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Resumo O aparecimento de novas áreas, como a Internet das Coisas, que requerem o
acesso aos dados mais recentes para ambientes de tomada de decisão, criou
constrangimentos na execução de consultas analíticas usando as arquiteturas
tradicionais de data warehouses.
Adicionalmente, o aumento de dados semi-estruturados e não estruturados
levou a que outras bases de dados fossem criadas para lidar com esse tipo
de dados, nomeadamente bases NoSQL. Isto levou a que a informação seja
armazenada em sistemas com características distintas e especializados em
diferentes casos de uso, criando dificuldades no acesso aos dados que estão
agora espalhados por vários sistemas com modelos e características distintas.
Neste trabalho, propõe-se um sistema capaz de efetuar consultas analíticas
em tempo real sobre fontes de dados distribuídas e heterogéneas: o EasyBDI.
O sistema é capaz de integrar dados lógicamente, sem materializar os da-
dos, criando uma vista geral dos dados que oferece uma abstração sobre a
distribuição e heterogeneidade das fontes de dados. As consultas são exe-
cutadas interativamente nas fontes de dados, o que significa que os dados
mais recentes serão sempre usados nas consultas. Este sistema apresenta
uma interface de utilizador que ajuda na configuração de fontes de dados, e
propõe automaticamente um esquema global que apresenta a vista genérica
e simplificada dos dados, podendo ser modificado pelo utilizador. O sistema
permite a criação de múltiplos esquema em estrela a partir do esquema
global. Por fim, a realização de consultas analíticas é feita também através
de uma interface de utilizador que recorre ao drag-and-drop de elementos.
O EasyBDI é capaz de resolver problemas recentes, utilizando também
soluções recentes, escondendo os detalhes de diversas fontes de dados, ao
mesmo tempo que permite que utilizadores com menos conhecimentos em
bases de dados possam também realizar consultas analíticas em tempo-real
sobre fontes de dados distribuídas e heterogéneas.





Keywords Big data, data integration, distributed databases, heterogenous databases,
logical data integration, OLAP, data warehousing, near real-time data.

Abstract The emergence of new areas, such as the internet of things, which require ac-
cess to the latest data for data analytics and decision-making environments,
created constraints for the execution of analytical queries on traditional data
warehouse architectures.
In addition, the increase of semi-structure and unstructured data led to the
creation of new databases to deal with these types of data, namely, NoSQL
databases. This led to the information being stored in several different sys-
tems, each with more suitable characteristics for different use cases, which
created difficulties in accessing data that are now spread across various sys-
tems with different models and characteristics.
In this work, a system capable of performing analytical queries in real time
on distributed and heterogeneous data sources is proposed: EasyBDI. The
system is capable of integrating data logically, without materializing data,
creating an overview of the data, thus offering an abstraction over the distri-
bution and heterogeneity of data sources. Queries are executed interactively
on data sources, which means that the most recent data will always be used
in queries. This system presents a user interface that helps in the config-
uration of data sources, and automatically proposes a global schema that
presents a generic and simplified view of the data, which can be modified
by the user. The system allows the creation of multiple star schemas from
the global schema. Finally, analytical queries are also made through a user
interface that uses drag-and-drop elements.
EasyBDI is able to solve recent problems by using recent solutions, hiding
the details of several data sources, at the same time that allows users with
less knowledge of databases to also be able to perform real-time analytical
queries over distributed and heterogeneous data sources.
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Chapter 1

Introduction

Information is an important aspect of today’s businesses. Analyzing data efficiently can
lead to vital information that increases business performance. If more and better data exists
and if it can be analyzed efficiently, the better information one can obtain, and therefore better
decisions can be made. Not only in companies, but also in other institutions, such as health
agencies that try to predict the areas with the greatest influx of registered cases of an epidemic,
and thus better prepare resources to deal with the increasing demand for health services.
However, this requires analyzing data that is located in various data sources, with different
characteristics and organizations, making this a difficult task. In addition, obtaining the most
recent data is also a necessary requirement in many use cases. The example mentioned above
needs access to the most recent data so that it can detect that case as soon as possible. Access
to the most recent information found in several data sources has been a recent problem studied
in the scientific community.

This chapter presents a brief introduction to the area and background for the work done
in this dissertation. Motivation, objectives, and contributions of this work are also discussed
here.

1.1 Background

Database (DB) systems have been evolving over time due to the emergence of new require-
ments and needs. Initially, relational databases were prominently used by applications to store
data of various domains, such as user information or bank accounts. This type of databases
are optimized to store information in a centralized, structured and consistent manner [5].

Between late 2000’s and early 2010’s, the amount of data that needed to be processed or
stored was already “too big, too fast or too hard for existing tools to process” [6]. The term
Big Data is used to denote this phenomenon. In this context, the disadvantages of relational
databases emerged, namely the fact that these could not scale as needed. Relational DBs
also force data to have a specific type of structure. Nowadays, companies have interest in
storing data that is semi-structured or unstructured, such as images or videos [5], but also
data produced by sensors or machines in context of Internet of Things (IoT) and Industrial
Internet of Things (IIoT) [7, 8], or even in data streams. According to [5], “a very large portion
of the data (approximate 70% to 90%) in the business world today is unstructured data, while
SQL can only handle the structured portion of data”.

Several types of database systems were created later to address the disadvantages of rela-
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tional DBs, such as higher availability, storage of unstructured data and horizontal scalability.
These database systems are called Not Only SQL (NoSQL) and the philosophy behind them
is that a state of consistency is not necessarily guaranteed after each transaction (data may
be temporarily inconsistent or stale). It is preferred that these databases have a better per-
formance on data handling, even if their state is not immediately consistent [5, 9].

A variety of NoSQL database systems already exist, each one more suitable for a specific
purpose. Key-value databases, such as Redis, are good to store simple data that have no
relationships [5], while graph databases, such as Neo4J, are designed to store information
regarding the relationships between the data, useful for social networks or cloud management
[5]. Columnar databases, like Cassandra, are designed for high availability and scalability and
are often used for Online Analytical Processing (OLAP) systems [5]. Document databases,
such as MongoDB, have no schema and therefore store data in the form of documents identified
by an index that can have different fields [5].

Other types of systems store data in a distributed environment made up of nodes and can
process large volumes of data in parallel, such as systems that operate over Hadoop Distributed
File System (HDFS) or Google File System. The term data source will be used from this point
to refer to a broader category of database systems, which can be relational or NoSQL DBs,
HDFS systems or even flat files.

Given the wide variety of data sources available that cover multiple types of data and
purposes, it is more and more frequent for large scale software systems to use several types
of database systems for different modules. For example, an e-Commerce platform can use a
key-value database to store information regarding a shopping cart and a document database
to store the catalog of different products with distinct attributes [5]. But this causes data to
be scattered between different database systems with distinct characteristics. It must also be
considered that companies may have several databases geographically distributed, storing data
for specific regions. Dealing with distributed databases means dealing with possible replicated
or fragmented data and communication over the web, as well as dealing with distributed query
processing [10].

1.2 Motivation

Business analysts need to analyze the data, regardless of their origin. However, when
the data are spread across multiple systems with distinct data models and languages, it is
necessary to know about their organization and inherent of all the data sources, which may
not be suitable for some analytical scenarios involving several data source systems with distinct
data models. Data integration offers solutions to unify all data residing in different data sources
into one single point of access, which provides consistent data models while also maintaining
semantic accuracy, and thus omitting the complexity of querying different data sources.

One of the most adopted solutions for data integration is known as data warehousing,
which uses a process known as Extract-Transform-Load (ETL) to integrate data from multiple
databases and load them into a single database. However, this is a complex and expensive
process, and is only executed periodically, not showing the most recent data. However, in
many use cases such as IoT, near-real time data access is a requirement for data analytics
[7, 8], but traditional data warehousing techniques do not support near real-time querying. In
traditional data warehouses, if changes need to be made to the internal organization of data
in the warehouse the process to do so is expensive and will take time before those changes can
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be seen because data needs to be reloaded and reintegrated in the data warehouse. During
this time, the system may be offline, and in this case, it cannot be used.

Another approach for data integration is the creation of a logical (or virtualized) data
warehouse where data would not be integrated and loaded to a single database, but instead
would be fetched directly from each data source while a unified schema is responsible to inte-
grate all data, thus allowing for near-real time querying. Many systems have been developed
showing different implementations of the aforementioned data warehouse logical approach
[3, 7, 8, 11, 12, 13], however some are complex to use [7] and need lot of work to configure or
to create queries, while others are easier to use, but take a step backwards by forcing users
to know details regarding the internal organization of the data sources [12, 14]. Additionally,
from the research made for systems that support queries against heterogenous and possibly
distributed databases (which will be discussed in Section 2.4), none of the found systems
support or were designed for data analytics applied to decision-making environments.

Regarding the advancements made in data analytics systems, new architectures of data
warehouse systems have been proposed in order to achieve near real-time querying [15, 16, 17],
but these systems have a more complex architecture, employ data materialization techniques
and do not use the logical approach. Moreover, the task of executing analytical queries can
also be made by users that do not have any experience in the area of database systems, and are
only interested in performing analytical queries without needing to know which data sources
are used, how to make the necessary configurations in order to be able to execute queries and
how to execute queries using a querying language. None of the systems discussed employ a
high-level design to assist these users in order to make analytical querying easier in order to
include people from other areas.

1.3 Objectives And Contributions

The main objective of this dissertation is to create an abstraction over the underlying data
source’s distribution and characteristics, so that it is possible for users to issue queries to all
systems simultaneously, as if only one database existed. The main use case are decision making
environments based on distributed and heterogenous data sources (e.g., decision making based
on IoT data). Analytical queries should therefore be the main type of queries executed over
this abstraction. Traditional data warehouses present limitations, such as not being able to
provide recent data, or the cost of the materialization processes, which make any changes to
the underlying structure of data very lengthy.

Specifically, the objective is to develop a system that can meet the following requirements,
all of which are an integral part of the previously named objectives:

• Distributed Data Source Querying - queries over distributed data sources must be pro-
cessed and executed.

• Heterogeneous Data Source Querying - the system must deal with the heterogeneity of
each data source, such as data model, and adapt a query such that it is compatible with
each data source, while also allowing the creation of queries that refer to multiple data
sources at once.

• Provides Location Transparency - details regarding the location of each data source must
be hidden.
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• Automatic Global Schema Creation - the system must propose a unified view of the
overall data sources (in order to simplify the complexity of dealing with various schemas)
which can be corrected by the user.

• Tools Enabling Analytical Queries Oriented Towards Decision-Making Environments -
must support the execution of analytical queries by offering tools that support decision-
making environments, such as multidimensional models.

• Provides a Guided Star Schema Creation - creation of a star schema should be done in-
teractively, by selecting the tables to be mapped from the global schema, thus facilitating
the configuration process.

• Deals with Physical Data Partitioning, Providing Transparency - data partitioning (hor-
izontal or vertical) must be made transparent by aggregating all data as if only one node
exists.

• Specification of Constraints Over the Global Schema - primary key and foreign key
constraints must be possible to be created on attributes.

The methodology to attend to these requirements is to first search available systems capa-
ble of querying distributed and heterogenous data sources and conduct experiments in order
to better establish its capabilities and limitations. In other words, the first two requirements
will be achieved by using an already existing system as a base, as implementing such a sys-
tem from scratch is a long and complex task. After a system is selected, more functionalities
should be added using that system as base, depending on the selected system’s limitations.
Data integration techniques should also be researched and implemented in order to enable
the automatic creation of a unified view (global schema) of the underlying data sources and
to simplify the complexity of analysing multiple schemas. A way to submit queries to the
underlying tool must also be implemented. Finally, in order to validate the developed system,
concrete case studies will be used to test and demonstrate the system’s capabilities.

This dissertation’s main contributions is a system that allows non-expert users to perform
real-time analytical queries over distributed and possibly heterogenous data sources. Addition-
ally, an abstraction must be created so that the complexity of dealing with multiple schemas
from distinct data sources becomes imperceptible to the user. The system uses recent meth-
ods to solve modern problems, namely by not materializing data like most data warehousing
systems, but by querying data where it resides.

Multiple tools and systems that can perform queries over distributed and heterogenous
data sources or (near) real-time analytical queries already exist, either developed as part
of research or as commercials systems. However, a system that offers both of these features
simultaneously has not been found (to the best of our knowledge) in the literature. The system
proposed here can perform both, thus contributing to the state of the art, by using the logical
approach, which is less commonly used. By accessing data directly where it resides, without
any data materialization, it is easier to change the overall organization of any multidimensional
schema created.

Finally, this work resulted in a demo paper, accepted in International Conference on Ex-
tending Database Technology (EDBT) 2021 [18].

4



1.4 Dissertation Structure

The rest of this dissertation is organized as follows:

• Chapter 2 presents a literature review on data integration and querying distributed
and heterogenous data sources. Examples of available systems that solve some of the
previous problems are also presented, and an overall comparison is performed between
the systems by verifying which of the aforementioned requirements in 1.3 each system
attends to.

• Chapter 3 introduces and explains in more detail the distributed query engine used in
this work, while also exploring its capabilities, limitations, how to use it and how it can
be useful for the overall system being developed.

• Chapter 4 describes the system’s architecture and discusses the main challenges found
throughout the development of the system and explains the implemented solutions.

• Chapter 5 explains how the system works, showing all implemented features and the
user interface, and describes how to use the system, while also justifying some design
choices.

• Chapter 6 presents the evaluation of the implemented solution using two case studies in
order to determine the system’s capabilities and limitations.

• Chapter 7 offers final remarks and the key takeaways on the final system and its potential
contributions and limitations. It also proposes guidelines for future work.

5



6



Chapter 2

State of Art

Integration of multiple distributed and possibly heterogeneous database systems is a field
of research since the 1980’s, even before the appearance of NoSQL databases or systems that
operate over HDFS. Being able to use multiple distributed databases with different charac-
teristics in one integrated system raises several challenges. As database systems evolve and
with the increase of new constraints, such as Big Data, new issues and potential solutions are
discussed in the literature. This section describes some of those issues and solutions, as well as
some of the systems and frameworks created to handle distributed and possibly heterogeneous
data sources. System that offer solution to the growing necessity of near real-time analytical
querying are also presented here.

The scope of this dissertation uses concepts from multidimensional analysis and assumes
the user is familiarized with these terms, namely facts tables, dimensions and measurements
and different types of multidimensional schemas (although the focus will be on star schemas).
A good introduction to multidimensional analysis can be found in [19].

First section will cover data integration challenges, concepts and architectures. The fol-
lowing section will focus on existing problems when querying distributed homogeneous and
heterogenous data sources. Afterwards, techniques that allow the creation of a unified schema
providing an overview of the data sources are presented. In the end, a discussion is pre-
sented on systems that use architectures more suitable for querying distributed and possibly
heterogenous data sources or for near real-time querying.

2.1 Data Integration

Data integration combines data from different sites and offers a single point of access
through a unified view of the overall data sources, such that it is possible to query all data
from all sites as if it was only one data source. Usually, this single point of access is a global
database, providing access to multiple distributed local data sources, or sites. The design to
create such database can follow 2 approaches: top-down or bottom-up.

The top-down approach starts with a global database providing a single point of access
and a unified view of the overall local sites [20, 10], and only then creates each individual data
source, each one closely following the schema and constraints specified in the unified point of
access. The global database provides a query interface consisting of mechanisms that provide
ways to submit commands to the system and query engines that deal with data in different
ways. The global database also provides a query language from which it is possible to query all
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data sources within the system regardless of their data model (such as relational, document,
or any other unstructured data model) [10]. Relational data model is used here as an example
for the purpose of this explanation, having also been the data model adopted in the literature
to exemplify concepts. Data sources are distributed but homogeneous, meaning that all share
the same data model, schema and query language, while also being tightly integrated with
the system.

However, this is not the case in many contexts, such as large companies with multiple
departments responsible to create and design a data storage site. Each department would
choose a specific database system best suited for a certain task while also designing its schema
or data organization in order to meet a particular need, thus introducing heterogeneity among
all data sites. Because each data site is designed first, the single point of access must be
created in such a way that it is possible to integrate all data in the unified view. This is
known as the bottom-up approach and will be further discussed in Section 2.3.

The use of different database systems for a specific domain and target application is now a
standard, even for medium to small companies or platforms because there are many databases
with different characteristics, offering advantages that better suit different objectives [5], thus
invalidating the use of top-down designs on many use cases. But this introduces new challenges,
such as the use of different models between the databases and distinct ways to query each
database due to semantics of query languages [20]. Distributed databases add the problem of
communication over the web with each database.

The scope of this dissertation is only on bottom-up design methodology, because this work
considers scenarios in which the databases are already created, i.e., already designed and
deployed.

2.1.1 Challenges

Data integration’s main challenges, when considering a bottom-up approach, are usually
classified in 3 categories: distribution, heterogeneity and autonomy [20, 21].

Heterogeneity

Heterogeneity can be due to various factors in database systems or other DBMS: data
model (relation, graph, key-value), query language, software and capabilities of the Database
Management System (DBMS). The proliferation of multiple different data storage systems
contributed for this type of heterogeneity. But even if the same type of database system
is used, heterogeneity can still occur in the schema, which causes syntactic and/or semantic
heterogeneity at the level of the data model [20, 22, 21]. For example, consider a company that
has multiple subsidiaries with the same type of relational database system, each one containing
data regarding its employees, sales and other business-related information. As each subsidiary
is going to implement their own local database, the most likely scenario is that each one ends
up with a different schema to store the same type of information. If a business analyst intends
to query all this information on each database, then he is forced to know the details of each
different database.

These differences in the design adopted by each entity is known as heterogeneity at schema
level, and may be either structural or semantic [10]. The former includes conflicts such as data
types, or constraints [10], and the latter refers to conflicts in the meaning of the data stored.
More concret examples of schema heterogeneities are [23]):
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• Using different name variations to specify the same concept (such as a table or a table
attribute).

• Using disparate data types for the same data domain (such as using varchar or numeric
for the attribute ‘employeeID’), table attributes, or overall table organization (such as
missing table attributes and general mismatch in table structure).

• Using uneven scales for certain measurements in attributes.

• Attributes with syntactically similar meaning can have different semantic meaning. For
example, consider 2 imaginary databases, DB1 and DB2. One attribute in DB1, stores
averages of production cost per day without taxes, while other attribute in DB2 also
stores production cost per day, but with taxes.

To understand that two components in different database schemas are semantically related
despite these differences is known as schema matching [20], which will be discussed in detail
in Section 2.3.1.

Distribution

Distribution refers to the physical distribution of data that may be in different data storage
systems. These systems can be geographically distributed or distributed between machines
[21].

Autonomy

Autonomy defines the amount of operations related to data access or configuration that
is possible to perform in a DBMS [20], or in other words, “the degree to which individual
DBMSs can operate independently” [20]. A database system with no autonomy means that
it cannot receive requests directly from the users or client applications, i.e., requests must be
sent through a mediator. The level of autonomy of a database can also be variable, with higher
autonomy database systems allowing the execution of more operations than less autonomous
ones. Usually, a database system with high autonomy generates more heterogeneity [21]. An
example of database with no autonomy would be to have a cluster of machines, each one with
a database system, but no operations are allowed on an individual machine, and the only way
to execute operations is by using a central DBMS that controls all databases in the cluster.
In this case, each database in a cluster is not autonomous.

2.1.2 Methodologies And Approaches For Database Integration

When designing a distributed database system using a bottom-up methodology it is neces-
sary to build a unified view of the overall data sources that already exist. These data sources
are designated as local data sources (or local databases, but the broader term "data sources"
is preferred here), each of them containing its own schema, which will be from here on out
designated as Local Conceptual Schema (LCS) or simply local schema. The objective is to
create a Global Conceptual Schema (GCS), also known as mediated schema or global schema,
with a simplified and integrated view of all LCSs.

There are 2 ways to achieve this: the materialized approach and the logical approach
[20, 9].
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(a) Materialized Approach [9]. (b) Logical Approach [9].

Figure 2.1: Approaches for database integration.

The data materialization approach, depicted in Figure 2.1a, is currently the most used
by enterprises for the implementation of decision support systems. These systems may use
Online Analytical Processing (OLAP) to create and view multidimensional cubes and display
data organized in different dimensions, while also performing specific operations present in
such cubes, such as slice and dice. To extract data from each local data source, scripts are
created for each one and data is then extracted, transformed and loaded (ETL) into one
database, called data warehouse [9], which can support large volumes of data and is organized
in such a way that allows users to perform analytical queries on data loaded from several data
sources. OLAP operations aim to analyze historical data, therefore each table can be very
large and queries can be very complex [10]. This is one of the downsides of performing ETL
operations, as they tend to be costly and take a long time to integrate all data due to its large
size. The materialization of data is a heavy process, that is costly if any changes to the data
structures and organization need to be made, as these changes will take more time to take
place. Data is extracted from each data source periodically which means the data stored in
the data warehouse may not be up to date. This approach also generates data redundancy
because the same information in each data source also exists replicated in the data warehouse,
even if organized differently in the latter. Data warehouses are not very suitable for medium
or small companies in an economic point of view, as setting up a data warehouse with a very
large storage capacity is expensive and therefore not affordable for small to medium enterprises
[24].

Other emerging fields, such as IoT or IIoT, have data constantly being generated from
several sensors. These projects need to make analytical analysis on the most recent data, or
near real-time analysis, but the materialized approach is not compatible with this because
the complexity of ETL operations cannot guarantee that recent data is available in the data
warehouse. OLAP operations use only relational structured data and cannot support the un-
structured data of some NoSQL databases or other data sources, and both HDFS and NoSQL
systems do not natively support OLAP operators existing in traditional data warehouses [25].
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Finally, data warehouses are usually not the preferred approach to store data streaming, and
instead HDFS tools are used to perform such tasks.

The logical approach, depicted in Figure 2.1b, provides an alternative that might suit these
needs, as queries are made directly to each data site and only the needed data is used from
each local data source [9], therefore reducing the complexity of extracting and transforming
data as seen in ETLs. Directly querying the data where it resides also makes it being the
up-to-date (or nearly up-to-date), which data warehouses could not ensure.

The logical approach uses an architecture commonly referred in the literature ([23, 20,
21]) as the mediator/wrapper. The base idea is that a mediator creates and holds the GCS
discussed earlier and is able to receive a query using this view and decomposes it to be coherent
with the LCS of each data source. The decomposed queries are forwarded to wrappers that
are responsible to communicate with a data site [9] (as seen in Figure 2.1) and pass a query
compatible with the data source’s data model and query language. The decomposed query is
executed by the management system of the data sources [10] and the results are sent to the
mediator by the wrappers, which should again transform results from the local schema view
to the global schema view.

A few problems can also be pointed out with this approach. For example, having local users
that are issuing queries to a data source directly for Online Transaction Processing (OLTP) (i.e.
a costumer consulting the list of flight schedules) and global users issuing complex analytical
queries to these data sources from the global database at the same time can degrade the
performance of each data source and increase the time of execution for OLTPs, thus giving
to the end user an overall unpleasant experience on the platform [20]. Another aspect is that
the logical approach does not have any incorporated tools for OLAP, as is the case with data
warehouses.

This dissertation focuses on developing a system that logically integrates data in order
to fulfill the objectives established, therefore, the remaining of this section will be focused
exclusively on concepts and systems that employ the mediator/wrapper approach.

Most of the literature analyzed regarding this topic present or propose several taxonomies
to classify different systems while also introducing variability in terms such as multidatabase.
For example, Sheth et.al. [23] (from 1990) proposed that multidatabase systems was a more
generic term and federated systems was a type of multidatabase systems. Other authors such as
Chen et.al. [21] also use this taxonomy. However others claim that these terms are synonyms,
such as Özsu et.al. in [20]. Therefore, this dissertation will use the term multidatabase systems
to refer to systems that integrate multiple distributed and possibly heterogeneous data sources
using a logical approach and a Bottom-Up methodology. A taxonomy will also be used and
discussed in Section 2.4 that categorizes multidatabase systems in 2 groups and is in part
influenced by the one presented by Tan et.al. in [3].

2.2 Distributed And Heterogeneous Data Sources

When dealing with distributed queries, a few key problems must be considered, namely
data partitioning (also known as fragmentation) and data replication, which should be imper-
ceptible to the end user that executes queries using the global schema in the global database.
When using homogeneous data sources, the only issues are data replication, data partitioning
and query optimization (note that these issues are the same for database systems designed in
a top-down approach), however with heterogeneous data sources more issues arise. Although
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query optimization is a concern that has been widely discussed in the literature, it will be
omitted here because it is not within the scope of this dissertation.

A quick introduction to data fragmentation and data replication is presented next, followed
by the issues that querying heterogenous data sources introduce.

2.2.1 Data Partitioning And Data Replication

If a database server fails and no replicas of such server exists, then clients will be unable
to access such information. Creating replicas or partitions of a database server can improve
fault tolerance, so even if one server fails, another exists to receive and process the request.

One solution is to replicate the data across several servers, but data must be kept consistent
across all nodes, meaning data should be updated by all nodes regularly. However, a query
may update data in one node and another query that references the same data may be issued
to another node who does not have a copy of the data up-to-date yet when the transaction
occurs. The updates of data across nodes may happen in two forms:

• lazy - A master node keeps all data up-to-date and the master propagates the updates
to each node (lazy update). [10]. Queries made to slaves may not be updated.

• eager - All updates are applied to all nodes before any new transaction is performed
(eager update). [10]. Queries made to any node always have updated data.

Other solution is to perform data partitioning, which is usually performed on tables from
relational databases. Partitioning tables involves creating smaller tables with less records on
each one and then transferring each new table to new servers, which can alleviate the load of
each server because the requests can be spread by different servers, as well as to decrease the
time needed to search the table’s records. The main data partitioning techniques commonly
used are vertical or horizontal partitioning, both methods illustrated in Figure 2.2.

In vertical partitioning, columns are divided across several tables. Each new table must
have a primary key which also is a foreign key referencing the primary key of the first table.
This is a good strategy to split more detailed information that may be less needed into other
tables, and therefore it is less likely that those tables need to be accessed in the same query
through joins. For the same reason, it is also adequate to create tables containing columns
that are frequently accessed together [20].

