
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Integration of Legacy and Heterogeneous Databases

Thiran, Philippe; Hainaut, Jean-Luc

Publication date:
2002

Link to publication
Citation for pulished version (HARVARD):
Thiran, P & Hainaut, J-L 2002, Integration of Legacy and Heterogeneous Databases. Institut d'Informatrique -
LIBD, Namur.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

https://researchportal.unamur.be/en/publications/763a0e8d-23bd-43d3-86aa-1d9abaef7d9e


 

 InterDB Project

 Integration of Legacy and 
Heterogeneous Databases

Philippe Thiran (report author), Jean-Luc Hainaut (project leader),
Stéphane  Bodart,  Abdelmajid  Chougrani,

Arnaud Deflorenne, Olivier Dumoulin, Jean-Marc Hick
University of Namur - Institut d’Informatique

rue Grandgagnage, 21  B-5000 Namur (Belgium)
pth@info.fundp.ac.be - http://www.info.fundp.ac.be/libd

InterDB Project  Région Wallonne  Contract 3062 





InterDB Project  III

Credits

This text is based on the results of the InterDB project supported by the Belgian Région Wal-
lonne (Direction Générale des Télécommunications, de la Recherche et de l’Energie).

InterDB Project

The InterDB Project is a research, development and technology transfer programme
in data integration engineering, undertaken at the Institute of Informatics of the University of
Namur since September 1995. The InterDB project is dedicated to the integration and the in-
teroperability of heterogeneous and distributed information systems. It directly profits from
research and development results that have been developed in the DB-MAIN research
project. 

Research Aspects of InterDB

Though some aspects of the databases integration can now be considered as fairly well un-
derstood, some complex problems and processes still are unsolved at the present time, despite
an increasing interest of the scientific community. Such is the case of semantic recovery and
semantic integration. The InterDB project is intended to contribue to solving these problems
by concentrating on their database aspects first. 
The technical material of InterDB has been described in about ten scientific papers published
in the main international conferences and journals since 1995. The basic principles has been
decribed in the three papers:
• Ph. Thiran, J-L. Hainaut, S. Bodart, A. Deflorenne, J-M. Hick, "Interoperation of Inde-

pendent, Heterogeneous and Distributed Databases. Methodology and CASE Support:
the InterDB Approach" in Proceedings of CoopIS'98, IEEE, New York, August 1998.

• J-L. Hainaut, Ph. Thiran, J-M. Hick, S. Bodart, A. Deflorenne, "Methodology and CASE
tools for the development of federated databases", International Journal of Cooperative
Information Systems, 8(2-3), pp. 169-194, World Scientific, June and September 1999.

• Ph. Thiran, J-L. Hainaut, "Wrapper Development for Legacy Data Reuse", in Procee-
dings of WCRE’01, IEEE, Stuttgart, October 2001.

The InterDB approach of the database inegration has been presented in several main interna-
tional conferences:
• Main conferences: IFCIS International Conference on Cooperative Information Systems,

1998 - New York City; Database and Expert System Applications Conference, 1999 -
Florence; International Workshop on Engineering Federated Information Systems, 2000
and 2001 - Dublin and Berlin; and IEEE Working Conference on Reverse Engineering,
2001 - Stuttgart.



IV InterDB Project

• Main foreign universities: EPFL, Magdeburg Universität, Laboratoire d’Informatique de
Paris VI, Université de Lyon I, Université de Lausanne and Universiteit van Tilburg.

Development Aspects of InterDB

The scientific material that is developed in research activities is implemented as software and
CASE tool components. They transform the research results into practical methods and tech-
niques that can be most helpful for practitioners. In that way, the InterDB materials have been
used by two joint projects: the Data Migration Project [Delcroix, 2001] and the Administra-
tive Database Integration Project (with the City Council of Namur).

Technology Transfer of InterDB

As an academic institution, the University of Namur, and particularly the Institute of Infor-
matics, is strongly committed to making knowledge available to as large as possible an audi-
ence. Accordingly, the InterDB results are translated into educational materials such as case
studies, lectures and training seminars, mainly intended to the industrial partners. 

InterDB Team

The InterDB tream comprises research associates: Stéphane Bodart, Abdelmajid Chougrani,
Arnaud Deflorenne, Olivier Dumoulin, Jean-Marc Hick and Philippe Thiran. The manage-
ment and scientific direction of the InterDB project is carried out by professeur Jean-Luc
Hainaut. 
The first materials of the InterDB project have been tested and improved by several students:
Renaud Denis [Denis, 2002], Bernard Noël [Noel, 2001] and Sybille Radulescu [Radulescu,
2001]. 

Acknowledgments

We thank Jean-Luc Hainaut for his support, his supervision and his very useful advices. With-
out him, nothing would have been possible. We also thank Jean-Marc Hick for his rereading
of this report. 

À Mon Hélène
Philippe



InterDB Project  V

Summary

Accessing and managing data from several existing independent databases pose complex
problems that can be classified into platform, DMS, location and semantic levels. The plat-
form level copes with the fact that databases reside on different brands of hardware, under
different operating systems, and interacting through various network protocols. Leveling
these differences leads to platform independence. DMS level independence allows program-
mers to ignore the technical details of data implementation in a definite family of models. It
can also hide the model that the DMS implements by providing a more abstract model. Lo-
cation independence isolates the user from knowing where the data reside. Finally, semantic
level independence solves the problem of multiple, replicated and conflicting representations
of similar facts. 
The InterDB project proposes a general architecture, a methodology and a CASE environ-
ment intended to address the problem of providing users and programmers with an abstract
interface to independent, heterogeneous and distributed databases. 
Architecture. The architecture comprises a hierarchy of mediators that dynamically trans-
form actual data into a virtual homogeneous database. Each layer of mediators provides a cer-
tain kind of independence. DMS independence is provided by wrappers dedicated to each
database. Location and semantic independence’s are ensured by a mediator. Finally, platform
independence is ensured by both the wrappers and ad hoc middleware such as commercial
ORB.
Methodology.  Such an architecture involves controlling complex mappings. The problem is
complicated by the fact that the databases have been developed independently, and naturally
suffer from sever problems of replication and semantic conflicts. In addition, most legacy da-
tabases have no documentation any more, just like programs. Recovering the conceptual
schemas form an existing database is the main goal of database reverse engineering, an im-
portant software engineering that can now be considered mature. Solving the syntactic and
semantic conflicts of independent schemas has long been studied in the database realm. How-
ever, coping with conceptual schemas form populated databases brings new problems. A
complete methodology, encompassing conceptual schema recovery and database integration
is provided to practitioners.
Case support. Deriving a common, abstract and conflict-free image of independent databas-
es and defining the mappings between the specification layers are complex tasks. Building
the wrappers and the mediators are also two complex and error-prone activities. All these pro-
cesses are supported by the DB-MAIN CASE tool. This graphical, repository-based, software
engineering environment includes, among others, a sophisticated reverse engineering toolkit,
schema mapping specification facilities and a generator development environment. 



VI InterDB Project

Table of Contents

Chapter 1 - Introduction

Part I: Generic Integration Framework
Chapter 2 - Integration Architecture
Chapter 3 - Generic Data Model
Chapter 4 - Mapping Definition

Part II: Wrapper Technology
Chapter 5 - Wrapper Architecture
Chapter 6 - Wrapper Development (Methodology)
Chapter 7 - Wrapper Development Support

Part III: Mediator Technology
Chapter 8 - Mediator Architecture
Chapter 9 - Mediator Development (Methodology)
Chapter 10 - Meditator Development Support

References

The InterDB Project (1995-2002) has been supported by the Belgian
Région Wallonne (Direction Générale des Télécommunications, de la
Recherche et de l’Energie)   Report  Edition 1.1    November 2002



InterDB Project  VII

Detailed Table of Contents

Chapter 1 
Introduction............................................................................................. 1
1.1 Introduction .................................................................................................................1
1.2 Problem and Context of InterDB.................................................................................2

1.2.1 Legacy Data Systems..........................................................................................2
1.2.2 Distribution .........................................................................................................2
1.2.3 Autonomy ...........................................................................................................3
1.2.4 Heterogeneity......................................................................................................3
1.2.5 Mediation ............................................................................................................4
1.2.6 Mediation and Legacy Databases .......................................................................4
1.2.7 Database Integration ...........................................................................................6

1.3 Scope and Overview....................................................................................................8
1.3.1 Scope...................................................................................................................8
1.3.2 Overview.............................................................................................................8

Part I - Generic Integration Framework

Chapter 2 
Integration Architecture....................................................................... 13
2.1 Introduction ...............................................................................................................13
2.2 Overview of integration architectures .......................................................................13

2.2.1 Global Schema Systems....................................................................................15
2.2.2 Multidatabase Languages .................................................................................15
2.2.3 Federated Architecture......................................................................................16

2.3 InterDB Architecture .................................................................................................18
2.3.1 Hierarchy Architecture .....................................................................................18
2.3.2 Component Architecture...................................................................................19

Chapter 3 
Generic Data Model .............................................................................. 21
3.1 Introduction ...............................................................................................................21
3.2 Generic Data Model ..................................................................................................22

3.2.1 Main concepts ...................................................................................................22
3.2.2 Meta concepts ...................................................................................................24
3.2.3 Model specialization .........................................................................................25



VIII InterDB Project

3.3 Federation Data Models ............................................................................................26
3.3.1 Legacy Data Models .........................................................................................26
3.3.2 Canonical Data Models.....................................................................................28
3.3.3 Object-oriented Model ......................................................................................30

Chapter 4                                           
Mapping Definition ............................................................................... 33
4.1 Introduction ...............................................................................................................33
4.2 Mapping Baselines ....................................................................................................33
4.3  Definition..................................................................................................................34

4.3.1 Reversibility......................................................................................................35
4.3.2 Structural Analysis of a Transformation...........................................................36
4.3.3 Signature of a Transformation ..........................................................................36
4.3.4 Schema Transformation Sequence....................................................................37
4.3.5 Schema Integration ...........................................................................................38

4.4 Some Popular Transformations .................................................................................39
4.5 Transformation History .............................................................................................40

4.5.1 Structure of a History........................................................................................40
4.5.2 History Subset...................................................................................................41
4.5.3 Independent Histories .......................................................................................42
4.5.4 Equivalent Histories..........................................................................................42
4.5.5 Minimal History................................................................................................43

4.6 Model Transformation...............................................................................................44

Part II - Wrapper Technology

Chapter 5 
Wrapper Architecture .......................................................................... 49
5.1 Introduction ...............................................................................................................49
5.2 Legacy Data Wrapper Definition ..............................................................................51

5.2.1 Overview...........................................................................................................51
5.2.2 Definition ..........................................................................................................51
5.2.3 Functionality .....................................................................................................51
5.2.4 Legacy Issues ....................................................................................................52
5.2.5 Motivations and Objectives ..............................................................................54

5.3 Architecture ...............................................................................................................55
5.3.1 General Framework ..........................................................................................55
5.3.2 Wrapper Interface .............................................................................................57

5.4 Wrapper Services.......................................................................................................60
5.4.1 Query Analysis .................................................................................................61



InterDB Project  IX

5.4.2 Error Reporting .................................................................................................62
5.4.3 Functionality Emulation ...................................................................................62
5.4.4 Query Processing ..............................................................................................66
5.4.5 Semantic Integrity Control................................................................................70

5.5 InterDB Prototypes ....................................................................................................74
5.5.1 Logical Wrapper ...............................................................................................76
5.5.2 Object Wrapper.................................................................................................80

Chapter 6 
Wrapper Development ......................................................................... 83
6.1 Introduction ...............................................................................................................83
6.2 Wrapper Development Baselines ..............................................................................84

6.2.1 Observations .....................................................................................................84
6.2.2 Wrapper Dimensions ........................................................................................84
6.2.3 Wrapper Models and Schemas .........................................................................86
6.2.4 Wrapper Mapping .............................................................................................87
6.2.5 Logical Wrapper Architecture ..........................................................................88

6.3 Methodology for Logical Wrapper Development .....................................................91
6.3.1 Overview...........................................................................................................91
6.3.2 Development Baselines.....................................................................................92
6.3.3 Wrapper Definition ...........................................................................................92
6.3.4 Logical Wrapper Definition..............................................................................94
6.3.5 Wrapper Packaging...........................................................................................95
6.3.6 Generator Application and Maintenance ..........................................................95

6.4 Methodology for Instance Wrapper Generation........................................................95
6.4.1 Data-centered Reverse Engineering..................................................................96
6.4.2 Catalog of Implicit Constraints and Constructs ..............................................100
6.4.3 Wrapper Schema Definition ...........................................................................104
6.4.4 Mapping Definition.........................................................................................105

6.5 Methodology for Upper Wrapper Development .....................................................106

Chapter 7 
Wrapper Development Support ........................................................ 107
7.1 Introduction .............................................................................................................107
7.2 CASE Tool Requirements .......................................................................................108

7.2.1 General Support ..............................................................................................108
7.2.2 Support of the Data-centered Reverse Engineering........................................108
7.2.3 Support of the Mapping Definition.................................................................109

7.3 DB-MAIN................................................................................................................109
7.3.1 User Interface..................................................................................................109
7.3.2 DB-MAIN Specification Model and Repository ............................................110



X InterDB Project

7.3.3 Voyager 2........................................................................................................111
7.3.4 Transformation Toolkit...................................................................................112
7.3.5 Text Analysis and Processing .........................................................................113
7.3.6 Assistants ........................................................................................................114
7.3.7 History ............................................................................................................118

7.4 InterDB Tools ..........................................................................................................119
7.4.1 History Analyzer.............................................................................................121
7.4.2 Wrapper Encoders...........................................................................................123

Part III - Mediator Technology

Chapter 8 
Mediator Architecture ........................................................................ 127
8.1 Introduction .............................................................................................................127
8.2 Mediator Definition .................................................................................................127
8.3 Architecture .............................................................................................................129

8.3.1 General Framework ........................................................................................129
8.3.2 Mediator Interface...........................................................................................130

8.4 Mediator Services ....................................................................................................134
8.4.1 Query Analysis ...............................................................................................134
8.4.2 Query Processing ............................................................................................135
8.4.3 Security Management .....................................................................................138
8.4.4 Global Semantic Integrity Management .........................................................139
8.4.5 Transaction Management................................................................................140

8.5 InterDB Prototype ...................................................................................................143
8.5.1 Mediator Architecture.....................................................................................143
8.5.2 Object Mediator and DB-MAIN Repository ..................................................144
8.5.3 Algorithm Principle of the Object Mediator...................................................147

Chapter 9 
Mediator Development ....................................................................... 149
9.1 Introduction .............................................................................................................149
9.2 Framework for Schema Integration.........................................................................150

9.2.1 Integration Strategies ......................................................................................151
9.2.2 Pre-integration ................................................................................................151
9.2.3 Correspondence Identification........................................................................153
9.2.4 Schema Integration .........................................................................................153
9.2.5 Mapping Definition.........................................................................................154

9.3 Schema Integration Issues .......................................................................................155
9.3.1 Interschema Correspondences ........................................................................155



XI InterDB Project

9.3.2 Interschema Conflicts .....................................................................................158
9.4 InterDB Approach ...................................................................................................160

9.4.1 InterDB Principles ..........................................................................................160
9.4.2 Practical InterDB Methodologies ...................................................................164

Chapter 10 
Mediator Development Support ........................................................ 167
10.1 Introduction ...........................................................................................................167
10.2 CASE Tool Requirements .....................................................................................168
10.3 DB-MAIN..............................................................................................................169

10.3.1 DB-MAIN Repository ..................................................................................169
10.3.2 Integration Assistants....................................................................................170
10.3.3 History ..........................................................................................................174

10.4 InterDB Tools ........................................................................................................175
10.4.1 InterDB Extension of the DB-MAIN Repository .........................................175
10.4.2 History Analyzer...........................................................................................181
10.4.3 Java Access to the DB-MAIN Repository....................................................182

 
References ............................................................................................ 185



XII InterDB Project



 

Chapter 1

Introduction

In which the reader is introduced to integration of legacy databases by
first giving its main issues. The terms legacy, autonomy, heterogeneity
and mediation are introduced, and a short overview of the InterDB
approach is given. 

1.1 Introduction

Most large organizations maintain their data in many distinct independent databases that have
been developed at different times on different platforms and DMS (Data Management Sys-
tems). 
The new economic challenges force enterprises to integrate their functions and therefore their
information systems including the databases they are based on. In most cases, these databases
cannot be replaced with a unique system, nor even reengineered due to the high financial and
organizational costs of such a restructuring. Hence the need for interoperation frameworks
that allow the databases to be accessed by users and application programs as if they were a
unique homogeneous and consistent database, through an architecture called federated data-
bases.



