 
(TD and FD)/  
Acc & Gyro 
Sensors 

Dynamic Static 
Number of 

Features (NF) 
EER (%) All 

Features 
EER (%) 

SD Acc 45  7.80 152  10.20 

SD Gyro. 45  8.70  152  12.50 

CD Acc 75  11.76 152  12.85 

CD Gyro. 70  14.25 152  15.45 



 

TD and FD 
Features/ 

Acc & Gyro 
Sensors 

Same Day Cross Day 

Dynamic Static with All 
feature (304) 

Dynamic 
 

Static with All 
feature (304) 

No. of 
Features 

EER (%) EER (%) No. of 
Features 

EER (%) EER (%) 

Normal 110 0.70 1.60 160 6.30 7.50 

Fast 135 0.80 2.30 10 12.69 13.92 

With Bag 85 1.10 2.70 65 6.46 6.94 

Down 
Stairs 

90 3.50 21.60 10 31.10 34.10 

Upstairs 50 4.50 25.0 10 31 33.70 

All 
activities 

245 4.40 4.70 250 12.00 12.18 

 

Initially, similar patterns are exhibited by the result regarding the impact of the dynamic feature selection 
process, with the results using the dynamic feature selection process outperforming those obtained by using the 
full feature set (i.e. 304 features from both Acc and Gyro signals). Notably, the SD scenario ‘all activities’ 
performance using the dynamic feature approach shows a significant improvement over the previous results 
(4.4% in comparison to 7.8%). This same improvement was not seen in the CD approach. 

Exploring the value of a multi-algorithmic approach, the results, particularly for SD but can also be observed in 
most results within the CD results, show an improvement in the recognition performance over the single 
classifier approach. The best result was observed with the normal walking activity using the SD approach, with 
an EER of 0.7%. Also, all individual activities utilise significantly fewer features in comparison with the number 
of features used by all activities with a minimum difference of 110 features in comparison to 245.  

The results show gait recognition whilst walking up and down stairs was not particularly good, even when 
applying the dynamic feature selection approach. Further analysis of the data showed that this data still suffered 
from a high degree of variability, which subsequently made classification challenging. 

4. Discussion 

In comparison with existing studies presented in Table 1, this research utilised a dataset containing a larger 
number of gait samples (8,160 samples) across more users (60 users in total) and covering both same day and 
cross day scenarios. In addition, the research examined a variety of activities offering the opportunity to learn 
the user’s walking behaviour across more realistic scenarios than simple walking under laboratory conditions. 
The signals that are extracted from both the accelerometer and gyroscope sensors contributing to the creation 
of a larger feature vector. The study also proposed a dynamic feature selection and a multi-algorithmic approach 
to classification. 

In terms of performance, for user’s normal walk activity under the same day scenario, the obtained results are 
0.70% EER (by using 110 features) and 1.60% EER (by using the full 304 features) as shown in Table 4, both of 
which are better than the performance of existing studies 1.95% EER of [23] and 1.82% EER of (Watanabe 2014); 
regarding the same activity under the cross day scenario, the obtained results (i.e. 6.30% EER with 160 features 
and 7.50% with the full 304 features) are in line with prior work including 6.1% EER of [15] and 6.15% EER of [21, 
28]; nonetheless, those three prior studies employed the majority and quorum voting technique, which may 
improve the classification up to 50%; in addition, they utilised 20% less users for their experiments than this 
study and hence it could be easier to distinct individual users. 

As demonstrated in Table 4, the impact of the proposed multi-algorithmic approach is effective for the same 
day scenario as most of the individual activities (apart from walk down and upstairs) achieve better performance 
than when they are treated as one activity. However, walking on the stairs resulted in a poor recognition 
performance, suggesting that the approach should not be applied to such scenarios.  

Similar patterns are also observed from the impact of dynamic feature selection process upon the performance. 
As shown in Table 4, for the same day scenario, a 56% decrease in EER can be obtained when the dynamic 
feature selection method is applied upon individual activities with least than 45% of the number of features 



being utilised. In comparison, for the cross-day scenario, the number of features that are used to achieve the 
best performance for individual activities (apart from normal walk) decrease dramatically (e.g. with only 65 or 
10 features out of the total 304 features); nonetheless, only small improvement on the performance is visible. 
It is common that people’s walking behaviour can change over time due to various factors such as weight, mood 
and footwear. Also, there was a 7-day gap between the training and testing data for the cross-day scenario. It is 
envisaged that the time gap will be reduced for real life case, e.g. only previous two days’ data will be used for 
training, and as a result a better performance could be observed.      

5. Conclusion and Future Work 

The study sought to investigate the performance of gait recognition across a wider range of activities and 
participants. Based upon 60 participants, the investigation has provided significant evidence to suggest gait-
based data can be used as a reliable means of transparently verifying users whilst moving. However, the 
performance of cross-day over the same-day methodology does demonstrate feature vector variance that a 
practical system would need to carefully manage in practice. To aid this, the study has explored the use of a 
multi-algorithmic approach (where different classifiers are used based upon the nature of the activity) and found 
that such an approach can achieve a better level of performance over a single classification approach. 
 
The study has also sought to evaluate the feature vector and found that a dynamic approach rather than a static 
(all feature) approach is beneficial to both the performance that can be achieved but with the added benefit of 
reducing the computational load upon the classifier. 
 
Whilst the use of a multi-algorithmic classification scheme would provide better recognition performance, the 
problem has now transitioned into how the system will know which classifier to utilise. Therefore, further 
research will focus upon how to determine the nature of the activity the user is undertaking through devising 
context-awareness. Further research will also focus upon the collection of longitudinal real-life gait-based data 
to more thoroughly evaluate the recognition performance under non lab-based conditions.  
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