In horizontal partitioning, a table’s rows are divided into several new tables, whose columns
remain the same. In order to balance the requests evenly for each table, one can partition the
records through a strategic condition such that the same amount of records are split across
tables and that records in each table have similar likelihood of being accessed. As a simple
example, it would be wise to split a ’clients’ table by age or gender of the costumer if there is
an evenly distribution of entries across several tables. All clients with ages 20 through 30 could
be placed in one table and clients 40 through 50 in another one. A bad example is to split
by country, since some residents have much more population than other countries, creating
an unbalanced distribution of data. If certain records are accessed less often than other’s,
partitioning can be made such that those records are placed in one table, and therefore less
likely to be accessed [26].

A distributed database system will provide partitioning transparency, replication trans-
parency and location transparency, which means that the location of the data and any repli-
cation or partitioning is completely invisible to the end user, thus making it much easier to
deal with a set of distributed databases.
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Figure 2.2: Example of relational table partitioning. Taken from [1].

2.2.2 Querying Heterogeneous Data Sources

On top of the previous issues with data replication or data partitioning, other issues arise
with heterogenous data sources.

First, each data source may have different limitations in regards to operations that can be
performed [10]. For example, some DBMSs may not support certain types of complex joins or
aggregations [10]. Heterogeneous data sources may also have different query languages suited
for different types of data models (document, relational, key-value), therefore the translation
process of a query from the global database to a local data source is more complicated [10].
Autonomy of data sources is also a concern, as data sources with higher autonomy can, for
example, end it’s communication with other systems because it was terminated [10] by an
administrator or maybe because its configuration details have changed.

Finally, semantic heterogeneity discussed in Section 2.1.1 must also be solved. Next section
will focus in more detail on how the global schema is created and how to solve these issues.
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2.3 Global Schema Generation

A global schema is created by integrating and mapping the LCSs of each local data source
[27]. This global schema should map similar objects between all data sources into one object,
therefore offering a simplified view of the data sources within the system. Additionally, this
global schema should also contain information on how to translate each object in the global
schema back to the local schema.

In order to create the global schema, three fundamental steps are required:

• schema matching - identify data similarities (syntactic and/or semantic) between differ-
ent objects [20].

• schema integration - integration of multiple local objects with same information type
into one global object [20].

• schema mapping - creation of mapping between all the global objects and local objects
[20].

Each of these steps has its own challenges and will be explained in the following sections.
Different data sources may use varied structures to organize data, such as tables in rela-

tional or collections in document-oriented databases, however, for simplicity, relational model
will be used in the examples given to better help explain certain concepts.

2.3.1 Schema Matching

The main goal of schema matching is to detect objects stored in different data sources that
contain data belonging to the same conceptual domain. The objects to match can be either
tables or columns, depending on the scope of schema matching. For example, if the objects
are tables, schema matching should detect that the tables "employees" and "employees_info"
located in different databases contain the same type of information, which is data regarding
employees of the company.

This can be achieved in two ways: either by looking at the structural organization of the
table or by looking at the format or content of instances of data. The former is known as
schema based matching (or structured matching) and the later as instanced based matching [2].
Inside of each category, there are many strategies for schema matching. Several approaches
can also be use together. A summary of all possible schema matching approaches can be
organized as in Figure 2.3. This taxonomy was proposed by Rahm and Bernstein [2] and is
widely adopted in the literature, such as [28].

Schema matching algorithms provide a measure of how similar two elements are. Usually
a similarity value ranges between 0 and 1 is used, in which 1 means that the two elements are
very similar, possibly the same. If the similarity between both elements is within a certain
threshold, then they are considered semantically equivalent, and therefore a match.

Schema Based Matching

Schema Based Matching techniques use information of the schema metadata in the objects,
such as names, data types, inter-table relations and overall schema structure [2]. There are
also two categories of schema based matching that classifies what information is used to assess
the similarity:

14



Figure 2.3: Schema matching approaches, as specified in [2].

• element level - uses data such as names and data types of the schema [10, 28], and two
approaches exist: linguistic and constraint based.

• structure level - uses the relationship between the elements [10, 28], and only one ap-
proach exist: constraint based.

At element level schema matching, there are two approaches: linguistic and constraint-
based. Linguistic approaches usually use the name of the elements and check how similar they
are. Some metrics that can be used to measure name similarity are n-grams, Jaccard index,
and Levenshtein distance. A dictionary with a list of synonyms can also be used to identify
name similarities whose previous mentioned metrics would fail, such as ’car’ and ’automobile’
[2]. Dictionaries for hypernyms (a word that is more general than another), such as vehicle and
car, and for homonyms (terms that are pronounced equally, but may spell the differently and
mean different things) can also be used [10, 2]. This approach however, does not guarantee
that two tables are actually semantically identical. For instance, two ’budget’ tables can refer
to two different concepts of budgets, such as budget for products, or budget for stores, two
concepts that can be viewed as different [20].

Constraint approaches use information regarding constraints of the elements, namely, data
type, primary key, foreign key and unique constraints. The data type of the elements could
be a good decisive factor in some cases. If two columns contain data types such as ’date’, they
could be good candidates to match. Looking at Figure 2.4, the columns ’EmpNo’ and ’Pno’
have the same data type and both are unique (’EmpNo’ is a primary key, which also makes
it unique), which suggests that these are good matching candidates. However, some DBMSs
have different names for the same conceptual data type, such as varchar and string. Similar
data types may also be used for the same attribute, such as double or numeric, and can create
imprecise matches [28]. An example in which this technique fails is if data regarding phone
numbers are stored in one column as an integer, and on the other column is placed as a string,
as these will not be considered a match, even though they are semantically identical.
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Figure 2.4: Schema matching using constraint based approach. Taken from [2].

Instance Based Matching

Instance Based Matching techniques consider the instances of data instead of the schema
and analyze the formats of data in order to decide upon matches, which is better suited for
cases when the data is semi-structured and schema provides little information [2, 28]. There
is only one category of instance based matching, which is the element level. No instance based
matching techniques exist at the structure level as with schema based matching, because
only the instantiated data is analyzed. Inside of the element level category, there are two
approaches for instance based matching:

• linguistic approaches - employ information retrieval techniques to textual information
[10].

• constraint approaches - analyze ranges of values in data [10].

Both these approaches are similar to the ones seen on schema based matching at element
level, however the techniques here employed focus on instances of data. Linguistic approaches
can look at instances and count the most frequent keywords or combinations of words [2]. If
two elements contain the same frequent words, they could be matches.
Constraint based approaches can analyze the ranges of numbers in 2 elements, or averages of
character patterns [2, 10]. This could allow the detection that 2 elements contain data with a
consistent format, such as dates or phone numbers. Instance based matching techniques are
less efficient because we have to instantiate and work with the data directly.

There are also approaches that employ machine learning to perform schema match, called
learning-based approaches. As all machine learning projects with supervised learning, it re-
quires a dataset with examples of correct schema matches. This set is called training set, and
it is used to ’learn’ when to establish matches using probabilistic models [20]. When feeding
another set of elements to the model, it should predict with a certain accuracy if they are or
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not a match. This accuracy depends greatly of the quality of the training set and the methods
and parameters used for the model.

Combination Of Schema Matching Approaches

Previously described schema matching approaches can be used together to improve match-
ing results. For example, one could look at the schema information and use linguistic ap-
proaches to check how similar the names of elements are, while simultaneously use constraint-
based approaches to check their data types, and look at the instances of data in order to
analyze their format. The combined results of each approach may yield a more accurate
similarity result.

It is possible to combine matching approaches in 2 ways: composite or hybrid.
The hybrid way of combining match algorithms joins them all into one algorithm to analyze

elements and give a similarity score between the elements [20]. Considering the previous
example, we can create an hybrid algorithm that analyzes the name and the datatype of the
elements and returns a similarity score between them.

Composite works by successively applying matching approaches to elements, obtaining a
similarity score for each approach and then combining each individual score into one final score
[20]. This final score can be obtained in various ways, from average to more sophisticated
ranking algorithms [20]. By using a composite combination, we could apply a data type
comparison algorithm between elements, followed by a name similarity algorithm, and then
use a certain function to combine the values of similarities obtained from both matches.

No matter how many combinations of algorithms are used, there is no guarantee that
the match is correct, so human intervention is always necessary. What can be done and is
currently proposed in the literature are algorithms, methodologies or tools to facilitate users
in the schema matching step, since this this can be an arduous task.

2.3.2 Schema Integration

To build the global schema, it is necessary to merge all tables that were identified as
semantically identical in the schema matching process into one global table that retains the
same semantic meaning for each matching local table. But at the same time, local tables that
had no match (meaning they are unique and there is no other table semantically similar) must
also be mapped into one global table, but this is a trivial process, as it is enough to just create
an equal table in the global schema with the same columns and make that local table as a
match to the global table. The focus of schema integration is to integrate multiple local tables
that match to more than one global table.

Note that there are cases in data integration in which the global schema is already defined
and this stage is unnecessary [20], such as data warehouses, in which the global schema is
pre-defined and the local schemas are then mapped to that global schema [20]. But for the
purpose of this work, the global schema must be constructed dynamically, as it is not known
in advance what data sources will have to be integrated and newer data sources may be added
to the system in the future.

There are two main ways to perform schema integration: binary or n-ary integration.
In binary integration, depicted in Figure 2.5a, tables are merged two by two. Each merge

creates another table which is used to merge with the remaining tables [20]. For example,
in Figure 2.5a, local tables A, B, C and D were identified as similar and must all be a part
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of one global table. This approach starts with local table A and local table B, and created
global table AB, whose attributes are the union of the attributes in both tables (attributes in
both tables that are similar create a new attribute in the new table, and attributes that are
different create a new attribute each). Table AB is now integrated with table C, and so on
until all local tables are integrated and a global table is formed.

In n-ary integration, depicted in Figure 2.5b more than 2 tables are merged at a time [20].
Instead of merging tables A and B and creating table AB, tables A, B and C may be joined
and create global table ABC, which will then be merged with the remaining local table D, as
depicted in Figure 2.5b.
In the end, both approaches return the global table resulting from the semantically equivalent
local tables.

Any partitioned or replicated tables, should be identified in the schema match as similar
between each other, and schema integration would merge those tables into one.

(a) Binary Integration. (b) n-ary integration.

Figure 2.5: Schema integration approaches.

2.3.3 Schema Mapping

After the previous steps it is possible to identify which local tables match to a single global
table, but there is no specification on how to actually move data from one schema to another
while maintaining semantic coherence. It becomes necessary to specify how elements in the
global schema and the local schema translate between them such that it is possible to query
data from one schema to the other while maintaining a consistent semantic meaning in both
schemas [10, 29]. To do this, mappings are created between the global and the local schemas
and then used in queries between both schemas in order to preserve semantic consistency
[30, 10]. These mappings can either be created from the local to the global schema, named
Local-as-View (LAV) or from the global to the local schema, named Global-as-View (GAV)
[24]. GAV allows an easier creation of mappings but adding a new data source forces some
mappings to be redefined while LAV allows an easier addition of data sources but mappings
are much harder to create and queries also harder to generate [24, 31].

Mappings are constituted by a transformation formula and a filter. The former changes a
value(s) in one schema such that it makes semantic sense in the other schema and the latter
restricts the values that can be used [30]. Figure 2.6 shows as an example a global table
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with sales of every store which considers only one currency while local tables have different
currencies and some consider taxes while others do not. Functions are applied to convert
to the correct currency and filters are used to consider only non negative values, therefore
achieving semantic consistency. With these mappings defined, the idea is to create mappings
for each local table correspondence such that a query capable of correctly retrieving data from
the local table can be created [10]. This query should use these functions and filters in order
to convert data from the local schema to the global schema.

Figure 2.6: Example of schema mapping with multiple local tables containing different cur-
rencies and the global table using mappings to create semantic consistency.

Mappings are usually created manually by users. Ideally, only high-level details about
the mappings should be provided by users and the system should generate all mappings
accordingly, therefore simplifying this task for the user [32]. An example would be a user
interface in which user’s make visual correspondences between the schemas with mapping
details in each correspondence [33] (not to be confused with schema matching correspondences,
which are used only to pair similar objects, whereas schema mappings are used to create
mappings between said relationships). There are also systems that have users program by
example, meaning they supply a complete dataset or an incomplete dataset, which will then
be used to generate schema mappings, such as Beaver [29].
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2.4 Multidatabase Systems

Multidatabase systems use the mediator/wrapper architecture discussed earlier to logi-
cally integrate data. This section, discusses two types of multidatabase systems using the
aforementioned taxonomy adopted for this dissertation, which divides multidatabase systems
in two types: federated or polystores/multistores. Both types of systems will be explained
and examples of some systems found in the literature or commercialized by companies will be
presented.

2.4.1 Federated Multidatabase Systems

A Federated Database System (FDBS) is constituted by multiple autonomous database
systems, each one with its own schema. A single database system can simultaneously partic-
ipate in one or more federations and continue to carry its local operations [23]. The FDBS
a set of local data sources that belong to the federation and a Federated Database System
(FDBMS) which provides a single point of access to the local data sources [23]. The global
schema used by the FDBMS contains schema mappings between tables in the form of views
[34].

In order to make the LCS of a local data source accessible to the FDBS, an export schema
must be supplied, which will be accessed by the FDBS [23]. The export schema is located
between the data sites and the FDBMS and represents a subset of the schema of each data site
[23], which means that database administrators can select which data can be made available for
the federation [20, 23]. The export schemas of one or more database systems are integrated in
a federation schema located in the FDBMS and presents a unified view of the export schemas
of each database in the federation and information regarding the location of each database
[23]. The federated schemas are then used to generate an external schema to be used by each
user/application of a federation.

Users that want to access the federation using the FDBMS, here designated as global users,
may be interested in different subsets of the information in the federation schemas. Therefore,
an external schema is also used between the FDBMS and the global user, and allow a view of
only a subset of the data present in the federated schema [23, 34]. The main purpose of the
export schema and the external schema is to control and limit the exposed information to the
global users [23].

There are two variations of FDBMS, illustrated in Figure 2.7:

• Loosely coupled FDBMS: in this scenario, each administrator of each database must
create the federated schema and make it available to the federation [21, 23]. Figure
2.7a illustrates the architecture of these systems.

• Tightly coupled FDBMS: the administrator of the FDBMS is responsible to create the
federated schema for the federation [21, 23]. Figure 2.7b illustrates the architecture of
these systems.

Below are some examples of systems found in the literature that are classified as FDBS.

MDB1 And MDB2 FDBS

Students of De La Salle University developed 2 multidatabase platforms as part of their
thesis project: Samuel Cua, Gilbert Gaw, et.al. developped MDB1 in 1999 and Andres
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(a) Loosely Coupled FDBMS. (b) Tightly Coupled FDBMS.

Figure 2.7: The two types of FDBMS systems.

Barlahan Jr., Ludwig Lim et.al. developped MDB2 in 2000. These systems serve as a good
example of database integration systems because each one uses one of the data integration
approaches discussed in Section 2.1.2. Note that in the year of this paper’s publication, NoSQL
databases and HDFS systems had not yet emerged, therefore the heterogeneity of databases
considered in this paper was much smaller than today, as only different relational DB systems
existed.

Both platforms have a user interface to manually and visually perform schema integration
across databases with different schemas, which means users can solve the schema matching
problems specified in Section 2.1.1 in a more efficient and less error prone way.

The first system, MDB1, is a tightly coupled FDBS [22] that does not perform a logical data
integration as it is usual with most multidatabase systems, but instead performs materialized
data integration because it physically instantiates and stores the global schema in a global
database [22]. The system contains a global schema resulting from the manual configurations
made by users. The data stored in the global database is periodically pulled from each database
and data integration is performed each time, thus solving schema heterogeneities using rules
previously specified by the user [22]. The drawbacks this system presents are the same as the
ones presented in materialized data integration, which is that the data is not up-to-date in
the global database. Additionally, the global database used in this system might not be able
to hold all the data [22].

The second system, MDB2, is a loosely coupled FDBS [22] that logically integrates data
because it fetches data directly from each database only when it is needed and only what is
needed by dividing a query into sub-queries for each DB [22]. For example, if a user wants
to aggregate data from DB1 and DB2 the system decomposes the query into subqueries and
translates them using the global schema in order fetch necessary data from DB1 and DB2 and
then performs aggregation using an external DBMS that is part of MDB2 [22], and finally
returns the results to the user. The disadvantages presented by this system is the delays that
may occur when transmitting the subqueries to each database and the the conversion of data
from global schema to local schema each time a query is executed [22], problems that are
commonly associated with most systems that logically integrate data.
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2.4.2 Polystore And Multistore Systems

FDBS were the first to be discussed and conceptualized in the literature (back in 1990)
and did not considered querying data sources with different data models, and instead focused
only on relational data model. More recent work has been done to develop systems that
deal with the variety of data models using additional solutions to deal with this extra level
of heterogeneity, and therefore these systems distinguish themselves from FDBS by this key-
difference. These systems allow data integration from data sources with distinct data models,
such as relational and all NoSQL data models, and sometimes, even with systems using HDFS
[10], commonly designated as SQL-on-Hadoop, such as Hive or Spark SQL.

The taxonomy defined in [3] classifies polystores and multistores as equivalent, except that
polystores have more than one query interface, meaning users can interact with the system
using more than one query engine, while multistore systems only have one [3]. An example of
a system with multiple query interfaces is SparkSQL, which allows users to write SQL queries
and interact with data in relational format or by using Spark’s Dataframes and Datasets,
which is a distributed collection of data commonly used by Spark [3, 35].However, other works
offer no distinction between these terms, such as Valduriez et.al. [10].

These systems can be further classified into 3 categories: loosely coupled, tightly coupled
and hybrid [10]. Loosely Coupled contain wrappers that use a local catalog representing its
data source’s data, keeping the data sources autonomous, and a Query Processor interacts
with these wrappers to process queries, [10]. Tightly Coupled use the Query processor to
directly access the data sources through its query interface which results in a better performing
system but each data source has less autonomy [10]. Hybrid combine these methods by having
wrappers access data sources directly and query processor deal with data received by through
the wrappers [10].

BigDAWG Polystore System

BigDAWG is an open source polystore system developed by Intel Science and Technology
Center for Big Data (ISTC) and follows the mediator/wrapper architecture. It is intended
to simplify the use of data in scenarios where data resides in databases with different data
models and other distinct characteristics. It uses a concept of islands as mediators [7], in which
different islands represent a specific data model, query language, and a set of data storage
systems [7]. An island offers a query interface from which to query all data sources within
the island [7]. Ideally, users should configure islands for each type of data model they want to
query and connect data sources with similar data models in the same island, but it is possible
to connect data storage systems that are of different data models .

To connect a data source to an island, a shim is written and used as the wrapper to
translate a query to the language of a target data storage system [7]. If a user wants to query
data sources belonging to the same island (single island query), a query is decomposed into
subqueries and then rewritten using the shims into the same language as the query interface of
the target data source [3, 7], but the user must use a ’cast’ operator to copy objects between
data sources [7, 10]. However, if a query specifies data from data sources in different islands
(cross-island query) then it is necessary to use a ‘scope’ operator of the BigDAWG query
language to write queries for other islands [3, 7]. For instance, if a user wishes to join data
between 2 data sources that are on the same island, then it must be specified in the query
through the use of a ‘cast’ operator in order to convert from the data model from one DB
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to the other one. However, if a query is made that references objects in data sources from
different islands, a scope operator must be used and the query language of the other island
must be placed inside that operator.

Overall, this forces users to know details regarding the underlying databases and the
organization in each island. Figure 2.8 shows the architecture of BigDAWG.

Figure 2.8: BigDAWG Architecture. Taken from [3].

Apache Drill

A more recent architecture of a logical data integration platform is Apache Drill, which is
a distributed query engine ready to be scalable. It enables a much easier and straightforward
way to access raw data over various data stores, removing the burden of schema configuration.
Because no global schema is created, this is considered to be a schema-less system [8]. It is a
distributed system because it is designed to be installed on a cluster of machines, but it can
also run on one machine only. Queries are written in SQL query language. The architecture
of Drill is represented in Figure 2.9 and is comprised by Drillbits, an installation of Drill on a
machine (node) that handles the query (acts as mediator), and plugins that connect to data
storage systems (act as wrapper).

When a user issues a query, a Zookeeper responsible to manage the cluster [3] is responsible
for assigning an available Drillbit to receive the query, thus becoming the foreman [3]. The
latter is responsible to process, decompose and generate an optimized plan for the other
Drillbits to execute each subquery resulting from the query decomposition [3]. A subdivision
of a query that agglomerates data from 2 different data sources can create 2 subqueries: one
to fetch data from one data source and another to fetch data from the other data source. A
Drillbit uses a plugin to communicate with the respective data source and fetch the necessary
data [13]. The Foreman Drillbit finishes any processing and returns data to the user [13].

Presto

Presto is also a distributed query engine capable of processing big data developed by
Facebook. It can handle large amounts of data originating from heterogenous data sources,
while also allowing for an easy way to quickly access that data, because, similarly with Drill, no
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Figure 2.9: Apache Drill Architecture. Taken from [3].

global schema is used in Presto, meaning that it is schema-less [8]. Users use SQL as the query
language to issue queries to the system. It uses a master-slave model, with the master being
named coordinator, and slaves called workers. The coordinator is responsible for receiving the
query and then parsing it, planning and optimizing it as well [12]. The coordinator creates
subqueries and generates a distributed plan to assign subqueries to workers which are then
responsible to fetch data from data sources [12]. Workers can cooperate in order to support
the processing of more than one query simultaneously [12]. Connectors act as the wrapper
that allow communication with a specific data source. They are extensible because they can
be created and modified by anyone. Figure 2.10 illustrates the architecture of Presto.

Figure 2.10: Presto Architecture. Adapted from [3].
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Other System Examples

Other example of systems include CloudMdsQL, a query engine capable of querying het-
erogenous data sources within a single query [11]. It provides a new query language based
on SQL queries, but with the possibility of including nested queries using native languages of
the data stores to retrieve tables, or by using Python expressions, and assigning a name to
the resulting tables [11]. Its architecture is based on the mediator/wrapper approach, and is
composed by masters and nodes, distributed on clusters of computers. Each node contains
one master, responsible to plan a query, and a worker to execute it, although queries are de-
composed and assigned to several workers [11]. Queries are also optimized using a cost model
for each query plan. CloudMdSQL does not create a global schema, which makes it robust
whenever the schemas of each data source change (schema evolution) [11]. Because no global
schema is created, queries require a nested query that refers to a particular data source’s data
structure, usually by formulating the nested queries in the native query language of the target
data source.

MusQ is a system adopting the mediator/wrapper approach, and capable of querying het-
erogenous data sources. It was developed primarily for IoT and is capable of generating a
semi-automatic global schema by employing schema matching techniques to detect semanti-
cally similar matches, and schema mapping to create mapping definitions between local and
global schema tables, which are then validated by the user [8]. The query language used is
MQL, and submitted queries are parsed followed by the generation of a query plan in order
to decompose and create subqueries, which are then sent to wrappers that communicate with
the data sources.

2.5 Near Real-Time Data Warehousing

Traditional data warehousing techniques and architectures are not compatible with some
modern uses cases, such as e-Commerce, health systems and stock brokering [15] or even other
areas such as IoT, because they all require fresh data, but traditional DWs ETL methodologies
only extract data periodically, with a large interval between extractions, such as hours or days.
Additionally, while ETL is being performed, analytical operations cannot occur, thus causing
constraints for systems that need be operating 24 hours every day [36].

Near real-time data warehouses propose to solve these problems and make available recent
data without any system downtime by having the ETL process more lightweight and more
frequent [16]. Near real-time data warehouses architectures and systems have been proposed
by many authors.

Santos and Bernardino ([15]) proposed an architecture whose objective is to solve some
of the problems found in traditional DWs, namely the simultaneous execution of analytical
queries and continuous data integration, with minimum performance loss. To do so, they
proposed the creation of temporary tables where only the most recent records will be inserted,
but without any constraints or indexes in order to quickly insert data updates from ETL
processes. The temporary tables need to be relatively small, and their data will be added to
the original tables in the DW to give space for more recent data in these temporary tables.
Figure 2.11a depicts this procedure. Any analytical queries made explicitly specify the tables
to be queried: the original tables with historic data, the temporary tables with recent data,
or both, in which case a union all should be used to present data from both star schemas.
The main advantages are the reduction of the lengthy downtime seen in traditional DW when
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extracting and loading data to the warehouse and also allows for a quicker way to access fresh
data. One disadvantage is that average query execution times increase when comparing with
traditional DWs [15].

Zuters ([16]) also suggests that near real-time data should be separated from older data by
placing recent data in partitions, each one with data from different time ranges, (one partition
with data from 10 minutes and other with data from from 1 hour) [16]. Staging areas also
exist to first receive the data and then load it into the partitions, in order to not degrade
query performance made in the partitions [16], thus showing an improvement over the work
of Santos and Bernardino.

Cuzzocrea et.al. ([17]) propose an architecture similar to the previous works, containing
two modules: a dynamic DW module that holds a small amount of the most recent data
extracted, thus adding the "near real-time" aspect to this architecture, and a static DW
module storing the remaining historic data which constitutes the majority of information
stored. Figure 2.11b presents this architecture. The dynamic DW module stores only the most
recent data of the last day (spanning 1 day) without any constraints, indexes or materialized
views, thus reducing the complexity and processing times of data insertion, which allows for
the extract and load processes to run without the need for the DW to be taken offline [17].
Response time of queries made to this module are also very fast [17]. The "oldest" and
majority of the data are stored in the static DW, resembling traditional DWs, and contains
indexes and summary tables to speed up query answering [17]. The star schema tables present
both modules is the same. Analytical queries made to the system are automatically split into
subqueries and submitted to both modules by a merger component without user intervention,
unlike the work of [15]. Queries are processed in parallel, and the results of each subquery
from the two modules are merged and presented as if only one module existed [17].

In conclusion these systems are able to provide near real-time solutions to traditional
warehouses, however, the architecture becomes increasingly complex when compared with
data warehouses. These systems materialize the data, which is a complex and slow task, thus
only allowing these systems to be near real-time, instead of real-time. This still makes these
systems harder to make changes to the internal data organization.

26



(a) Santos et.al. Near real-time DW architecture [15].

(b) Cuzzocrea et.al near real-time DW architecture [17].

Figure 2.11: Near real-time DW architecture proposals.

2.6 Considerations

Overall, the presented polystore and multistore systems discussed here solve the problem
of querying distributed and possibly heterogenous data sources in Section 2.4.2. Most of them
have similarities in their architecture and implementation, however, they have downsides that
motivate the development of a system that can solve such weaknesses. Table 2.1 summarizes,
for most of the systems here discussed (multistore/polystore systems and near real-time DW),
which of the requirements established in Section 1.3 are fulfilled by each system.