1-2 1 • Introduction

1.2 Problem and Context of InterDB

1.2.1 Legacy Data Systems

The presence of legacy data systems is one of the major obstacles in the use of integrated in-
formation. 

A legacy IS is any IS that significantly resists modifications and changes. Typically, a
legacy IS is big, with millions of lines of code, and more than 10 years old. [Brodie
1995]

Legacy data systems are very large. They are written in old programming language like CO-
BOL or PL/1. Such systems are usually mission critical to the day-to-day operation of oper-
ation of corporations and are thus very valuable from a business point of view. However, they
are inflexible in nature and expensive to maintain or to change [Bouguettaya,1998]. 
Legacy data systems must be kept as they are for several reasons [Umar, 1997]. First, they
provide vital services that are very risky to disrupt. Second, many users and support staff are
trained on how to operate these systems and to use them. Third, many legacy systems are very
reliable and perform very well, contrary to the common belief. Fourth, the administrative sup-
port of mainframe-based legacy applications (e.g., backup/recovery, change management, se-
curity) has matured over the years. Finally, there is some emotional attachment to legacy
applications among senior staff because these systems have survived through years of funda-
mental changes in business practices and technologies.
However, something must be done about these systems. First, legacy applications are becom-
ing increasingly expensive to maintain and operate (it takes months to introduce a change).
Second, these applications do not satisfy the flexibility and growth requirements of modern
organizations. Third, many off-the-shelf C/S packages with nice GUI are becoming available.
Finally, new employees don’t want to work on legacy systems.
Dealing with such systems is very costly because of the complexity of understanding data se-
mantics which are either buried in application programs or were never documented by origi-
nal designer. The incompleteness of their specifications leads to ambiguities of the
interpretation of the data schema. The hardest case is when data resides in files, but under-
standing unmormalized and poorly documented relational databases also is very difficult
([Hainaut, 1996], [Parent, 1998]).

1.2.2 Distribution

In many environments and applications, existing data are usually stored in multiple legacy
databases, managed by different DMS. These databases may be stored on one or more com-
puter systems that are either centrally located or geographically distributed.



1.2 Problem and Context of InterDB 1-3

1.2.3 Autonomy

Legacy database systems were typically designed to support local requirements imposed by
a local environment, and without considering a possible cooperation with other systems. In
other words, databases are usually under separate and independent control. The different as-
pects of autonomy are summarized as follows [Sheth, 1990]:
• Design autonomy. The databases have their own data model, query language, semantic

interpretation of data, constraints, etc. 
• Communication autonomy. The databases have the ability to decide when and how to

respond to requests from other databases.
• Execution autonomy. The execution order of transaction is controlled by the legacy data-

bases. They don't need to inform any other system of the execution order of local or
external operations.

• Association autonomy. The legacy databases are able to decide whether participate or not
in one or more federations, as well the possibility of its dissociation of a federation.

It is desirable to preserve the autonomy of the legacy databases. First, because a legacy data-
base was originally an independent database system, it may have had many application pro-
grams developed on it. Such applications should continue to be executable in a legacy
database. Second, legacy databases often belong to different organizations that maintain full
control over their data. It is desirable for these organizations to retain a high degree of control
of their legacy databases.

1.2.4 Heterogeneity

A major obstacle to interoperability of legacy databases is their heterogeneity. Heterogeneity
among legacy databases is caused by the design autonomy of their owners in developing such
systems. Legacy systems were typically designed to support local requirements, under con-
straints imposed with a given system. We can distinguish several types of heterogeneity [Thi-
ran, 1998]: the platform, DMS, location and semantics level. The platform level copes with
the fact that databases reside on different brands of hardware, under different operating sys-
tems, and interacting through various network protocols. Leveling these differences leads to
platform independence. DMS level independence allows programmers to ignore the technical
detail of data implementation in a definite family of models or among different data models.
Representing data with different data models creates heterogeneity because of the inheriting
expressive powers and limitations of DMS data models [Ozsu, 1991]. Location independence
isolates the user from knowing where the data reside. Finally, semantic level independence
solves the problem of multiple, replicated and conflicting representations of similar facts. 
Current technologies such as de facto standards (e.g., ODBC and JDBC), or formal bodies
proposals (e.g. CORBA, EJB), now ensure a high level of platform independence at a reason-
able cost, so that this level can be ignored from now on. DMS level independence is effective
for some families of DBMS (e.g. through ODBC or JDBC for RDB), but the general problem



1-4 1 • Introduction

is still unsolved when several DMS models, including legacy ones, are to cooperate. Location
independence is addressed either by specific DBMS (e.g. distributed RDBMS) or through
distributed object managers such as CORBA middleware products. Despite much effort spent
by the scientific community, semantic independence still is an open and largely unsolved
problem ([Aslan, 1999], [Härder, 1999]).

1.2.5 Mediation

To address the problem of interoperability of information systems in general, the term medi-
ation has been defined in [Wiederhold, 1995] as a service that links data resources and appli-
cation programs. A mediator is a software module that exploits encoded knowledge about
some sets or subsets of data to create information for applications [Wiederhold, 1992]. Tasks
involved in mediation include [Vermeer, 1996]: (1) accessing and retrieving relevant data
from multiple heterogeneous sources, (2) transforming retrieved data to be integrated, (3) in-
tegrated the homogenized data, (4) managing the instance and structural conflicts, and (5) re-
ducing the integrated data by abstraction. Several prototype mediator systems have been
developed (e.g., [Garcia, 1995], [Vermeer, 1996]).

1.2.6 Mediation and Legacy Databases

A legacy database federation can be seen as a special case of mediation, where all data sourc-
es are legacy databases (i.e., heterogeneous and autonomous) and the mediator offers a virtual
and integrated view of the underlying legacy databases. 
A legacy database federation performs mediation by using a hierarchy of mediators that dy-
namically transform queries based on a federated schema into physical queries based on the
physical schema of the legacy database sources (Cf. Figure 1).



1.2 Problem and Context of InterDB 1-5

Figure 1-1: A general architecture of database federation.

Hierarchy architecture
The hierarchy architecture of a federation in general has been described in [Sheth, 1990]. It
consists of a hierarchy of data descriptions that ensure independence according to different
dimensions of heterogeneity. According to this framework and according to the legacy nature
of the database source, each local database source is described by its own physical schema
(LPS) from which a semantically rich description called conceptual schema (LCS), is ob-
tained through a database reverse-engineering process. From this conceptual view, a subset
called export schema (LES) is extracted. All the export schemas are merged into the federated
schema (FCS). The federated schema as well as the conceptual and export schemas are ex-
pressed in a canonical data model (CDM) which is independent of the underlying technolo-
gies.

Component architecture
The function of a mediator is to provide integrated information, without the need to integrate
the data resources. A mediator hides details about the location and representation of relevant
data to applications.
On top of each legacy database is a wrapper. A wrapper is a software component that per-
forms the translation between the export schema and the physical schema of the database [Pa-
pakonstantinou, 1995]. That is, the wrapper (1) offers an export schema in the canonical data
model (2) accepts queries against the export schema and translates them into queries under-
standable by the underlying database, and (3) transforms the results of the local queries into
a format understood by the application. Wrappers and mediators relies on schema descrip-
tions and mappings to translate queries and to form the result instances. 

Integrates

Wrapper

DB

  LPS

  LCS
  LES

Mediator Integrates
  FCS

In
te

gr
at

ed
 V

ie
w

s
Lo

ca
l V

ie
w

s



1-6 1 • Introduction

Heterogeneity issues
The architecture model depicted in Figure 1-1 provides an adequate framework for solving
the heterogeneity issues discussed above [Thiran, 1998]. DMS and local semantic indepen-
dence is guaranteed by the wrappers. Location and global semantic independence is ensured
by the mediators. It provides data federated access irrespective of their location and resolves
semantic conflicts. Finally, platform independence is ensured by both the wrappers and ad
hoc middleware such as commercial ORB.

1.2.7 Database Integration

The current methodologies developed for building a database federation are generally based
on a database integration approach (e.g., [Batini, 1986], [Schmitt, 1996], [Parent, 1998],
[Hainaut, 1999]). 
Referring to [Parent, 1998], the database integration is made up of four main processes: (1)
preparing the database schemas; (2) integrating them; (3) defining the mappings and (4)
building the architecture components.

Figure 1-2: A general methodology for building a database federation.

Preparation
In this phase, schemas that correspond to the information sources being integrated are trans-
lated into schemas using the canonical data model. It includes two main tasks [Parent, 2000],
namely, syntactic rewriting and semantic enrichment.
Syntactic rewriting.  Local schemas are translated into a canonical data model. This allows
for resolving syntactic heterogeneity that is the result of different data models.

Component Definition

  LPS

Schema Definition

  FCS

Preparation

Integration

Mapping Def.

Mapping Def. Mediator

Wrapper

  LCS

Mapping

 Mapping



1.2 Problem and Context of InterDB 1-7

Semantic enrichment. This is the process that aims at augmenting the knowledge about the
semantics of data. Extracting a semantically rich description from a data source is the main
goal of the data reverse engineering process (DBRE). Reverse engineering relies on the anal-
ysis of whatever information is available: schema specifications, index definitions, data, que-
ries in existing programs. Combining these analysis makes it possible to recover hidden
structures and constraints [Hainaut, 1996].

Integration
The integration is the process of identifying similar components in export schemas, identify-
ing and solving the conflicts in these schemas, and finally, merging export schemas into a fed-
erated one.
Conflicts fall into three possible categories: syntactic, semantic and instance. Besides the usu-
al conflicts related to synonyms and homonyms, a syntactic conflict occurs when the same
concept is presented by different object types in local schemas. For instance, an OrderDetail
can be represented by an entity, by an attribute value and by a relationship. A semantic con-
flict appears when a contradiction appears between two representations A and B of the same
application domain concept or between two integrity constraints. Solving such conflicts uses
reconciliation techniques, generally based on the identification of set-theoretic relationships
between these representations: A = B, A in B, A and B in AB, etc. It is based on set-theoretic
relations existing among the instances of data types, and that may conflict with semantic rec-
onciliation. Instance conflicts are specific to existing data. Though their schemas agree, the
instances of the databases may conflict. As an example, common knowledge suggests that
USER be a subtype of EMPLOYEE. However, data analysis shows that inst(EMPLOYEE)  ⊇
inst(USER), where inst(A) denotes the set of instances of data type A. This problem has been
discussed in [Vermeer, 1996]. This process is highly knowledge-based and cannot be per-
formed automatically.
Solving the conflicts occurring in heterogeneous databases has been studied in numerous ref-
erences, by e.g. [Spaccapietra, 1991], [Batini, 1986] and [Vermeer, 1996]. It is important to
note that most conflicts can be solved through three main techniques that are used to rework
the local schemas before their integration: renaming, transforming and discarding. Heuristics
exist to cope with this problem [Spaccapietra, 1991].

Defining the mappings
An analysis of the schema recovery and integration processes shows that deriving a schema
from another one is performed through techniques such as renaming, translating, solving con-
flicts, which basically are schema transformations. Most data-centered engineering processes
can be formalized as a chain of schema transformations. This is the case for RDBE and inte-
gration [Hainaut, 1999].
Both queries translation and results building rely in mappings and schemas description. The
mappings are pure transformational functions that cannot be immediately translated into ex-



1-8 1 • Introduction

ecutable procedures in 3 GL. However, it is fairly easy to produce procedural data conversion
programs [Thiran, 1999].

1.3 Scope and Overview

1.3.1 Scope

The InterDB project proposes a general architecture, a methodology and a CASE environment
intended to address the problem of providing users and programmers with an abstract inte-
grated view to independent, heterogeneous and distributed databases. 

1.3.2 Overview

We distinguish three main tasks addressing the InterDB scope: (1) defining a generic integra-
tion framework intended to express all the federation components, schemas and mappings;
(2) building the wrappers for legacy source databases; and (3) defining a meta-mediator in-
stantiated for federated schema.

Defining a generic integration framework
This issue is discussed in Part I of this report. It involves defining a unique and generic frame-
work intended to express all the federation components, schemas and mappings.
In Chapter 2, we introduce the general architecture of database federations. We provide an
overview of existing database federation architectures. We then introduce the main baselines
of the InterDB architecture.
In Chapter 3, we present the generic data model intended to express the schema hierarchy of
database federations. It is an abstract formalism from which the federation models can be de-
rived by specialization. In short, physical schemas, conceptual schemas, export schemas as
well as federated schemas are expressed into an unique and generic entity/object-relationship
model. Besides the standard concepts, the meta-model includes some meta-objects which can
be customized according to specific needs. These features provide dynamic extensibility of
the generic model. For instance, new concepts such as correspondence types can be represent-
ed by specializing the meta-objects. 
In Chapter 4, we define the mappings as schema transformations. We present the concepts
and properties of schema transformations. An inventory of useful transformations is present-
ed. We finally introduce the notion of schema history. 

Building wrappers for legacy databases
This issue is discussed in Part II of this report. We present an architecture, a methodology and



1.3 Scope and Overview 1-9

a CASE support for developing legacy data wrappers. 
In Chapter 5, we present and develop the technology of legacy data wrappers. We discuss
their main roles and services they provide. In particular, we show the close link between re-
verse engineering and such wrappers. The architecture of an operational data wrapper - the
InterDB wrapper - is then presented.
In Chapter 6, we present a generic and complete methodology for building legacy data wrap-
pers. The methodology includes the schema recovery through a reverse engineering approach
and the mapping building. 
In Chapter 7, the methodology is supported by the DB-MAIN CASE tool that gives users an
integrated toolset for reverse engineering and inter-schema mapping definition and process-
ing. Wrapper generators for Cobol files and relational databases have been written as add-ons
to DB-MAIN.

Defining the mediator
This issue is discussed in Part III of this report. We present an architecture, a methodology
and a CASE support for developing mediators. 
In Chapter 8, we present and develop the technology of data mediators. As for the wrappers,
we start by discussing the main roles and services mediators provides. This chapter shows,
among others, how queries against a federated schema can be processed in terms of queries
against the underlying wrappers. Finally, the architecture of the InterDB mediator is present-
ed.
In Chapter 9, we present an overview of the database integration methodology. The issues are
raised and the approaches that have been proposed to tackle the problem are discussed. The
InterDB approach is then presented and its main characteristics are outlined.
In Chapter 10, we present the DB-MAIN tools that are intended to support the mediator de-
velopment. In particular, this chapter presents the extension of the DB-MAIN repository that
describes both the schema hierarchy and the mappings between them.



1-10 1 • Introduction



   

 Part I                                           

Generic Integration Framework



 



 

Chapter 2

Integration Architecture

In which an overview of classical integration architecture of databases
is given. The InterDB architecture is then presented and its main
characteristics are outlined.

2.1 Introduction

Database systems that provide interoperation and varying degrees of integration among dis-
tributed existing databases have been termed multidatabase systems ([Hurson, 1994], [Lit-
win, 1986], [Litwin, 1994]), federated databases ([Heimbigner, 1985], [Sheth, 1990]), and
more generically, Heterogeneous Distributed Database Systems (HDDBS) [Bougettaya,
1998]. An attempt to relate some of the frequently used terms, using the fundamental dimen-
sions of distribution, heterogeneity and autonomy has been presented in [Sheth, 1990].
The chapter is organized as follows. First, we present a taxonomy that classifies the existing
solutions into three categories: global schema integration, federated databases and mutlidata-
base language approach. Second, we describe the InterDB architecture 

2.2 Overview of integration architectures

In [Sheth, 1990], a reference HDDBS architecture has been presented (Cfr. Figure 2-1). This
architecture is based on mappings between schemas on 5 levels.



2-14 2 • Integration Architecture

• Physical schema (LPS). A physical schema represents data in a data source. There is one
physical schema for each data source. The physical schemas are expressed using a local
data definition language and a local data model, if such exist.

• Component schema (LCS). A component schema is a CDM1 representation of a local
schema. The local schema is translated into a CDM representation if the CDM is differ-
ent than the local data model, otherwise the local and the component schemas are the
same.

• Export schema (LES). In some architectures, each data source decides the portion of the
data that are going to be available for non-local access. The export schema models the
view of the component schema visible non-locally. It is also expressed in the CDM.

• Federated or Global schema (FCS or GCS). A federated (global) schema is an integra-
tion of all export schemas. Depending on the particular framework applied, this schema
can be called either global or federated. The term global schema is used when there is
only one such schema. There can be more than one federated schema.

• External schema. An external schema represents a subset of the global schema tailored
for a particular user or group of users.

Figure 2-1: A Generic integration architecture. For simplicity, the export schemas have been ig-
nored.

