70 research outputs found

    XML-Based Heterogeneous Database Integration For Data Warehouse Creation

    Get PDF

    Solving Local Cost Estimation Problem for Global Query Optimization in Multidatabase Systems

    Full text link
    To meet users' growing needs for accessing pre-existing heterogeneous databases, a multidatabase system (MDBS) integrating multiple databases has attracted many researchers recently. A key feature of an MDBS is local autonomy. For a query retrieving data from multiple databases, global query optimization should be performed to achieve good system performance. There are a number of new challenges for global query optimization in an MDBS. Among them, a major one is that some local optimization information, such as local cost parameters, may not be available at the global level because of local autonomy. It creates difficulties for finding a good decomposition of a global query during query optimization. To tackle this challenge, a new query sampling method is proposed in this paper. The idea is to group component queries into homogeneous classes, draw a sample of queries from each class, and use observed costs of sample queries to derive a cost formula for each class by multiple regression. The derived formulas can be used to estimate the cost of a query during query optimization. The relevant issues, such as query classification rules, sampling procedures, and cost model development and validation, are explored in this paper. To verify the feasibility of the method, experiments were conducted on three commercial database management systems supported in an MDBS. Experimental results demonstrate that the proposed method is quite promising in estimating local cost parameters in an MDBS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44824/1/10619_2004_Article_181758.pd

    Integration of Legacy and Heterogeneous Databases

    Get PDF

    Improving National and Homeland Security through a proposed Laboratory for nformation Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    Improving National and Homeland Security through a proposed Laboratory for Information Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    EasyBDI: integração automática de big data e consultas analíticas de alto nível

    Get PDF
    Abstract The emergence of new areas, such as the internet of things, which require access to the latest data for data analytics and decision-making environments, created constraints for the execution of analytical queries on traditional data warehouse architectures. In addition, the increase of semi-structure and unstructured data led to the creation of new databases to deal with these types of data, namely, NoSQL databases. This led to the information being stored in several different systems, each with more suitable characteristics for different use cases, which created difficulties in accessing data that are now spread across various systems with different models and characteristics. In this work, a system capable of performing analytical queries in real time on distributed and heterogeneous data sources is proposed: EasyBDI. The system is capable of integrating data logically, without materializing data, creating an overview of the data, thus offering an abstraction over the distribution and heterogeneity of data sources. Queries are executed interactively on data sources, which means that the most recent data will always be used in queries. This system presents a user interface that helps in the configuration of data sources, and automatically proposes a global schema that presents a generic and simplified view of the data, which can be modified by the user. The system allows the creation of multiple star schemas from the global schema. Finally, analytical queries are also made through a user interface that uses drag-and-drop elements. EasyBDI is able to solve recent problems by using recent solutions, hiding the details of several data sources, at the same time that allows users with less knowledge of databases to also be able to perform real-time analytical queries over distributed and heterogeneous data sources.O aparecimento de novas áreas, como a Internet das Coisas, que requerem o acesso aos dados mais recentes para ambientes de tomada de decisão, criou constrangimentos na execução de consultas analíticas usando as arquiteturas tradicionais de data warehouses. Adicionalmente, o aumento de dados semi-estruturados e não estruturados levou a que outras bases de dados fossem criadas para lidar com esse tipo de dados, nomeadamente bases NoSQL. Isto levou a que a informação seja armazenada em sistemas com características distintas e especializados em diferentes casos de uso, criando dificuldades no acesso aos dados que estão agora espalhados por vários sistemas com modelos e características distintas. Neste trabalho, propõe-se um sistema capaz de efetuar consultas analíticas em tempo real sobre fontes de dados distribuídas e heterogéneas: o EasyBDI. O sistema é capaz de integrar dados logicamente, sem materializar os dados, criando uma vista geral dos dados que oferece uma abstração sobre a distribuição e heterogeneidade das fontes de dados. As consultas são executadas interativamente nas fontes de dados, o que significa que os dados mais recentes serão sempre usados nas consultas. Este sistema apresenta uma interface de utilizador que ajuda na configuração de fontes de dados, e propõe automaticamente um esquema global que apresenta a vista genérica e simplificada dos dados, podendo ser modificado pelo utilizador. O sistema permite a criação de múltiplos esquema em estrela a partir do esquema global. Por fim, a realização de consultas analíticas é feita também através de uma interface de utilizador que recorre ao drag-and-drop de elementos. O EasyBDI é capaz de resolver problemas recentes, utilizando também soluções recentes, escondendo os detalhes de diversas fontes de dados, ao mesmo tempo que permite que utilizadores com menos conhecimentos em bases de dados possam também realizar consultas analíticas em tempo-real sobre fontes de dados distribuídas e heterogéneas.Mestrado em Engenharia Informátic

    Database Integration: the Key to Data Interoperability

    Get PDF
    Most of new databases are no more built from scratch, but re-use existing data from several autonomous data stores. To facilitate application development, the data to be re-used should preferably be redefined as a virtual database, providing for the logical unification of the underlying data sets. This unification process is called database integration. This chapter provides a global picture of the issues raised and the approaches that have been proposed to tackle the problem

    Integration of Legacy and Heterogeneous Databases

    Get PDF

    Robust Query Optimization Methods With Respect to Estimation Errors: A Survey

    Get PDF
    International audienceThe quality of a query execution plan chosen by a Cost-Based Optimizer (CBO) depends greatly on the estimation accuracy of input parameter values. Many research results have been produced on improving the estimation accuracy, but they do not work for every situation. Therefore, "robust query optimization" was introduced, in an effort to minimize the sub-optimality risk by accepting the fact that estimates could be inaccurate. In this survey, we aim to provide an overview of robust query optimization methods by classifying them into different categories, explaining the essential ideas, listing their advantages and limitations, and comparing them with multiple criteria
    corecore