Systems such as BigDAWG or CloudMdSQL for example, force users to know details
regarding the data model and the location of each data source. Executing a query across
multiple data sources requires more writing, and sometimes even require users to write with
the data source’s native language. Apache Drill and Presto are very similar systems, as they
both use the SQL Query Language and can query various data sources without any schema
configuration, but both still require to know details of the internal organization of each data
source (such as server names, schemas, tables). However, both these systems show potential
and meet some of the requirements for this dissertation’s work, and can be used as basis to
implement more functionalities that can fulfill the proposed requirements.

Note however, that most of the polystore/multistore systems shown here do not have
full support for analytical queries (as seen in table 2.1). Presto and Drill support analytical
queries, but do not offer OLAP support, which may be acceptable for some scenarios, but not
when it is necessary to deeply analyze data from multiple perspectives, in which case becomes
harder without OLAP. Musq does not create any star schema. Traditional DWs that perform
analytical queries use OLAP, and a focus towards shifting them towards near real-time is
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Table 2.1: System Requirements

BigDAWG Presto Drill CloudMdsQL MusQ Santos
et.al. [15]

Cuzzocrea
et.al. [17]

Distributed Data
Source Querying Yes Yes Yes Yes Yes N.a. N.a.

Heterogeneous Data
Source Querying Yes Yes Yes Yes Yes No

(requires
ETL

process)

No
(requires
ETL

process)
Provides Location
Transparency Yes No No Yes Yes Yes Yes

(Semi-)Automatic
Global Schema
Creation

N.a. N.a. N.a. Yes N.a. N.a. N.a.

Tools Enabling
Analytical Queries
Oriented Towards
Decision-Making
Environments

No No No No Partial Yes Yes

Provides a Guided Star
Schema Creation N.a. N.a. N.a. N.a. No No No

Deals with Physical
Data Partitioning
Autonomously

No No No No No Yes Yes

Specification of
Constraints Over the
Global Model

No N.a. N.a. N.a. No Yes Yes

already a subject of research in the literature, however, the proposed architectures are more
complex and may be more difficult to manage.

The work to be presented in this dissertation, proposes a system that will be able to solve
both problems: near real-time querying on heterogeneous data sources.
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Chapter 3

Presto - Distributed Query Engine

Previous chapter presented several systems capable of performing queries across distributed
and heterogeneous data sources. As mentioned in Section 1.3, one of these systems must be
selected and experimented against in order to determine its limitations. Then, additional
functionalities must be implemented in order to fulfill the established requirements in Section
1.3.

After some deliberation, Presto was the chosen tool to be tested in order to understand
how to use it and it’s possible limitations. This distributed query engine fulfills the main
objective established in Section 1.3, as it is capable of querying distributed and heterogenous
data sources in real-time. Presto supports a wide variety of data sources (more than Apache
Drill at the time of writing) and its documentation is accessible. Full support with SQL is
also an advantage because it makes interaction with the system easier as this is a very well
known language.

Currently Presto has 2 main development versions, PrestoDB and PrestoSQL. The former
is maintained by Facebook, and the latter by the community. Overall features and functional-
ities are similar in both versions. However, PrestoSQL supports about 29 official connectors at
time of writing, while PrestoDB supports only about 23 out of those supported by PrestoSQL.
For this dissertation, PrestoSQL was used for development of the platform and will now be
referred to simply by Presto unless explicitly stated. The reason for this choice, besides the
number of supported connectors, is the active community contributing for this version of
Presto. The community is very open about it’s development, as it provides support and help
to new users of Presto, as well as suggestions on how to improve it. Note that, at a final stage
of the development of this dissertation, PrestoSQL was renamed to Trino, however the old
name will be adopted instead in this dissertation.

This chapter presents studies on the evaluation and comparison of Presto against other
similar tools. It will also feature instructions on how to install, set up and use Presto (these
instructions are valid to both PrestoDB and PrestoSQL), experiments performed in order to
understand how to work with Presto and how Presto works, it’s limitations or issues and data
source compatibility.

3.1 Presto Evaluation And Comparison Studies

Performance-wise studies have been made, such as the ones found in [6, 37] that have
shown Presto to be faster than Apache Drill and other distributed query engines mentioned
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in Section 2.4 and other SQL-on-Hadoop systems.
The experiment made in [37] used a cluster with 4 nodes, each one containing one octa-

core CPU 1.80GHz, 16 GB of RAM and one SATA disk with sizes ranging between 120 and
240 gigabytes. TPC-H was used to benchmark the execution time of queries between Presto,
Apache Drill, HAWQ, HIVE, SPARK, and Impala. Results show both HAWQ and Presto as
the fastest systems on datasets with size of 10, 30 and 100 GB, although Presto could not
complete some queries that failed on the 100 GB dataset because the volume of data could
not be fit into memory [37].

The study conducted in [6] consists on evaluating Presto, Spark, Apache Drill and Hive
by having each one query Hive tables created using a modified TPC-H dataset generator 1,
commonly used to create and populate tables, which also provides a set of queries used to
benchmark decision support systems. The infrastructure used is composed by 4 machines with
commodity hardware, meaning that its specifications are not as powerful as typical clusters
found on big companies or projects with high funding. The main objectives of this study is
to test the effectiveness of these systems on modest hardware, used by many small to medium
projects or businesses.

The main conclusions drawn from the benchmark results are that, on multi-user environ-
ments where each system executes distinct queries over the same cluster environment, "Presto
is around ten times faster than Spark and around seven to eight times faster than Drill and
Hive, respectively" [6]. On single user environments, Presto was also considered to be the
fastest system, having completed most of the queries in less time than the other systems [6].

Another study was performed with the intent of comparing the usefulness and effectiveness
of several SQL-on-Hadoop tools, such as Presto, Hive, SparkSQL, Apache HAWQ, and Drill
[38]. These tools were selected because they were mentioned in more than half of the analysed
published materials regarding the subject of SQL-on-Hadoop tools comparison. The study
evaluated several parameters, namely:

• performance - analysis of performance test results in other published materials show
Presto being the second best performing tool, after Hive [38].

• SQL standard compatibility - results of this comparison show that both Presto and
HAWQ provide a SQL interface that is very close, if not identical to SQL standards.

• supported features - Presto is the second tool (first is Spark SQL) with the most sup-
ported features, such as a wider range of data source support, ability to combine data
from different sources, machine learning libraries and creation of user defined functions
[38].

Thus, this study concluded that Presto is the most effective tool in the previously mentioned
criteria [38].

A disadvantage within Presto is that it runs and processes queries in-memory, which can
fail due to lack of memory [37]. Even though the authors of [6] reported having running most
of the queries with modest hardware on a 4 cluster machine. For the development of this
dissertation, no more than 2 machines will be used.

1http://www.tpc.org/tpch/
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3.2 Supported Data Sources

The data sources supported by Presto include database management systems such as
Redis, Cassandra, MySQL and PostgreSQL. There is also support for distributed data stream
processors, such as Kafka, distributed search engines, such as Elasticsearch, HDFS systems
such as Hive, and others, such as Google Sheets and TPC-DS/TPC-H. The wrappers used
by Presto that allow interoperability between Presto and each data source are designated as
connectors. Each of the previously mentioned data sources have an official connector already
included with Presto.

All data, regardless of the data source it resides and its data model, is mapped to relational
model in order to create a common model for any data source connected to Presto and hiding
details regarding the characteristics of different data sources, thus making it possible to cross-
query data from distinct data sources. Only relational model is used to write the query and
results are presented in a table. Anyone who develops a new connector for a data source must
map all data to relational concepts (schemas, tables and columns) [39].

3.3 Installation And Setup

To install and use Presto two components are necessary and can be downloaded from
Presto’s website:

• Presto Server, which is the distributed query engine that can be configured to commu-
nicate with other Presto server installations on other machines.

• Presto Client, which is how a user sends queries to the system and receives it’s results.

Both require at least a 64-bit Linux Operative System, Java Runtime Environment 8 (al-
though 11 is recommended) and Python version 2.6. A Presto Server installation contains
the core logic of Presto, including database querying, data source wrappers, designated as
connectors, and distributed plans processing to handle Big Data. Multiple Presto servers can
be installed in different machines and then configured such that Presto can process queries in
a distributed way. A Presto client only allows users to issue queries to a Presto Server config-
ured as Coordinator. Each Presto Server installation is a node and can be configured to be a
coordinator or a worker. Coordinator nodes are responsible to receive queries, validate them
and then create a distributed plan to process the query results produced by worker nodes [40].
A coordinator must exist in a Presto distributed environment. Worker nodes are responsible
to fetch data from data sources using connectors, which are the wrappers that allow worker
nodes to communicate and extract data [40]. Workers follow the distribution plan created by
the coordinator node and change data between themselves, returning the final results to the
client when the processing finishes [40]. A distributed query plan is composed by stages, each
one a part of a decomposed query and executed by coordinators [40]. For example, a query
that contains a union operation may split each select statement in two stages. The default
limit of stages for Presto is 100, but this can be changed.

Each Presto Server displays a dashboard on localhost:8080, depicted in Figure 3.1, with
information regarding the number of workers in the cluster, the queries running and statistics
regarding the queries being executed. The dashboard indicates the amount of distributed
workload on the CPU on more than one node, and it stays at 0 if only one node is working,
and increases if the workload is being distributed. In particular, the dashboard shown in
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Figure 3.1 indicates that 2 workers are detected under "active workers". and that a query is
being executed by 2 workers.

Figure 3.1: Presto Dashboard.

To install Presto Server, one simply has to download and unzip the files. The instructions
specified at [41] allow an easy and initial configuration of Presto, such as JVM usage and
node configurations. The most relevant configuration file is the "config.properties", which
determines if a Presto node acts as a Coordinator or a Worker. All worker nodes must contain
the URL of the Presto Coordinator node in order to be discovered so that the Coordinator
can communicate with the other nodes using an embedded discovery service. To use this
embedded discovery service however, all nodes should add "discovery-server.enabled=true" to
this configuration file.

Directories included in the installation are:

• etc - containing the configuration files of the node, such as type of node (worker/coor-
dinator), maximum amount of memory allowed to use, Java Virtual Machine configura-
tions and a folder "catalog" containing all configuration files for connectors in order to
establish a connection with data sources.

• bin - files to launch Presto.

• lib and plugin - Presto related libraries and connectors implementations.

• var - run and error logs.

A catalog file must be created in the directory "etc/catalog" for each connector, containing
the data source name, URL, username, password, and other parameters that vary according to
the data source. This file must then be named and end with ".properties", therefore creating
a new catalog for Presto to use. A catalog is a reference to a data source, and Presto will
use the catalog configuration file to know which data source model connector to use (MySQL,
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MongoDB, Hive, etc...), and to locate it in order to establish a connection with it. Presto’s
website contains a list with all supported connectors2 and templates of configuration files for
each data source.

Presto is a multistore system that does not create a global schema [8]. This means that in
each created query, the full qualified name of an object (such as tables or columns) must be
used. If a query references a table, the fully qualified name would be "catalogue.schema.table".
Likewise, for a column, the fully qualified name would be "catalogue.schema.table.column".
For example, by creating a configuration file for a MySQL server, and naming it "mysql.-
properties", to query the table "clients" in schema "company", the nomenclature would be
"mysql.company.clients".

3.4 Experiments And Limitations On Databases

In order to test Presto’s capabilities, ease of use, and detect any possible issues, two main
experiments were conducted with Presto, which also served as way to understand how it works
and how to use it. The first experiment used a single Presto installation in one machine with
2 databases also installed: MongoDB and PostgreSQL. Both databases contain simple records
that were manually inserted. This installation of Presto was configured to operate as both a
coordinator and a worker. The catalogue configuration files needed to access both databases
were also created.

To verify that Presto was configured correctly and that communication to both databases
has been established, a simple query that selected data from both databases was executed.
The query executed successfully and results from both databases were shown, thus showing
that Presto can show data from distinct databases with only one query.

The second experiment used a MySQL installation on a remote machine, which also had
another Presto installation configured to be a worker, while the Presto node on the local
machine will act as both a worker and a coordinator. The main objective is to be able to
configure both nodes (on the local machine and on the remote machine) into communicating
with each other and share work loads. It was observed that the worker parallelism (as seen
in the dashboard depicted in Figure 3.1) only started to increase when heavy queries were
being executed, as Presto only distributes the workload when the I/O begins to bottleneck
the machine.

From these experiments, it was also noticed that Presto maps each data type into its
own set of supported data types3, such as money being mapped to double, or datetime being
mapped to timestamp.

However, some limitations were found within Presto after some usage with Presto, not
only after the previous experiments, but in the development of the work presented in this
dissertation. The main limitations found are as follows:

• First, as Presto was being used to query MongoDB, it was noticed that fields of a
collection were not being correctly updated. In a given collection, Presto will map each
document’s fields into relational model, however this schema representation of Presto
only considers the first inserted element in a given collection. Any documents inserted
afterwards with different fields are not considered in Presto’s relational schema. For

2https://prestosql.io/docs/current/connector.html
3https://prestosql.io/docs/current/language/types.html
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instance, a document with fields named "A" and "B" that is inserted first in a MongoDB
collection will be correctly represented in Presto’s schema, but a second inserted field
with fields "A", "B" and "C" will not be correctly represented as Presto will not map
the "C" field to its relational representation.

• A second observation is that, for some data sources and on older versions, Presto executes
only simple queries to each data source (select and filters), but later versions of Presto,
and as long as the connector supports it (PostgreSQL for example), also push simple
aggregate functions, such as count and sum, to the data sources [42]. Joins, sorts and
aggregation operations that cannot be pushed to data sources are executed by Presto
itself using the workers [12, 42, 39]. The advantage of pushing down to the data sources
as much operations as possible, such as filters and aggregations, is that it can reduce
network traffic, as well as reduce the load on Presto’s workers, thus improving the overall
query performance [42]. For other data sources, such as Cassandra or Hive, Presto tries
to be as efficient as possible by using filters to read only the necessary partitions, rows
or blocks depending on the filter applied [39].

• Presto is sometimes unable to query databases, tables or columns whose name contains
at least one uppercase letter. For example, when querying the table ’MyTable’ located
in PostgreSQL, Presto will throw the following error: ’Table ’mytable’ does not exist’,
because Presto converts all names of databases, schemas, tables and columns to lower-
case. This is a know limitation with open issues on Presto’s Github 4. Presto might
however be able to identify that an uppercase database/table/column exists in a "show"
command, but is unable to query that table. This also depends on the connector used.
For example, on MySQL, it is possible to query tables or columns containing uppercase
letters, while in PostgreSQL it is not. This is a big issue and unless it gets fixed, the only
way to ensure Presto can query a specific table or column is to not add any uppercase
characters.

• The schema "information_schema", present in most relational databases, contains meta-
data such as primary keys and foreign keys, a list of all tables and its columns, and other
metadata useful to obtain information regarding the data organization. However, Presto
does not show and cannot access all of the tables in this schema 5. The main issue is
that, in most tables, there is an attribute with a data type that Presto does not sup-
port (sqlidentifier). Creating a view containing the intended query while also casting
the attributes to a supported data type (such as varchar) fixes the issue. This means
that the administrator of the database would have to create such view in each of their
databases. This dissertation’s code repository [43] presents a set of scripts ready for
MySQL and PostgreSQL that create such views to query both primary key and foreign
key information.

• To add an additional data source, a new catalogue configuration file containing correct
configuration to connect to the data source is required. If Presto is running, the newly
added catalogue is not visible to Presto, and therefore a restart is required 6.

4https://github.com/prestodb/presto/issues/10288
5https://github.com/prestodb/presto/issues/11509
6https://github.com/prestosql/presto/issues/2110
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3.5 Experiments And Limitations On Files

A non official connector named flex 7 exists for Presto that allows the execution of queries
over local or remote files, namely csv, excel, tsv, txt and raw. However, it is not included with
a Presto installation and must be manually added by downloading the project, generating the
jars of said connector, and placing them on the plugin directory of Presto. A catalogue config-
uration file file must also be added, but this file contains only a single line: "connector.name
= flex" and can be used for any file, in other words, a catalogue configuration file does not
need to be created for each new file intended to be queried. However, querying raw files using
this connector poses some minor differences when comparing with other data sources seen
previously, which were mostly data storage systems. These differences justify the creation of
this section to discuss about this connector and its possible usefulness and implications.

First, the structure to query files using the flex connector takes the following syntax:
flex_catalog.file_type."path_to_file" (note the double quotes used to escape characters that
would otherwise create invalid syntax errors on the SQL query if not escaped), which follows
the usual naming convection used in Presto queries, with the file type being the schema, and
the path to the file being the equivalent of a table. As a concrete example on how to use
the connector, and assuming the catalogue file is named "flex.properties", the query ’select
* from flex.csv."file:///home/user/sales.csv"’ will list the contents of the csv file "sales.csv".
The "file://" at the beginning of the file location means that it is a local file, otherwise it
should start as "https://".

The structure of the file is presented in a relational format. For example, a csv file will
have the first line of the columns being treated as a relational table’s attribute. The same
happens with tsv and excel files, but the contents of raw and txt files are treated as a single
column table with one row.

Being able to quickly perform analytical queries to raw files that may reside in a data lake
or on files belonging in a dataset without having to import data to a data storage system only
improves the usefulness and overall versatility of the developed tool.

A considerable limitation present in this connector is that, like some of the other connec-
tors, it cannot query files whose name or location contain an uppercase letter. This means
that, in order to query a certain file, it must be moved and/or edited such that its path and
file name does not contain any uppercase letters. An effort was made in order to fix this issue
but unsuccessfully, as the root of the problem takes place within Presto source code.

Another limitation this connector introduces is that all columns in the file have the varchar
datatype, regardless of the actual value of the data. If a column contains only numbers, this
connector will not automatically convert the column to an integer. This can introduce some
limitations when working with this data.

3.6 Considerations

After familiarizing and experimenting with Presto, one may assume that it can fulfill all
objectives previously established in Section 1.3. Queries using data from two or more distinct
data sources can be executed independently of the data source’s location or data organization.
In addition, Presto does not require any schema creation, which makes the configuration
process even easier. However, this abstraction between data sources and their organization is

7https://github.com/ebyhr/presto-flex
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not sufficient, because users require knowledge regarding the internal organization of each data
source in order to reference a column or a table in Presto because the full qualified name of
each element is required (a nomenclature in the form "catalog.schema.table.column"). In other
words, Presto does not provide location transparency, or even fragmentation transparency.
This is one of the trade-offs of not creating a global schema. To create an abstraction layer
capable of identifying each object without user indication of the details of each data source,
an additional layer on top of Presto is required.

Simply using Presto to query data sources is possible, but forces users to have to know
details regarding the underlying data sources, which may not be ideal for some cases, such as
less experienced users. Presto does not support any creation and maintenance of multidimen-
sional schemas, which are very common for analytical queries. These reasons are enough to
justify the creation of an additional layer on top of Presto. This layer can also add many other
features that Presto alone cannot, such as configuration of data sources and creation of global
schemas, multidimensional schemas. Additional features, such as storing previously executed
queries or saving queries results would enhance the system’s usefulness and help data analysts
using such system.

Because the user would interact with this layer and not Presto, this layer should also make
transparent Presto related configurations, such as automated creation of properties files to
add a new data source with user inserted information, restart upon adding new data sources
and management of Presto related errors.
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Chapter 4

Proposed Solution

Previous chapter presented some details about Presto’s features and weaknesses, while
establishing the importance of a layer on top of Presto to create a transparency between
the data source’s organization and their characteristics, as well as analytical query support,
among other useful features that Presto alone cannot offer. This layer is named Easy Big
Data Integration (EasyBDI) and is the main focus of this dissertation.

This chapter explains on a technical level the development of EasyBDI, from it’s architec-
ture, integration with Presto, schema creation and management, and query execution. Each
of these topics will contain a discussion of the adopted solutions, as well as problems and chal-
lenges found throughout development, including compromises made and possible alternative
solutions considered.

There are multiple challenges to overcome in order to build such a system, as discussed in
Chapter 2. The main challenges for the development of this system are:

1. Integration with Presto, such that it is possible to control it from EasyBDI. It must be
possible to submit queries and other useful commands to Presto and receive and process
the answers to those commands.

2. Construction of a local schema view from user selected data sources. This view will
provide a simplified view of each data source.

3. Construction of a global schema that turns the overall data source distribution and
heterogeneity transparent to the user

4. Creation of star schemas and mapping a global schema to a star schema.

5. Query transformation from global schema to local schema and local schema to global
schema.

6. Creation of interfaces for the configuration of the data sources, global schema, cube
creation and execution of analytical queries.

7. Creation of methods to convert queries from the global schema to the local schema, in
order to submit to Presto, which will then communicate directly with appropriate data
sources in the local schema. Results must also be presented accordingly with the global
schema.
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4.1 Used Technologies

Java 8 was the main programming language selected and Maven was used for the main
project in order to manage dependencies. Java can communicate with Presto through a JDBC
interface in order to submit commands and receive results. This interface’s methods and data
structures are very similar to those used with other databases.

Java Swing is used to create a desktop based application containing a User Interface (UI).
It is lightweight and platform independent, meaning it can run on any computer as long as
Java Runtime Enviroment (JRE) is installed. Creating an interface using Java’s UI libraries
provides an easier way of integrating the back end logic of the application with the front end
logic.

To store schema information and multidimensional mappings (hereinafter referred to as
metadata) persistently a storage solution is needed. There were several options, such as a
relational database or java serialization. Serializable files, however, are harder to organize
data and to avoid data redundancy, which can also affect query times negatively. Therefore
a relational database was used. There are multiple database systems, such as PostgresSQL,
but in the end, SQLite was chosen because it requires less computational resources than a full
fledged database system. If implemented to store data source, global schema and star mapping
information, it is not expected that the SQLite database has to store enormous amounts of
data, as it is unlikely that a real company has hundreds of databases, or millions of tables.
Concurrency is also not considered, as only one user operates the system at a time.

4.2 Architecture

The architecture of EasyBDI is illustrated in Figure 4.1. Modules are used for a better
identification of the different elements that integrate the overall system. The module at the
bottom of Figure 4.1 represents Presto as the distributed query engine, used by EasyBDI
to query the different data sources using the queries generated by EasyBDI. Presto must be
installed as previously explained in Chapter 3. All other modules are integrated in a single
Java Maven project and the source code can be found on Github [43].

Note that Presto could be replaced by other query engine that accepts SQL queries and
communications using JDBC. This change could also imply additional implementations on
EasyBDI to configure new data sources to the query engine.

An overview of each layers and modules is given next and following sections will discuss
in more detail each module’s responsibilities, how they work, and challenges faced during
development as well as their respective solutions and issues (if any).

API Communication Handler - Contains logic to submit commands and process results
for external systems. Two types of interfaces exist, one for Presto, and the other for SQLite,
being the latter used to store schema metadata.

• Distributed Query Execution Interface - Receives queries created by the Query
Execution Manager and uses the JDBC interface to send the query to Presto. It is also
used for other commands besides normal queries, and it is also responsible for receiving
and parsing the results from Presto.

• Metadata Storage Interface - this module is responsible for the persistent storage
of metadata of all schemas: local schema view, global schema, and multidimensional
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Figure 4.1: EasyBDI architecture and main modules.

schema. These schemas are stored in SQLite in a relational representation. JDBC is
used to access and communicate with the SQLite database to perform operations such
as inserts or selects and other metadata maintenance. It is possible to replace SQLite
by other solution as long as it supports JDBC communication and relational schema
models, otherwise, additional code would have to be written.

Configuration Manager - Handles data source related information, namely user inserted
information for data sources, and local schema creation/management

• Data Sources Management - Handles information regarding each connected data
source and generates a configuration file in order for the Query Execution Engine to use
and to be able to access the data source.

• Local Schema View Creator - Creates a local schema view by querying each data
source (through Presto) in order to retrieve its schema information.

Data Integration - this layer is responsible for the creation of a Global Schema, which is
a unified and simplified high level representation of data from the local schema. Creating a
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global schema using data integration techniques is not an easy task, but this is not the main
focus of this work. For this reason, a simplified set of metrics (from the ones explained in
Section 2.3) are used in order to create a proposed global schema, which can then be fine
tuned by users through a user interface in the Configuration Wizards module.

• SchemaMatching - Applies schema matching techniques to identify and match similar
tables.

• Schema Integration - Applies schema integration techniques to group similar local
tables and create a global table from those tables.

• Schema Mapping - Detects and assigns a mapping between each global table and its
corresponding local table(s).

Multidimensional Schema Manager - This manager is responsible to maintain the mul-
tidimensional structures by creating mappings between tables in the global schema to a mul-
tidimensional one. These mappings include the indication of which global table is the facts
table, which columns are measures and which global tables are dimensions. Only star schemas
can be created. The Cube Builder maps tables of a global schema, into a star schema by
assigning which tables are dimensions and the facts table (including measure attributes).

Query Execution Manager - This layer is composed by the Query Rewriter which is
responsible to generate ANSI SQL queries containing the entities defined in the star schemas
and in the global schema from the user input created in the Querying Interface. The generated
query will then be modified to include the entities defined in the local schema. This query is
submitted to Presto, which distributes the query by the appropriate underlying data source
systems in the local schema. It also integrates the results of each local query into a single
output, presented accordingly to the global schema and star schema known by the users who
analyze the data in the Data Visualization.

Visualization - All logic related to user interface and information visualization, as well as
user interaction with the platform is located in this layer. Some of the screens are used for
data source or schema configurations. Other screens are for querying and visualizing results.
These screens can be used by subject-expert users and data administrators. For instance, in
the global schema editor wizard, users can display the global schema and edit it (e.g. add or
remove mappings between local and global entities).

• Data Visualization - Shows information such as query logs and query results.

• Querying Interface - Allows users to drag and drop elements of the star schema to
certain areas in order to create queries.

• Configuration Wizards - Wizard-like windows that help users in the configuration
process of data sources, global schema correction, and star schema creation.

Different interface windows interact with different modules of the system. For example, the
global schema editor window receives data from the Data Integration layer and saves the global
schema defined by the user in the Schema/Metadata Storage.
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4.3 Integration With Presto

An essential part for the proposed system is to be able to query distributed and heteroge-
nous data sources. As seen in Chapter 3, Presto fulfills these requirements. The main usage
of Presto is to perform analytical queries over several data sources and to gather metadata
information regarding all data sources involved in the local schema specified by the user in
order to build the local schema view, which will be saved persistently in SQLite.