1. Canonical Data Model.

  LCS

  LES

  FCS

In
te

gr
at

ed
 V

ie
w

s
Lo

ca
l V

ie
w

s

DB

  LPS

  LCS

  LES

DB

  LPS

  FCS

  GCS

  LCS

  LES

DB

  LPS



2.2 Overview of integration architectures 2-15

Depending on the level of integration, integration architectures can be classified into 3 cate-
gories: global schema systems, multidatabase language systems and federated databases.
These categories reflect design efforts to accommodate the conflicting requirements of
achieving an efficient and usable systems by larger level of sharing on one side, and preserv-
ing the autonomy of the data sources, on the other. On the one extreme of this spectrum are
the systems that are closed to the distributed databases in building a global integrated schema
of all the data in the sources. The opposite side represents systems that provide just basic in-
teroperation capability and leave most of the integration problem to the user. The rest of this
section overviews the features of each of these categories.

2.2.1 Global Schema Systems

A straightforward approach to building an HDDBS is the approach where the export schemas
of multiple databases are integrated into a single view (global) schema [Spaccapietra, 1994].
In [Batini, 1986], a thorough survey on schema integration is provided and twelve methodol-
ogies are compared.
The user is not aware of the distribution and the heterogeneity of the integrated data sources.
Multiple databases logically appear as one single database to users. Furthermore, if the sche-
ma does not change frequently, it can be stored locally, at the client, for faster access. Never-
theless, this approach has been shown to exhibit the following problems [Bouguettaya,1998]:
• Since the general problem of integrating even only two schema is undecidable, the pro-

cess of integration of multiple schemas is very hard to automate. Global schema integra-
tors must be familiar with all the naming and structure conventions of all the data sources
and integrate them into a cohesive single schema without changing the local schemas.

• There are two basic approaches to integrating the component schemas into a global
schema. In the first, the component schemas are integrated pair-wise. A hierarchical
application of the integration leads to a schema integrating all component schemas. The
other approach is to integrated all the component schemas at once. Both approaches have
problems. The first one could produce different results when different integration orders
are used, while the other one is usually too difficult.

The global schema integration is not suitable for frequent dynamic changes of schemas as the
whole process of integration may need to be redone. As a result, it doesn't scale well with the
size of the database networks.

2.2.2 Multidatabase Languages

This approach does not provide any type of global schema. The only means of accessing the
data in the data sources is by language primitives for specification of queries over data stored
in multiple sources. Information stored in different sources may be redundant, heterogeneous
and inconsistent. These problems occur when component system are strongly autonomous.



2-16 2 • Integration Architecture

The aim of a multidatabase language is to provide accesses involving several databases at the
same time. Such language has features that are not supported in traditional languages. For in-
stance, a global name can be used to identify a collection of databases. Queries can specify
data from any local participating database (example: MSQL [Litwin, 1994]).
The main criticism of the multidatabase language approach is the low level of transparency
provided to the user. The user is responsible for finding the relevant information, understand-
ing each database schema, detecting and resolving the semantic conflicts, and finally, build-
ing the required view of the data in the sources. The advantages of the approach are that it is
not intrusive against the autonomy of the data sources and there is no global/federated schema
maintenance and access overhead.

2.2.3 Federated Architecture

In the federated MDBMS (FDBS), the export schema are only a subset of the component
schemas. The federated schema does not need to be an integration of all the export schemas.
It can be integrated only portions of the export schemas of interest to the users using the fed-
erated schema. More than one federated schema can be defined according to users require-
ments. Each user can then further refine its export schema to fit his own requirements. 
The aim of this architecture is to remove the need for static schema integration. It allows each
local database to have more control over its sharable information. It should be noted that
FDBS is a compromise between no integration and total integration. A typical FDBS archi-
tecture would have a common data model and an internal command language.
The level of integration and services in a FDBS depends on how tightly/loosely coupled the
component DMS are.

Tightly coupled systems
In a tightly coupled FDBS, federation administrators have full control on the creation and
maintenance of federated schemas and access to export schemas. The aim is to provide loca-
tion, replication and distribution transparency. This approach supports one or more federated
schemas. 
A federation repository keeps the mappings between the different schemas and helps main-
tain uniformity in the semantic interpretation of multiple integrated components of data.
The size of the repository can grow dramatically as the number of data sources and users in-
crease. It can also become a performance bottleneck when accessed by a large number of us-
ers. These problems are reminiscent of the problems of maintaining a global schema
described above.
Once a federated schema is created, it is rarely changed; that is, it is static. This, it does not
support dynamic changes of export/component schemas. 



2.2 Overview of integration architectures 2-17

Loosely coupled systems
Loosely coupled systems do not have a centralized administrator. The user creates and main-
tains his own integrated schema in the form of a local view. Creating a federated schema cor-
responds to creating a view against the relevant export schemas. In that respect, each user
must be knowledgeable about the information and structure of the relevant export schemas in
order to create views. Federated schemas here are dynamic and, as a result, can be created and
dropped on the fly. Multiple federation schemas are supported. The maintenance problems
noted above disappears. 
A possible drawback of this approach is that more than one user might need to perform the
same view modeling, without the possibility of reusing the definitions. Furthermore, a change
in an export schema affects all the users who have a view dependent on it.
A solution to the problems noted above is to allow a gradual transition from the federated into
export schemas by a hierarchy of small intermediate schemas. This approach breaks the re-
pository into smaller and more maintainable units, while allowing reuse of the view specifi-
cation and modularity in the view definition and change.

Mediation architecture
To address the problem of interoperability of information systems in general, the term medi-
ation has been defined in this context [Wiederhold, 1995] as a service that links data resources
and application programs. The function of a mediator is to provide integrated information,
without the need to integrate the data resources. A mediator hides details about the location
and representation of relevant data to applications. Several prototype mediator systems have
been developed ([Wiederhold, 1992], [Tomasic, 1996], [Garcia, 1997]). 
Figure 2-2 shows the basic architecture of information processing using mediators. Compared
to the client/server architecture, mediation introduces an additional layer in the architecture
of information systems. 

Figure 2-2: Wrappers/mediators architecture.

Wrapper

DB

  LPS

  LCS
  LES

Mediator

  FCS

Wrapper

DB



2-18 2 • Integration Architecture

Mediation and databases
A database federation offers a virtual, integrated view of the underlying component databas-
es. Queries issued against this view are translated into queries against the underlying compo-
nent databases.  
A legacy database federation performs mediation using at least two important components
[Vermeer, 1997]: wrappers and mediators. 
The function of a mediator is to provide integrated information, without the need to integrate
the data resources. A mediator hides details about the location and representation of relevant
data to applications. 
Above each legacy database is a wrapper. A wrapper is a software component that performs
the translation between the export schema and the physical schema of a source [Papakonstan-
tinou, 1995]. That is, the wrapper (1) offers an export schema in the canonical data model (2)
accepts queries against the export schema and translates them into queries understandable by
the underlying database, and (3) transforms the results of the local queries into a format un-
derstood by the application.
Wrappers and mediators relies on schemas descriptions and mappings to translate queries and
to form the result instances. 

2.3 InterDB Architecture

InterDB is a mediator/wrapper system for integrating pre-existing heterogeneous, distributed
and legacy databases. It provides users with an unified federated schema and a single, high-
level object-oriented interface to access data from any of the integrated local databases. Local
databases remain fully autonomous.

2.3.1 Hierarchy Architecture

The InterDB hierarchy architecture is based on the five levels federated architecture [Sheth,
1990] with some simplifications (Figure 2-3). It comprises four schema levels:
• Local Physical Schema (LPS). It describes the physical data structure of the database as

they are implemented by the data manager. It holds structures and constraints explicitly
declared in the DDL schema declaration or in data dictionaries.

• Wrapper Logical Schema (WLS). It is the description of the data structures perceived by
users and programmers. In other words, it is the legacy database view offered by the
wrapper. In the InterDB approach, the wrapper logical schema also includes implicit
constraints, that is, data properties that have not been explicitly declared, but that are
managed by, say, application programs. 



2.3 InterDB Architecture 2-19

• Wrapper Object-oriented Schema (WOS). It is the object-oriented definition of a logical
schema. A wrapper logical schema is translated into an object-oriented schema through
one-to-one mappings that convert entity types into object types and attributes into meth-
ods. 

• Federated Object-oriented Schema (FOS). It is an object-oriented federated view that
integrates the local objects of WOS. WOS and FOS are represented in the same object-
oriented formalism.

Figure 2-3: InterDB hierarchy architecture: local physical schemas, wrapper logical schemas, wrap-
per object schemas and federated object schemas.

2.3.2 Component Architecture

The InterDB architecture, shown in Figure 2-4, is close to standard proposals. It comprises a
hierarchy of mediators, namely the legacy data wrapper dedicated to each database and a me-
diator based on the federated object schema (FOS). These mediators offer remote Java objects
that hide the data distribution and the federation heterogeneity. 
We have used the RMI system to manage the communications between the wrappers and the
mediators. 
Wrapper. A wrapper is in charge of managing the physical/object conversion of each local
database. It comprises two components, namely the logical wrapper and the object wrapper.
The logical wrapper hides the syntactic idiosyncrasies and the technical details of the DMS

  WLS

 WOS

  FOS

In
te

gr
at

ed
 V

ie
w

s
Lo

ca
l V

ie
w

s

DB

  LPS

  WLS

  WOS

DB

  LPS

  FOS

  WLS

  WOS

DB

  LPS



2-20 2 • Integration Architecture

of a given model family. In addition, it makes the implicit constructs and constraints explic-
itly available. For instance, relational databases and flat COBOL files appear as similar log-
ical structures. A logical wrapper dynamically transforms queries (top-down) and data
(bottom-up) from this logical model to the actual physical model. In particular, it emulates
implicit constructs such as foreign keys in COBOL files or multivalued fields in relational
DB. The object wrapper provides a remote object-oriented view of a local logical database.
It appears as a remote object server that offers a unique abstract interface to Java programs.
For performance reason, we have decided to develop the wrappers as program components
dedicated to a local database. In particular, the logical/physical and object/logical mapping
rules are hardcoded in the modules rather than interpreted from mapping tables. 
 

Figure 2-4: The InterDB component architecture of a federated database. To simplify the figure, ex-
port and view schemas have been ignored. 

Mediator. The mediator offers an object-oriented interface based on the FOS. It provides
global remote objects that hide data distribution across the different sites. For flexibility rea-
son, the mediator is based on the DB-MAIN repository that describes the federated object-
oriented schema, the local object-oriented schema of each wrapper, its location, and the rela-
tionships between local and global schemas. Information concerning data replication, seman-
tic conflicts and data heterogeneity allows the server to interpret and distribute the global
objects, and to collect and integrate the results sent back by the local wrappers.
The architecture model depicted in Figure 2-4 provides an adequate framework for solving
the heterogeneity issues discussed in Chapter 1. DMS and local semantic independence is
guaranteed by the local wrappers. Location and global semantic independence is provided by
the mediator. This module provides data global access irrespective of their location and re-
solves semantic conflicts. Finally, platform independence is ensured by both the local wrap-
pers, Java and RMI as a middleware.

Wrapper

DB

  LPS

Mediator

  FOS

Wrapper

DB

 Repos

Logical
Wrapper

Object
Wrapper

  WLS

  WOS



 

Chapter 3

Generic Data Model

In which the generic data model of the federation is presented. The
generic model is able to describe data structures at different levels of
abstraction, ranging from physical to conceptual, and according to
various modeling paradigms. 

3.1 Introduction

Over the year, several data modelings have been used as legacy data models: hierarchical,
network, relational, semantic and object-oriented models. Schemas that correspond to these
legacy data models are translated into schemas using a Canonical Data Model (CDM). This
allows for resolving syntactic heterogeneity that is the result of different data models. For ex-
ample, in the Multibase system, the legacy DMS are relational and network systems, and the
CDM follows the functional model. 
It is usually expected that the modeling power of the CDM is richer than the legacy data mod-
els. The relational model has frequently been used as the CDM with relational, hierarchical
and network databases. Since the entity-relationship model has been the overwhelming tool
for conceptual modeling, early efforts in data modeling translation research focused on the
transformation to and from the ER model. Next, there has been a shift to using the object-
oriented model as the focal model through which other models have to be translated to or
from ([Urban, 1991], [Vermeer, 1996], [Roantree, 2001]). The shift has been spurred on by
the fact that the object-oriented model can be used as a tool for both design and implementa-
tion. The current tendency is to use XML as the CDM ([Manolescu, 2001], [Gardarin, 2002]).
This is advocated for interoperable systems because of the ease of representing both struc-
tured and semi-structured data. Another reason for choosing XML as a standard for informa-



3-22 3 • Generic Data Model

tion interchange is its flexibility, portability and simplicity [Manolescu, 2001]. An interesting
discussion on the different models used as CDM can be found in [Elmagarmid, 1999].
In the InterDB approach, we define a high-level generic data model, namely the generic data
model, such that it is possible to represent the constructs whatever their underlying data model
and their abstraction level. As we will see in the next sections, the generic data model can be
used as a unifying model for any legacy and canonical data models.

3.2 Generic Data Model

The generic data model is an abstract formalism intended to express data structures indepen-
dently of the implementation technologies. For methodological reason, we propose a unique
generic model from which several abstract submodels can derived by specialization. In short,
physical schemas, wrapper logical schemas as well as object-oriented schemas are expressed
into an unique and generic entity/object-relationship model (Figure 3-1).
  

Figure 3-1: The data model hierarchy.

Besides the standard concepts, the generic data model includes some meta-objects which can
be customized according to specific needs. These features provide dynamic extensibility of
the generic model. For instance, new concepts such as correspondence types can be represent-
ed by specializing the meta-objects.

3.2.1 Main concepts

The main concepts of the generic model are illustrated graphically in Figure 3-2. Figure 3-3
summarizes the six major constructs of the generic data model. The central construct is that
of entity type, or object type (Customer), that represents any homogeneous class of concep-
tual, component or physical entities, according to the abstraction level at which these entities
are perceived. Entity types can have attributes (CustCode, Price, UnitPrice), which can be

    LPS  WOS   FOS

OO Data 
Model

Wrapper 
Logical Model

Legacy Data 
Model

  WLS

Generic 
Model

Canonical
Data Models



3.2 Generic Data Model 3-23

atomic (QtyOH) or compound (Price), single-valued (Name) or multivalued (Price), manda-
tory (Name) or optional (Phone). Cardinality [i-j] of an attribute specifies how many values
(from i to j) of this attribute must be associated with each parent instance (entity or compound
value). The values of some attributes, called reference attributes (DETAIL.ItemCode), can be
used to denote other entities (i.e., they form some kind of foreign keys). Relationship types
(places, has) can be drawn between entity types. Each of their roles (places.ORDER) is char-
acterized by a cardinality constraint [i-j], stating that each entity must appear in i to j relation-
ships. Additional constraints such as identifiers made of attributes and/or roles as well as
existence constraints (coexistence, exclusive, at-least-one, etc.) can be defined. Constructs
such as access keys (ITEM.{Name}), which are abstractions of such structures as indexes and
access paths, and storage spaces (File_DOC) which are abstractions of files and any other
kinds of record repositories, are components of the generic model as well. A processing unit
(CUSTOMER.Remove) is the abstraction of a program, a procedure or a method, and can be
attached to an entity type, a relationship type or a schema.

Figure 3-2: An illustration of the generic model. This schema includes entity types, relationship
types, attributes, identifiers and processing units. It also includes foreign keys, access keys and
storage spaces. This hybrid schema includes constructs from different levels of abstraction.

1-10-N has

1-1

0-N

places

ORDER
OrdNum
OrdDate
id: OrdNum
Record()
Archive
CreateInvoice
ComputeAmount

ITEM
ItemCode
Name
QtyOH
Price[0-5]

MinOrdQty
UnitPrice

id: ItemCode
acc 

acc: Name
Is_Available()?
ComputeUnitPrice()

DETAIL
SeqNum
Qty
ItemCode
id: has.ORDER

SeqNum
ref: ItemCode
Record()
Remove
ChangeItem()

CUSTOMER
CustCode
Name
Address
Phone[0-1]
id: CustCode
Register()
Remove
CheckPayment

File_DOC

DETAIL
ORDER
CUSTOMER



3-24 3 • Generic Data Model

Figure 3-3: The six main concepts of the generic data model.

3.2.2 Meta concepts

Besides the main concepts, the generic data model includes some meta objects which can be
customized according to specific needs. 
• Meta-property: user-defined property of a construct, in addition to built-in properties

such as name, type, length, semantic, etc.
• Stereotype: a specific category of a construct; an instance of a construct can belong to

zero, one or several stereotypes; a stereotype can be given specific properties and spe-
cific behaviour.