In order to do this, queries and other useful commands will be issued to Presto by JDBC,
which allows the reception of command and query results in Java.

Before Presto can query a data source, a catalogue configuration file must be created as
discussed in Section 3.3. These configuration files contain different parameters depending on
the data source. This means that, for each data source connected through EasyBDI, the
correct configuration file must be generated in the correct directory. In addition, Presto must
be restarted automatically so that these configuration files are detected and enable Presto to
connect to the data sources. Such actions are performed by EasyBDI in a transparent way,
thus ensuring that the user does not have to deal with Presto related logic when adding new
data sources, and instead rely exclusively on EasyBDI to create the configuration file and
other Presto related configurations.

To configure a new data source, EasyBDI must provide a UI in which the user inserts data
source information, such as URL, model and if necessary, its credentials. Each configuration
file has different parameter names depending on the data source. A basic configuration file
for each available data source is available in Presto’s website 1 and this model is used to
generate a configuration file using user input. However, due to data source heterogeneity (core
functionality, data model and other aspects), more advanced configuration parameters in its
connector’s configuration files exist, but for now, only the default configuration parameters
necessary to establish connection are considered. Further work could be made to allow users
to fill in more advanced settings for each specific data source if they wish to do so.

Other data source related details must also be taken into account, such as MySQL’s similar-
ity between schema and database. Creating a new schema or database in MySQL is basically
the same operation. Multiple databases can be stored in one MySQL server and a database
cannot be accessed individually, unlike PostgreSQL that maintains database and schema as
separate concepts and, therefore, it is possible to access one specific database in a PostgreSQL
server. In a MySQL connector configuration file, if a database is specified in the server’s URL
(in the form http://my_server/database_name) Presto throws an exception.

Database-specific configuration details are however dealt with on the UI, which shows dif-
ferent fields depending on the data source selected and take such differences into consideration
when generating a configuration file. More details are discussed in Section 5.3.2.

EasyBDI can start, restart or even stop a Presto coordinator node, but cannot install or
manage a cluster of Presto nodes. An administrator must be responsible to install and manage
the cluster, and must also specify the path of the coordinator node to EasyBDI using a field
on the interface. The Presto Coordinator node must be installed on the same machine as
EasyBDI.

1https://prestosql.io/docs/current/connector.html
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4.4 Data Integration And Schema Creation

This section will cover the adopted solutions to create each of the three schemas: local,
global and star schemas. In EasyBDI, the users intervene to configure each of the schemas,
but this section will mainly focus on how the schemas are organized, created and managed
by EasyBDI. For global schema, data integration techniques need to be applied to create an
initial proposal of a global schema, which is also covered in this section. EasyBDI offers the
option to modify the proposed schema in order to correct any possible mistakes.

4.4.1 Local Schema View

The local schema view is a representation of the structure of the underlying data sources,
and is built using the different show commands available in Presto in order to reveal the
contents of each data source, all mapped to a relational data model. This offers a simplified
view of the underlying data organization, while providing location transparency and hiding
fined grained details of each data source, including the data model and query language. The
local schema view is therefore a higher level representation of the local schema generated by
Presto. They should not be confused, and throughout this dissertation, local schema is used
to refer to the multiple physical data storage systems, and local schema view is the simplified
representation created by EasyBDI.

To create the local schema view, the system starts by issuing to Presto the command Show
schema to reveal all schemas of a particular data source. Note that the concept of schema may
differ between different relational databases, as they may organize tables in different ways. For
example, in PostgreSQL, Show schema would show all schemas created in a given database,
but in MySQL and MongoDB it would reveal all databases in the server. Show tables returns
all table names from a certain schema of a data source. Again, a table might be a different
structure depending of the data source, like a collection in MongoDB, but it is mapped to a
relational table in Presto. Finally, Show columns returns all column names and data type of a
given table. However, this last command does not reveal any information regarding constraints
on relational database columns. This information is important for later stages, namely to
create global schemas and star schemas. The user can add those constraints manually on
global schema edition later on, but it would be easier for the user if those constraints were
already present in the local schema view.

To get constraint information of each attribute in relational databases, the schema "in-
formation_schema" is used, as mentioned in Section 3.4. The interest in this schema lies in
the table "table_constraints", containing information of constraints on all columns. However,
due to the problem encountered and explained in Section 3.4 regarding this table containing
a column whose data type is incompatible, it is not possible to directly query this table using
Presto, because the table is not visible to Presto. Instead, a view that converts all columns
to a Presto supported data type is created and Presto queries this view instead, thus making
it possible to obtain constraint information.

For data sources without constraints, which are non relational databases, constraints are
not stored, but users will be able to create constraints (foreign keys or primary keys) in the
global schema tuning, later on the configuration process (see Section 5.3.2 for more details).

The local schema view metadata is stored in the SQLite Schema/Metadata Storage module.
Figure 4.2 represents the organization of the tables in SQLite used to store this information.
Tables exist to store information regarding each data source, table and column. The table

42



db_data stores the information needed to access a data source, namely URL, name and cre-
dentials, as well as the model of the data source. This information is obtained through user
input. Table table_data stores a table name, the data source it belongs to, and the schema
name. The schema name is only stored because Presto needs to know the schema a table
belongs to. Finally, table columns_data stores a column’s name, data type and the table
it belongs to. Two fields are used for constraints: a flag indicating if this is a primary key,
and a another field for foreign key constraint, which is empty if a column is not a foreign
key, otherwise contains the full name of the column it references in the form "<data source
name>.<schema name>.<table name>.<column name>".

Figure 4.2: Database Diagram of the table organization used in SQLite to store information
regarding the local schemas.

Table "table_data" in Figure 4.2 has a column named "sql_view_code" containing an
optional user created SQL code that runs on Presto and whose result gives origin to this local
table. This feature is fully explained in Section 5.3.2.

The above steps can be summarized in a single process used to build the local schema view,
which starts by iterating each data source that is intended to be part of the local schema,
and for each one use the show command to extract schema, table and column information
(or the equivalent concept depending on the data source) and store this information in the
tables presented in Figure 4.2. If the data source is a relational database, then constraint
information is extracted and this information is added for each attribute.

4.4.2 Creation Of The Global Schema

Creating a global schema from the local schema view involves several steps and is usually
referred in the literature as Data Integration, as discussed in Section 2.1. The global schema
aggregates identical objects found in the local schema into one object, enabling easier analysis
of the data residing over the data sources. In this case, the objects on both schemas are tables,
because Presto converts all objects into tables regardless of the data source. Schema matching,
schema integration and schema mapping are steps needed to build the global schema in order
to provide logical data integration. Schema matching is applied to establish correspondences
between semantically similar tables found in the local schema, here referred as local tables, in
order to group those tables into one table in the global schema. Tables belonging in the global
schema are named global tables. A process of schema integration is also applied to integrate all
similar tables into one global table after the detection of such similarity by schema matching.
Mappings are then assigned on the schema mapping phase, which allows the creation of queries
that convert data from the global schema to the local schema.

Note that an automated way to perform schema matching and schema integration could
be skipped, and have the user manually indicating the matches from the local to the global
schema. However, manually creating a schema matching from scratch can be an overwhelming
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task on cases when there is a high number of data sources and tables due to high number of
correspondences needed to be manually created by a data source administrator. On the other
hand, there is no silver bullet that can be used to create a fully automated and high quality
schema matching. Therefore, an automated approach is used, where the system performs
schema matching and schema integration algorithms which generate global tables and matches
between the global tables and local schemas, which can then be adjusted and complemented
by the users.

The process of implementing schema matching and schema integration algorithms can
become a complex task, as these fields have been the target of many research throughout the
years, with many algorithms available for both processes. As the focus of this dissertation is
not only data integration, a simpler approach to both schema matching and schema integration
was implemented. Hence, the automatically generated global schema may be only partially
correct. Anyway, it would be easier for the user to edit and complete the proposed global
schema than creating a global schema from scratch.

Schema Matching

The implemented strategy to perform schema matching is illustrated in Figure 4.3. This
figure will be used as a means to explain step by step the implemented algorithm.

The algorithm starts by matching tables with similar names using Levenshtein distance,
by iterating each pair of tables (symmetric pairs are not considered, meaning table A and
table B are compared, but table B is not compared again with table A). Tables are considered
a match if their name similarity is above a defined threshold, currently set as 0.6. In Figure
4.3, step 1 shows 4 tables in the local schema view, and step 2 shows the result of similarity
of names between each pair of tables. Only tables "employees" and "employees_info" match,
as their name similarity is above 0.6, but table "inventory" has no matches.

Schema matching is also performed between pairs of tables, but only during the process of
schema integration of tables and not right after the matching between two local tables. More
details regarding schema integration are discussed in the next section.

The similarity between columns is determined by column name, data type similarity and
primary key information. A formula is used to obtain a similarity value using all previous
similarities, and assuming that both name and data type similarity are equally important to
determine column similarity, but primary key information is slightly less important. Percent-
age of important of each similarity is therefore 40% for both data type and name similarity
and 20% for primary key similarity. The formula is shown in Formula 4.1:

data_type_sim× 0.4 + name_sim× 0.4 + pk_sim× 0.2 (4.1)

The order in which the similarities are calculated is: data type similarity, name similarity,
primary key similarity. Data type similarity is measured in the following way:

• Data types in both columns are the same - similarity = 1.

• Data types are different but belong to the same category (example, double and integer,
both numeric) - similarity = 0.8.

• Data types are different and belong to categories where conversion is sometimes possible
(example, string and numeric conversions are not always possible) - similarity = 0.4.
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Figure 4.3: Illustration with an example of the implemented schema match solution.

• Data types are different and belong to categories where conversions are never possible
(example, conversions between date and numeric is not possible in Presto) - similarity
= 0.0, columns are not a match.

The data types considered here are the ones supported by Presto 2. For simplicity, only
the most common categories of data types supported in Presto were considered, namely the
ones show in Table 4.1.

After the calculation of data type similarity, the other metrics are calculated, unless the
data types have 0 similarity, in which case the process stops. It is assumed that if the data
type between both columns is not compatible, then it is very unlikely that the data in each
column has the same semantic meaning, and therefore it does not make sense to calculate
name and primary key similarity.

Column name similarity is once again measured using Levenshtein distance. Primary key
similarity is equal to 1.0 if both columns are a primary key or if both are not a primary key.
If one is a primary key and the other is not, this similarity is 0.

Figure 4.3 portrays on step 3 an example of column matching between the previously
matching tables "employees" and "employees_info". Each column of table "employees" is
compared for similarity against the columns of table "employees_info". Starting with column
"emp_id", similarity is first tested on the first column of the other table, "id". Similarity
score is above the defined threshold, 0.7, therefore these columns match and no comparison is

2https://prestosql.io/docs/current/language/types.html
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Table 4.1: Presto supported data types and their domains used for data type similarity in
column schema matching.

Domain Data types

Numeric tinyint, smallint, integer, bigint, real, double, decimal

String char, varchar Json, varbinary

Boolean boolean

Date and Time
date, time, time with time zone, timestamp,
timestamp with time zone, interval year to month,
interval day to second

made between column "emp_id" and the remaining columns of the other table. Moving on
to the next column of table "employees", "name", is compared with "id" and its similarity
score is below 0.7, thus moving to the next column, "full_name", which is a match, therefore
the next column of the first table, "isactive" is compared. This column fails to match with
"id" due to low similarity score, and also fails to match with "full_name" because their data
types (boolean and integer) are not convertible, thus moving to the next column in the second
table. In the end "isactive" match with the other column with the same name. Note that in
this example, all columns had a match, but cases may exist in which columns have no match.
Cases may also exist where tables have no matched columns between them.

The implemented approach can be improved in several ways. For example, Levenshtein
distance to test name similarity alone can fail in certain cases (such as "emp" and "em-
ployee_info", the score is 0.23, which is low) and an additional technique could be used, such
as n-gram. However, this approach still does not take into account synonyms, hypernyms
and homonyms, which, as mentioned in Section 2.3.1, require a dictionary. Such dictionaries
should include abreviation, such as "emp" being equal to "employee". These additions could
in theory yield more accurate results. The implemented algorithm provides a good starting
point to schema match and can be improved in the future.

Schema Integration

This step integrates the matching tables to form a single global table. To begin, a list
of matching tables is created, and each list will form a global table. To form this list, it is
detected a "chain" of matches between local tables. It is not expected that one table matches
with all the remaining tables in this list. This means that even if table "A" and "D" are
not matched, they will still be present on this list because table "A" matches "B", table "D"
matches "C," and "B" and "C" match together, for example.

The next step is to perform schema integration. To do this, a binary integration strategy
is used to merge all syntactically similar columns into one global column, which is illustrated
in Figure 2.5a. The integration process starts by the first table in the list, and the name of
the global table is the name of this first table. The first and second tables on the list are
"merged" by creating columns on the global table. After two local tables are merged and a
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new global table is created, this global table and the next local table in the list are "merged".
Again, Figure 2.5a shows an example of this, were local tables "A" and "B" are merged in
global table "AB" and afterwards this global table is merged with the next local table, "C",
and so on.

At each table merge, column schema matching between both tables is performed as de-
scribed in the previous section. Afterwards, columns must be created for each pair of column
matches, and for each column without a match.

For each pair of column matches, a new column is created with name equal to the first table
on the list, and datatype equal to both columns if both have the same data type, otherwise
the most generic data type is selected. A data type is considered to be more generic than the
other if it allows a greater diversity of data to be represented without causing any error. For
example, double is more generic than integer, and varchar is more generic than integer.

Each global column with no match is "copied" to the global table. As an example, consider
once again Figure 2.5a. When table "A" and "B" are merged, the resulting table maintains
columns that match between "A" and "B", namely "X", "Y" and "Z". However, column "W"
in table "B" has no matches, therefore it is copied to table "AB".

The previous steps are repeated until all tables have been integrated into a single global
table. As a remark, note that step 3 in Figure 4.3 that shows column schema matching is
considering the easiest scenario, which is the merge of two local table into one global table,
mainly because the focus of this figure is on the explanation of schema matching. This figure
may give the idea that column matching is performed for each pair of matching tables, but
this is not correct, as schema matching of columns is applied for each iteration of the schema
integration.

This algorithm has a few limitations:

• If table A and B, both with 4 attributes have only one matching attribute, those at-
tributes are merged in a new one, but the remaining 3 columns from each table that
have no matches are also added to the global table, thus creating a global table with 7
attributes which in some cases may result in a table containing attributes with distinct
semantic meanings. However, if tables B or A have other column matches with other
tables, those columns will also be added as columns in the global table. This could result
in various false semantically related columns on the same global table.

• Primary key information is maintained, but foreign key information is not, meaning that
global tables will not have foreign keys. The user must add those manually.

Schema Mapping

Each column in a global table holds the information regarding the column or columns
in the local tables that correspond to that column. Schema mapping will assign a mapping
between each correspondence between columns in the global table and columns in local tables
to enable performing queries on the local schema, while converting said results to the global
schema.

Schema mappings created in this work are different from those seen in the literature.
While many create formulas to specify rules between global and local schemas [10, 44], here,
more generic mappings are created and will fall into one of 3 categories depending on the
partitioning of the data sources:
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• Simple Mapping (or 1-to-1 Mapping) - One global table has only one local tables as a
correspondence. Each attribute of the global table will have one correspondence to one
attribute of the local table. The global table may only have some of the attributes of
the local table.

• Horizontal Mapping - One global table has more than 1 correspondence to local schema
tables, which are horizontally partitioned.

• Vertical Mapping - One global table has more than 1 correspondence to local schema
tables, which are vertically partitioned.

More details on data partitioning and replication can be found in Section 2.2.1.
Finding the type of mapping involves running algorithms against each global table and

their correspondences. The method to determine the mapping between a global table and
its corresponding local table(s) is presented in Algorithm 1. First, if each global column has
exactly one correspondence to columns belonging to the same local table, then there is a
simple mapping (or 1 to 1 mapping), as no partitioning exists in this case. However it is not
required that all columns in the local table exist in the global table.

If multiple local tables correspond to one global table, then it is necessary to determine
which partitioning exists in the local tables.

To detect horizontal partitioning, the following criteria is used:

• a global table must correspond to more than one local table.

• the number of columns in each local table and in the global table must be equal.

• each of those local columns must have the same name and data type when comparing
with the respective global columns (note that it is possible to change a global column’s
name and data type while correcting the global schema later in the configuration process,
as discussed in Section 5.3.2, however the system always considers the original name and
data type of the column to determine the mapping type even if the original column’s
name or data type is changed).

The function isHorizontal() in Algorithm 1 checks, for each column, if the previous conditions
are met. If they do, horizontal mapping is assigned.

For vertical mapping, one or several tables must have a foreign key referencing a primary
key of another table, which should be the original table that was partitioned into other table.
This step is implemented by function isVertical(), which tries to identify foreign key references
in order to determine if there is or not vertical partitioning. First, line 13 obtains the list of
local tables containing columns corresponding to the primary key column in global table, and
line 14 obtains the local tables containing columns that are foreign keys and primary keys.
If there are no tables, than vertical mapping is not possible. Line 18 extracts the column
that is primary key but not foreign key(s). Finally, lines 19-26 verify that each of the other
primary key columns that also are foreign keys all reference the primary key of the original
table. If one of those foreign keys does not reference such column, the function returns false
and vertical mapping will not be assigned to the global table.

In the end, if neither simple, vertical or horizontal mapping is detected, then undefined
mapping is assigned. Users must correct the global table in this case. Next section will explain
user intervention to correct the global schema.
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Correcting The Proposed Global Schema

After the automatic generation of the global schema, the user is requested to correct the
global schema using the interface to interact with the system. How exactly that interaction
is done will be the topic of discussion in Section 5.3.2, as this section covers only what will
be done with the changes the user creates using UI. While editing the global schema, the user
must also create necessary constraints, namely primary keys and foreign keys in global tables
where such constraints may not exist. The user must create the constraints such that it is
possible to create a simplified star schema (discussed in the next section), by creating foreign
keys and primary keys on the tables that are intended to be the dimensions or the facts table.

When the user confirms the global schema, it is stored in the Schema/Metadata Storage
module. Figure 4.4 shows the tables in SQLite used to store the local schema view and
also the tables that store the global schema. Table table_global stores all global tables and
table column_global all global columns, along with the reference of the global table it belongs
to. The correspondences table associates a local column to a global column as well as the
mapping type defined in schema mapping stage. All global columns belonging to the same
global table should have the same type of mapping in each of their correspondences with local
columns. This information will be used to generate queries that gather information from all
local columns that match to a specific global column selected by the user in a query, but more
details will be given in Section 4.5. Note that no association is made between global tables
and local tables, but only between global columns and local columns.

Figure 4.4: Database Diagram of the SQLite Database to store information regarding the
global schemas, including correspondences from the local schema to global schema.

Note that table "column_global" in Figure 4.4, that stores global column information con-
tains 2 attributes that may be confusing: "is_datatype_different" and "datatype_original".
These attributes are mostly used to identify if the global column had its datatype changed by
the user, which is a feature available in EasyBDI and fully explained in Section 5.3.2.
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4.4.3 Multidimensional Schema

The previously defined tables on the global schema can be used in one or more star schemas.
This mapping consists on identifying which global tables are the dimensions and which is the
facts table. In the latter, the attributes that will be used as measures (if any) should also
be identified. Note however that only addictive or semi-additive measures are supported,
meaning that it only makes sense to perform aggregations across all or some of the dimensions
in the star schema. The user uses the interface to perform the mapping of tables to a star
schema, which will be showed and explained in Section 5.3.3. It is important that foreign key
constraints are correctly defined between the facts table and the dimensions, a step that is
performed on the global schema creation.

Figure 4.5 shows the same tables used to store the local and global schema information
seen in Figure 4.4 but also the tables used to store star schemas, seen at the bottom of the
figure. Table multidimensional_table contains a global table and a flag which indicates if the
reference table is a dimension or a facts table. Each column from each table in the star schema
is also stored as a reference in table multidimensional_column, which also contains a flag to
indicate if the given column is a measure or not. Of course, measures can only be attributes
in the facts table. Both tables multidimensional_table and multidimensional_column belong
in a specific star schema, hence they contain a reference to the table star_schema, which
contains the name of each created star schema.

Figure 4.5: Database Diagram of the SQLite Database to store information regarding the star
schemas, using tables from the global schema.
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Algorithm 1: Detect partition type and mapping
Input : A global table object containing correspondences to local tables
Output: Mapping type

1 Method:
2 globalColumns← globalTable.getGlobalColumnsList();
3 localTables← globalTable.getlocalTablesList();
4 if localTables.size() == 1 then
5 SimpleMapping;
6 else if isVertical(globalTable) then
7 VerticalMapping;
8 else if isHorizontal(globalColumns, localTables) then
9 HorizontalMapping;

10 else
11 UndefinedMapping;
12 Function isVertical(globalTable):
13 localTables← globalTable.getPrimKeyColumn().getLocalTables();
14 fkTables← getOnlyPKAndFKTables(localTables);
15 if fkCols.size() == 0 then
16 return false;
17 end
18 primKeyOriginalColumn← localTables.getPrimKeyNoFK();
19 for localTable in fkTables do
20 for column in localTable.getColumns() do
21 if column.isPrimaryKey() and column.isForeignKey() then
22 referencedColumn← column.getReferencedColumn();
23 if referencedColumn.equals(primKeyOriginalColumn) then
24 continue;
25 else
26 return false;
27 end
28 end
29 end
30 return true;
31 Function isHorizontal(globalColumns, localTables):
32 for localTable in localTables do
33 if localTable.getNumberColumns() != globalColumns.size() then
34 return false;
35 end
36 for globalColumn in globalColumns do
37 if ! localTable.columnExists(globalColumn.getName(),

globalColumn.getdata type(), globalColumn.isPrimaryKey()) then
38 return false;
39 end
40 end
41 return true;
42 end
43 return false;
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4.5 Analytical Queries Using A Global Schema

This section will focus on the solution developed for performing analytical queries using
a star schema and visualize the results with the same structure defined in the star schema,
while hiding the local schema containing the original data queried, which resides over multiple
distributed and possibly heterogenous data sources. It will also deal with how to submit queries
through the system, but details on how to fully build queries using the system’s interface are
available in Section 5.5.

4.5.1 Submitting Queries Through EasyBDI

It is important to define how users will interact with the system to submit queries, knowing
that those queries will have to be delivered to Presto in SQL. Additionally, inner queries
will have to be added in order to extract data from the local schema. The first approach
considered was to have users writing queries in a well known language, such as SQL or MDX,
with the latter being more suitable for multidimensional data, because such data requires
many aggregations between each dimension table and the facts table. With MDX language,
these aggregations are already implied, while in SQL all necessary aggregations would have
to be manually written3 [45]. Furthermore, MDX language was built with a different purpose
than SQL, which is to handle multidimensional data [45], and to do so, MDX also allows
control of data present in the x-axis and y-axis, unlike SQL language, aimed mostly for only
2 dimensional data [45].

In conclusion, MDX would be a much more suitable language for users to write analytical
queries, however it is necessary to convert from MDX to a SQL syntactically and semantically
valid query in order for Presto to run it. Research was done on libraries or tools that can make
such conversion, but none was found because this conversion is not trivial, as it is necessary
to reformat the MDX query to SQL, apply aggregations and other corrections, which, on top
of that, should include the inner queries to retrieve data from local schema. Implementing a
conversion algorithm can be time consuming. As such, the concept of writing queries on the
system was abandoned in favor of creating queries through the user interface, more specifically
by dragging elements of the schema to specific areas on the interface and create an SQL query
according to the elements in each area. This concept was based on many applications that
already allow users to interact with data in a similar manner, such as Microsoft Office Excel’s
dynamic tables, or Saiku Analytics, which also allows the execution of analytical queries.

These two systems are also used to define which areas should be available and what each
one would mean for the query construction. Both applications have a rows and a columns area,
meaning that it is possible to control which elements appear in the x-axis through the columns
area and the y-axis through the rows area. A filter area also appears in both applications to
create filters. An area to select the measures is also needed. Measures indicate quantitative
data whose main analytic interests are calculations, and thus only have interest if they appear
as a set of values aggregated and grouped by other categories, such as time and location.

Using the previously mentioned tools as an example, it is established that 4 areas for query
creation are needed: one for defining rows (y-axis), another for the columns (x-axis), one for
filters and a fourth only for measures. Each attribute of the schema placed in any of these
areas will generate different queries, therefore it is necessary to explain the logic associated

3Example of MDX vs SQL: https://dba.stackexchange.com/questions/138311/good-example-of-mdx-vs-sql-
for-analytical-queries/138830#138830
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behind query generation for each of those areas, and the query is assembled and the challenges
faced.

4.5.2 Creating Queries Capable Of Retrieving Data From The Local Schema
To Global Schema

It is necessary to convert the data from the star schema perceived by the user to the local
schema where the data resides. The tables in star schemas are essentially global tables with
additional mappings to determine if they are dimensions or facts. To show data from the local
schema to the global schema, all data from all local tables associated with a global table must
be merged and integrated using the mappings previously created. These mappings are used
to guide the creation of a query capable of retrieving data from the all local tables associated
with a global table, and integrate their data as if a real global table exists. A global table
is an entity representation used in EasyBDI, as the data resides in (possibly) various storage
systems in the local schema, therefore, a global table is not actually created or instantiated,
but it is presented as if it existed.

Because Presto adopts SQL as its query language, one can use nested queries in which the
outer query contains the operations requested by the user, while also formatting the data to
be coherent with the global schema structure (such as chaning table/column name), and the
inner queries containing fetch the data from local tables to the corresponding global table.
The inner queries are surrounded by parentheses and are executed before the outer query.
The results of the inner query create the local schema entities, which will be used to create a
representation of the defined global table on the outer query. It is possible to determine what
are the correspondences of each column in the global table and their mappings by consulting
the Schema/Metadata Storage module.

Three types of mappings exist, as explained in Section 4.4.2, and the creation of the inner
queries depends on the type of mapping. To demonstrate how these global to local schema
queries are created, assume that a global table "employees" exists and that a simple query is
made by the user that select all elements from this global table. An example of global to local
schema generated queries will be demonstrated to all 3 mappings.

Simple mapping queries are demonstrated first. Listing 4.1 shows an example of a query
with an inner query fetching data from the correspondences of the global table, which in this
case is just one local table, and the outer query will use the result of the inner query and
assign an alias whose name is the same as the global table. The global table "employees"
exists within the outer query, without actually being instantiated. A local table is referenced
using a fully qualified name ("catalog.schema.table") in order for Presto to be able to run it,
as mentioned in Section 3.3. Qualified names are shown in example query in Listing 4.1, but
in order to simplify the queries, qualified names will be omitted from here on out. Double
quotation marks are also used on table names or columns to escape certain characters that
may exist, such as spaces. Although tables and columns from relational DBs may not have
certain invalid characters, files are much more likely to have and the query will fail with invalid
syntax if not escaped.