These features provide dynamic extensibility of the generic model. For instance, new con-
cepts such as organizational units, servers, or geographic sites can be represented by meta-
properties. Following [Busse, 1997], we can distinguish the following kinds of meta-proper-
ties:
• Mapping meta-property describes the correspondence between constructs of two differ-

ent schemas. 
• Technical meta-property describes information regarding the technical access mecha-

nisms of components, such as the protocol, speed of connection, cost of queries, query
capabilities and so on. It is used to bridge technical and interface heterogeneity.

• Semantic meta-property is information that helps to describe the semantic of concepts. In
particular, ontologies and thesauri are used for this purpose. All domain-specific descrip-
tions belong to this class.

• Quality-related meta-property describes source-specific properties of information sys-
tems regarding their quality, such as reliability, update frequency, actuality, comprehen-
siveness, etc. This is used for ranking or optimization.

Entity/object type Category of similar data/information units
Attribute Common property of the entities of a given type; atomic/

compound, single-valued/multivalued, optional/manda-
tory, value/entity-based

Relationship type Type of aggregate comprising roles and attributes
Group List of attributes/roles attached to a parent (entity type,

rel-type, compound attribute); can be given functions:
identifier, existence constraint, access key, etc.

Inter-group rela-
tionship

dependency between groups; example: foreign key,
functional dependency, inclusion constraint

Collection  set of entities



3.2 Generic Data Model 3-25

• User-related meta-property describes responsibilities and preferences of users of the
information systems, e.g. user profiles.

3.2.3 Model specialization

This generic model can be specialized into the legacy data model, the wrapper data model and
the canonical data model. These models are built by selecting generic constructs and struc-
tural constraints, and by renaming constructs to make them comply with the concept taxono-
my of the specialized model. Figure 3-4 shows some common interpretation of the generic
constructs. For example, the relational model, considered as a legacy data model, can be pre-
cisely defined as follows (IMS, Cobol or OO models can be defined in the same way):
• Selecting constructs. We select the following constructs: entity types, attributes, identifi-

ers and reference attributes.
• Structural constraints. An entity type has at least one attribute. The valid attribute cardi-

nalities are [0-1] and [1-1]. An attribute must be atomic.
• Renaming constructs. An entity type is called a table, an attribute is called a column, an

identifier, a key and a group of reference attributes, a foreign key.

In the same way, an object-oriented data model (e.g., a variant of the UML class model) can
be described as follows:
• Selecting constructs. We select the following constructs: entity types, IS-A relations,

processing units, attributes, relationship types, identifiers.
• Structural constraints. An entity type has at least one attribute. A relationship type has 2

roles. An attribute is atomic. The valid attribute cardinalities are [0-1] and [1-1]. An
identifier is made up of attributes, or of one role + one or more attributes. Processing
units are attached to entity types only.

• Renaming constructs. An entity type is called a class, a relationship type is called an
association, a processing unit is called an operation, an attribute is an attribute, the cardi-
nality of the opposite role is called multiplicity and an identifier comprising a role is
called a qualified association.



3-26 3 • Generic Data Model

Figure 3-4: Some common interpretations of the generic concepts.

3.3 Federation Data Models

The federation data models include the legacy data models supported by the legacy databases
and the canonical data models. In this section, we present these models and illustrate them by
a small common example. These models are interpreted as specializations of the generic mod-
el described above.

3.3.1 Legacy Data Models

Over the years, several data modelings have been used to design universes of discourse: re-
lational model, network model (CODASYL DBTG), hierarchical model (IMS), shallow
model (TOTAL, IMAGE), inverted file model (DATACOM/DB), standard file model (CO-
BOL, C, RPG, BASIC) or object-oriented model. 
Due to the large variety of model families, it is not easy to propose an exhaustive description
of their own constructs and constraints. As far as the InterDB project is concerned, we will
consider two popular legacy data models only: the COBOL model and the relational model.

COBOL data model
The COBOL data model imposes few constraints on attribute structures (Figure 3-5). The
most important one concerns multivalued attributes, which can be represented through list at-
tributes only. In addition, optional attributes are not explicitly represented except as multiva-
lued attributes. 
An example of a COBOL schema is shown in Figure 3-6. In this model, record types have

Generic ER Relational COBOL
Entity/object
type

Entity type Table Record type

Attribute Attribute Column Field
Relationship
type

Relationship
type

Group Identifier
Constraint

Primary key
Foreign key
Index

Record key

Collection Table space File



3.3 Federation Data Models 3-27

only one record key (e.g. Customer has one attribute that plays the role of identifier and ac-
cess key). Attributes are atomic or compound (e.g. address) or multivalued (e.g. phone). All
the attributes are mandatory. Names are formed according to the COBOL language syntax.

Figure 3-5: Concepts and constraints of the COBOL data model.

Figure 3-6: COBOL structure example.

Relational data model
The attribute structure in the relational data model is particularly poor (Figure 3-7): an at-
tribute must be single-valued and atomic. It can nevertheless be optional. Moreover, the rela-
tion data model introduces the concept of foreign key that is not defined in the COBOL data

Generic Model COBOL Model Constraint
Entity/object type Record Type
Attribute Field Mandatory
Single-value atomic attribute Single-value elementary field Mandatory
Compound attribute Compound field Mandatory
Multivalued attribute ... occurs N times Mandatory
Identifier + access key Record key, alternate record

key
Only one attribute

Non-identifier access key Alternate record key with du-
plicates

Only one attribute

Collection Files

Order
orderID
date
label
quantity
ORD-custID
id: orderID

acc 

Customer
custID
name
address

number
street
zip
city

birth-date
phone[5-5] array
id: custID

acc 

F-Customer

Customer

F-Order

Order



3-28 3 • Generic Data Model

model. 

Figure 3-7: Concepts and constraints of the relational data model.

An example of a relational data schema is shown in Figure 3-7. In this model, tables have pri-
mary and unique keys (e.g. Customer has two identifiers: primary and secondary). All the at-
tributes are atomic and single-valued. Attributes can be mandatory or optional (e.g. phone).
Tables can have one or several foreign keys (e.g. custID is a referential attribute of Order. It
references custID attribute of Customer). Names are formed according to the relational lan-
guage syntax. 

Figure 3-8: Relational schema example.

3.3.2 Canonical Data Models

A canonical data model is designed to express all the semantics of the local schemas [Sheth,
1990]. As a result, it is usually expected that its modeling power is richer than the data models

Generic Model Relational Model Constraint
Entity/object type Table
Attribute Column Single-valued, atomic
Optional attribute nullable column Single-valued, atomic
Primary identifier Primary key Must be an index
Secondary identifier unique (column/table predi-

cate)
unique index

Must be an index

Referential key Foreign key
Access key Index
Collection Tablespace, DBspace, etc.

Order
orderID
date
label
quantity
custID
id: orderID

acc 
ref: custID

acc 

Customer
custID
name
address
birth_date
phones[0-1]
id: custID

acc 



3.3 Federation Data Models 3-29

followed by the legacy databases. A canonical data model must therefore include at least all
the structures and constraints of any underlying legacy data schemas based on the legacy data
models.
In InterDB, we propose two canonical data models: the wrapper logical model associated
with a common data manipulation language close to SQL and the object-oriented model that
offers object methods for accessing read-only data. 

Wrapper logical model
The Wrapper Logical Model (WLM) hides the syntactic idiosyncrasies and the technical de-
tails of the DMS of a given model family. Since we only consider the COBOL and relational
data models as legacy data models, we defined WLM as a model that includes all the structures
and constraints that exist explicitly in these two data models (Figure 3-9). As a result, WLM
comprises entity types and attributes (that can be mono- or multi-valuated; atomic or com-
pound, mandatory or optional) as constructs; identifiers and referential attributes as con-
straints. 
An example of a schema of this model is shown in Figure 3-10. In this model, entity types
may have one or two identifiers constituted of one or more attributes or roles (e.g. Customer
has one identifier constituted of one attribute). Attributes are atomic or compound (e.g. ad-
dress). Attributes may be mandatory (e.g. name attribute of Client) or optional (e.g. birth-date
attribute of Customer). Attributes may also have several values (e.g. phone attribute of Cus-
tomer). Entity types may have one or several referential attributes (e.g. custID is a referential
attribute of Order. It references custID attribute of Customer). Names are formed according
to host language syntax.

Figure 3-9: The wrapper logical model: constructs and constraints.

Constructs Constraints
ET Attributes: any number

Identifier: any number
Attribute Atomic / compound

card: [1-1],[0-1], [0-i]
Attribute Domain Char(n), Num(n), Num(n,m)
Identifier n level-1 attributes 
Referential attributes n level-1 attributes 
Names Host language compliant



3-30 3 • Generic Data Model

Figure 3-10: Wrapper logical schema example.

3.3.3 Object-oriented Model

The object-oriented model (Figure 3-11) provides rich data structuring possibilities, which
enables them to express all the semantics of the wrapper logical schemas. Moreover, it per-
mits the specification of behaviours (through the processing units), which can be used to per-
form complex mappings among the schemas of a database federation. Thus, we can use this
model for modeling both the local and global schemas.
An object type (named entity type in the generic model) definition is structured in three sec-
tions: the structure section, in which for instance, attributes can be defined, a constraint sec-
tion in which constraint groups are defined, and a method section in which operations on
objects are defined.

Figure 3-11: The object-oriented data model: constructs and constraints.

Constructs Constraints
ET Attributes: any number

Identifier: any number
Attribute Atomic / compound

card: [1-1],[0-1], [0-i]
Attribute Domain Char(n), Num(n), Num(n,m)
Identifier n level-1 attributes 
Relationship type one-to-one, one-to-many
Processing unit (method)
Names Host language compliant

Order
orderID
date
label
quantity
custID
id: orderID
ref: custID

Customer
custID
name
address

number
street
zip
city

birth-date
phone[0-5]
id: custID



3.3 Federation Data Models 3-31

Below we present a brief overview of how OO modeling constructs can be derived from a
wrapper logical schema, with an illustration from our previous example schema (Figure 3-
12).

Wrapper object-oriented schema
Object type are primary constructed from entity types of the wrapper logical schema. Such
objects are called entity objects. The entity objects properties correspond to the attributes of
the entity types. In the example schema of Figure 3-10, the entity types Customer, Order give
rise to corresponding objects in the object schema.
Single-valued attributes are modeled as simple properties (e.g. integer, string or date) whereas
multivalued attributes are modeled as vectors. In our example, the attributes custId and name
give rise to corresponding Java objects (respectively Integer and String); the phone attribute
is modeled as a Vector object.
In some cases, it is also possible to detect so-called implicit entity objects. These are entity
object that have not been implemented by a entity type in the logical schema due to logical
considerations. The logical schema characteristic leading to the discovery of a missing entity
object is the existence of a complex attribute - i.e., (multivalued) compound attribute. This is
the case for the address attribute in our example. It suggests an entity object which has four
properties: number, street, zip, city and the corresponding properties.
Built-in properties are defined on attributes. A property returns the current instance of an at-
tribute. A getNumber property is defined, for instance, on the Number attribute defined on the
address entity object.
Relationship types are defined between (implicit) entity objects. Many-to-one or one-to-one
relationships are supported. Relationship types connect either two entity objects that refer-
ence themselves or an implicit entity object to its source entity object. The property defined
on a one-to-one relationship is getEntityObjectName whereas the properties defined on a
many-to-one relationship are getFirstEntityObjectName and getNextEntityObjectName.
The translation between the wrapper logical and the object-oriented models will be discussed
more in depth when we discuss the mapping definition (Chapter 4).



3-32 3 • Generic Data Model

Figure 3-12: Wrapper object-oriented schema example.

1-1

1-1

has

0-N 1-1places

Order
oderID
date
label
quantity
id: oderID
getCustomer
getquantity
getlabel
getdate
getorderID

address
number
street
zip
city
getcity
getzip
getstreet
getnumber

Customer
custID
name
birth-date
phone[0-5]
id: custID
getFirstOrder
getNextOrder
getaddress
getFirstphone
getNextphone
getbirth-date
getname
getcustID



  

Chapter 4

Mapping Definition

In which the mappings are defined as schema transformation opera-
tors. The concept and some properties of schema transformations are
presented and the notion of history is introduced.

4.1 Introduction

It can be shown that mappings can be modeled as data structure transformations. Indeed, the
production of a schema can be considered as the derivation of this schema from a (possibly
empty) source schema through a chain of elementary operations called schema transforma-
tions. Adding a relationship type, deleting an identifier, translating names or replacing an at-
tribute with an equivalent entity type, all are examples of basic operators through which one
can carry out such engineering processes as DBMS schema translation [Hainaut, 1993b;
Rosenthal, 1988; Rosenthal, 1994], schema integration [Batini, 1992] or data conversion [Na-
vathe, 1980]. As it will be shown later on, they can be used for integration engineering of leg-
acy databases as well.

4.2 Mapping Baselines

Current mapping definitions of wrappers and mediators, such as TSIMMIS [Chawathe,
1994], InterViso [Templeton, 1995], IM [Levy, 1996] and Garlic [Roth, 1997], are what may
be termed query-oriented. They provide mechanisms by which users define global schema
constructs as view over source schema constructs (or vice versa in the case of IM), but do not



4-34 4 • Mapping Definition

focus on the semantics of the data sources. More recent work on automatic wrapper genera-
tion ([Vidal, 1998], [Hammer, 1997]) and agent-based mediation [Bayardo, 1997] is also que-
ry-oriented. 
In contrast, the InterDB approach is schema-oriented in that we provide mechanisms by
which mappings are defined as schema transformations. These transformations are used to
automate the translation of queries between the schema hierarchy. 
This approach has several advantages over the query-oriented one [McBrien, 2000]:
• Focusing the human input to the integration process where it is most needed, namely on

the semantics of the data sources, rather than on the more automatable query processing
aspects;

• Decomposing the transformation/integration of schemas into a sequence of small steps
by the provision of a set of primitive transformations which can be incrementally com-
posed into more complex ones;

• Using the transformation pathways between schemas to automatically translate queries
posed on a global schema to queries posed on a set of source schemas;

• Enabling the systematic repair of global schemas and global query translation in the face
of evolving source schemas;

• Favorable framework for software production automation. Indeed, the transformation
techniques can be completely formalized, and therefore translated into restructuration
algorithms that can be the kernel of a generic CASE tool.

The generic model defined in Chapter 3 is the ideal support for schema transformation. In-
deed, transformations can be used whatever their underlying data model and their abstraction
level. For instance, the same schema transformation can be used in a relational model and in
a conceptual one. The schema transformation definition on the generic model brings several
important benefits:
• A transformation can be carried out for a construct of a modeling language M1 where the

result of this transformation is defined in terms of another language M2. This allows
inter-model transformations to be applied, where the constructs of one modeling lan-
guage are replaced with those of another.

• Such inter-model transformations form the basis for automatic inter-model translation of
data and queries. This allows data and queries to be translated between different schemas
in interoperating database architectures such as database federations and mediators.

4.3  Definition

A (schema) transformation is most generally considered as an operator by which a source data
structure C is replaced with a target structure C’. Though a general discussion of the concept



4.3 Definition 4-35

of schema transformation would include techniques through which new specifications are in-
serted (semantics-augmenting) into the schema or through which existing specifications are
removed from the schema (semantics-reducing), we will mainly concentrate on techniques
that preserve the specifications (semantics-preserving).

Figure 4-1: The two mappings of schema transformation Σ ≡ <T,t>.

A transformation Σ can be completely defined by a pair of mappings <T,t> where T is called
the structural mapping and t the instance mapping. T explains how to replace C with C’, while
t states how instances of C must be replaced with instances of C’ (Figure 4-1).
Another equivalent way to describe mapping T consists of a pair of predicates <P,Q>, where
P is the weakest precondition C must satisfy for T being applicable, and Q is the strongest
postcondition specifying the properties of C’. So, we can also write Σ ≡ <P,Q,t>.

4.3.1 Reversibility

Each transformation Σ1≡ <T1,t1> can be given an inverse transformation  Σ2≡ <T2,t2>, de-
noted Σ-1 as usual, such that, for any structure C, 

Σ1 is said to be a reversible transformation if the following property holds, for any construct
C and any instance c of C,

So far, Σ2 being the inverse of Σ1 does not imply that Σ1 is the inverse of Σ2. Moreover, Σ2
is not necessarily reversible. These properties can be guaranteed only for a special variety of
transformations, called symmetrically reversible. 
Σ1 is said to be a symmetrically reversible transformation, or more simply semantics-pre-
serving, if it is reversible and if its inverse is reversible too. Or, more formally, if both fol-
lowing properties hold, for any construct C and any instance c of C,

 

C C’=T(C)

c c’=t(c)

T

instance of instance of

t

P1 C( ) C T2 T1 C( )( )=⇒

P1 C( ) C T2 T1 C( )( )=( ) c t2 t1 c( )( )=( )∧⇒

P1 C( ) C T2 T1 C( )( )=( ) c t2 t1 c( )( )=( )∧⇒

P2 C( ) C T1 T2 C( )( )=( ) c t1 t2 c( )( )=( )∧⇒



4-36 4 • Mapping Definition

In this case, P2 = Q1 and Q2 = P1. A pair of symmetrically reversible transformations is com-
pletely defined by the 4-uple <P1,Q1,t1,t2>. Except when explicitly stated otherwise, all the
transformations we will use in this presentation are semantics-preserving. In addition, we will
consider the structural part of the transformations only.
We have discussed the concept of reversibility in a context in which some kind of instance
equivalence is preserved. However, the notion of inverse transformation is more general. Any
transformation, be it semantics-preserving or not, can be given an inverse. For instance, del-
ET(CUSTOMER), which removes entity type CUSTOMER from its schema, clearly is not a
semantics-preserving operation, since its mapping t has no inverse. However, it has an inverse
transformation, namely create-ET(CUSTOMER). Since only the T part is defined, this partial
inverse is called a structural inverse transformation. We will discuss these operators in more
detail in the next sections.

4.3.2 Structural Analysis of a Transformation

The effect of a transformation T in schema S can be precised as follows. We define a schema
S as a set of constructs C. Therefore, set-theoretic relations and operators apply on schemas.
For instance, a schema can be declared as a subset to another one or can be defined as the
union of the other schemas.
Let us consider the structural functions C-, C+ and C0:
• C-(T) returns the object of S that have disappeared in S’;
• C+(T) returns the new object that appears in S’;
• C0(T) returns the objects of S that are concerned by T, but that are preserved from S to S’.

4.3.3 Signature of a Transformation

A transformation can be specified through its signature, that states the name of the transfor-
mation, the names of the concerned objects in the source schema, and the names of the new
objects in the target schema. For example, the signature of the transformations T1 and T2 in
Figure 4-2 are as follows:

T1: (R’,{(A,R1),(B,R2)}) ←  RT-to-ET(R)

T2: R  ←  ET-to-RT(R’)

The instance part of these transformations can be expressed as follow:
t1: for each r(a,b) in R do:

generate arbitrary entity r’ in R’
insert (r’,a) in R1
insert (r’,b) in R2

 t2: R = R1 ° R2 (where ° means composition)



4.3 Definition 4-37

Figure 4-2: Representation of structural mapping T1 (from left to right) and T2 (from right to left) of
a typical SR-transformations.

The first one is interpreted as "when applying RT-to-ET to relationship type R, the new entity
type is called R', the rel-type involving A is called R1 and that involving B is called R2". The
second one must read as follows: "when applying ET-to-RT to entity type R', the new rel-type
is called R". The objects which are involved in the operation, but that can be identified in the
schema from the names mentioned in the signature, are not specified. In the signature of T2
for instance, entity types A and B are not mentioned since they can be deduced as "all the en-
tity types linked to R' in the source schema". A signature alone does not comprise the C-, C+
and C0 structural components, but it can be used to identify them in the source and target sche-
mas. In addition, the format of a signature is not unique, but depends, a.o., on the default nam-
ing conventions. For instance, the roles are given default names in transformations T1 and T2
described above.
Just like transformations, signatures can be generic or instantiated. For instance, the generic
signature

(R',{(A,R1),(B,R2)}) ←  RT-to-ET(R)

could be instantiated, in an actual schema, into
(ORDER,{(CUSTOMER,from),(PRODUCT,of)}) ←  RT-to-ET(order)

From these examples, we can observe an essential property of the signatures: their reversibil-
ity. Being provided with the right-side schema and the signature of T2, we can derive the sig-
nature of T1, and conversely. In other words, the signature provides enough information, not
only for redoing the operation, but also to undo it.

4.3.4 Schema Transformation Sequence

A transformation sequence Tp = <T2 o T1> is obtained by applying T2 on the schema that
results from the application of T1. As an illustration, Figure 4-3 shows a sequence of two
transformations usually used in database engineering process. The first one (T1) replaces a
foreign key with a relationship type and the second one (T2) expresses a multiple attribute as
an external entity type. 

T1

T2
⇐ 
   

R21-1R1 id: R2.B
R1.A

R'

BA

1-1I1-J1 R

   B      A   

I2-J2

I1-J1 I2-J2

T1

T2



4-38 4 • Mapping Definition

Figure 4-3: Sequence of two common (semantics-preserving) schema transformations: a foreign
key transformation followed by an attribute transformation into an entity type.

4.3.5 Schema Integration

So far, we considered the mapping of one target to one source schema. Constructing one glo-
bal from many source schemas, called schema integration, is formalized as schema transfor-
mation sequences between each source schema and the global schema (Figure 4-4). 

Figure 4-4: Schema integration as a set of schema transformation sequences.

1-1 0-5RA 1-10-N R

B
B1
B3
id: B1

A2
A21
A22
id: RA.A

A21
A22

A
A1
id: A1

1-10-N R

B
B1
B3
id: B1

A
A1
A2[0-5]

A21
A22

id: A1

B
B1
B2
B3
id: B1
ref: B2

A
A1
A2[0-5]

A21
A22

id: A1

T1

T2

Global
Schema

Local
Schema

Local
Schema

T1 T2

  



4.4 Some Popular Transformations 4-39

4.4 Some Popular Transformations

We propose in Figure 4-5 and Figure 4-6 two sets of the most commonly used transforma-
tional operators. The first one is sufficient to carry out the transformation of most conceptual
schemas into relational logical schemas. The second comprises additional techniques partic-
ularly suited to derive optimized schemas. Experience suggests that a collection of about thir-
ty of such techniques can cope with most database engineering processes, at all abstraction
levels and according to all current modeling paradigms1.
 

Figure 4-5: Four major generic transformations with their inverse. Cardinalities a, b, c and d must
be replaced with actual values.

1. Provided they are based on the concept of record, entity or object.

Att-ET/val:
Transforming an
attribute into an
entity type (value
representation).
Inverse: ET-Att.

Att-ET/inst:
Transforming an
attribute into an
entity type
(instance represen-
tation). Inverse:
ET-Att.

Disagg: Disaggre-
gating a com-
pound attribute.
Inverse: Aggreg

RT-FK: Trans-
forming a binary
relationship type
into a foreign key.
Inverse: FK-RT.

A

A1
A2[a-b]
A3

1-Na-b r

EA2
A2
id: A2

   A

A1
A3

A

A1
A2[a-b]
A3

1-1a-b r

EA2
A2
id: r.   A

A2

   A
A1
A3

A

A1
A2

A21
A22

A

A1
A2_A21
A2_A22

0-Na-b r

   B
B1
B2
id: B1

   A
A1

   B
B1
B2
id: B1

   A
A1
B1[a-b]
ref: B1

  ⇔

  ⇔

  ⇔

  ⇔



4-40 4 • Mapping Definition

Figure 4-6: Four additional generic transformations with their inverse.

4.5 Transformation History

The history of a schema transformation sequence is the recorded trace of all the transforma-
tions that are applied when transforming a schema S into a schema S’. Technically speaking,
a history can be materialized by a sort of log file, and therefore is a pure sequence of trans-
formation operations.

4.5.1 Structure of a History

A history can be available in different formats (Figure 4-7). We will describe three dimen-
sions according to which histories can be classified.
Raw tree.  An history is a sequence of transformation operations. If we consider multi-hy-

MultAtt-Serial: Replacing a
multivalued attribute with a
series of single-valued
attributes that represents its
instances. Inverse: Serial-
MultAtt

⇒

MultAtt-Single: Replacing a
multivalued attribute with a
single-valued attribute that
represents the concatenation
of its instances. Inverse: Sin-
gle-MultAtt.

⇒

Split: Splitting an entity type
into two entity types. Inverse:
Merge.

AddTechID: A semantics-
less attribute is added and
made the primary ID of the
ET. Inverse: RemTechID.

A

A1
A2[1-3]: char(5)

A

A1
A21: char(5)
A22[0-1]: char(5)
A23[0-1]: char(5)

A

A1
A2[1-3]: char(5)

A

A1
A2: varchar(15)

   A   

A1
A2
A3
A4

1-1 1-1r
   A'  

A3
A4

   A   

A1
A2

   A   

A1
A2

id: A1

   A   

IDA
A1
A2

id: IDA
id': A1

  ⇔

  ⇔



4.5 Transformation History 4-41

potheses approaches and decision processes, this sequence can be interpreted as a more com-
plex graph. In general, a history has a directed acyclic graph structure, as illustrated in Figure
4-7a. 
Linear history.  Now, let us consider the successful branches only. We remove all the
branches corresponding to hypotheses which have not been retained, and whose end products
have been discarded. Keeping the live branches only produces a linear history (Figure 4-7b).
This derived history is important since it describes the way the final products could have been
obtained without any hesitation: replaying this history on the source products will yield the
same output products as the actual process did.
Minimal linear history.  Two branches of a linear history can represent the same type of
transformations defined on the same object. For instance, a linear history can hold two nam-
ing transformations of a same attribute. Moreover, several branches of a linear history can
represent transformations on the same object (type) that has been discarded in a next branch.
Reducing these branches produce a minimal linear history (Figure 4-7c). This concept is in-
teresting because it is the minimal form of a history.

Figure 4-7: History Structures: (a) raw tree history; (b) linear history with the successful branches
only; (c) minimal linear history.

4.5.2 History Subset

A history Hp is a subset of history Hn (Hp ⊆ Hn) if all the process instances of Hp appears in
Hn, in the same order. 

  S

T1

S1

S2

S4

T2

T4

T5

S’

T3

S3

S

T1

S1

S2

S4

T2

T4

T5

S’

  S

T1

S1

S4’

T2,4

T5

S’

(a) (b) (c)



4-42 4 • Mapping Definition

A history H can be sliced into sequences of transformations t1, t2, t3, etc. We will note this
decomposition H = <t1 t2 t3 ...>, where t1, t2, t3 are transformations.
Let us consider history slice h ⊆ H, which starts at a time point where schema S1 is known to
be available. h can be seen as the history of a schema transformations, which produces prod-
uct instance S2.  We can write: S2 = h(S1).

4.5.3 Independent Histories

Let us consider history H0 = <.. T1 .. T2 ..>, in which we identify transformations T1 and T2.
The question addressed is: does the execution of T2 depend on the execution of T1, or are they
independent, in which case they can be (or could have been) executed in any order, or even
in parallel? First, we define the partial order relation before(Ti, Tj), that states that slice Ti must
be performed before Tj. 
This relation is defined as follows:

before(Ti,Tj) ⇔ (C+(Ti) ∩ C(Tj) ≠ ∅) ∨  (C0(Ti) ∩ C-(Tj) ≠ ∅)   

Intuitively, Tj must follow Ti if Tj uses constructs created by Ti, or Tj deletes catalytic elements
of Ti. Then we define tr-before, the transitive closure of before 

tr-before(Ti,Tj) ⇔ before(Ti,Tj) ∨  ( ∃  t  ⊆ T : tr-before(ti,t) ∧ before(t,tj))

Finally, T1 and T2 are independent iff 
    ¬ tr-before(T1,T2) ∧¬ tr-before(T2,T1)

4.5.4 Equivalent Histories

Two histories (or history slices) H0 and H1 are equivalent w.r.t. schema S iff 
Hi(S) = Hj(S).  

Let us consider history H0, which is expressed as a sequence of four subsequences: 
H0 = <h1 h2 h3 h4>, 

where h1 and h4 are (possibly empty) sequences of transformations and h2 and h3 are two (non
empty) history slices. 
If we can prove that h2 and h3 are independent slices, then they can be swapped in H0, leading
to history H1 = <h1 h3 h2 h4>. Therefore, Hi is equivalent to Hj iff Hj can be built from Hi
through a sequence of swap operations applied to independent slices.
Let us consider history H, which transforms the schema of Figure 4-8 into a relational sche-
ma: multivalued attribute DETAIL is transformed into entity type DETAIL and one-to-many
rel-type from, then the latter and rel-type are expressed as foreign keys.
H : h1: (DETAIL,from) ←  Att-to-ET/Value(ORDER,DETAIL)

h2: {ORD-ID} ←  RT-to-FK(from,DETAIL)

h3: {ORD-ID} ←  RT-to-FK(of,PRODUCT)



4.5 Transformation History 4-43

Figure 4-8: A schema example.

The graph of tr-before is as follows :

Therefore, <h2,h3> and <h1,h3> are independent and swappable. According to the definition,
<h3,h1,h2> and <h1,h3,h2> are equivalent to H, while <h3,h2,h1> is not equivalent.

4.5.5 Minimal History

The history of a design process records the results of the decisions, be they right or wrong, of
trials, errors, backtracking, undos and redos which shape all the exploratory human activities.
Histories generally have a complex structure including several branches which materialize
the exploration of concurrent hypotheses, of which one only led to the discovery of a target
concept, the other ones being abandoned. Cycles of doing, then undoing, and finally redoing,
are not uncommon either. Such structures must be simplified: multiple branches must be re-
duced to the only one that has proved useful, useless loops must be discarded. Hence the con-
cept of minimal history, which can be defined as follows:

history H is minimal w.r.t. schema S iff for any Tp ⊂ Tn,  Tp(S) ≠ Tn(S)

In other words, there is no proper subsets of H which still are equivalent to H. Given history
H, Hm is a minimal version of H if Hm is minimal, and Hm is equivalent to H.

0-N

of

PRO-ID
NAME
U-PRICE
id: PRO-ID

PRODUCT
ORD-ID
DATE
ORIGIN
DETAIL[1-20]

PRO
QTY

id: ORD-ID
acc 

ref: ORIGIN
acc 

ref: DETAIL[*].PRO

ORDER

ACC-NBR
AMOUNT
id: of.CUSTOMER

ACC-NBR

ACCOUNT

CUST-ID
NAME
ADDRESS
id: CUST-ID

CUSTOMER

DSK:MGT-03

1-1

  
h1 h2 h3



4-44 4 • Mapping Definition

4.6 Model Transformation

The model translation is a particular case of schema transformation. It consists in translating
a schema expressed in a data model Ms into a schema expressed in another data model Mt.We
use the model translation concept to illustrate those of schema transformation and transfor-
mation history.
The model translation is defined as a model-driven transformation within the generic model.
A model-driven transformation applies on a schema. It can be defined by m(Ms, Mt) where Ms
and Mt are two different submodels, i.e., subsets of the generic model. It consists in applying
the relevant transformations on the relevant constructs of the schema expressed in Ms in such
a way that the final result complies with Mt.
A model-driven transformation is expressed as a transformation plan made up of a sequence
of <condition, action> statements and control structures, where condition is a structural pred-
icate and action is a transformation. The meaning is obvious: apply action action on each ob-
ject that satisfies predicate condition. The control structures include scope restrictions and
loops.
As an illustration of model translation, we consider the transformation plan between the
wrapper logical model and the object-oriented model defined in Chapter 3. That is, a schema
expressed in the wrapper logical model (Ms) is translated into a schema expressed in the ob-
ject-oriented model (Mt). 

1- While compound attributes exist do: 
For each attribute A that is single-valued and that depends directly on an entity type E do:

apply Att-ET/inst to A;
add a process unit P to E; // name of the process unit: getAttributeName

For each attribute A that is multivalued and that depends directly on an entity type E do:
apply Att-ET/inst to A;
add two process units P1 and P2 to E; 

 // names of the process units: getFirstAttributeName and getNextAttributeName

2- For each referential attribute A of an entity type ETs that references another entity type ETt, do:

apply FK-RT to A;
add a process unit P to  ETs ; // name of the process unit: getETsname

add two process units P1 and P2 to  ETs ; 
// names of the process units: getFirst ETtName and getNext ETtName

3- For each entity type E do:
For each single-valued attribute A of E do:

add a process unit P to  E ; // name of the process unit: getAttributeName
For each multivalued attribute A of E do:

add two process units P1 and P1 to E; 
 // names of the process units: getFirstAttributeName and getNextAttributeName

This transformation plan can be applied to any schemas expressed in the wrapper logical



4.6 Model Transformation 4-45

model. Its execution produces two result types: (1) a target schema expressed in the object-
oriented model and equivalent to the source schema; and (2) a schema transformation history
that records all the transformations applied by the transformation plan.

Example

Let us consider the wrapper logical schema of the Figure 4-9. 

Figure 4-9: Model translation of a wrapper logical schema into an object-oriented schema.