Listing 4.1: Example of a generated query for simple mapping relationships with full qualified
names
SELECT ∗ FROM (SELECT ∗ FROM "empdb . s t o r e . employees_1" )
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AS " employees "

When global tables have more than one corresponding local table, it is necessary to retrieve
information from all local tables coherently. As explained before, there are two possible
mappings that have multiple local tables as correspondences of a global table: horizontal
and vertical. The problem is on how to combine data from tables horizontally partitioned or
vertically partitioned. For horizontal partitioned tables, data can be combined by applying
an union operator between all tables. The example query in Listing 4.2 uses nested queries
to retrieve data from horizontal partitioned tables that correspond to one global table.

Listing 4.2: Example of a generated query for horizontal mapping relationships
SELECT ∗ FROM
(SELECT ∗ FROM "employees_1" UNION SELECT ∗ FROM "employees_2" )
AS " employees "

For vertical partitioning, all tables can be combined by applying a join operation by the
primary key columns of each one, as seen in the query in Listing 4.3

Listing 4.3: Example of a generated query for vertical mapping relationships
SELECT ∗ FROM
(SELECT ∗ FROM "employees_1" INNER JOIN "employees_2"
ON "employees_1" . "emp_id" = "employees_2" . "emp_id" )
AS " employees "

Another example is shown in query in Listing 4.4, where only some columns are selected
and aliases are created on each column of the local table, but only when the names of the
columns in the local and global schema differ. For example, in query in Listing 4.4, column
"name" in global table "employees" has a different name than the corresponding column in
the global schema ("full_name"), therefore an alias is added to the local column so that these
are recognized in the outer query as having the same name as the name in the global schema.
This only works if all columns in the partition have the same name, otherwise this alias will
become ambiguous. For example, if in horizontal partitioning, one table is designated as
"name" and the other "full_name", assigning aliases with the same name to these columns
will make the result in inner query ambiguous, as there are two different columns with the
same name. Another strategy would have to be implemented to solve this issue.

There has been an effort to construct the inner queries efficiently, such that unnecessary
columns do not appear in the select clause, thus improving performance. Tables from analyt-
ical scenarios may have several columns, but if only one is need from that table, it would be
naive to simply select all columns from that table on the inner queries. If only one column
of a global table has been selected, then the inner queries should only contain that column
in the select statement, and this can be seen in the inner query in Listing 4.4. Additionally,
the implemented query generation algorithm can understand that column "emp_id", primary
key to both vertical partitioned tables, is needed for the join operation, and therefore adds
this column to the select clauses of the inner query, even though the corresponding "emp_id"
column in the global schema was not selected.
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Listing 4.4: Example of a generated query for vertical mapping relationships where only a
subset of columns are specified and the name of the columns differ between both schemas
SELECT "name" , " i s a c t i v e " FROM
(SELECT "employees_1" . "emp_id" , "employees_1" . " full_name" AS "name" ,
"employees_2" . "emp_id" , "employees_2" . " i s a c t i v e "
FROM "employees_1" INNER JOIN "employees_2"
ON "employees_1" . "emp_id" = "employees_2" . "emp_id" ) AS " employees "

For local tables partitioned vertically, this could mean that entire tables in the local schema
could not be included in the inner queries, thus reducing Presto’s operations even further. To
demonstrate this, let us revisit query in Listing 4.4 and suppose that column "isactive" in the
outer query is not selected. This would mean that an access to local table "employees_2" is
unnecessary because no columns in the global schema were selected that map to any column
of "employees_2", hence only "employees_1" needs to be selected. Query in Listing 4.5
demonstrates this example.

Listing 4.5: Example of a generated query for vertical mapping relationships where only one
local table needs to be accessed instead of both local tables corresponding to the global table
to retrieve data
SELECT "name" FROM
(SELECT "employees_1" . "emp_id" , "employees_1" . " full_name" AS "name"
FROM "employees_1" ) AS " employees "

If however, "emp_id" is selected in the global schema, both local tables and a join oper-
ation are needed. This is demonstrated, although with a different example of table, in Table
4.2. This table further demonstrates this dynamic creation of queries, by showing a few more
examples of queries made over the global schema and the generation of a complete query that
includes both the global schema queries and the local schema queries in inner queries. Double
quotes are omitted for a cleaner look.

4.5.3 Creating And Executing Queries In EasyBDI

The whole process of query execution in EasyBDI is summarized in Figure 4.6, with
the identification of the intervening system modules previously explained in Section 4.2 and
depicted in Figure 4.1. When a user submits a query using the query UI, the system will create
a valid SQL query according to user input. For each global table present in the query, all local
table’s names, data source location, and mapping are extracted from the Schema/Metadata
Storage module and a inner query is generated based on the mapping type, as discussed
previously. In the example presented in Figure 4.6 the user creates the query shown on the
top left through the interface and an inner query is added for the global table "sales", which
has a horizontal mapping assigned for the two corresponding local tables. The inner query
selects only the attributes that match the selected attributes in the global table, and performs
a union on both local tables in order to return all records, and thus present all data from the
global table. An alias is added to the inner query with the name of the global table, and the
inner query is added to the original query and sent to Presto for execution. Results are then
showed in the interface.
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Table 4.2: Example of query generation to extract records from the local schema using inner
queries. Vertical partitioning exists in the local schema. Some local tables are not added in
the inner queries if their attributes are not necessary.

Example Global Schema Query Global Schema With Local Schema Query

1 SELECT id, email FROM
employees

SELECT id, email FROM (SELECT id,
email FROM employees INNER JOIN
employees_details ON employees.id =
employees_details.id) AS employees

2
SELECT email,
job_description FROM
employees

SELECT email, job_description FROM
(SELECT email, job_description FROM
employees_details INNER JOIN
employees_job_info ON
employees_details.id =
employees_job_info.id) AS employees

3 SELECT email FROM
employees

SELECT email FROM (SELECT email
FROM employees_details) AS employees

Figure 4.6: Query transformation process. A query is created in SQL based on user input and
nested queries are added to extract data from local tables.

4.6 Generation Of Analytical Queries

This section offers a more in-depth explanation as to what type of queries can be made
by the user and how they are generated. The user input is used to generate the outer query,
and inner queries are added for each different global table in order to be able to extract in-
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formation from the local schema, as explained in the previous section. Queries are created by
placing attributes in specific areas on the interface. Each area has a different logic and mean-
ing associated towards constructing the end query, and therefore each one will be explained
individually in this section. The main operations that can be generated on each query are:

• Aggregate functions.

• Order by operations.

• Filter operations, including addition of logical operators.

• Joins between dimensions and facts tables.

• Data pivoting.

4.6.1 Adding Rows To Analytical Queries

The addition of attributes in the rows area is the equivalent of adding attributes in a
select clause in a SQL query. The from clause must include all different tables belonging to
attributes in the select clause.

In addition, it is very helpful to be able to sort attributes, and users can do this and select
if they want to see the values in ascending or descending order. If an order by is added using
the interface, then the query generator must add an order by clause containing the list of all
columns that the user selected to sort, along with the order (descending or ascending).

Figure 4.7 shows an example of a generated query assuming that a user, through the
interface, selected three attributes of dimension tables (the rectangle on the left shows the
user input), and some of those attributes were also selected to be sorted in the final query.
This generates a query as shown on the right, which is then given to Presto. This example
selects two attributes from global table "t1" and one from "t2" with two of those attributes
being selected to be sorted in a order by clause (seen in the last line of the query in Figure 4.7).
Note that some quotation marks applied to columns and tables are omitted for simplicity.

In this example, the local tables that correspond to global table t1 have been identified as
having an horizontal mapping, hence the inner query will select the columns corresponding
to the ones selected by the user from both local tables and perform a union operation. The
inner query is assigned an alias so that these records are identified as the global table’s name,
t1. Global table t2 has a simple mapping, therefore only one table is selected in the inner
query along with the necessary columns on the inner query for t2. Note that for each inner
query, the columns of the local tables also contain aliases, but only if the name of the global
column is different from the name of the corresponding local column. In the example query
seen in Figure 4.7, the global column "country" contains a correspondence to a local column
named "territory", and because both names differ. Since the outer query only deals with the
name columns assigned in the global schema it is not possible to select the column "territory"
existing in the inner query from the outer query, which uses the name "country". An alias
with the global column’s name is added to ensure that this is possible, and now the column
"territory" is named "country", and therefore accessible to the outer query. However, global
column "store_name" has the same name as its corresponding local table, hence no alias needs
to be added in the inner query for each corresponding local column.

Aggregate functions are also possible to be added to queries by specifying the attribute and
the aggregate function to be used (details on how to do this using the user interface in Section
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Figure 4.7: Illustration of the SQL query generation process using the user selected columns
from dimension tables.

5.5.2). However, this generated additional validation that needed to be implemented on the
query generation process. For example, if an aggregate function is used in an attribute, and
the same query includes one or more attributes without aggregate functions, those attributes
need to be added to group by clause, else Presto will fail to execute the query. The query
generator obeys to this condition, and adds each attribute to a group by clause if an aggregate
is used in the query.

Aggregated attributes are also given an alias in order to improve the readability of the query
output. This alias, is in the form "<aggregate function> of <attribute>". For example, if the
attribute ’names’ add a count aggregate function applied, then that column would have the
name "count of name" in the final output. This is also useful to distinguish between columns
with the same attribute but different operations on the same query, such as an attribute with
avg and another one with sum, which will be easily distinguishable by it’s name given by the
added alias. An example of a query containing aggregate functions applied is shown in Figure
4.8.

4.6.2 Adding Measures For Analytical Queries

When a measure from the facts table is selected to be included in the query, the user may
be interested in carrying out aggregation operations on that measure, because, in analytical
queries, measures are mostly used to describe quantitative aspects and are therefore used in
calculations. In this case, users must select which of the supported aggregate functions to use:
Sum, Count and Average. Max and Min were not implemented. Multiple measures may be
used on the same query and the same measure may appear multiple times as long as it contains
distinct operations (such as no aggregate function and again with an aggregate function).

In order to coherently merge records between the dimension tables and the facts table, a
condition is used in a where clause between the facts and each dimension using the shared at-
tribute between both tables (the primary key on the dimension and the foreign key referencing
said attribute on the facts), as seen in the query example in Listing 4.6.

Listing 4.6: Example of a query using the equivalent of a Join operation in the where clause
SELECT ∗ FROM f ac t s_tab le , dimension1 , dimension2
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WHERE f a c t s_tab l e . dim1ID = dimension1 . id AND
f a c t s_tab l e . dim2ID = dimension2 . id

If filters were added by the user, then an AND must be added to the where clause.
Any aggregate function used in either a dimension attribute or a measure implies adding

a group by clause containing all other attributes in the select clause that do not have an
aggregation operation, if any.

A complete example of a generated query were measures are used is illustrated in Figure 4.8,
using as an example a hypothetical analytical query whose main purpose is to demonstrate how
these queries are built. This query selects the number of units (of products) each employee and
customer sold/bought (count(units_sold)) in each purchase registered and the total amount of
units sold (units_sold) between all registered purchases, as well as the name of the client that
made the purchase and the name of the employee that registered the purchase. To do this,
the user selects the columns regarding employee names in a dimension table, and the column
containing customer names in other dimension table and a measure named "units_sold" with
a count operation and again the same measure but with no operation. For the three global
tables in the from clause (two are dimension tables and one is the facts table), an inner
query is created, once again selecting only the necessary attributes for the outer query in
each local table and for the join between the dimensions and facts table, namely, the primary
keys/foreign keys (for simplicity, all mappings in this example are simple mappings). The
local tables corresponding to "employees" selects only the attributes "employee_name" which
was selected in the select clause and the primary key "id" needed to join between the facts
table. The same goes for the other dimension table "customers" and for the facts table, which
selects only the measure and both foreign key attributes referencing the primary keys of the
dimensions ("emp_id" and "customer_id"). To perform an equivalent operation as an inner
join between the facts and each dimensions, a where clause is added with a equality comparison
between the dimension table’s primary key and the respective foreign key in the facts table,
resulting on the condition "sales.emp_id = employees.id". The same is done between "sales"
and "customers", and the process would be repeated again with another dimension table if
more attributes belonging to different dimension tables were specified in the select clause. A
group by clause contains attributes "employee_name" and "customer_name", as well as the
measure "units_sold" which had no aggregation function associated.

An alias is also created just as it happens with dimension attributes, as can be seen in
Figure 4.8, where a "count" operation is made on the measure "units_sold", and therefore
it’s alias is "count of units_sold", and the measure with no aggregate function "units_sold"
remains with the same name. Note that the same measure can only be added multiple times
to a query if it contains distinct operations, such as aggregate operations and one or zero
columns with no aggregate function applied to the attribute.

4.6.3 Pivoting Data In Analytical Queries

Certain attributes may be selected by the user to present their values in x-axis of the
output, thus forming a new column per value (here we designate this column as a pivoted
column). Therefore, the generated query outputs the distinct values of the attributes, which
will be converted into column labels in the final query output, and any other values from
measure attributes used in the query must be grouped correctly among those columns. SQL
contains an operation to do this, called pivot, however this operation is not natively supported
on Presto, therefore this operation needs to be manually created. Furthermore, one needs

59



Figure 4.8: Illustration of the SQL query generation process using the user selected attributes
from dimension tables and measures from the facts table.

to know in advance all distinct values of the attributes of which to create the columns on
the output. The values that should fill the rows of pivoted values should be of measures or
aggregate operations applied to measures. For this reason, whenever a column is specified to
be pivoted, one, and only one measure must be specified by the user.

First, it is necessary to create and execute a query to retrieve all distinct elements of an
attribute. The query is simple, as seen in Figure 4.9, as it only returns the distinct values of
the attributes that are needed to produce the final output expected by the user. This query
also contains an inner query to retrieve data from the local tables, which in this example, is
horizontally partitioned. The output is a single column, with a collection containing fields
with the different values of each attribute, and this output contains a combination of all
possible values between the selected attributes. For example, the output of the query seen in
Figure 4.9 contains all combinations of different values between attributes "store_region" and
"store_name", but no combination of values is repeated within the results. These values will
be stored in memory for the duration of the generation process of the final query.

The values are then used to create new columns in the output of the user requested query,
similar as the pivot operator. In the absence of a pivot operator in Presto, it is necessary to
manually create columns and position the correct rows (the values of the measures) in the
corresponding columns. One approach was to use Presto’s map_agg 4 which receives a map
with key-value pairs, the key being an attribute whose different values should form columns
on the output, and the value another attribute whose values of a measure attribute should be
grouped with the values of the attribute on the key. However, this strategy resulted in several
errors, such as a "key not present", even though such value existed on the records and on the
attribute used on the map. Because of these complications, this method was dropped.

Another approach was adopted which consists on using a case5 statement to create new
columns and aggregate values in these new columns. These statements contain one or more

4https://prestosql.io/docs/current/functions/aggregate.html?highlight=map_agg#map_agg
5https://prestosql.io/docs/current/functions/conditional.html?highlight=case
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Figure 4.9: Generation of an intermediate query to retrieve all distinct values from attributes,
and example of the resulting output whose values will be used on a final query as columns.

conditions, and the statements returns a value depending on the condition that evaluates
true, or the value in the ’else’ clause if no other condition is true. These statements have the
following structure:

CASE WHEN value THEN result
[ WHEN ... ]
[ ELSE result ]

END AS tableName

This statement means that whenever a certain value appears, a specific result must be
added to that value’s column.

When adding a measure to the query, it is possible to choose between 3 aggregate functions:
count, sum or average. It is also possible to not use an aggregate function. This selection
will slightly change the case statement. A summary of all the case statements for each of the
previous configuration is presented in Table 4.3. Note that it is not possible to add more than
one measure to the query (even if the same measure has 2 different aggregate functions).

To correctly name each pivoted value into a user friendly column name, an alias is added
with the name of the value of the attribute being pivoted. However, if multiple attributes are
being pivoted, the name of each column is the concatenation of each value from each attribute
followed by an hyphen between between each value. As an example, if value "Portugal"
from attribute "country" and value "Aveiro" from attribute "region" are pivoted into a single
column in the output, the column’s name will be "Portugal-Aveiro".

Again, in order to avoid SQL syntax error, the following validations are made to aliases:

• If a value is empty, resulting in an alias containing an empty string, then the placeholder
"empty" will be used as the column name, because empty strings are invalid column
names.

• Enclosing the values composed by digits only using double quotes will make it an ac-
ceptable column name.

• Enclosing in double quotes also solves the issue where one or more spaces exist, as well
as single quotes which would otherwise be interpreted as the string enclosing character
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Table 4.3: Example of case statements applied depending on the aggregate function to pivot
data.

Aggregate Function Case Statement

No Aggregate Function (CASE WHEN columnName = ’value’ THEN 1 ELSE 0
END) AS "value"

Count SUM(CASE WHEN columnName = ’value’ AND measure
not null THEN 1 ELSE 0 END) AS "value"

Sum SUM(CASE WHEN columnName = ’value’ THEN
measure ELSE 0 END) AS "value"

Avg AVG(CASE WHEN columnName = ’value’ THEN
<measure> ELSE 0 END) AS "value"

(such as in "Women’s Secrets"). Double quotes are therefore added to all values when
adding the alias for each column.

To use the values of the columns obtained from the query in Figure 4.9 in the case state-
ment, more specifically in the condition "columnName = <value>" of the case statement,
the values must be treated as literals, otherwise the exception "cannot be resolved" is raised.
First, the data type of the attribute will decide if the values should be enclosed with single
quotes or not. For numeric data types, single quotes must not be added. For chars, varchars,
dates and many other data types, single quotes are necessary. For numeric data types, single
quotes must not be added. In this case, spaces are not a problem, but single quotes within
the value are, as they will be interpreted as the end of the string and an error with invalid
syntax, is returned. However, as with most relational DBMS, such characters can be escaped
in Presto by placing another single quote next to each occurrence of the first one (example:
"Women”s Secret).

Another issue to consider are empty values, which will again cause a syntax error. When-
ever an empty value is detected two single quotes are used, thus avoiding such error.

Group By clauses are added to include other attributes that were not included in aggregate
functions (if any). In the example in Figure 4.9, the distinct values of the attributes specified
in the "columns" area (that will be pivoted) are not added to the group by clause in the
generated query, because they are part of an aggregation. However, if the measure does not
contain an aggregate function, as seen on the first line of Table 4.3, then all of the pivoted
values must appear in the group by clause. This poses a new problem, as aliases cannot be
added to group by clauses because of the order SQL executes each clause. A group by clause
is executed before the select clause, and any aliases created on the select clause are not yet
defined and cannot therefore be used on clauses processed before the select clause, such as the
where, having and group by clauses [46]. The order in which the clauses are executed is shown
in Figure 4.10.

Without referencing the alias, the full case statement must be used to identify the column
created. But this would imply that each case statement would have to be written again on
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Figure 4.10: Order of execution of each clause in a SQL query [4] on MYSQL, and also used
in Presto. May vary depending on the relational DBMS.

the query. The adopted solution, is to use a number representing the order of the created
columns in the select statement to refer to these columns, which is accepted by the group by
clause. As with previous queries, group by is only used when aggregate functions are used,
otherwise they are not added to the query.

An example of a final query containing measures and attributes transformed to columns
is illustrated in Figure 4.11.

Figure 4.11: Example of a query containing attributes as columns, and measures grouped on
each of those columns.

4.6.4 Creating Filters

Filters are created by dropping attributes to a filters area in the UI. When dropping an
attribute, a condition must be created using that attribute. The system’s UI related logic
ensures that valid conditions are created. Afterwards, whenever a query needs to be created
and submitted, the system reads each created condition on the UI and creates the SQL code
that will be placed after the where clause, or if the query uses conditions to perform joins
between the facts and the dimensions (such as the query seen in Figure 4.8), an AND is added
to the already existing where clause followed by the user created filters. Details regarding the
interaction with the UI to create filters as well as how the filters are generated with proper
SQL syntax from the user input will be explained in Section 5.5.3. Note that there is also an
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advanced option to manually create the filters, which will be explained in Section 5.5.4. This
section will focus on using the SQL generated filters and added to the overall query.

When generating the final query, filters will be used against the global tables created using
the inner queries, and are not applied in each inner query, or, in other words, filters are applied
over the global schema and not on the local schema.

It is possible to include in the filters attributes that are not present in the selected attributes
that will be used as rows or columns in the query output. For example, if only the attributes
"month" and "day" from table "time" are selected, it is still possible to filter only by the
attribute "hour" in the same table, even if not selected in any other area (rows, columns or
aggregations areas). However, this adds another issue that needs to be addressed: inner queries
need also to consider attributes in the filters area and include the corresponding attribute of the
local schema in their select statements. If this is not done, then only the "month" and "day"
attributes will be selected in the inner query, and the outer query will not have defined any
attribute "hour" from the local schema, as portrayed in Listing 4.7. To solve this, a verification
is done for each of the attributes referenced in the user created filters, and attributes are added
to the list of attributes to be selected in the inner queries.

Listing 4.7: Example of an incorrect query where one of the attributes used in the filters is
not selected within the inner queries, thus generating an SQL error
SELECT time .day , time .month , FROM

(SELECT db . time .day , db . time .month FROM db . time ) AS time ,
WHERE time .hour = time ’ 12 :30 ’ ;

It should be noted that current implementation of query generation algorithm does not
consider tables containing attributes only present in the filters. It is necessary that all different
tables with at least one attribute selected in filters also have at least one attribute in the rows
or aggregations area (does not need to be the same attribute).

Another form of filters can be executed on EasyBDI which uses attributes containing
aggregate functions. A where does not support aggregated attributes, so the having clause
is used. Any conditions created with aggregated columns must be placed on this clause, but
aliases cannot be used on either where or having clauses because they are not recognized on
Presto, unlike many relational DBMS, such as MySQL, which allows the use of aliases on
these clauses.

Figure 4.12 shows an example of a query that outputs all employees from the "Photogra-
phy" department that made more than 5 sales. The attribute "sale_id" has a count aggregate
function in order to count all sales, and a filter is applied in the having clause to this aggre-
gation in order to show values greater than 5. Note that the condition on the having clause is
explicitly written instead of referring to the alias assigned ("count of sale_id"), as no aliases
can be used here (because of the execution order of a SQL query, seen in Figure 4.10.

An exception is made for filters applied to attributes selected to be transformed into
columns. In this case, the values from those attributes need to be filtered already in the
final query (seen in Figure 4.11), therefore those filters are instead applied to the query that
outputs all different values of those attributes in order to filter out those values (query seen
in Figure 4.9).
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Figure 4.12: Query transformation process containing filters with and without aggregations.
Filters are applied to the global table’s attribute and not to the local schema queries in the
inner queries.

4.7 Considerations

This chapter introduced EasyBDI, a system that is able to query heterogenous and dis-
tributed data sources, while also providing near real-time querying by directly pulling data
from the data sources. These features are mainly achieved by the distributed query engine
used, Presto. However, Presto alone does not fill the remaining requirements specified in Sec-
tion 1.3, as seen in Table 2.1, such as the creation of global schema, star schema, or a user
interface that simplifies the overall configuration of the schema and query creation.

This motivated the implementation of a system built on top of Presto, named EasyBDI,
that is capable of hiding the internal organization of the data sources by automatically creating
a global schema, which can be modified through a user interface. Star schemas can also be
created by mapping entities in the global schema to the star schema, and queries are submitted
using said star schema and also through a user interface based on drag-and-drop so that users
from areas outside of the database system management can also use the system.

EasyBDI’s architecture was introduced in this chapter. The top level layer refers to user
interface logic. Layers responsible to create and maintain the schemas are present, namely the
local, global and star schemas, including a layer specific for data integration techniques used
to create a global schema. Any data partitioning is automatically detected using a developed
algorithm and hidden by creating a global table that corresponds to the multiple fragmented
tables. These schemas are stored in SQLite.

When a query is created using drag-and-drop and submitted through EasyBDI, a SQL
query is generated containing all operations needed to present the requested results to the
query. Inner queries that are responsible to return data from the local schema are added to
the overall query, which is then passed and executed by Presto. Results are presented to the
user and organized accordingly with the star schema. No data is materialized, meaning that
global tables are never created. Instead, the outer query passed to Presto is also responsible
to modify the data according with the star schema structure, such as changing the names of
the tables/columns from the results of the local schema. A very in depth guide on all the
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possible query generation scenarios has been described in this chapter.
This chapter explained the core logic behind EasyBDI. Next chapter will demonstrate how

to use the system and present all of its features, such as schema configuration and query
execution. Other minor features and implementation aspects not introduced here are also
presented, while also explaining how some of those features work whenever necessary.
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Chapter 5

EasyBDI Demonstration

This chapter will serve as a walkthrough for the developed system from a user perspective,
detailing it’s features, how to use its functionalities, how they were implemented and possible
limitations.

The system has two main functionalities: creation and configuration of local, global and
multidimensional star schema and execution of analytical queries. These contain several details
and many other minor features implemented in order to better assist the user. This section
introduces the system’s UI and how to interact with the system to configure the schemas and
to create queries.

5.1 System Users

The main tasks in EasyBDI are the creation of local, global and star schemas, and execution
of analytical queries. However, these tasks require different levels of knowledge and it is not
expected that a person is capable of executing all of these tasks in the system. These tasks
and responsibilities are therefore classified in 3 different types of users:

• Data source Administrator - responsible to connect the platform to each data source,
making sure that the platform has permission to access its data.

• Data Administrator - involved in the data source integration process, which requires the
definition of a global schema.

• Business Analyst - performs analytical queries through the platform using the global
schema.

One user can have more than one roll in the system depending on his level of expertise.
For this dissertation, the system was implemented without any authentication logic for sim-
plification and demonstration purposes, and assumes the user has full access to the system
and can execute every functionality the system has to offer.

5.2 EasyBDI - Main Menu And Basic Concepts

EasyBDI uses the concept of projects that users need to create, each of them containing the
local schema view information (with data source information, including connection information
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to access them, and local tables/columns information ), a global schema and one or more star
schemas. The creation of different projects allows an easier separation of data and schemas
created to be used for specific contexts or use cases. One user can create a project entirely
dedicated to analyze the overall sales of the company, while other project can be focused only
on inventory management and company expenses. Internally, the Schema/Metadata storage
layer creates one SQLite database file for each project, using the schema presented in Figure
4.5.