The transformation plan application on this schema is translated into its history:
• We express the compound attribute address as an entity type address and we add

the corresponding procces unit to the entity type Customer.
T1: (address, has) ←  Att-ET/inst(Customer, address)

T2: (getFirstAddress)  ←  AddProcessUnit(Customer)

• The schema includes one referential attribute (custID of the entity type Order)
which expresses a relationship types. We augment the history with the following
transformations: 
T3: (places) ←  FK-to-RT(Order, {custID}, Customer)

T4: (getFirstOrder)  ←  AddProcessUnit(Customer)

T5: (getNextOrder)  ←  AddProcessUnit(Customer)
T6: (getCustomer)  ←  AddProcessUnit(Order)

1-1

1-1

has

0-N 1-1places

Order
oderID
date
label
quantity
id: oderID
getCustomer
getquantity
getlabel
getdate
getorderID

address
number
street
zip
city
getcity
getzip
getstreet
getnumber

Customer
custID
name
birth-date
phone[0-5]
id: custID
getFirstOrder
getNextOrder
getaddress
getFirstphone
getNextphone
getbirth-date
getname
getcustID

Order
orderID
date
label
quantity
custID
id: orderID
ref: custID

Customer
custID
name
address

number
street
zip
city

birth-date
phone[0-5]
id: custID

Wrapper Logical Schema (WLS) Wrapper Object-Oriented Schema (WOS)

WLS-to-WOS



4-46 4 • Mapping Definition

• Finally, we allocate the process units to all the entity types of the schema: 
T7: (getCustID)  ←  AddProcessUnit(Customer)
T8: (getName)  ←  AddProcessUnit(Customer)

T9: (getBirth-date)  ←  AddProcessUnit(Customer)

T10: (getFirstPhone)  ←  AddProcessUnit(Customer)

T11: (getNextPhone)  ←  AddProcessUnit(Customer)

T12: (getOrderID)  ←  AddProcessUnit(Order)

T13: (getDate)  ←  AddProcessUnit(Order)
T14: (getLabel)  ←  AddProcessUnit(Order)
T15: (getQuantity)  ←  AddProcessUnit(Order)

T16: (getNumber)  ←  AddProcessUnit(Address)
T17: (getStreet)  ←  AddProcessUnit(Address)

T18: (getZip)  ←  AddProcessUnit(Address)

T19: (getCity)  ←  AddProcessUnit(Address)

The history of the transformation plan of the wrapper logical schema (WLS) of the Fig-
ure 4-9 records the transformation sequence WLS-to-WOS: 

WLS-to-WOS = <T19 o T18 o T17 ... o T3 o T2 o T1>

The wrapper object-oriented schema of the Figure 4-9 (WOS) is then obtained by the
application of the transformation sequence WLS-to-WOS on WLS:

WOS = WLS-to-WOS(WLS) 

or WOS = T19(T18(T17(....(T3(T2(T1(WLS)))...)))



 

 Part II                                      

Wrapper Technology



   



                        

Chapter 5

Wrapper Architecture

In which the technology of wrappers for legacy databases is presented.
Their characteristics are outlined and a definition of legacy data wrap-
pers is proposed. The different levels of services a legacy data wrapper
should manage are presented and discussed. The architecture of an
operational data wrapper - the InterDB wrapper - is finally presented.

5.1 Introduction

Legacy data systems contain very valuable information that is embedded in legacy databases/
flat files and application code [Umar, 1997]. In many cases, legacy data systems are the only
source of years of business rules, historical data, and other valuable information. Access to
this information is of vital importance to new and emerging tools and applications. 
A wrapper attempts to extend the usefulness of the legacy data systems by facilitating their
integration into modern (distributed) systems. As systems age, the knowledge base that cre-
ated them fades. Eventually, the needs that the system addressed change, and, therefore, the
system must be changed. Here, the analysts have three options available to them: modify the
system (and potentially cause its failure); create a new system with the new functionality; or
keep the old system and create a new layer, a wrapper between the legacy system and the new
program interface [Rugaber, 1998]. 
The approaches of wrapping legacy data systems can be divided into three main categories:
(1) encapsulating screens (2) encapsulating the procedural components and (3) encapsulating
the data. The objective of this paper is to contribute to the building of the third kind of wrap-
pers. However, it is worth discussing the goal and problems of these approaches.



5-50 5 • Wrapper Architecture

Wrapping screens
Screen scrapers allow client application to simulate the terminal keyboard/display features
and thus act as programmable terminal emulators [Umar, 1997]. Commercially available
(e.g., Computer Associates), screen scrapers are inexpensive and are frequently used to ac-
cess legacy systems that are not well structured (monolithic). In many old systems, terminal
emulation and screen scraping are the only ways to access legacy data.

Wrapping procedural components
According to the second interpretation (e.g., [Gall, 1995], [Sneed, 1997], [Wiggerts, 1997]),
a wrapper consists in encapsulating potential object classes and their basic methods. A legacy
application is analyzed in order to build a description of its data objects and as many as pos-
sible parts of its procedural components. For example, a COBOL business application based
on files Customer, Item and Order will be given a description comprising Customer, Items
and Order classes, with their associated methods such as RegisterCustomer, DropCustomer,
ChangeAddress, SendInvoice, etc. 
Unfortunately, building such wrappers is a very (too?) complex task. Indeed, the process of
code analysis must take into account complex patterns [Sneed, 1995] such as code replication
(near-identical code sections duplicated throughout the programs); common usage (a single
code used by several sections) and runtime determined control structures (e.g., dynamically
changing the target of a goto statement or dynamic SQL).
Several code analysis techniques have been proposed to examine the static and dynamic re-
lationships between statements and data structures (e.g., [Cimitile, 1998], [Henrard, 1999]).
Dataflow graphs, dependency graphs and program slicing are among the most popular.

Wrapping data
The third approach (e.g., [Papakonstantinou, 1995], [Vidal, 1998]) proposes to leave the code
and the screens aside and to wrap the data only. The legacy data system is accessed via stan-
dard object definitions without disorganizing the legacy data. The problem is of course dif-
ferent, and fortunately a bit easier than application wrapping:
• the semantic distance between the so-called conceptual specifications and the physical

implementation is most often narrower for data than for procedural parts (a COBOL file
structure is easier to understand than a COBOL procedure);

• the permanent data structures are generally the most stable part of applications;
• even in very old applications, the semantic structures that underlie the file structures are

mainly procedure-independent, though their physical structure is highly procedure-
dependent.



5.2 Legacy Data Wrapper Definition 5-51

5.2 Legacy Data Wrapper Definition

5.2.1 Overview

The wrapper architecture and interfaces are crucial, because wrappers are the focal point for
managing the diversity of data sources. Below a wrapper, each data source, or data manage-
ment system, has its own data model, schema, programming interface, and query capability.
The data model may be relational, object-oriented, or specialized for a particular domain. The
schema may be fixed, or vary over time. Some data systems support a query language, while
others are accessed using a class library or other programmatic interface. Most critically, leg-
acy data systems vary widely in their support for queries. At one end of the spectrum are leg-
acy data systems that only support simple scans over their contents (e.g., files of records).
Somewhat more sophisticated data systems may allow a record ordering to be specified, or
be able to apply certain predicates to limit the amount of data retrieved. At the other end of
the spectrum are databases like relational databases that support complex operations like joins
or aggregations. 

5.2.2 Definition

A legacy data wrapper is a converter of a legacy DMS interface (query, model, services and
protocol). More specifically, a legacy data wrapper is a software component that is built on
a legacy DMS and offers a new interface to the legacy data managed by it without modifica-
tions of the legacy database (e.g., preserving the legacy database schema and behavior). 
In that way, wrappers can be used to present a simplified DMS interface, to encapsulate di-
verse heterogeneous data systems so that they all present a unique query interface based on a
common data model, to add functionality to the data legacy system (e.g. security manage-
ment), or simply to open a legacy data system to other systems.

5.2.3 Functionality

The main functionality of a data wrapper can be subdivided into a number of categories:
• Generic functionality. This refers to operations that convert data and queries from one

model to another. Typically, wrappers convert queries into one or more commands/que-
ries understandable by the underlying legacy system and transform the results into a for-
mat understandable by the new application.

• Source-specific functionality. This refers to the operations that take place because of the
contents of the legacy data system, i.e., its schema.

• Control structure. A wrapper can change the way in which the requests and responses are
passed. For example, a synchronous data source may be wrapped by an asynchronous
wrapper that buffers responses until they are requested by the caller.



5-52 5 • Wrapper Architecture

• Error reporting. Wrappers can report errors back to the caller. These may be error mes-
sages generated by the data source, perhaps converted to a desired format, or they can be
the results of an error recovery operation within the wrapper.

• Security. Data security is another important function of a wrapper that protects data
against unauthorized access through its interface. Data security includes two aspects:
data protection and authorization control.

• Concurrence and recovery control. This function is to permit concurrent updates of the
underlying legacy databases. This includes the transaction and failure management.

• Semantic integrity control. Wrappers emulate integrity constraints defined at their inter-
face but not declared in the underlying database definition.

5.2.4 Legacy Issues

Wrapping legacy data systems poses complex problems. In this section, we discuss some im-
portant specificities of a legacy data system: (1) its autonomy; (2) its data model, (3) its phys-
ical schema, (4) its access language. We discuss also the requirements of a wrapper which is
intended to encapsulate such a system. 

Legacy data system autonomy
Organizational entities that manage different database systems are often autonomous [Elma-
garmid, 1999]. In other words, databases are often under local and independent control.
Those who control a legacy data system are often willing to keep the legacy applications ac-
cess without modify them. Thus, it is important to understand the aspects of autonomy and
their influence in the wrapper development. 
DMS autonomy.  Keeping DMS autonomy assumes that the legacy DMS retains complete
control over data and processing. The wrapper can only interact with its underlying database
through the legacy DMS external interface. As a result of DMS autonomy, some internal in-
formation, such as local cost parameters, needed for query optimization are not available for
the wrapper.
Legacy application autonomy. Legacy application autonomy means that the wrapper can
not influence the way whose individual legacy applications access to data. It means that the
wrapper can’t interfere with their execution. In other words, the wrapper must be aware that
it isn’t alone accessing the legacy data.

Legacy data models
Legacy data systems are based on various legacy data models, ranging from standard file to
relational model. To deal with such a kind of heterogeneity, a wrapper should hide the model
that a legacy system implements by providing a more abstract and common model. Such a
model must be highly generic and more flexible than the legacy data models [Garcia, 1997].



5.2 Legacy Data Wrapper Definition 5-53

Legacy physical schemas
Legacy data models can not express all the semantics of the real world. Limitations of the
modeling concepts lead to the incompleteness of the physical schema [Parent, 1998]. A wrap-
per can't therefore assume the quality and the completeness of the physical schemas. The
wrapper must offer a semantically rich description of a legacy data system. Extracting a se-
mantically rich description from a data source is the main goal of the data-centered reverse
engineering process (DBRE). Hence, the close link between the reverse engineering and the
wrapping [Thiran, 2001]. 

Legacy access languages and services
Different languages are used to manipulate data represented in different data models. The
query capabilities of these languages are multiple and various (e.g., COBOL program vs.
SQL). A wrapper manages the translation of commands (e.g., queries) from one language
(e.g., query language) to another. This is not always possible to translate a wrapper query into
a single legacy query. This is due to some legacy query language limited functionality (e.g.,
some operations required by wrapper query are not supported by the local legacy data sys-
tem). 
The assumption that DMS are equal in terms of their processing capability is not applicable
since legacy DMS may vary drastically in terms of their availability and processing costs. For
instance, a legacy DMS may lack important features like transaction management. Semantic
heterogeneity may have an adverse impact on query processing. The query processor of a
wrapper needs to be aware of legacy DMS query capabilities in order to use them in an effi-
cient way or to avoid unnecessary computation. Therefore, it is important that the DMS query
capabilities are taken into consideration by the wrapper developer.

Example

To illustrate, consider an application that issues a query to a wrapper. The underlying
legacy information data it accesses are recorded in COBOL files. 
1.Assume the following query processed in the wrapper: Select c.name from customer c

where c.custCode = 'HTB710'. The wrapper processes the above query by transforming
it into a COBOL program in taking the physical characteristics of the COBOL files
into account. For instance, if is defined as a record key in an indexed file, the wrapper
should process an indexed access instead of a sequential one.

2.Assume the following query: Select c.name from customer c, order o where c places o;
The underlying legacy system doesn't understand the notion of relationship. Hence, the
wrapper should simulate the query by transforming it into an understanding way for
COBOL.

3.Moreover, if the wrapper offers the transaction functionality, it should manage the
ACID properties since COBOL doesn't support all these properties.



5-54 5 • Wrapper Architecture

In the first example, the wrapper must take into account the DMS and physical characteristics
of the underlying DMS. In the second and third examples, the wrapper must simulate all the
concepts and functions that aren't supported by it. As we can see, the wrapper should exploit
both the features of the DMS (query language and data model) and the features of a particular
data structure (physical schema).

5.2.5 Motivations and Objectives

Motivations
In general, wrapping is a very attractive strategy due to several reasons. First, it extends the
useful life of the legacy data systems by making them useful to new applications without
modifications to the legacy applications. Second, it addresses the challenge of database het-
erogeneity by providing a standardized and common interface.

Objectives
Legacy data wrapping is generally intended to satisfy the following objectives: 
• Legacy system migration. Migrating a system consists in replacing one or several of the

implementation technologies. IMS/DB2, COBOL/C, monolithic/client-server, central-
ized/distributed are some widespread examples of system migration. In some situations,
the only component to salvage when abandoning a legacy system is its database. The
data have to be converted into another format, which can be taken in charge by a wrap-
per.

• Legacy data extraction/conversion. Most datawarehouses are filled with aggregated data
that are extracted from corporate databases. This transfer requires a deep understanding
of the physical data structures and of their semantics, to write a wrapper layer that inter-
prets them correctly.

• Legacy system extension. This term designates changing and augmenting the functional
goals of a legacy system, such as adding new functions, or its external behaviour, such as
improving its robustness or its security.

• Legacy system opening to modern system. Legacy systems provide service that remain
useful beyond the means of the technology in which they were originally implemented
(they are often well-suited to run certain applications, such as high-volume batch pro-
cessing operations). The wrapper attempts to extend the usefulness of those systems by
facilitating their communication with other modern (or legacy) systems. 

• Legacy system integration. The wrapper is one of the architecture component of a data-
base federation (see Chapter 1).

Technical issues
Wrapping legacy data introduces several technical issues that fall into the following broad



5.3 Architecture 5-55

categories:
• Wrapper complexity. Wrapping legacy data systems can be an expensive undertaking

especially when it involves that the wrapper integrates much complex functionality.
• Wrapper maintenance. A wrapper has to deal with upgrade versions of the legacy DMS

and the evolution of the underlying database.
• Legacy access performance. The addition of yet another layer can introduce performance

delays. 
• Legacy system keeping. Wrappers don’t solve the root problem. Underneath a wrapper,

the legacy data system remains, aging and inflexible. A wrapper only offers a way to
delay the expense of a complete rewrite by providing an acceptable interface for new
applications.

5.3 Architecture

5.3.1 General Framework

The basic idea is that the legacy databases are not touched; instead they are surrounded by
wrappers. Figure 5-1 shows the general framework that overviews the different aspects of
wrapping legacy databases. The framework consists of the following components:
• Legacy applications that already exist and access to a legacy database;
• Access paradigms that are used to remotely access legacy resources;
• Wrapper technology that attempts to hide the characteristics of a legacy database from

the new applications;
• New applications that access to a legacy database through a wrapper.

Figure 5-1: Legacy data wrapper framework.

Legacy
Application

Legacy
Ressources

  

Wrapper

Wrapping
Technology

Access
Paradigms

New
Application

Data access

DB

Legacy
DMS



5-56 5 • Wrapper Architecture

Legacy resources
Legacy resources contain information that is embedded in legacy databases/flat files and leg-
acy applications. They are often built around a legacy database service (e.g., IMS). Some-
times they don’t use a DMS at all. Instead, the legacy resources are based on flat-file
structures of ISAM, VSAM or other file systems.
Accessing to legacy information through a wrapper implies a certain level of legacy resources
friendliness because the legacy data must be exposed to external (and new) applications. 