The initial screen of the system, depicted in Figure 5.1, features a main menu and provides
a point of access to either create a new project or to select and use a previously created project
to either edit it or perform analytical queries. Users can switch between projects anytime and
may even delete projects. Again, to better exemplify the use of this system, a user with all
roles is assumed to be using the system.

The system also allows the user to specify a Presto Server directory, however this node is
assumed to be the coordinator. The user is responsible to configure Presto and the cluster
intended to use with EasyBDI.

Figure 5.1: Main Menu of EasyBDI.

This section will explain all the available features in EasyBDI and how to use them. A
few implementation details will also be discussed, sometimes referring to content explained in
previous chapters.
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5.3 EasyBDI - Creation of New Projects

Wizards are used to provide guided solutions to users for the creation and configuration
of new projects. Such configuration consists in adding new data sources, configuring the
system’s proposed global schema and definition of a multidimensional star schema. Users may
quit the configuration project halfway through, but must complete it to perform queries, as
the "Perform Queries" button will not be active if no local schema, global schema and/or at
least one star schema is created. The selected project on the main menu will present a message
indicating if it is ready to be used for analytical queries or if a configuration is incomplete, such
as missing local schema or global schema. In this case, users must select the "Edit Project"
button to conclude the configuration process, as explained in Section 5.4.

5.3.1 Data Source Configuration

The first step to create a new project is to connect existing data sources to EasyBDI, there-
fore, a Data source Administrator must fill in information in order for EasyBDI to connect to
each data source, such as URL, name, data source model and, if needed, credentials (username
and password). The data source administrator is responsible to provide permissions for the
user (if applicable) to execute queries from the data source.

Note that different data sources have different concepts of databases and schemas, and
therefore may differ on how each server is organized, a topic briefly discussed in Section 4.3.
For example, in MySQL it is not necessary to specify a database name, as access is given to
all schemas within a single server, while in PostgreSQL one must specify the database name
within the server. This means that in some data sources, such as PostgreSQL, users must also
supply a database name in order to connect to that database, while in other data sources,
such as MySQL, the database name is irrelevant and is only used as a way to identify the data
source within the system. To overcome this, the field "data source name" is only visible when
necessary. In case the data source requires a database name in its URL, the text field must
end with "/<database name>", and this name will also be used as the data source’s name
within EasyBDI.

Figure 5.2 shows the screen in which users configure data sources. In this image, Cas-
sandra is currently selected, and because a keyspace does not need to be supplied within the
connection URL, the field "data source name" is visible.

Users can add as many data sources as they want after filling in the required information
and clicking the ’Add Data Source’ button, which adds to the list marked with the number 2
the data source details. If a specific data source has been used before in another project, it
is possible to import its details without entering all information again. This feature can be
used by clicking the ’Import Data Source From Project...’, which opens a new window with a
list of all different data sources from all currently available projects in EasyBDI. The list in
Figure 5.2, marked with number 2, contains three data sources.

Before moving on, a connection to each data source must be tested by selecting one data
source in the list number 2 and then clicking on ’Test Selected DS Connection’ and Presto will
temporarily create the appropriate configuration file for the selected data source and restart
itself in order to properly use the new properties file created. When restarted, Presto tries to
connect to the data source by performing a simple query, show schemas from <data source>.
If a connection cannot be established the user is alerted with a warning message along with
the cause of the error. This error log will be added in the list marked with the number 3 in
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Figure 5.2. The user must either edit the details of the data source or delete it, as it is not
allowed to continue while there are any data sources with unsuccessful connection attempts
or whose connectivity was not tested. For example, the print seen in Figure 5.2 shows that
a connection was tested and was successful to MongoDB, but failed on Cassandra, and no
connection testing was made for MySQL. Also note that, before moving on, all relational
databases must use the scripts supplied in the project’s repository [43] to create views that
allow the system to retrieve constraint information (primary and foreign keys), as EasyBDI
queries those views instead of the tables in the "information_schema" (refer to Section 3.4 for
more details regarding this issue). This information will be used to determine the mapping
type, as explained in Section 4.4.2.

Once all data sources on the list in area 2 are marked with a "Success" message on area
number 3, users can move on to the next step.

At this point, the system retrieves information regarding data organization in schemas and
tables (or equivalent depending on the data source) from every data source and stores it in
SQLite. In the case of a relational database, information regarding primary key and foreign
keys is also extracted if possible, as explained in Section 4.4.1.

Figure 5.2: Project Creation Wizard - Adding new data sources and testing the connections.

A filtering window is available right after the data source configuration window that allows
users to filter out any tables and schemas they do not wish to include in the project. Figure 5.3
shows the schemas and table selection interface. The organization is a hierarchy, starting with
the data source, then its schemas and then the tables in the schema. Checking or unchecking
an higher element in the hierarchy will also check or uncheck its childs.
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Figure 5.3: Project Creation Wizard - Selecting schemas and tables in a Local Schema.

5.3.2 Global Schema Configuration

In the global schema editing wizard, a Data Administrator is responsible for verifying
the global schemas created automatically by the system (details regarding global schema
generation are in Section 4.4) and editing the schemas in order to create a consistent global
schema suited for the analytical needs of business analysts. A global schema can be edited by
adding/removing mappings between local and global entities, deleting global tables or columns,
creating new tables (but creating new columns is not allowed) and establishing primary key
and foreign key constraints, an important configuration needed for the star schema creation.

Figure 5.4 shows the global schema editing wizard. Area 2 presents the local schema view
previously created, and area 1 presents the global schema, both represented as an hierarchy
using Java Swing’s JTree class, which was extended and customized to allow the addition of
custom images to facilitate reading and interpreting the different nodes of the hierarchy, such
as databases, tables, columns and other elements in the nodes of the JTree. It is possible
to expand nodes of the tree to see more information regarding each element. For example,
expanding a data source node in the local schema tree will show its URL and model, while
expanding a table will show its columns, and expanding columns will show its data type and
constraint information (primary and foreign key information).
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Figure 5.4: Global Schema Creation UI.

Creating Correspondences Between Schemas

A column node located in the global schema contains a child node named ’Matches’ with
information regarding the correspondences of the local schema, as well as the mapping type.
Column "sales_id" in area 1 in Figure 5.4 is expanded and shows the "Matches" node for this
column that only has one correspondence to column "sales_id" in table "sales" from the local
schema.

It is possible to drag columns from the local schema to a global column node (or the
’Matches’ node beneath a global column) to establish a correspondence between the two
schemas. As users edit the correspondences on each global column of a global table, the
mapping type associated to that table is updated, which can be either horizontal, vertical or
simple.

If needed, one can quickly create a global table from a local table by dragging a local table
from the local schema tree and dropping it in the global schema tree. The new global table
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has the same name and all columns have correspondences to the corresponding local column,
making this a simple mapping (recall mapping types at Section 4.4.2). A global column can
also be created by dragging one local column and dropping it in a global table and a global
column will be created with same name, datatype and primary key information, along with a
correspondence to the local column.

Editing Elements And Validating Constraint Information In Global Schema

The generated global schema can be edited in several ways, by selecting one element (such
as a table or column) and right click to open a menu that presents several options, depending
on the selected element. For a table, it is possible to change its name, or delete it. For
a column, options such as add primary key or add foreign key are also shown (or remove
primary/foreign key, if the respective key already exists), as depicted in Figure 5.5.

Figure 5.5: Global Schema pop up menu.

Foreign key and primary key information in the global schema should also be verified and
corrected as this is important information for the system. One can add a primary key by right-
clicking on a column in the global schema using the menu seen in Figure 5.5 and selecting
"Add Primary Key", or add a foreign key by selecting "Add Foreign Key" in the same menu.
When adding a foreign key reference, a small window will appear prompting users to select
the table and column in the global schema to be referenced by the foreign key.

73



Searching Schema Elements

If the global or local schemas contain several elements, it is possible to search for a specific
element, by typing in the corresponding search box on the top of the local or global schema.
Only elements that contain a substring of the entered string will appear, until the user clicks
the ’Erase search button’ that will appear when a search is executed. If the user search in the
local schema for "sales", then if there is only one table named ’sales_info’, only that table
and it’s columns will be visible.

Changing Data Type

Some columns might have a data type that is undesirable or incompatible with the global
or star schemas being created. Other scenario is when the data source is a raw file, as all
columns are assigned the varchar data type (as mentioned in Section 3.5). To overcome this,
EasyBDI contains an option that allows users to change the data type of a column in a global
table, provided the original data type is compatible with the new data type. For example,
date cannot be converted to a numeric data type in Presto, because the cast operator does
not allow it. Users are also responsible to ensure that the data of a column whose data type
was changed is compatible, such as changing a varchar to integer, as the user must ensure
that all columns contain only digits in order to be converted to integer.

To change the data type of one column, select the global column and right click to open a
menu, and select "Change Data type". When hovering on top of this option, 3 types of data
types categories will be shown (string, numeric, time) and boolean data type is also present.
Hovering on top of a data type category shows its data types, and selecting one will change
the column to that data type, unless the original data type and the selected data types are
incompatible, which will show an error message and the operation is canceled.

The information that a column table had its original data type changed is also stored in the
Schema/Metadata storage, specifically in table "column_global", which stores information
regarding each local table, seen in Figure 4.4. The column "is_datatype_different" is a
boolean signaling "true" if user changed the global column’s data type and false otherwise.
Column "datatype_original" indicates the original data type this column had when it was
created and column "data_type" stores the current data type of the column. These last tables
have the same value if the data type was not modified.

In terms of query generation, whenever a column from a global table whose data type was
changed is used in a query, a "CAST( <column> as <data type>)" must be used each time
this attribute appears in the query, regardless of its location in the query. An example of a
query made in EasyBDI containing attributes whose data types were changed can be seen in
Figure 6.10, where the data type of the attribute "GG" changed from varchar to double. The
resulting generated query can be seen in Listing 6.12

Adding Views Using SQL Code

It is possible to add a view over a local table in order to modify its organization. This
feature could be useful when using a dataset whose structure is not compatible with multi-
dimensional schemas or with the analytical purposes intended. The case study described in
Section 6.2 shows an example where a data source had data organized in such a way that
made it difficult to create relevant analytical queries. In these cases, an expert user can create
code using SQL and the result of that query will be used as a virtual table, like a view in
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a relational database. Column information of a virtual table is obtained by analyzing the
columns in the result set of the query, as well as data type, however, constraint information
is not known.

A local table view is created by selecting a table in the local schema area of the global
schema creation screen, and right-clicking on the table to select the "Create view for table
using SQL...", which will open a window in which users can place SQL code and then run
the code directly in Presto. If the code runs without any error, the output will be used to
create a local table view, containing the same table name as the original table with the suffix
"(view)". This virtual table is stored in the local schema, along with the information that
this is virtual, table by saving in the SQL code in the column "sql_view_code" from table
"table_data" Schema/Metadata storage, seen in Figure 4.4.

Case study 2 will show an example of a local table view creation, illustrated in Figure 6.8.
With this feature, users can change the structure of an object in the local schema without

changing the actual object. Some examples of possible changes would be, for example, remov-
ing columns, or adding new columns (by performing joins for example), pivoting or unpivoting
data, or creating formulas to change the values of columns.

However, this approach may increase the execution time of analytical queries that use
virtual files or other objects created in this way, because the code that generates the virtual
object may be complex and operate over an object with a lot of data, and so analytical queries
may take even longer to execute because the virtual object needs to be created first and only
then the analytical query is executed. Even for OLAP scenarios where quick response time
are not as important as OLTP, queries that take too long may be counterproductive. It is
up to the user to analyze the query execution time and the capabilities of the Presto cluster
being used, as complex queries may struggle on lower end clusters.

Validate Mappings And Finishing The Global Schema

To conclude the global schema creation process, every global table must have a defined
mapping type. The mapping type of each global table is seen in the last node on the list of child
nodes of each global table, as seen in Figure 5.4. If one or more tables have an "undefined"
mapping, the system will not allow the user to continue to the next step, and correspondences
must be readjusted such that the system can detect one of the three mapping types. The list
of correspondences of each column of the global table is below the node "Matches". Figure
5.4 shows a local table ( highlighted in blue) and its columns that are correspondences to the
global column "sales_id".

The system is able to automatically detect vertical or horizontal partitioning between tables
in the local schema (even if the partitioned tables are stored in distinct data sources), or no
partitioning at all. In order to efficiently detect these mappings, the algorithms use strict rules.
For example, horizontal mapping requires that all partitioned tables share the same column
names. However, the user may wish to define a horizontal mapping using tables whose columns
have slightly different names for example. In order to allow these types of scenarios, the
system offers the option to override the detected mapping type and set a mapping according
to user’s choice. It is still required that minimum criteria are met, such as the correspondences
between local and global schema being of compatible data types, the same number of column
in all partitioned tables in the local schema in case of horizontal mapping, and a foreign keys
referencing a primary key for a vertical mapping.
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5.3.3 Star Schema Configuration

To finish a project configuration, at least one star schema (also designated as multidimen-
sional cube) must be available to perform queries. Therefore, the user must create one by
selecting global tables as dimensions and a fact table while also specifying which attributes
are measures. The interface which allows the creation of a star schema from a global schema
is shown in Figure 5.6. The star schema must be named and a global table must first be
selected as the facts table. Afterwards every other global table can be chosen as a dimension
table by checking it. Note that multiple star schemas can be created from a single global
schema. The system will offer suggestions of measures to the user, as they tend to be numeric
attributes that are not foreign keys. Selection of at least one dimension and measure attribute
is mandatory to proceed. Clicking on the "Save" button will create the star schema and store
both the global and star schema to the SQLite, thus concluding the project creation, which
is now ready to be used for analytical queries.

Figure 5.6: Project Creation Wizard - Creation of a Star Schema from a Global Schema.

5.4 EasyBDI - Edit Projects

Any previously created project can be modified in order to add new data sources, change
global schema or add a star schema. An unfinished project that does not have a finished local,
global and star schema must have its configurations concluded by selecting this option. When
editing a project, the wizard interfaces and configuration processes are the same as the ones
explained in Section 5.3, except that previous configurations are shown to the user instead of
starting over. The difference on each of the wizard interfaces when editing a project is detailed
as follows:
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• In the data source configuration interface, any data source previously added is automat-
ically added to the list in area 2 of Figure 5.2 and cannot be removed, and only new
data sources can be added. Old data sources do not need to perform a connection test
and are already marked as ready.

• In the schema/table selection, any schemas and tables of new data sources are also
present, but any previous schema or table that was used for the global schema are
greyed out and cannot be unchecked.

• If a previous global schema was created in the project, no automatic creation of global
schema is performed, even if new data sources, schemas or tables were added to the local
schema. User must edit (or not) the global schema in the project.

• If the global schema is changed, then any star schema previously created may not be
correct, as references to some global tables may no longer exist. Therefore, any existing
star schema mapping to the old global schema is deleted and a new ones must be created.

5.5 EasyBDI - Execution Of Analytical Queries

To execute analytical queries a project must first be selected from the main menu, but at
least one star schema must be available in that project, otherwise it will not be possible to
make analytical queries.

When clicking the "Execute queries" button a new interface is shown as seen in Figure
5.7, which contains the star schema and a set of areas that will be used to create and submit
queries. The option identified as 1 allows to switch between the different star schemas created.
The areas in the middle (2 - 10) allow to create and visualize queries. The tree area identified
as 2 presents a top node with the facts table and its measures. The other columns from the
facts table are omitted. Another node contains the dimensions, and each dimension has child
nodes with its columns, each with information regarding its data type by expanding a certain
column’s child nodes.

To create queries, columns and measures must be dragged to the areas 3 to 8. Each area
has a specific role on building the final query. The logic behind the generation of the SQL
query Presto executes is explained in detail in Section 4.6. Each area contains a small question
mark, and when the mouse hovers it, a tooltip with a brief explanation of what the area will
do for the query and what should be dragged is presented in order to assist the user.

Columns and measures from the star schema in area 2 must be dragged to specific areas.
For example, columns can only be placed on areas 3, 4, 5, 6 and 7. Area 8, is used to create
filters using aggregations, and only elements present in area 5 can be dragged to this area.
More details will be discussed later.

Button "Execute Query" in area 10 starts the query generation process which is then sent
to Presto for execution. Results are displayed in area 9. Button "Clear All Fields" in area 10
can be used to quickly remove any elements in the interface and start a new query creation
from scratch.

5.5.1 Adding Rows Or Columns

When dragging an attribute to area 3 or 4, the attribute dragged will show on the respective
area. All attributes in each area are grouped by tables, as seen in Figure 5.8. Measures are
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Figure 5.7: User Interface that enables the creation, execution and visualization of the results
of analytical queries.

not allowed in these two areas, and can only be placed in area 5.
Area 3 is used to create rows in a query result, and every column placed here will be added

to the select statement. Attributes placed in area 4 will be used to create columns on the
query output, therefore, each distinct value will be pivoted. On area 3 (named rows), a menu
will appear next to the cursor by selecting one attribute and then right-clicking. This pop up
menu can be seen in Figure 5.8, and it allows the removal of attributes or the addition (or
removal) of a sorting order for the selected attribute.

Attributes placed in area 4 are used to create columns on the query output, therefore,
each distinct value will be pivoted. This area also has a similar right click menu on a selected
attribute, but it is only possible to remove the attribute. Due to performance constraints, a
maximum of 3 attributes must be placed on this area, in order to avoid heavy queries, as the
process used to pivot values (explained in Section 4.6.3) can become expensive.

5.5.2 Adding Rows With Aggregations

The area 5 is used to define the aggregate functions using dimension attributes and mea-
sures. This is the only area where measures can be placed.

When an attribute is placed here, the aggregate function currently selected in the selection
box above area 5 will be associated with the dropped attribute. Figure 5.9 exemplifies this,
with attribute "price" with aggregate function "count" and measure "sales" with aggregate
"sum". Measures dropped here always appear before columns from dimensions. The same
measure may be added multiple times but with different aggregate operations, so, for example,
measure "price" could be added again but should contain a different aggregate function,
otherwise an error message will inform the user of this.

A right click menu is also present in this area, and contains the options to delete and add
sorting options, as well as other options, as seen in Figure 5.9. It is possible to change the
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Figure 5.8: Example of attributes placed in the column and rows area of EasyBDI query
interface.

Figure 5.9: Example of attributes placed in the aggregations area of EasyBDI query interface.

aggregate function of the selected attribute, add a count (*) to the query (seen in Figure 5.9),
or add a distinct key word in the aggregate function in order to count only distinct elements.
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5.5.3 Adding Filters

Areas 6 and 7 allow the creation of filters over rows and columns, respectively. Whenever
an attribute is dragged to one of these areas, a prompt will appear asking the user to specify
an operator and the value to create a condition using the dragged attribute. This prompt can
be seen in Figure 5.10. The system allows only the use of compatible operators. For example,
string-like data types can use operators such as like, between, != and = but not > or < and
their variants, while numeric-like data types are compatible with most comparison operators,
with a few exceptions such as the like operator. For the between and the not between operators,
users must add an AND between each value, otherwise the system will alert them to do it.

No single quotes need to be added for string-like or time-like data types, the system will
add them in the final query, unless the user already did. Similarly, for time-like data types,
users do not need to add the data type when adding a time or a date (such as time ’12:30:00’)
because the system will also add the data type.

If another attribute is dragged and dropped in the filters area while at least one condition
is already present, then a boolean operator must be added between the conditions, as depicted
in Figure 5.10. The operators that can be added between conditions are AND and OR.

After a condition is created correctly, it is displayed in area 6, 7 or 8, depending on where
it was created. These areas are JTrees and each condition is a node, and between conditions
a node containing a boolean operation also exists. Figure 5.10 shows for example a first
condition filtering for prices bigger than 3, a node with an AND operator and a third node
with a second condition showing employees with id between a certain range. The figure also
shows an example of a filled form for the creation of a new condition and a selection of a
boolean operator. When confirmed, a new node will be added with the selected boolean
operator (in this example, the operator OR is used) and another node with the condition
created.

Figure 5.10: User Interface showing the addition of a filter.

To create nested conditions, an attribute must be dropped on top of an existing condition
in the filters area, and then fill out information in the prompt form seen in Figure 5.10 and
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after confirmation the new condition will be displayed in the area as a child node of the parent
node condition. An example of a query creation using EasyBDI containing nested conditions
can be seen in Figure A.2.

All of the mentioned features and instructions apply to all filter areas, but each one has a
different purpose. Area 6, rows filters creates filters applied to the rows on the query results.
In other words, this means that conditions here created will be used in the where clause, as
discussed in Section 4.6.4. Also mentioned in the referenced section, is that any tables from
attributes used in the rows filters (area 6) must be present in the rows (area 3), or aggregations
(area 5), otherwise the query cannot be executed and an error message will be shown detailing
this issue.

Conditions created in area 8 are used to create aggregation filters, hence only elements
containing aggregation functions can be dragged to this area, and this is why the user is
restricted to using elements from area 5 (where aggregations are created) and not from the
star schema in area 2. Conditions here created are used in a having clause, also discussed in
Section 4.6.4.

Finally, conditions created in area 7 are used against the attributes in area 4, whose values
will be pivoted, therefore these filters are used in a query that will fetch all distinct values to
form columns in the final query, as discussed in Section 4.6.3 and seen in query depicted in
Figure 4.9. Any attribute placed in the filter columns (area 7) must be present in the columns
area (area 4).

For the query generation, each node is iterated in order to generate an SQL filter. Each
node contains additional information, transparent to the user, that is used for query genera-
tion, such as if the attribute needs to be casted to a user defined data type (see Section 5.3.2
for details). If a node has childs, then parenthesis need to be opened, then each child node
converted to SQL query and when all child nodes are traversed, parenthesis are closed, thus
creating a valid SQL nested condition.

5.5.4 Manually Editing Filters/Aggregations

Some of the areas in Figure 5.7 offer the option to manual type part of the SQL query. This
feature can offer more options to expert users and overcome most limitations that creating
queries using an user interface may cause. The areas that allow this option is the aggregations
area (5) and all filters area (6,7 and 8). This mode can be accessed using the right click menu
on each of these areas and selecting the "Change to Manual Edit". When using this mode,
users must obey certain rules in order to ensure that the SQL query is generated correctly.
This allows to write conditions and apply operations that cannot be specified using the UI.
It can also be used by users that do not feel comfortable creating complex filters with several
nested conditions.

In area 8, filters aggregations, it is mandatory that any manually written SQL code written
contains attributes with aggregate functions, and no attribute without any aggregate must be
added. For example, it is allowed to add two or more attributes inside the same aggregate
function. Sortings cannot be done in this mode. When the manual mode is activated for this
area, a small text is displayed warning the user of these restrictions. Figure 5.11 depicts a
query containing an aggregate function written using manual mode.

The code written by the user in any of these areas is integrated into the final query, but
before, all text is parsed and validated. While parsing, any mentioned attributes and their
respective tables are extracted from the text by name because the logic used to generate
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Figure 5.11: User Interface showing a query with an aggregate function created using manual
mode.

queries requires the object containing the attribute’s metadata in order to correctly generate
the inner queries that retrieve data from the local schema. In order to detect elements in
the user written code, any attribute referenced must be written with a qualified name using
’table.column’. Users are also responsible to escape any needed elements in the written query,
as EasyBDI will not "auto-escape" any elements from manual queries that need to be escaped.
See, for example, query in Listing 6.4 (generated from the interface configuration in Figure
6.5), which contains in the select clause an aggregate operation created using manual mode
but none of its elements are escaped because the user did not add any escape characters while
writing the code, while the other attribute present in the clause was placed in the rows area,
and is therefore escaped automatically by EasyBDI.

5.5.5 Processing And Showing Results

Results of queries are shown in a table at zone 9 of Figure 5.7. When a query is submitted
by the user using the submit button in area 10, a valid SQL query will be generated according
with the elements on the interface (as described in Section 4.5.1) and then sent to Presto in
order to execute the query. When the query finishes and returns the results, these must be
processed and placed in the table at zone 9. To populate the results table, the names of each
column on the output are first placed in the first row of the table, the header, followed by
all records which are iterated row by row and placed in the corresponding column. The first
column of the results table indicates the line (excluding the top row).

When the submitted query contains more than one attribute whose values were pivoted,
the resulting columns are grouped and more layers are created in the table header in other to
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display the results in a more intuitive and clean way, as opposed to the query output returned
by Presto where such column names are the concatenation of the different values that were
used to create the column, as explained in Section 4.6.3. To be able to customize the header
of a table in java an external package is used, named JBroTable 1, which offers a ready to use
implementation of the java standard JTable with more functionalities, including the addition
of more than 1 row to the header and grouping of multiple columns on the header with the
same name into one spanning more than 1 columns in the table. Figure A.1 shows a query
containing 3 pivoted attributes and the results in EasyBDI.

The process of query execution may vary in time depending on the complexity of the
submitted query. While this is happening on the background,it is important to inform the
user regarding the status of the query, as it may fail or take longer than expected, depending
on the complexity of the query and the capacity of the cluster where Presto is installed. For
this effect, a loading screen animation is shown from the moment the "execute query" button
is clicked, simulating system activity, along with a message describing the current step of the
query processing: generation of the SQL query, execution of the query by Presto, or results
handling to insert on the table. The loading animation stops only when either an error occurs
or when all the results are received and placed on the user interface. Examples of possible
errors that might happen are:

• Unable to connect with Presto - The query was sent to Presto, but Presto con-
nection does not exist, probably because it is not running or the location of the Presto
Coordinator node was changed.

• Presto returns no results - This might happen for several reasons, either because
one or more of the data sources could not be reached or because the query is too heavy
and takes a long time. A query returning 0 rows is not considered an error. If a Presto
worker node exceeds memory, it will crash and stop. If that node is also the coordinator,
the system will be waiting indefinitely for the query, as Presto does not return any error
when memory exceeds. To prevent this, each query has a maximum time of 3 minutes
on Presto to execute, and after that is canceled.

• Presto returns an SQL exception - This happens when the SQL query contains a
syntax or semantic error.

The first 2 categories of errors are not directly dependent on the system, but some of the
errors in the last item may be directly or indirectly caused by the system, namely on incorrect
SQL query generation due to syntactic or semantic errors. Efforts were made to reduce the
occurrence of these errors as much as possible.

5.6 EasyBDI - Other Features

EasyBDI presents several features that can aid and improve the users tasks.

5.6.1 Saving And Loading Queries

Saving a query allows to quickly submit a previously used query into the system instead
of having to redo it via the interface, which is very helpful for queries that need to be run

1https://github.com/Qualtagh/JBroTable
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frequently. Internally, the state of the different areas in the interface (rows area, columns,
filters and aggregations) are saved to the SQLite module storage when selecting the "save
query" option inside the "Query" menu at the top. A name must be given to the query
before it can be saved. Saved queries are associated to each project and to each star schema.
Therefore, it is possible to have 2 queries with the same name in the same project but belonging
to different star schemas.

To load a query previously saved, select the "Load Query" option inside the "Query" menu
at the top, and select one of the queries previously saved from the list depicted in Figure 5.12.
It is also possible to delete a previously saved query.

Figure 5.12: User Interface of a list of previously saved queries in EasyBDI.

5.6.2 Query Logs

Each query submitted through the system, is logged and added to a list of logs that can be
consulted by selecting the "SQL Query" tab at the top of the query results panel. These logs
contain the SQL query sent to Presto, the time the query was submitted, query status (failed
or successful) and the elapsed time since submission until results were received from Presto,
processed and shown in the interface. Figure 5.13 shows as an example a 3 queries in the list
of executed queries. By double-clicking on a query in the list, a window opens showing the
full query, as seen in the same figure. In this window, the SQL code can be copied and used
somewhere else. It is also possible to export one or all logs in the list to a text file. Saving
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logs of queries is a similar feature seen in many programs that interact with DBMS, such
as MySQL Workbench or PGAdmin and allows users to quickly analyze the last performed
action on the system and their status.

Figure 5.13: Executed query Log list, with a window showing the complete log of an executed
query. Each time a query is executed, the SQL code is added to the list along with the star
and end time, as well as its duration and status.

Experienced users may like to know what is the query that will be generated from Presto
before it is executed as the elements are being configured in the interface. For this purpose,
two other logs exist, one that shows the complete generated SQL query by the system for the
local schema (with the inner queries for the local schema data retrieval), depicted in Figure
5.14b and another one that shows only the query over the global schema, without inner queries,
depicted in Figure 5.14a. By default, only the global schema query is enabled, but this can
be changed in the "Advanced Options" menu at the bottom, which enables or disables global
schema query logs and local schema query logs.

Each time a user drops an element in either area, the logs are updated. Any SQL code
written using the manual edition mode does not count towards the queries displayed in these
logs. For queries containing attribute pivots, the global schema log will present these columns
using a "pivot (column name)" format, and for the local schema logs, the values of each
column are obtained as specified in Section 4.6.3. As with the executed query log list, it is
also possible to open a window with the complete log by double-clicking on a log in either list.

5.6.3 Export Results

It is possible to export query results to a csv file, by selecting the "export to csv" option
below the "Export Results" menu at the top. If a query result containing multiple headers,
then all header will be merged in a single column, and the name of each column will be the
concatenation of the names of each row in the header. For example, if the query shown in
Figure A.1 was exported to a csv file, the name of the first column in the csv file would be
"a-O’Leary-Michael".
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(a) Global Query Log List.

(b) Local Query Log List.

Figure 5.14: Query Log lists. Each time an element is dragged and dropped, the generated
SQL query for the elements in the interface is added to the lists.

5.6.4 Protection Against SQL Injection

By allowing the user to manually write part of the SQL query, a security risk is introduced,
namely, SQL injection attacks. These can be performed by more experienced users that inject
SQL code with malicious intentions. For example, if the user uses the manual edition mode
to create filters, he can write in the text box and submit a query similar to the one seen in
Listing 5.1, which will execute the first query, but also a second one that deletes a complete
table from the data source. All queries are run over Presto, and some data source connectors
may have limited support for record or schema modification, but it is still possible to alter or
delete tables or records using Presto.

Listing 5.1: Example of an SQL injection attack. This query will run in batch and therefore
delete the table ’suppliers’
SELECT ∗ FROM use r s WHERE user_id = 3 ; DROP TABLE s u pp l i e r s ;

Another option to protect against SQL injection is to use stored procedures [47], but that
is not possible using PrestoSQL. Validating user input and escaping user written inputs such
that no unwanted query is executed is also a viable option [47].

In EasyBDI, some mechanisms were implemented to prevent most forms of SQL injection
attacks if the user uses any of the manual edition fields. All user writen text is analyzed
for certain SQL commands that should not be present, such as drop, where, having, delete
or insert. It also checks if the expression "x = x", commonly used for many SQL injection
attacks, is present. If any of these words or expressions are detected, the system does not
submit any SQL query to Presto and shows a warning message asking the user to remove said
words or expressions.

The implemented mechanisms were implemented as an example and to demonstrate how
to prevent these attacks on EasyBDI. Further security mechanisms can be implemented in the
future.

5.7 Considerations

EasyBDI is a system containing several features that allow non-expert users to perform
analytical queries. This chapter presents a detailed description on how to use the system,
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while also explaining their purpose and the adopted solution that allows such features to
work. An guide explaining how to create a project, from data source connection, global
schema editing and star schema creation has been presented. The user interface for query
creation was also presented and explained, detailing every area, menu, and tool available to
create varied queries. Finally, additional features that may prove useful to potencial business
analysts using this system are also presented and explained, such as a feature that allows to
save and load queries, or export query results in csv file.

Overall, EasyBDI is a very complete system, presenting a variety of functionalities useful
for any business expert or non-expert analyst.
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Chapter 6

Evaluation and tests

To demonstrate EasyBDI’s usefulness and versatility, this section presents two case studies.
Appropriated data sources are created and populated with data from the datasets in both case
studies, and then queried using EasyBDI. It is intended to test how expressive EasyBDI is by
performing a wide range of distinct analytical queries. Using an interface to create queries
takes away some of the expressiveness present on the SQL language to create queries, and so
limitations may arise on the type of queries that can be created through EasyBDI. Some of
the limitations found were reviewed and a solution was implemented in order to eliminate or
at least reduce them.

The configuration used for these tests include PrestoSQL, version 330, configured to behave
as both a coordinator and a worker on a single node configuration. The machine in which the
tests were executed has 8GB of RAM, Intel Core i7-8550U at 1.80GHz with 4 cores processor,
250 GB SSD, running a Linux Mint 19.1 Cinnamon Operative System.

6.1 Case Study 1: Batch And Streaming OLAP

This case study uses the SSB+ system [48], which includes a dataset intended to be used
as an OLAP benchmark for decision support systems. OLAP Benchmarks intend to evaluate
the performance of decision support systems by creating a business oriented data model and
generation of data to populate data sources, and a set of queries oriented towards business
and a high degree of complexity [49].

The SSB+ benchmark [48] is an extension of the SSB benchmark in O’Neil et.al. [50],
which in turn is an adaptation of the star schema presented by the TPC-H benchmark 1.
The SSB+ data model contains two star schemas, one for batch (OLAP) and the other for
streaming OLAP. The batch OLAP contains facts and dimension tables used in the context
of retail data. The streaming OLAP is based on social media data, which represents the
popularity of the retail store (and of its sales and deliveries) on social media. Figure 6.1 shows
both star schemas, with the facts tables being highlighted in rectangles with thicker edges.

Tables belonging to the batch OLAP star schema are located in Hive, while the facts
data for the streaming OLAP is stored in Cassandra (a NoSQL database that uses a wide-
column store model), and conceptual relationships exist between data stored in both systems,
as represented also in Figure 6.1. Tables in Hive have a variable number of records, namely 2

1http://www.tpc.org/tpch/
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000 (supplier and date), 30 000 (customer), 200 000 (part) and 6 001 215 (lineorder, the facts
table).

Figure 6.1: Case study: batch and streaming OLAP from SSB+ - overview of local schemas.

To recreate SSB+ benchmark environment, both Cassandra 3.11.7 and Hive 3.1.2 were
installed on the same local machine, and the code available in the SSB+ project’s Github
repository 2 was used to create the data models, generate data and use it to populate the
data sources. However, some of the steps required to add data to the facts table from the
streaming OLAP star schema located in Cassandra involved the use of Kafka to produce data
and Spark streaming to consume the generated data and store it in Cassandra. To simplify,
a Kafka consumer was used to consume the data generated by the producer, and the data is
inserted into the Cassandra facts table directly through a JDBC interface.

The benchmark developed in the work of Costa et.al. [48] also contains a flat version
of both facts tables, meaning that attributes from dimension tables are merged on the facts
table, creating one single table. These tables are mainly used for performance comparison
purposes between the star schemas, one of the paper’s contributions. On this evaluation, the
focus is not on performance evaluation or comparison, but to test and demonstrate the use of
EasyBDI on different use cases, so the flat tables are not considered. The amount of generated
data for this evaluation is also not very relevant, however small data is preferred, because the
cluster being used to for this experiment is modest.

6.1.1 Project Configuration In EasyBDI

With the data sources populated with data, it is only a matter of connecting them to
EasyBDI and create the global schemas and both star schemas, by configuring a new project.
These steps are the same as the ones described in Section 5.3. Both Cassandra and Hive
connection information are added, with Cassandra named as "Social Media Database" and
Hive named as "Retail Database". After successful test connection to both data sources, the

2https://github.com/epilif1017a/bigdatabenchmarks
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schema containing the tables relevant for this project are selected and the system proposes a
global schema.

The proposed global schema was not entirely adjusted because the schema matching al-
gorithm defined tables "time_dim" and "date_dim" as similar, which resulted in both local
tables being merged in one global table. To solve this, the resulting global table was deleted,
and correct global tables were created by dragging the original tables from the local schema to
the global schema, as depicted in the second step in the global schema configuration process
in Figure 6.2. All other tables were correct, and a simple mapping is assigned between the
global and the local tables.

Figure 6.2: Global Schema correction process in EasyBDI for the SSB+ dataset.

Primary key constraints were also specified in the global schema, because these constraints
were not specified in the original data sources. Foreign key references were also created in the
global schema, an important configuration needed to create both star schemas. This process
can be seen in step 3 of Figure 6.2.

To conclude, the two star schemas need to be defined by selecting the facts, dimensions and
measures from the elements in the global schema. When creating a new project in EasyBDI,
only one star schema can be created in the configuration wizard, but after the project is
created, more star schemas can be added to the project by selecting the option "Create Star
Schema" from the main menu. Figure 6.3a shows the creation of the batch OLAP star schema,
and Figure 6.3b shows the creation of the stream OLAP star schema.
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(a) Batch OLAP star schema mapping. (b) Stream OLAP star schema mapping.

Figure 6.3: Mapping of the Batch and Stream OLAP star schemas using EasyBDI’s interface.

This concludes the configuration of this project, and queries can now be submitted using
the created star schemas.

6.1.2 Queries Over The Created Star Schema Using SSB+ Dataset

The scripts found on the aforementioned Github repository from Costa et.al. [48] also
contain SQL queries used for performance benchmarking. These queries were created in 2
sets: a set for the batch OLAP, and the other for the streaming OLAP. The first set contains
2 versions of each query, one for Hive, and the other for Presto. The objective is to translate
the SQL Presto-ready queries to a configuration on EasyBDI’s interface, such that the query
generated created by EasyBDI is similar, if not identical, to the original query.

Earlier implementations of EasyBDI, were unable to reproduce some queries that contained
filters or more complex aggregation operations, which led to the creation of a manual editing
mode for filters and aggregations, as explained in Section 5.5.4. This addition made it possible
to replicate and successfully execute on EasyBDI a higher number of queries from the ones
available in the project’s scripts than before the implementation of this feature.

Batch OLAP Queries

The set of queries from the batch OLAP star schema has 13 queries available. Some queries
are very similar in structure and contain only small variations. For simplicity, only 4 queries
are shown on EasyBDI, with 2 queries here presented as an example (queries number 2 and
4) and other 2 shown on the appendix (queries 9 and 13), as seen in Figures A.2 and A.3.
For each query, it is presented a configuration via EasyBDI’s interface, and the final SQL
generated in order to better demonstrate and exemplify the system.

Starting with query 4, seen in Listing 6.1, it can be observed that this query contains a
wide diversity of operations that are interesting to create in EasyBDI, namely joins, filters,
aggregations, and order by and group by operations.
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The filters and aggregations in this query can be specified using only EasyBDI’s interface,
as seen in Figure 6.4. Again, Listing 6.2 shows the query generated by EasyBDI.

Listing 6.1: SSB+ benchmark - Query 4 from the set of batch OLAP queries
SELECT SUM( l o . revenue ) , d . year , p . brand1
FROM l i n e o r d e r l o JOIN date_dim d ON l o . o rderdate = d . datekey
JOIN part p ON l o . partkey = p . partkey
JOIN s upp l i e r s ON l o . suppkey = s . suppkey
WHERE p . category = ’MFGR#12 ’ and s . r eg i on = ’AMERICA’
GROUPBY d . year , p . brand1
ORDERBY d . year , p . brand1 ;

Figure 6.4: Query 4 from the set of batch OLAP queries in SSB+ bechmark created using
EasyBDI.
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Listing 6.2: EasyBDI generated query: query 4 from the set of batch OLAP queries in SSB+
SELECT " supp l i e r " . " c i t y " , " part " . "brand1" , "date_dim" . " year " ,
SUM( " revenue " ) AS "SUM␣ o f ␣ revenue "
FROM

(SELECT hive . minhodb . " s upp l i e r " . " c i t y " ,
h ive . minhodb . " s upp l i e r " . " suppkey" ,
h ive . minhodb . " s upp l i e r " . " r eg i on "
FROM hive . minhodb . " s upp l i e r " ) AS " supp l i e r " ,
(SELECT hive . minhodb . " part " . "brand1" ,
h ive . minhodb . " part " . " partkey " , h ive . minhodb . " part " . " category "
FROM hive . minhodb . " part " ) AS " part " ,
(SELECT hive . minhodb . "date_dim" . " year " ,
h ive . minhodb . "date_dim" . "datekey "
FROM hive . minhodb . "date_dim" ) AS "date_dim" ,
(SELECT hive . minhodb . " l i n e o r d e r " . " orderdate " ,
h ive . minhodb . " l i n e o r d e r " . " revenue " , h ive . minhodb . " l i n e o r d e r " . " partkey " ,
h ive . minhodb . " l i n e o r d e r " . " suppkey"
FROM hive . minhodb . " l i n e o r d e r " ) AS " l i n e o r d e r "

WHERE ( " s upp l i e r " . " suppkey" = " l i n e o r d e r " . " suppkey"
AND " part " . " partkey " = " l i n e o r d e r " . " partkey "
AND "date_dim" . "datekey " = " l i n e o r d e r " . " orderdate " )
AND ( " part " . " category " = ’MFGR#12 ’
AND " supp l i e r " . " r eg i on " = ’AMERICA’ )
GROUPBY ( " s upp l i e r " . " c i t y " , " part " . "brand1" , "date_dim" . " year " )
LIMIT 50000 ;

Query number 2, shown in Listing 6.3, is composed by an aggregation operation which
multiplies two different attributes, a join operation between the facts and dimension tables,
and a filter.

When creating query 6.3 on EasyBDI using drag-and-drop, it was found that it was not
possible to express the aggregation presented in this query, unlike the previous query. This was
a major impediment that initially prevented the creation of queries with similar operations in
EasyBDI, because only simple aggregations were possible to be created using drag-and-drop.
With the inclusion of manual edition of aggregations and filters, this query could successfully
be replicated in EasyBDI. Figure 6.5 shows a print of EasyBDI’s interface with a configuration
that generates the query seen in Listing 6.4, which is fairly similar to the original query in
6.3, except that inner queries are added and that joins are made using where conditions. Also
note that the attribute "yearmonthnum" from table "date_dim" is in select clause of the
query generated by EasyBDI, while the original query does not add this attribute in the select
clause. The reason for this is that all tables whose attributes are present in the row filters area
must have at least one attribute selected on either the rows or aggregation areas, as mentioned
in Section 5.5.3. In this case, not adding any other attribute from table "date_dim" in any of
these areas, while an attribute of this table is used in the filters, would result in EasyBDI not
being able to generate a correct query. The original query also adds an alias to the aggregation
operation. Adding aliases to aggregated attributes is possible but only when using manual
edition mode, otherwise, as mentioned in Section 4.6.1, aggregated attributes will have an
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alias assigned to them in the form "<aggregation> of <attribute name>".

Listing 6.3: SSB+ benchmark - Query 2 from the set of batch OLAP queries
SELECT sum( l o . extendedpr i ce ∗ l o . d i s count ) as revenue
FROM l i n e o r d e r l o
JOIN date_dim d ON l o . o rderdate = d . datekey
WHERE d . yearmonthnum = 199401 AND l o . d i s count BETWEEN 4 AND 6

AND l o . quant i ty BETWEEN 26 AND 35

Figure 6.5: Query 2 from the set of batch OLAP queries of SSB+ bechmark created using
EasyBDI.

Listing 6.4: EasyBDI query generated: query 2 from the set of batch OLAP queries in SSB+
benchmark
SELECT sum( l i n e o r d e r . extendedpr i ce ∗ l i n e o r d e r . d i s count )
AS revenue , "date_dim" . "yearmonthnum"
FROM

(SELECT hive . minhodb . "date_dim" . "yearmonthnum" ,
h ive . minhodb . "date_dim" . "datekey "
FROM hive . minhodb . "date_dim" ) AS "date_dim" ,
(SELECT hive . minhodb . " l i n e o r d e r " . " d i scount " ,
h ive . minhodb . " l i n e o r d e r " . " orderdate " ,
h ive . minhodb . " l i n e o r d e r " . " extendedpr i ce " ,
h ive . minhodb . " l i n e o r d e r " . " quant i ty "
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FROM hive . minhodb . " l i n e o r d e r " ) AS " l i n e o r d e r "
WHERE ( "date_dim" . "datekey " = " l i n e o r d e r " . " orderdate " )

AND ( date_dim . yearmonthnum = 199401
AND l i n e o r d e r . d i s count BETWEEN 4 and 6 and l i n e o r d e r . quant i ty
BETWEEN 26 and 35)

GROUPBY ( "date_dim" . "yearmonthnum" )
LIMIT 50000 ;

Two more examples of queries from the set of queries in the batch OLAP star schema can
be seen in Figures A.2 and A.3, although similar to the ones shown here.

Stream OLAP Queries

SSB+ offers 3 distinct queries for the stream OLAP star schema. The third query, seen in
Listing 6.5, includes a nested query in the having clause, which cannot be created in EasyBDI.
However, the nested query exists only in the having clause, meaning that EasyBDI’s manual
mode can be used in the aggregation filters area to write the inner query directly. Figure 6.6
depicts EasyBDI interface where query 6.5 is recreated by placing the needed attributes in the
rows area and by manually writing the average aggregation operation (which could also be
created using normal mode in this example) and the having clause containing a nested query.
With this, EasyBDI generates the query 6.6.

This query was possible to be executed on EasyBDI because the nested query in the having
clause contains attributes belonging to tables that are also present in the outer query. For
example attribute "sentiment" was added on the "aggregations" area, and was therefore added
to the generated outer query. If the nested query contained elements not present in any of
the selection areas of EasyBDI (rows, columns or aggregations), it would not be possible for
EasyBDI to generate a valid query. For example, if by using manual edition mode it was
included an attribute referencing a table or column not selected in any of the other areas,
than the generated subqueries that are responsible to fetch data from the local schema will
not include that table, and the query will fail. Therefore, the use of nested queries in EasyBDI
is possible, but limited, and works only if all the attributes present in said nested queries have
been included in the selection zones of EasyBDI.

Listing 6.5: SSB+ benchmark - Query 3 from the set of streaming OLAP queries
SELECT p . category , gender , AVG( sent iment ) sent
FROM soc ia l_part_popu lar i ty AS spp
JOIN hive . $4 . part AS p ON spp . partkey = p . partkey
GROUPBY p . category , gender
HAVINGAVG( sent iment ) >
(SELECT AVG( sent iment ) FROM soc ia l_part_popu lar i ty ) ;
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Figure 6.6: Query 3 from the set of stream OLAP queries in SSB+ bechmark created using
EasyBDI.

Listing 6.6: EasyBDI query generated: query 3 from the set of streaming OLAP in SSB+
SELECT avg ( soc ia l_part_popu lar i ty . sent iment ) as sentiment ,
" part " . " category " FROM

(SELECT hive . minhodb . " part " . " category " ,
h ive . minhodb . " part " . " partkey "
FROM hive . minhodb . " part " ) AS " part " ,
(SELECT cassandra . minho . " soc ia l_part_popu lar i ty " . " partkey " ,
cassandra . minho . " soc ia l_part_popu lar i ty " . " sent iment "
FROM cassandra . minho . " soc ia l_part_popu lar i ty " )
AS " soc ia l_part_popu lar i ty "

WHERE ( " part " . " partkey " = " soc ia l_part_popu lar i ty " . " partkey " )
GROUPBY ( " part " . " category " )
HAVINGAVG( soc ia l_part_popu lar i ty . sent iment ) >
(SELECT AVG( soc ia l_part_popu lar i ty . sent iment ) FROM soc ia l_part_popu lar i ty )
LIMIT 50000 ;

Query 1, depicted in Listing 6.7, shows a creation of a sub query named "sentByCountry"
and then using it in another query, which, as explained, cannot be done in EasyBDI. The
same query also contains a union all operation, which cannot be added by users in EasyBDI,
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therefore, this query cannot be fully expressed. However, the contents of the sub query named
"sentByCountry" can be created in EasyBDI, but it is not possible to re-use this query in
other outer queries.

Note that it would be possible to create a virtual table using the "sentByCountry" query,
as explained in Section 5.3.2, and then use said table in the star schema to make queries
against this table.

Listing 6.7: SSB+ benchmark - Query 1 from the set of streaming OLAP queries in SSB+
WITH sentByCountry AS

(SELECT country , AVG( sent iment ) as sent
FROM soc ia l_part_popu lar i ty GROUPBY country )

SELECT ∗ FROM
(SELECT ∗ FROM sentByCountry ORDERBY sent DESC LIMIT 2)
UNION ALL (SELECT ∗ FROM sentByCountry ORDERBY sent ASC LIMIT 2 ) ;

Finally, query number 2, seen in Listing 6.8, contains a set of case statements that cannot
be manually created using EasyBDI, which makes it impossible to express this query.

Listing 6.8: SSB+ benchmark - Query 2 from the set of streaming OLAP queries in SSB+
SELECT

CASE
WHEN t .hour >= 0 AND t .hour <= 6 THEN ’Dawn ’
WHEN t .hour > 6 AND t .hour <= 12 THEN ’Morning ’
WHEN t .hour > 12 AND t .hour <= 18 THEN ’ Afternoon ’
WHEN t .hour > 18 AND t .hour <= 23 THEN ’ Night ’
else NULL END AS dayPeriod ,

p . category ,
COUNT( sent iment ) as count

FROM soc ia l_part_popu lar i ty AS spp
JOIN hive . $4 . part AS p ON spp . partkey = p . partkey
JOIN hive . $4 . time_dim AS t ON spp . timekey = t . timekey
WHERE ( country=’ Portugal ’ OR country=’ Spain ’ ) AND gender=’ Female ’
GROUPBY t .hour , p . category ;

6.2 Case Study 2: Ausgrid Dataset

Ausgrid, an Australian electricity company which owns and operates the distribution grid
in Sydney and nearby areas in New South Wales, has made available a dataset3 containing
information of photovoltaic (pv) panel production and consumption of 300 randomly selected
customers from 1 July 2010 to 30 June 2013 [51]. The pv panels installed in residences in
Sydney have measuring equipment to record consumption and production of energy every half
hour for each customer. The types of pv panel measuring data are production (or gross gener-
ation, GG), consumption (or general consumption, GC) and controllable load (CL), associated

3https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
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with water heating and only available for some customers [51]. Customer information is very
limited to protect their anonymity, hence only id and postal code number is known.

The work presented in [51] cleans the Ausgrid dataset by removing data anomalies, such as
hour changes, and other irregularities in the data, and reshapes the original dataset structure.
This work provides a Github repository4 where the results are presented, such as Python
Notebooks showing the process of dataset cleaning and reshape, as well as examples of analysis
over the cleaned dataset.

6.2.1 Dataset Configuration

The cleaned dataset was not used with EasyBDI because it was not made available by the
authors, so instead, the original Ausgrid datasets are used and analytical queries will be made
over this dataset. However, unlike the datasets in case study 1, a well organized star schema
cannot be created with the current file structure. To fix this, the dataset constituted by the
3 files needs to be separated and organized into dimensions and facts table.

The proposed star schema to be created in EasyBDI can be seen in Figure 6.7. This implies
the creation of dimensions in databases, while the facts table is constituted by the 3 files from
all years. This star schema creates 3 dimensions:

• customers, containing id (which is the only available information of a customer) and the
generator capacity associated with their photovoltaic panel, which is a valor associated
with each customer, and is included here.

• postalcode, complemented with additional data such as area and coordinates of the
postal code area, that can be found on the repository associated to the work seen in
[51].

• time, from 01/07/2010 to 31/06/2013, containing several time granularities, from year,
month, week, day and hour. A script5 was used to generate a time dimension table.

Scripts that create each of the dimensions and populate them with data are available in
the project’s repository, inside the "pv_dataset" directory.

The table that mapped as the facts table was created using data from the original files,
however, the current structure of the files, as seen in Figure 6.7, needs to be modified because
it is not suitable for a star schema. For example, each pv panel generation data for each half
hour is set as several columns, which makes queries more complicated and is not compatible
with the created time dimension table, so it was preferable that the hour data was set as rows
and the values of electricity generation data to be a separated column. In SQL, this is the
equivalent an unpivoting operation for the hour columns. Additionally, the different types
of electricity generation data categories (GG, GC and CL) are set as rows, and these fields
are the main analytical data of most interest from which aggregations would be performed,
so it would make sense for this values to be treated as measures, which means that these 3
categories need to be pivoted. Finally, column "Generator Capacity" is not necessary in the
facts table, because it is already associated with a customer id in the customers dimension
table.

4https://github.com/pierre-haessig/ausgrid-solar-data
5Time Dimension Script Adapted from: https://www.joyofdata.de/blog/setting-up-a-time-dimension-table-

in-mysql/
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Figure 6.7: Case study: pv dataset - Overview of local schema and star schema organization.