Access paradigms
Access infrastructure consists of technologies such as computers, networks and transaction
managers. An important part of the platform is middleware, an increasingly crucial and, at the
same time, bewildering component of the access infrastructure. Middleware is needed to in-
terconnect and support applications of the modern access infrastructure. Middleware services
typically include directories, facilities to call remotely located functions and software to ac-
cess and manipulate remotely located databases. Middleware services are typically provided
by specialized software package. However, middleware services may reside in a combination
of database management systems, computer operating systems, and transaction management
system.
The middleware manages the communications between the wrapper and client applications.
CORBA [Mowbray, 1995] and RMI [Reese, 1997] are two examples of middleware technol-
ogies. CORBA and RMI are two distributed object standards supported by the OMG (Object
Management Group). CORBA is an architecture standard for building heterogeneous distrib-
uted systems. RMI supports distributed objects written entirely and only in the JAVA pro-
gramming language. For the future, it's expected to enable RMI to use the IIOP protocol to
communicate with CORBA-compliant remote objects. 
By using CORBA, it is possible to encapsulate a wrapper as a set of distributed objects and
their associated operations [Dogac, 1995]. These properties provide the means to handle the
heterogeneity at platform and location levels, the semantic heterogeneity being solved by the
wrapper. That is, CORBA allows client applications to communicate with a wrapper without
having knowledge of its location. 
Moreover, CORBA defines an interface definition language that makes it possible to define
user-defined objects that represent conceptual views of the legacy data. By defining these
user-defined objects, the semantics understanding can be enforced. Indeed, these user-de-
fined objects play a central role in capturing the semantics of actual needs, in a way that is
very closed to the business reality [Maniola, 1998].

New applications
New applications are the software components that access to the legacy database through the
wrapper interface. A new application can be, among others, a mediator or an extract-trans-
form-load processor. The type of the new application strongly influences the wrapper build-



5.3 Architecture 5-57

ing. For instance, update wrappers are often useless in migration process because the wrapper
is only used as a data extractor.

5.3.2 Wrapper Interface

A wrapper is developed on top of a legacy database to give it a transparent access interface.
The interface is made up of: (1) a wrapper schema of the wrapper database, expressed in a
canonical data model and (2) a common query language which uses the semantics defined in
the wrapper schema. That is, the wrapper interface is often required to handle [Lim, 1999]: 
• Exporting and homogenizing the schemas of the legacy sources. Wrapper schemas and

data of existing databases to the new applications. The set of schemas and data exported
from the existing database is called a wrapper schema. Hence, the definition of the con-
ceptual schema is sometimes called semantic enrichment. However, it is equally possible
that some local semantics are not included in the wrapper schema.

• Homogenizing the query interface to existing databases. Apart from exporting local
databases, wrappers have to process queries on the wrapper schemas. Queries on the
wrapper schemas are also known as wrapper queries. 

• Controlling the subset of local database accessible by the new applications. Another
important reason for having wrapper schema is to control the subsets of local databases
(both in terms of schema structures and instances) accessible by the new applications.

Schema interface
The wrapper schema is the result of both a model translation and a semantic enrichment pro-
cess (see Chapter 6). The physical schemas expressed in local data models are translated into
wrapper schemas expressed in a canonical data model. Moreover, since we assume that the
underlying databases are legacy systems, the wrapper schema also contains and incorporates
extra semantics that are not found in the physical schema. That leads to get a semantically
rich description of the databases.

Example

Let us consider a wrapper defined for relational databases and that offers an OO interface
(Figure 5-2). Through the model translation and reverse engineering processes, the phys-
ical schema made up of two files is translated into a wrapper schema using the entity-
object relationship model. The wrapper schema includes undeclared constructs like the
multivalued and compound attributes (Detail) and implicit constraints like the relation-
ship between the two object types.



5-58 5 • Wrapper Architecture

Figure 5-2: Physical and wrapper schema example.

Query interface
The query language of a wrapper allows writing queries expressed on wrapper schema con-
struct. The wrapper queries therefore address the legacy data independently of the specific
aspects of a family of models as well as of the technical constructs of the actual database.
Functionally, the wrapper translates the queries expressed on wrapper schema objects into
commands expressed on physical schema constructs. It also assembles the extracted physical
data (records and rows) into wrapper objects (see Section 5.4.4). 

Example

Let us consider the wrapper example of Figure 5-2. The wrapper query showed in the
upper part of Figure 5-3 uses the semantics of the wrapper schema. This query is trans-
lated in a SQL query expressed on the physical schema.

0-N 1-1places

Order
OrdNum
OrdDate
Detail[0-5]

Quantity
Label

id: OrdNum

Customer
CustCode
Name
Address
Phone[0-1]
id: CustCode

Wrapper

W
ra

pp
er

 S
ch

em
a

P
hy

si
ca

l S
ch

em
a F_ORD

ORD_Num
ORD_Date
ORD_Detail
ORD_CustCode
id: ORD_Num

acc 
acc: ORD_CustCode

F_CUST
CUST_Code
CUST_N
CUST_Add
CUST_Phone
id: CUST_Code

acc 
acc: CUST_N



5.3 Architecture 5-59

Figure 5-3: Query translation example.

Query and data mappings
One major wrapper service is the data and queries translation from on model (the legacy
DMS model) to another, the canonical data model. That is, it translates queries expressed on
the canonical data model into commands expressed on physical constructs; and conversely,
it assembles extracted physical data into output objects. For instance, a wrapper associated
with a set of COBOL files translates the input queries into COBOL program codes and as-
sembles the COBOL records into output objects.
If the wrapper allows updates, it must also ensure the consistency of the legacy data. This can
lead the wrapper to emulate advanced services such as integrity control and transaction and
failure management if the underlying DMS doesn’t support them. 
Figure 5-4 shows the successive steps of query translation and result formation.

Wrapper

W
ra

pp
er

 Q
ue

ry
Le

ga
cy

 S
Q

L
select C.CustCod, C.Name 
from   ORDER O,CUSTOMER C
where  O.OrdNum = :OID
and    C place O;

select CUST_COD, CUST_N 
from   F_ORD, F_CUST 
where  ORD_NUM = :OID
and    CUST_CODE = ORD_CUST-CODE;



5-60 5 • Wrapper Architecture

Figure 5-4: Service-oriented wrapper architecture.

5.4 Wrapper Services

Figure 5-5 shows the major services of a legacy data wrapper, namely, the query analysis, the
error reporting, the query processing, the semantics integrity control and the functionality em-
ulation. To provide these services, a wrapper can advantage of whatever specialized services
the legacy DMS already provide without modifying the legacy database structure and behav-
ior. We explain and discuss all these services in the next sections.

   Wrapper Query         Result      

 DMS Query / Data     

Query    
Analysis

Functionalities
Simulation

Query
Translation 

Data            
Conversion

Integrity
Control

Access Plan &
Optimization

Access    
Processing

Wrapper 
Schema

Physical 
Schema

M
ap

pi
ng

s 
   

 



5.4 Wrapper Services 5-61

 

Figure 5-5: Main services of a legacy data wrapper: (1) query analysis; (2) error reporting; (3) query
processing; (4) semantic integrity control; and (5) functionality emulation.

5.4.1 Query Analysis

The first task of a wrapper is the analysis of the input queries. Query analysis enables rejec-
tion of queries for which further processing is either impossible or unnecessary [Özsu, 1991].
The main reasons for rejection are that the query is syntactically or semantically incorrect.
When one of these cases is detected, the query is simply returned to the user with an expla-
nation (see Section 5.4.2). Otherwise, query processing is continued. A query is incorrect if
any of its attribute or entity type names are not defined in the wrapper schema, or if operations
are being applied to attributes of the wrong type. 

Example

The following query on a wrapper that offers a SQL-like query language and the wrapper
schema of the Figure 5-2:
SELECT Num FROM Customer WHERE Name = 2;

is incorrect for two reasons. First, attribute Num is not declared in the schema. Second,
the operation =2 is incompatible with the type string of Name.

Query analysis can be viewed as three successive steps. First, the query is syntactically anal-
ysis. Second, the query is analyzed semantically so that incorrect queries are detected and re-

3-Query Processing      

1-Query Analysis      

Query Translation           

Data Formation                                      

Query Optimization   

4-Semantic Integrity Control     

5-Functionality Emulation   

Memoryless       

Security                                  

Transaction Management 

Failure Management

2-Error Reporting  



5-62 5 • Wrapper Architecture

jected as early as possible. Techniques to detect incorrect queries use some sort of graph that
captures the semantics of the query. Third, the correct query is restructured as an internal rep-
resentation (see Section 5.4.4). 

5.4.2 Error Reporting

A wrapper returns a value that indicates the success or the failure of an input query. An error
can occur at two levels: 
• At the legacy DMS level: most legacy DMS returns some indicators of a query execution.

This indicator is often made up of two parts: the error code and an associated message. A
legacy database errors can result from anyone of many problems such as conversion
errors, arithmetic errors, constraint violation, etc.

• At the wrapper level: the wrapper can also catch other errors than those returned by the
underlying DMS. For example, a wrapper can detect an error when it performs a query
analysis (see Section 5.4.1) or a semantic control of implicit constraints (see Section
5.4.5).

Besides the error codes it detects, a wrappers must provide standardized error codes of DMS-
specific errors to give new applications a standard way of dealing with error conditions. Al-
though DMS return similar kinds of errors, each does in a different manner, using different
error numbers, message types, programming styles. A wrapper must therefore simplify deal-
ing with error information by providing:
• A unified return code mechanism that reports success or failure for each data access

whatever the source (DMS or wrapper);
• A standardized error code. A standard error code can be, for instance, the five-character

sequence defined by the ISO SQL-92 standard.

5.4.3 Functionality Emulation

Due to the limited functionality of some DMS, the wrapper must often simulate operations
and behaviours required by the new applications. Their nature depends on the differences be-
tween the functions provided by the DMS and those required by the new applications. That’s
the way a wrapper may provide a wide range of functions such as the following: memoryless,
security, transaction management, failure management.

Memoryless 
A context handle holds all the information required by the wrapper for performing a request.
An instance of the context handle is associated with one application client connection. The
instance retains state on behalf of the client across multiple request invocations. It is used to
identify a client application and to keep tracks of what has happened between this client and
the wrapper. 



5.4 Wrapper Services 5-63

A memoryless wrapper is a wrapper that keeps no context handle of requests that it performs.
Consequently, memoryless wrapper can be restarted after a failure without any need to restore
any state.
Memoryless wrappers are not required to maintain contextual information about the client ap-
plications. Each request from a client application contains the context handle needed to sat-
isfy the request1. To submit a query, an client application sends its request and its context
handle to the wrapper. The wrapper uses the context handle to identify the client and prepares
the request processing. It updates the context handle according to the request results and then
returns it to the client application.

Security
Definition and concept evolution. Security is a method to maintain accountability and con-
trol access to the system resources. In legacy centralized data environments, both program-
mers and users of the legacy system were trusted implicitly, because physical access to the
computing center was required to access them. As systems became distributed, physical ac-
cess was no longer required to the system [Souder, 2000]. In place of the original physical
access controls, software security was introduced to the systems.
Since these early access models were an extension of the original physical security models,
users were granted trusted access to a host. This created problems when distributed systems
were introduced that granted trust to hosts rather than the individual users. 
Similarly, the view of a user evolved from an entity given a high level of trust to an entity
with assumes a set of roles. In this model, the roles are granted access to the system. Thus,
the users who perform those roles are granted access for only the activities related to those
roles. Role Based Access Control (RBAC) entered the field of computer security [Sandu,
1996].
In a distributed environment system, the data encapsulated within the systems became dis-
tributed. Data distribution generally transfers it across a secondary medium (e.g., the Ethernet
cable) between nodes in the system. In this secondary medium, data are now publicly avail-
able to anyone who has physical access to the medium. Hence, data must be protected in tran-
sit. Encryption is designed to provide such a data protection [Rushby, 1983].
When a legacy data system is wrapped, it is commonly designed to provide a secure access.
Before the legacy data system is wrapped, the legacy system (DMS and OS) defined which
users were permitted to access its services through a locally-defined security system.When
the legacy data system is wrapped, the distributed environment imposes its own authorization
control and data protection. Hence, the legacy data system sits between the legacy security
and the distributed security systems.
Security and wrapper. As a consequence, security managed by a wrapper includes two as-

1. Note that the context handle is hidden to the client applications. Client applications never
look "inside" a handle and cannot directly manipulate the contents of the context handle. 



5-64 5 • Wrapper Architecture

pects: data protection, authorization control [Özsu, 1991]. 
• Data protection is required to prevent unauthorized users from understanding the physi-

cal content of data. This function is typically provided by file systems in the context of
centralized and distributed operating systems. The main data protection approach is data
encryption which is useful for information exchanged on a network.

• Authorization control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to a large
collection of data under the control of a single centralized or distributed system. The
wrapper must thus be able to restrict the access of a subset of the legacy data to a subset
of the users. A wrapper providing a security layer has been developed at the Drexel Uni-
versity [Souder, 2000].

Example

An authorization can be viewed as a triple <user, operation type, object definition>
which specifies that the user has the right to perform an operation on an object. To con-
trol authorizations properly, the wrapper requires users (pairs of user name and pass-
word), objects and rights to be defined. The privileges of the users over objects are
recorded in a directory as authorization rules, managed by the wrapper. There are several
ways to store the authorizations [Özsu, 1991]. The most convenient approach is to con-
sider all the privileges as an authorization matrix, in which a row defines a subject, a col-
umn an object, and a matrix entry (for a pair of <subject, object>), the authorized
operations. The authorized operations are specified by their operation type (e.g.,
SELECT, UPDATE). Figure 5-6 gives an example of an authorization matrix where
objects are either entity types (Customer) or attributes (Name).

Figure 5-6: Example of authorization matrix.

Example

The wrapper schema represents the part of a legacy database that is provided by the
wrapper. A wrapper schema can therefore be used to hide sensitive data from unautho-
rized users. This works like the SQL views [Date, 1995]. 

Transaction management
Transaction management is probably the major open question in wrapper systems. The chal-
lenge is to permit concurrent updates to the underlying legacy systems without violating their

Users Customer Name

pth SELECT SELECT

jlh SELECT UPDATE

jmh NONE NONE



5.4 Wrapper Services 5-65

autonomy. Although this subject is somewhat beyond the scope of this report, we discuss it
briefly for sake of completeness. Transaction management can be viewed in two dimensions:
autonomy and heterogeneity. 
Autonomy. It requires that the transaction management functions of a wrapper be performed
independent of the DMS transaction management execution functions. In other words, the
DMS are not modified to accommodate wrapper updates. 
Heterogeneity. It has the additional implication that the wrapper transaction managers of
each DMS family may employ different concurrence control and commit protocols. Hetero-
geneity adds further difficulty since it becomes difficult to make uniform assumptions about
the functionality provided by legacy DMS. However, if a legacy DMS has techniques that en-
able concurrent and recoverable access to local data source, the wrapper can use them with a
minimal effort. Some old DMS don’t support any commit protocol. Most recent DMS com-
mit protocols contain some operators, for instance begin, commit and abort, that allow the us-
ers to mark the code that is implied in a transaction. Other DMS, defined for more advanced
commit protocols, include more behavior. For instance, in order to use the two phase commit
protocol (2PC) [Gray, 1993], a prepare_to_commit operator must be included. Moreover the
semantics of the same operator can change from one commit protocol to another. For in-
stance, in the flat transaction model [Gray, 1993], the commit operator leads to make visible
for every other transactions the effects of the current transaction. In the nested transactional
model [Moss, 1985], however, the commit operation leads to make visible only for the ances-
tors and sisters of the current transaction.

Failure management
A reliable wrapper is one that can continue to process user requests even when the underlying
database is unreliable. In other words, even when components of the legacy DMS fail, a reli-
able wrapper should be able to continue executing user requests without violating database
consistency.
The two fundamental approaches to constructing a reliable wrapper are fault tolerance and
fault prevention. Fault tolerance refers to a wrapper which recognizes that faults will occur;
it tries to build mechanisms so that the faults can be detected and removed or compensated.
Fault prevention techniques aim at ensuring that the wrapper system will not cause any faults.
Fault prevention has two aspects. The first is fault avoidance, which refers to the techniques
used to make sure that faults are not introduced into the legacy system by the wrapper. These
techniques involve detailed design methodologies and quality control of the legacy system.
The second aspect of fault prevention is fault removal, which refers to the techniques that are
employed to detect any faults that might have remained in the legacy system despite the ap-
plication of fault avoidance and removes these faults. Typical techniques that are used in this
area are extensive testing and validation procedures. 
Designing a reliable wrapper that can recover or prevent the failures requires identifying the
types of failures with which the wrapper has to deal. A detailed review of the major reasons



5-66 5 • Wrapper Architecture

of failures and a discussion of the wrapper reliable design are beyond the scope of this report.
A review of the major failures appears in [Ozsü, 1991].

Example

With respect to the fault tolerance, a memoryless wrapper is a system that recognizes that
a system failure can occured: such a wrapper can be restarted after a failure without any
need to restore any state.