The proposed changes to the structure of the original 3 files, seen in the "pv_facts"
table of Figure 6.7 are intended to be applied by creating a table view, without altering the
original files, using EasyBDI’s feature that allows creating virtual tables using the results of
SQL queries, as detailed in Section 5.3.2. The query that uses the necessary operations to
create an output similar to the table in Figure 6.7 is very extensive because it contains an
unpivot operation6 to place the hours in rows instead of columns by performing a UNION
ALL operation for each hour. With 48 hours (30 minutes interval), 48 unions are needed.
Pivot operations are also present for the 3 categories of electricity generation by using the
case statements. The final query can be seen in Listing 6.9, although the 48 are omitted for
simplification. This query must be executed for each source file.

Listing 6.9: SQL query to create a table with energy data. Contains a pivot and an unpivot
operation.
SELECT customer , postcode , date , half_hour ,
max( case when "consumption␣ category " = ’GG’ then value end) as GG,
max( case when "consumption␣ category " = ’GC’ then value end) as GC,
max( case when "consumption␣ category " = ’CL ’ then value end) as CL

6SQL Unpivot Code Adapted from https://www.informit.com/articles/article.aspx?p=2755707&seqNum=4
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FROM ( select customer , Postcode , "Consumption␣Category" , " date " ,
’ 0 :00 ’ as half_hour , " 0 :00 " AS value from
f l e x . csv . " f i l e : /// path/2012−2013_solar_home_electr ic i ty . csv "
UNION ALL
select customer , Postcode , "Consumption␣Category" , " date " ,
’ 0 :30 ’ AS half_hour , " 0 :30 " AS value FROM
f l e x . csv . " f i l e : /// path/2012−2013_solar_home_electr ic i ty . csv "
UNION ALL
( . . . )
UNION ALL
select customer , Postcode , "Consumption␣Category" , " date " ,
’ 23 :30 ’ as half_hour , " 23 :30 " AS value FROM
f l e x . csv . " f i l e : /// path/2012−2013_solar_home_electr ic i ty . csv "
GROUPBY customer , postcode , date , half_hour ;

The query in Listing 6.9’s output can be used in one of 2 ways:

1. save the output as a new file and connect that file directly to EasyBDI

2. connect the original files to EasyBDI, and execute query in Listing 6.9 each time that
access to the original files is needed and use the output of that query instead of the
contents of the original files

There are pros and cons between both approaches. In the first one, the query would run
only once outside of EasyBDI, using Presto and saving the output as files which would then
be used to create the table in EasyBDI. In the second approach, the SQL code needs to be
executed each time the virtual file needs to be accessed, which is a similar concept as views,
present in most relational databases, but this could increase the overall execution time of the
overall analytical query. This also required the implementation of a new feature in EasyBDI
that can create a view of objects in the local schema and use that view for the global schema
configuration instead of the contents in the data sites.

In the end, it was decided that solution 2 would be a good feature to be included in
EasyBDI, as it covers scenarios where users would like to connect data sources, such as files,
that contain a structure that is incomplete or incompatible with the overall star schema.
And so, this is what inspired the implementation of the "views using SQL code" feature, as
described in Section 5.3.2.

To create the virtual facts table, EasyBDI needs to execute a query containing the results
of query in Listing 6.9. There are 3 files, so query in Listing 6.9 needs to be executed three
times in order to create a virtual table for each file. In this case, the 3 virtual tables will
be horizontally partitioned, and each one will map to one global table. When access to the
3 virtual tables is needed, the executed local schema query will need to execute query in
Listing 6.9 3 times, one for each file, and combine their outputs with a union all operator.
However, this operation is so complex and results in various stages being created by Presto, 1
for each union and one for each aggregation, resulting in 48 + 3 = 51 stages per file! A single
query containing all 3 files will execute this code for each one, creating around 150 stages,
and Presto’s default stage limit is 100, as previously mentioned in 3.3. This can be changed
to other value, such as 200, in one of Presto’s configuration files by adding "query.max-stage-
count=200". For this reason, the original dataset was splitted, and instead of a file with 300
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customers (containing more than 250 000 lines), only 25 customers (about 23 000 lines) are
used because the Presto cluster used for this experience constraints the amount of data that
can be used in such complex queries in files with such high volume of data.

6.2.2 Project Configuration In EasyBDI

With all data sources created and populated with data, the next step is to connect them
to EasyBDI in order to create the global and star schemas (recall an explanation of the full
project creation process in Section 5.3). First step is to create a new project by introducing
data source connection information, and selecting the relevant tables and schemas of each one.
The proposed global schema suggested by EasyBDI for this project (recall data integration
techniques used in EasyBDI in Section 4.4.2) created global tables for all dimensions and
established a simple mapping between the correspondent local schema tables, however the
global table that maps to the 3 data files (and should have a horizontal mapping with the
3 files in the local schema), contains incorrect mappings. In addition, the structure of this
table is not the one desired for this star schema and contains the organization of the original
files (seen in Figure 6.7), as previously explained. This is where the feature that allows the
creation of virtual local tables can be used. To help illustrate the global schema configuration
process for this project, Figure 6.8 shows images for each step of the configuration performed
in EasyBDI.

The first step is to delete the proposed global table considered as incorrect, then create a
view in the local schema using the SQL code in Listing 6.9. To do this, the local table that
needs to be altered is selected, right clicked to open a pop up menu, and select the option
that allows the insertion of code to create a view. As seen in the second row of images of
Figure 6.8, a window will appear, prompting the user to type or paste SQL code, which is
then tested, and if no problems occur, the output of the query is used to create a new table in
the local schema and it will appear below the "original" table in the JTree. This is repeated
2 more times for the other local tables that will be used to create the facts table (one local
table per file). Afterwards, one of the created virtual tables is dragged and dropped to the
global schema, and columns from the other two tables are dragged and dropped in order
to create valid correspondences. In the end, each column of the global table should have 3
correspondences to the three created virtual tables, creating a horizontal mapping. Data types
of each column of the global table are changed because any data originated from files are set to
varchar by deafault, so for example, the attribute related to hours is set to "varchar" instead
of "time" and needs to be changed. This change to the datatypes could also be performed on
the SQL query that was used to create the local tables, by casting each column to the correct
data type, however for demonstrations purposes it was chosen no to do so. The final step is
to validate all primary keys and set foreign keys in the facts table.

6.2.3 Queries Over The Created Star Schema

Queries are now executed using the previously created star schema. The objective is to
create queries that will reveal useful information that can lead to important conclusions on
the overall dataset. The Github repository in [51] has notebooks that evaluate and extract
information from the cleaned dataset. Some of those queries will be translated to EasyBDI
in order to create a query that provides similar results, whilst also evaluating the system’s
capability and possible limitations when creating queries.
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Figure 6.8: Steps needed to create the Global Schema in EasyBDI using the PV dataset.

For example, one of the most important information that can be extracted from this dataset
is the evolution in production and consumption of energy over the years. Figure 6.9 depicts
the creation of 2 queries in EasyBDI: the query in Figure 6.9a shows the average consumption
of energy for all years, and query in Figure 6.9b shows the production of energy by client,
while also showing only two years.
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(a) Consumption average of all years.
(b) Total Production of energy by clients in years 2010
and 2012.

Figure 6.9: Evaluation of energy consumption and production over some or all years.

Listing 6.10: Easy BDI Generated Query from the configuration seen in figure 6.9a.
SELECT " time_dimension" . " year " ,
AVG(CAST( "GG" AS double ) ) AS "AVG␣ o f ␣GG" FROM

(SELECT mysql . pv_schema . " time_dimension" . "half_hour " ,
mysql . pv_schema . " time_dimension" . " year " ,
mysql . pv_schema . " time_dimension" . " date "
FROM mysql . pv_schema . " time_dimension" ) AS " time_dimension" ,

SELECT "hour" , "half_hour " , "GG" FROM
(<user code f o r f i l e 1 > UNION <user code f o r f i l e 2 >
UNION <user code f o r f i l e 3 >) AS "pv_facts "

WHERE ( " time_dimension" . "half_hour " =
CAST( "pv_facts " . "half_hour " AS time ) AND
" time_dimension" . " date " = CAST( "pv_facts " . " date " AS date ) )
GROUPBY ( " time_dimension" . " year " )
ORDERBY " time_dimension" . " year " DESC
LIMIT 50000 ;
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Listing 6.11: Easy BDI Generated Query from the configuration seen in figure 6.9b.
SELECT " costumers " . " costumer_id" ,
SUM(CASEWHEN time_dimension . year = 2010 THEN CAST ( "GG" AS double )
ELSE 0 END) AS "2010" , SUM(CASEWHEN time_dimension . year = 2012
THEN CAST ( "GG" AS double ) ELSE 0 END) AS "2012" FROM

(SELECT mysql . pv_schema . " costumers " . " costumer_id"
FROM mysql . pv_schema . " costumers " ) AS " costumers " ,
(SELECT mysql . pv_schema . " time_dimension" . "half_hour " ,
mysql . pv_schema . " time_dimension" . " year " ,
mysql . pv_schema . " time_dimension" . " date "
FROM mysql . pv_schema . " time_dimension" ) AS " time_dimension" ,

SELECT "hour" , "half_hour " , " customer" , "GG" FROM
(<user code f o r f i l e 1 > UNION <user code f o r f i l e 2 >
UNION <user code f o r f i l e 3 >) AS pv_facts

WHERE ( " costumers " . " costumer_id"=CAST( "pv" . " customer" AS integer ) )
AND ( " costumers " . " costumer_id" Between 1 and 6 )
GROUPBY ( " costumers " . " costumer_id" )
LIMIT 50000 ;

More specific information can be presented by changing the time being displayed from year
to a specific date, while also presenting the values of production or consumption of energy
every half hour. Figure A.4 depicts a query in EasyBDI that shows information regarding en-
ergy production, but now showing more detailed information by date, which is done by placing
the date attribute in the rows area and again in the filters area to select one specific date (if
needed). Production information is also showed by hours in the created query, but EasyBDI
offers more than one option to display information, and so the hours can be displayed in 2
different ways: Figure A.4a shows the hours attribute in columns, while Figure A.4b presents
the hours as rows.

More complex queries can be created as demonstrated previously. One of the notebooks
found in the repository of the work in [51] presents an analysis to determine if a panel is failing
or having bad or blank production (related to maintenance or record issues) by analyzing its
production over a certain period of time. According to the notebook, this can be done through
the sum of half the production value (because it is in kWh, and each entry is only half an
hour) divided by the generator capacity (in kWp) of the panels the customer has because some
panels can produce more energy than others.

This query was translated and executed in EasyBDI, however the notebook presents con-
clusions only for the period between July 2011 and June 2012, because only one file was used,
whereas EasyBDI can query a larger period (between July 2010 to June 2013) as all 3 files are
being analyzed simultaneously. Figure 6.10 shows the query and its results in EasyBDI, by
performing a sum aggregation and applying the previously mentioned formula (which required
the user of manual mode) and grouping these results by customer and year. However, the
notebook concludes that 4 customers had pvs with issues, but those customers are not present
in the data files used because the data in each file was reduced. The resulting query from
Figure 6.10 can be seen in Listing 6.12.
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Figure 6.10: Query to analyze the performance of pv panels of each customer by year.

Listing 6.12: Easy BDI Generated Query from the configuration seen in figure 6.10. This
query contains attributes whose original data types were changed, and manual aggregations
and filters. Facts table "pv_facts" is also composed by 3 horizontal partitioned virtual tables,
each one built using a user specified query.
SELECT
sum( (CAST( "pv_facts " . "GG"AS double )∗0 . 5 )
/ costumers . generator_capac i ty )
as sum_pv_production , " costumers " . " costumer_id" ,
" time_dimension" . " year "
FROM

(SELECT mysql . pv_schema . " costumers " . " costumer_id" ,
mysql . pv_schema . " costumers " . " generator_capac i ty "
FROM mysql . pv_schema . " costumers " ) AS " costumers " ,
(SELECT mysql . pv_schema . " time_dimension" . " year " ,
mysql . pv_schema . " time_dimension" . " date " ,
mysql . pv_schema . " time_dimension" . "half_hour "
FROM mysql . pv_schema . " time_dimension" ) AS " time_dimension" ,

SELECT "hour" , "half_hour " , " customer" , "GG" FROM
(<user code f o r f i l e 1 > UNION <user code f o r f i l e 2 >
UNION <user code f o r f i l e 3 >) AS "pv_facts "

WHERE( " time_dimension" . "half_hour " =
CAST( "pv_facts " . "half_hour " AS time ) AND
" costumers " . " costumer_id" = CAST( "pv_facts " . " customer" AS integer )
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AND " time_dimension" . " date " = CAST( "pv_facts " . " date " AS date ) )
GROUPBY ( " time_dimension" . " year " , " costumers " . " costumer_id" )
HAVING sum( (CAST( "pv_facts " . "GG"AS double )∗0 . 5 )
/ costumers . generator_capac i ty )<700
ORDERBY " costumers " . " costumer_id" ASC,
" time_dimension" . " year " ASC
LIMIT 50000 ;

The analyzed time period can easily be changed by using the time dimension and selecting
a smaller time period for more specific analyzes, such as month instead of years.

This experiment helped to improve the system by discovering and fixing some problems
related to manual mode, namely:

• Originally, EasyBDI didn’t validate attributes’ data types in the code inserted by users
when in manual edition. Hence, query execution would probably fail if the code has
references to an attribute whose data type changed and data type casting operations are
not used. To prevent such type of errors, the system could ask users to manually add
the cast operation themselves in these cases, but this would not be ideal. The solution
implemented is to add to the user written code any necessary cast operators whenever
an attribute whose data type was changed is referenced.

• If decimal numbers are present when parsing SQL code in manual mode to find columns
and tables (as explained in Section 5.5.4 ), the decimal point is confused with the qualified
name of a column, which resulted in the system assuming that "0.5" was a table named
0 and a column named 5. This was later fixed and it is ensured that decimal points
surrounded by digits only are ignored.

6.3 Performance And Volume of Queried Data

The focus of this work is mainly on developing a solution in order to satisfy the objec-
tives and requirements in Section 1.3. Performance never was a topic of much focus in the
development of this work. However, this section will present a simple overview of EasyBDI’s
performance.

Performance of query execution time from the moment the user submits the queries from
the system until results are displayed on the screen is measured by the time it takes EasyBDI
to generate the SQL query, send it to Presto, the time it takes for Presto to execute the
query, and finally the time it takes the system to process the query results and display them
on the table in the UI. Table 6.1 demonstrates examples of the performance of EasyBDI in
some of the queries shown in this chapter. As expected, the query generation process made by
EasyBDI generates practically no overhead to the overall performance of the system. Query in
Listing 6.11 takes more time than the remaining queries because it needs to first execute a first
query to retrieve the values to be pivoted. The remaining time is mainly spent by the query
execution time handled by Presto. The first two queries take less time because they retrieve
data from Hive, which should contain mechanisms to efficiently retrieve data, as opposed with
the remaining queries that retrieve data from raw files which can be slower. Additionally, the
last 3 queries also include complex operations to reshape the data’s original structure. The
time it takes for EasyBDI to process the results and display them in the UI is not considered
as it is very short and generates no overhead.
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Query Data Sources Query
Generation
Time (ms)

Query
Execution
Time (s)

Listing 6.2 Hive 4 5.967
Listing 6.4 Hive 3 6.896
Listing 6.10 raw files,

PostgreSQL,
MySQL

3 67.872

Listing 6.11 raw files,
PostgreSQL,

MySQL

1496 31.453

Listing 6.12 raw files,
PostgreSQL,

MySQL

11 53.512

Table 6.1: Query Generation Times And Query Execution Times By Query And Their Com-
plexity.

The main reasons that Presto may take longer to execute queries, are the cluster envi-
ronment. Recall that all queries here were executed on a single machine. More nodes could
improve the performance of the query execution time. Query execution time may very. For
example, query in Listing 6.12 took 87.56 seconds on another execution. Additionally, the
system only displays the data to the user after every result is received from Presto, which is
not an ideal solution. The JDBC API delivers the results to EasyBDI periodically as they are
ready if the volume of data is big. EasyBDI should display the results to the user as they are
ready, and not once it receives all results, which may lead to longer times before the user can
see any results.

6.4 Considerations

This section serves 3 purposes: to exemplify how to use EasyBDI, to demonstrate what
the system can do, and what are its limitations when creating queries. This was quite useful
throughout the development, as it allowed not only to fix errors, but also to improve and add
features in order to reduce some of EasyBDI’s limitations.

The first case study analyzed provides a dataset and a set of model queries, mostly used
for performance benchmarking. Each of these queries were created in EasyBDI in order to
determine which ones were possible to execute, and which were not. Initial tests revealed that
some queries could not be totally specified based on drag-and-drop operations. To mitigate
this, manual edition mode was created (explained in Section 5.5.4) in order to provide more
flexibility to the user when writing aggregations and filters, increasing the number of complex
operations that can be specified on queries created on EasyBDI, thus making it possible to
recreate a greater number of model queries from the ones available in this case study’s dataset.
However, this is not a generic solution and does not allow the same expressiveness as an SQL
query. Other limitations include other SQL operations, such as case statements and union
all, as well as the creation of nested queries which can only be done in the filters using manual
mode. These limitations do not allows some of the model queries to be recreated.
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The second case study presents a more realistic use case for EasyBDI, related to photo-
voltaic energy production and consumption data. Useful information can be extracted from
this dataset through analytical queries, such as total production of energy per client. This
show cases the ability of EasyBDI to incorporate data whose original organization may not
be compatible or unwanted for a star schema. In this case, the original organization of the
data from this dataset was not compatible with the creation of a star schema, but EasyBDI
can solve this by creating a view via a SQL query, and then using this view to create the star
schema and perform queries.

In conclusion, both case studies show that EasyBDI can integrate data and suggest a global
schema, regardless of the data sources used. This global schema may not always be correct,
but it can be corrected using an intuitive user interface, and star schemas can be created from
the global schema. A reorganization of a table’s structure can be done if necessary and then
used as a part of these schemas. Performing queries using an user interface can also allow for
less experienced users to perform analytical queries, as the system automatically generates
a valid SQL query, with joins whenever necessary and other requested user operations, thus
abstracting from specific SQL language details. These tests also allowed an experimentation
with a larger diversity of queries, allowing to detect and correct some of EasyBDI’s limitations
and fix errors that appeared only in specific scenarios.

EasyBDI is a tool that can be used for analytical scenarios, and provides many features
that increase its versatility.
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Chapter 7

Conclusions and Future Work

In modern information systems, data is scattered in several heterogenous data sources,
which creates difficulties when trying to query and integrate them. Some techniques and
architectures exist to overcome this challenge, and several systems have been proposed with
different strategies, which bring advantages and disadvantages.

Another issue that rises with the appearance of new topics, such as IoT, data streams,
and e-Commerce, is that traditional data warehouses do not contemplate recent data into
analytical queries, which may by critical for these types of decision making environments.
To solve this, data warehouse architectures that enable near real-time querying have been
suggested. Some of the solutions include a separated cache with a view of the recent data.
These DWs also materialize most or all of the data, which is a complex and long process, and
if the the structure of the star schema needs to be changed, then the long process of data
extracting, integrating and loading must be repeated all over again.

The previous issues presented can be associated as being a part of a larger common issue:
support for analytical queries over heterogenous data sources, while retaining the most recent
data. To the the best of our knowledge, no tool capable of performing all of these tasks
simultaneously has been suggested, and in fact, table 2.1 evidences this conclusion.

A system named EasyBDI was implemented, capable of solving all of these issues. It can
perform OLAP queries while also interactively querying data stored in heterogeneous and
possibly distributed data sources, regardless of their model. It uses Presto as the distributed
query engine that supports big data and heterogeneous data sources. The fact that Presto
interactively queries the data sources, means that the most recent data residing in the data
sources are used, which offers an improvement over existing near real-time DW architectures,
that despite offering access to recent data, do not provide access to the current data. Further-
more, no data is materialized, which means that the process of extracting and loading data
does not take place, enabling for a much faster change if the star schema if needed.

EasyBDI is mainly constituted by modules that use Presto. These modules were added to
fulfill the requirements that Presto alone could not, such as the creation of a unified (logical)
schema providing an overall view of the data residing in data sources. Data Integration
techniques were implemented to automatically create this schema. Other implemented features
in EasyBDI include the creation of star schemas, and interactive user interfaces in order to
guide users in the configuration process. This configuration consists in connecting data sources,
correcting the automatic global schema proposed, and mapping entities from this schema to
a star schema, thus creating dimensions and facts tables. However, as with traditional DWs,
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if the schema on any of the data sources is modified, the overall star schema needs to be
reconfigured, meaning that EasyBDI does not provide any mechanisms to safeguard against
schema evolution. Even so, EasyBDI allows for an easier way to edit star schemas when
compared with traditional DW by using the wizard-like user interface, thus offering a solution
to recover from schema evolution. Performing intensive operations directly on the data sources
can also lead to performance degradation.

On EasyBDI, queries can be created by dragging elements from the star schema to certain
areas, each one representing a different output in the final query, such as rows, columns and
filters. This allows for an easier validation of the user actions in order to ensure that the
user only generates valid SQL queries from the drag-and-drop elements. If the user were to
write SQL code, validation would be harder, and this would require more work from the user,
as most SQL OLAP queries require multiple joins, which are automatically generated with
the implemented approach. This creates some limitations on the queries that can be created.
For example, the use of nested queries is very limited, and there is a wide variety of SQL
commands, making it very hard to implement all of these commands in a first implementation
of EasyBDI.

In conclusion, this work fulfills the proposed objectives defined in Section 1.3, and can
also fulfill every single requirement presented in Table 2.1, which no other of the reviewed
systems could. This work showcases a system that solves modern problems using well known
techniques from the literature, with a focus on real-time analytical querying that non expert
users can perform.

7.1 Contributions

The main contributions of this work are:

• A system, named EasyBDI, capable of executing real-time analytical queries over dis-
tributed and heterogenous data sources, using logical data integration to create an ab-
straction of the complexity of dealing with multiple schemas.

• EasyBDI can also be classified as a user-friendly system, as both experts and non-experts
can perform analytical queries through a user interface based on drag-and-drop. Users
can configure the data sources to be used, adjust the proposed global schema, and create
a star schema, all through a wizard-like user interface, thus promoting an easier and more
interactive configuration process.

• EasyBDI generates SQL queries from user input, which are sent to Presto in order to
query the local schema. Users use high level abstractions (star schemas over global
abstract entities), but the generated SQL queries include references to the physical
structures and data sources where data resides. These queries receive the results from
the local schema and present them accordingly with the user perceived star schema.
Data partitioning is also transparent to the end user, as EasyBDI generates queries that
fetch partitioned data across multiple data sources.

• EasyBDI offers several helpful features. It enables querying on raw files, such as csv, txt
and others (a characteristic not seen in many systems), which can be useful for querying
data without loading it into a database, for example. It also enables the creation and
management of different projects, which allows users to better organize and separate
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data sources relating to different contexts. Other utilities are also present, such as
exporting results and saving queries (very useful if certain queries need to be executed
periodically).

• For the development of EasyBDI, an algorithm that applies data integration techniques
to automatically generate a global schema was developed.

• This dissertation also presents an overview of multiple solutions that have been sug-
gested to solve both problems presented (near real-time analytical querying and dis-
tributed and heterogenous querying) while also classifying and comparing them using
the requirements specified in Section 1.3.

7.2 Future Work

Many features of EasyBDI can be improved, and many other useful features could be
added. The future work can be split in 3 categories: EasyBDI features and user experience,
data integration techniques and Presto integration.

EasyBDI Features and User Experience: - In this work, many useful features were
implemented and several validations were also implemented to make the system robust, useful
and usable (despite the version of the system here presented is a proof of concept), but it
is not bulletproof. Many other features could be added in order to better assist users while
creating queries or editing the global schema.

The following improvements or changes are proposed:

• The current user interface of EasyBDI could be submitted into a usability test in order
to determine how intuitive and how user friendly it is, and from that feedback enhance
the overall User Experience (UX) of EasyBDI. An intuitive interface is very important
for the creation of global schemas and to execute queries, but even with informational
tool tips, the UX could be improved in order to better assist the user.

• Add more support for datatype changes and better handling of unsupported data types
in the global schema edition. For example, a query could be run on Presto to test if the
cast is possible, such as string to numeric castings, as some strings cannot be converted
to numeric. Currently it is assumed that the user defined data type change is possible
and will not generate errors.

• Redesign the way how matches between global to local schemas are presented.

• Further work could be done to provide more OLAP functionalities, namely, the organi-
zation of data in hierarchies and the use of OLAP operators, such as slice, dice and drill
down.

• Work could be done to improve the performance of the system, namely on query execu-
tion time. This could potentially change Presto’s implementation, or generate queries
in a more efficient way.

Data Integration Improvements: - The database integration techniques could be
improved by employing more robust algorithms and techniques. Their performance could be
evaluated in order to generate more accurate global schemas.
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A solution could also be developed to deal with schema evolution, meaning that, changes
on the underlying local schema would not generate any errors on the global schema created
(such as missing tables or modified columns). In these events, the system could alert the user
that the local schema has changed or automatically adjust the global schema.

Presto Integration Improvements: - As of now, the management of each Presto
node cannot be controlled within EasyBDI, as users simply specify the location of Presto
Coordinator. Catalogues are generated by the system using user configuration, but in order
for the catalogues to be used, the system uses a Process Builder to restart Presto which
is not a robust solution. Presto Admin 1 is a command line tool that provides commands
to install or uninstall Presto nodes and manage their status, as well as to add or remove
catalogues. This tool could be further explored, namely to test how easy it is to perform these
tasks, its limitations and the possibility of integrating this tool into EasyBDI. If possible, the
system could take user input and pass it to Presto admin to better control the cluster and the
catalogues.

1https://prestosql.github.io/presto-admin/docs/current/index.html
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Appendix A

Examples Of Queries Submitted In
EasyBDI

A.1 Easy BDI Examples using a simple dataset

Figure A.1: Creation of a query where the results contain multiple headers using Easy BDI’s
User Interface.

A.2 Easy BDI Examples Using SSB+ Dataset
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Figure A.2: Recreation of query model 9 from SSB+ in Easy BDI. The image shows an
example of nested filters.
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Figure A.3: Recreation of query model 13 from SSB+ in Easy BDI. The image shows an
example of nested filters and manual edition of aggregations.
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A.3 Easy BDI Examples Using PV dataset

(a) Energy Production by hour using "hour" as columns.

(b) Energy Production by hour using "hour" as rows.

Figure A.4: Energy Production of client 1 at 01/01/2012 every half hour using the PV dataset.
Two different ways to show data are shown: A.4a pivots the "hour", and A.4b shows the hours
as rows.
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