5.4.4 Query Processing

Query processing involves several main steps. A high-level query such as SQL or OQL is first
scanned, parsed, and validated by a parser (Cfr. Section 5.4.1). Then, an internal representa-
tion for the query is built. Resulting representation is then sent to a query optimizer. The que-
ry translator is the core component of the query processor. It has to translate a query based
on the canonical data model and query language into a query understandable by the underly-
ing DMS. 

Query processing problem
The main function of the wrapper query processor is to transform a wrapper query into an
equivalent legacy query. The wrapper therefore implements the execution strategy for the
query. The transformation must be achieved both correctness and efficiency. It is correct if
the legacy query is transformed from mappings defined as a schema transformation sequence.
The well-defined mapping from the wrapper schema to the physical schema makes the cor-
rectness issue. But producing an efficient execution strategy depends on the legacy query pro-
cessing capabilities. A same wrapper query may lead to many execution strategy according
to the query processing capabilities of the underlying legacy DMS. Since the query process-
ing depends on the legacy system, there is as many strategies as legacy system families:
• The capability of legacy DMS may be different, which prevents uniform treatment of

queries managed by wrappers;
• Similarly, the cost of processing queries may be different on different legacy DMS. This

increases the complexity of comparing cost functions among wrappers;
• The local optimization capability of each legacy DMS may be quite different.

Query translation and result formation
Query translation is the translation of commands from one language to another. Different lan-
guages are used to manipulate data represented in different data models. Even when two DMS
support the same data model, differences in their query language (e.g., QUEL and SQL) or
different versions of SQL supported by two relational DMS can contribute to heterogeneity.
Most of the existing wrapper prototypes provide some support for translation from the wrap-
per access language to the legacy access language. If the legacy DMS has more capabilities



5.4 Wrapper Services 5-67

than the wrapper interface the latter does not use extra features. However, if the wrapper is
more expressive than the DMS, the translation processor must take into account this differ-
ence. 
We recall that our approach is schema transformation oriented in that we focus on providing
mechanisms for defining schema correspondence between the physical and wrapper schemas,
and, on then using that equivalence to automatically perform the query mappings. Moreover,
to make wrapper operational, wrapper queries must be translated from one language to anoth-
er. The query transformation process can then expressed as follows: translate queries be-
tween two schemas and two languages by using language and schema mappings.
We present an informal description of the query transformation process. Figure 5-7 shows the
process. To separate the schema and query mappings, we introduce an internal form of the
query, which is independent of the syntax of any query. In fact, during the translation process,
the wrapper query Q1 is first stripped off, creating a canonical form Q2 that captures purely
the semantics of the query. Next Q3 is formed by applying the schema transformation se-
quence on the constructs of Q2. Finally, Q3 is translated into a query Q4 understandable by the
legacy DMS.
We can now state the three main successive steps of query translation:
• Language mappings: syntactic translation of the wrapper query into an internal form;
• Schema mappings: semantics translation of the query using the schema transformation

sequence that defines the mappings between the physical and wrapper schemas;
• Language mappings and optimization: syntactic translation of an internal form into a

query based on the DMS query language;

Figure 5-7: Language and schema mappings of a wrapper query Q1 into a legacy DMS query Q4.

Wrapper 
Language    

Language mappings Q1     

W
ra

pp
er

S
ch

em
a

S
ch

em
a 

m
ap

pi
ng

s  
  

Legacy 
DMS language    

Internal 
Form    

 Q2     

 Q3      Q4     

P
hy

si
ca

l 
S

ch
em

a

Language mappings



5-68 5 • Wrapper Architecture

Example

To illustrate the query transformation, we use the physical and wrapper schemas in Fig-
ure 5-8. For simplicity, we use the relational model as the wrapper data model. The dif-
ferences in terminology structure can easily be observed in this figure. The mappings Σ
are defined as a chain of schema transformations (ET-att and desaggregation of
Address).

Figure 5-8: Query transformation example based on the schema transformation between the
wrapper and physical schemas.

The following query (Q1) expressed in 
Q1: select C.name

from ORDER O, CUSTOMER C, ADDRESS A
where O.reference = C.reference
and A.reference = C.reference
and A.city = ’Namur’
and O.date > ’09-09-2000’;

Step 1. Source language translation of the query: the input query is translated into an
internal form. The query Q1 is translated into the a conjunctive query [Chandra, 1977].
This translation provides a set expression by expanding any nested structures and nested
queries.
Q2: {name |(∃  reference, city, date) (Order(reference, date) ∧ Customer(reference, name, city) ∧

Address(reference, city)  ∧ (city=’Namur’) ∧ (date>’09-09-2000’))}

Step 2. Schema translation of the query: This translation is based on the transformations
(considered the reverse way) used to produce the wrapper schema from the physical
schema, such as ET-att and Desagreggation of Address, and  a domain tranformation of

Order

Code
Date
Product
Reference
id: Code
ref: Reference

Location

Reference
Street
Zip code
City
id: Reference

ref 

Customer

Reference
Name
Phone[0-1]

id: Reference

Order

Code
Date
Product
Reference

id: Code
ref: Reference

Customer

Reference
Name
Phone[0-1]
Address

Street
Zip
City

Code

id: Reference

Wrapper schema Physical schema

Σ



5.4 Wrapper Services 5-69

date.

Q3: {name |(∃  reference, add_city, date) (Order(reference, date) ∧ Customer(reference, name,

add_city) ∧ (add_city=’Namur’) ∧ (date>’09:09:2000’))}

Step 3. Target language translation of the query: this last step in the translation process
translates the conjunctive query into the legacy query language.
Q4: select C.name

from ORDER O, CUSTOMER C,
where O.reference = C.reference
and C.add_city = ’Namur’
and O.date > ’09:09:2000’;

Query optimization
An important aspect of query processing is query optimization. Because many execution
strategies are correct transformations of the same wrapper query, the one that optimizes (min-
imizes) resource consumption should be retained. The query optimization must use the
known legacy methods for data access. Therefore, the complexity of legacy access opera-
tions, which directly affects the wrapper execution time, dictates some principles useful to
elaborate query plan strategy.
Optimization can be performed using two main techniques. Heuristic rules are used for or-
dering the operation is a query execution strategy. Heuristics are usually complemented with
the use of a cost model which systematically evaluates the cost of different execution plans.
For instance, a main heuristic rule states that SELECT and PROJECTION operations should
be applied before the join and other binary operations. This is because SELECT and PROJEC-
TION operations usually reduce the size of intermediate files. 
As for query optimization using a cost model, the optimization first generates different exe-
cution strategies for a query and then systematically estimates and compares the costs of ex-
ecution each execution strategy before selecting a strategy with the lowest cost.
Characterization of query processors. It is quite difficult to evaluate and compare query
processors in the context of legacy systems because they may differ in many aspects. In what
follows, we list important characteristics of query processors that can be used as a basis of
comparison:
• Most works on query processing can be done by the legacy DMS itself because its access

language gives the system many opportunities for optimization. 
• A query may be optimized at different times relative to the actual time of query execu-

tion. Optimization can be done statically before executing the query or dynamically as
the query is executed. Static query optimization is done at wrapper generation time. 

A drawback of wrappers in data processing is due, in part, of the hiding the details about the
physical constructs of the data. That doesn’t allow the expression of optimized queries since
the physical organization can’t be exploited.



5-70 5 • Wrapper Architecture

Example
Consider an application that issues a selection query to a wrapper. The underlying legacy
information data it accesses are recorded in COBOL files. Assume the three queries of
Figure 5-9 processed in the wrapper. Each query includes a different selection statement:
the first one is made up of an attribute that is a COBOL record and access key; the sec-
ond one, an attribute that is a COBOL alternate record and access key; and the last one,
an attribute on which no access key has been implemented. 
The wrapper processes the queries of Figure 5-9 by transforming it into a COBOL oper-
ations in taking the physical characteristics of the COBOL files into account. The simple
look at the physical accesses suggests two principles. First, because primary access is the
fastest access and only returns one instance, it should be considered as the priority
access. For instance, in the first query of the Figure 5-9, because Code is defined as a
recorded key in the COBOL files, the wrapper should process an indexed access. Sec-
ond, operations should be ordered by decreasing time so that sequential access can be
avoided or delayed.
  

Figure 5-9: Wrapper query and optimization.

5.4.5 Semantic Integrity Control

Another important and difficult problem for a wrapper is how to guarantee the data consis-
tency. A database is said to be consistent if the database satisfies a set of constraints, called
semantic integrity constraints. Maintaining a consistent database requires various mecha-
nisms such as concurrence control, reliability, protection, and semantic integrity control. Se-
mantic integrity control ensures database consistency by rejecting update programs which
leads to inconsistent database states, or by activating specific actions on the database state,
which compensates for the effects of the update programs. Note that update database must
satisfy the set of integrity constraints. 

Implicit constraint concept
As far as wrapper is concerned, two main types of integrity constraints can be distinguished:

Wrapper query Constraint Access number
Select Address
From Customer
Where Code=’HTB710’

code is a record key 
(and an access key)

1

Select Address
From Customer
Where Name=’THIRAN’

name is an alternate 
record key with dupli-
cates (an access key)

>=1

Select Address
From Customer
Where Phone like ’081*’

none >=1



5.4 Wrapper Services 5-71

explicit constraints and implicit constraints:
• Explicit constraints are properties of constructs that are declared through a specific DDL

statement. 
• Implicit constraints are properties that hold in constructs, but that have not been declared

explicitly. Through analysis of the DDL statements alone, the implicit constraints remain
undetected. 

As a result, the physical schema holds only the explicit constraints of a database whereas the
wrapper schema holds both its explicit and implicit constraints.

Example

The most popular example certainly is that of foreign key. Let us consider the following
example, in which two tables, linked by a foreign key, are declared. We can say that this
foreign key is an explicit construct, insofar as we have used a specific statement to
declare it.
create table CUSTOMER(C-ID integer primary key,
                      C-DATA char 80)    
create table ORDER(O-ID integer primary key,
                   OWNER integer
                   foreign key(OWNER) references CUSTOMER)

The following program represents a fragment of an application in which no foreign keys
have been declared, but which strongly suggests that column OWNER should behave as a
foreign key. If we are convinced that this behavior must be taken for an absolute rule,
then OWNER is an implicit foreign key.

create table CUSTOMER(C-ID integer primary key,
                      C-DATA char 80)
create table ORDER(O-ID integer primary key,
                   OWNER integer)
...
exec SQL select count(*) in :ERR-NBR from ORDER
         where OWNER not in (select C-ID from CUSTOMER)
end SQL

if ERR-NBR > 0 then
    display 'Referential constraints :', ERR-NBR, ' violations';

Implicit constraint emulation 
While the DMS manages the explicit constraints (i.e., constraints defined in the physical
schema), the wrapper emulates the implicit constraints by rejecting updates that violate im-
plicit constraints (see Figure 5-10). A major difficulty in designing an integrity subsystem is



5-72 5 • Wrapper Architecture

finding efficient enforcement algorithms. 

Figure 5-10: DMS and Wrapper management of explicit and implicit constraints.

Methods of inconsistent update rejections. Two basic methods permit the rejection of in-
consistent updates. The first one is based on the detection of inconsistencies. The update is
executed, consisting a change of the database state D to Du. The enforcement algorithm ver-
ifies, by applying tests derived from these implicit constraints, that all relevant constraints
hold in state Du. If state Du is inconsistent, the wrapper restore state D by undoing u. Since
these tests are applied after having changed the database state, they are generally called post-
tests. This approach may be inefficient of a large amount of work (the update of D) must be
undone in the case of an integrity failure. The second method is based on the prevention of
inconsistencies. An update is executed only if it changes the database state to a consistent
state. The instances subject to the update are either directly available (in case of insert) or
must be retrieved from the database (in the case of the deletion or modification). The enforce-
ment algorithm verifies that all relevant constraints will hold after updating those instances.
This is generally done by applying to those instances test that are derived from the integrity
constraints. Given that these tests are applied before the database state is changed, they are
generally called pre-tests. 
Wrapper and inconsistency prevention. To handle general assertions, pre-tests can be de-
fined at the generation time. For simplicity, the method is restricted to updates that insert or
delete a single instance of a single entity type. This method is based on the production, at gen-
eration time, of implicit constraint checking which are used subsequently to prevent the in-
troduction of inconsistencies in the database. The definition of implicit constraint checking is
based on the notion of implicit constraint that is emulated by a wrapper. An implicit constraint
checking is a triple <ET, T, C> in which ET is an entity type of the wrapper schema; T is an
update type; and C is an implicit constraint assertion ranging over the entity type ET in an
update of type T. When an implicit constraint I is defined, a set of implicit constraint checking
may be produced for the entity types used by I. Whenever an entity of ET involved in I is up-
dated, the implicit constraint checking assertions that must be checked to enforce I are only

Update query

Wrapper
Implicit

Constraint
Checking

DB

Legacy
DMS

Explicit
Constraint
Checking

Implicit and explicit
Constraint
Violation

Explicit
Constraint
Violation

Error reporting



5.4 Wrapper Services 5-73

those defined on I for the update type. 
Implicit constraint checking assertions are obtained by applying transformation rules to the
wrapper schema. These rules are mainly based on the update and implicit constraint types. 

Example 

Consider the wrapper schema in the Figure 5-11. This schemas is made up of two entity
types A and B. The implicit constraint checking assertions associated with the reference
constraint are: 
<A, INSERT, C1> and <B, DELETE, C2>

where C1 is ∀ NEW ∈ {new instances of A}, ∃  b ∈ {instances of B} : NEW.A2 = b.B1;

and C2 is ∀ a ∈ {instances of A}, ∀ OLD ∈ {deleted instances of B}: g.A2 ≠ OLD.B1.

 

Figure 5-11:  Wrapper schema example that illustrates a reference constraint.

Let us now illustrate the wrapper algorithm. We recall that a wrapper only emulates the im-
plicit constraints. The algorithm acts in two steps. The first step verifies all the implicit con-
straints associated to each ET by implementing its constraint checking assertions. The second
step consists of performing the update itself if no implicit constraint is violated.

Example

Let us consider the example of the implicit reference constraint of Figure 5-11. The main
constraint checking assertions associated with this constraint are summarized in Figure
5-12. Both the predicative (SQL) and the procedural (pseudo-code) versions are given.

A

A1
A2

id: A1
ref: A2

B

B1

id: B1



5-74 5 • Wrapper Architecture

Figure 5-12: The constraint checking assertions associated with a reference constraint.

Discussions

The main problem in supporting integrity control is that the cost of checking assertions can
be prohibitive. Enforcing implicit constraint assertions is costly because it generally requires
access to a large amount of data which is not involved in the database updates. Moreover, the
problem is more difficult when implicit constraints are not supported by the legacy DMS. 
Integrity control can be very complex if several checking assertions are defined for a same
couple <ET, T>. The main problem is to decide the order of checking assertion enforcements.
The critical parameter to be considered is their costs. That is, the order depends, among oth-
ers, on the classes of the checking assertions and the amount of data access they involved.

5.5 InterDB Prototypes

The InterDB wrapper is in charge of managing the physical/object conversion of each local
database. It offers remote Java objects to the client applications. InterDB wrappers and appli-
cations communicate over the Internet using the RMI communication protocole. The InterDB
wrapper comprises two components, namely the logical wrapper and the object wrapper (Fig-
ure 5-13):
• The logical wrapper offers a SQL-like interface to an underlying database. The logical

wrapper is a software layer that offers (1) an abstract interface based on the wrapper log-
ical schema (WLS) of a legacy database; (2) the Logical Query Language (LQL), a vari-
ant of the SQL language which uses naming convention and terminology defined in the
wrapper logical schema. The logical wrapper is in charge of managing the logical/physi-
cal conversion of a local database. In addition, it makes the implicit constructs and con-
straints explicitly available. 

Entity Type Update Type Procedural Pattern

A INSERT read-first B(B1=A.A2)
if found then create A; end-if;

B DELETE read-first A(A2=B.B1)
if no found then delete B; end-if;

Entity Type Update Type SQL-like Expressions

A INSERT if exists (select * from B where B.B1= A.A2)
then insert into A values (....)

B DELETE if not exists (select * from A where A.A2=B.B1)
then delete from B where ...



5.5 InterDB Prototypes 5-75

• The object wrapper provides a remote object-oriented view of a logical wrapper.  Such a
wrapper is developed on top of a logical wrapper to give it a Java object-oriented inter-
face based on the wrapper object-oriented schema (WOS) of the underlying database. 

For performance reason, we have decided to develop the wrappers as program components
dedicated to a local database. In particular, the logical/physical and object/logical mapping
rules are hardcoded in the modules rather than interpreted from mapping tables.  
With this architecture, a legacy database can be accessed in two ways (Figure 5-13): (1)
through the logical wrapper interface or (2) through the object wrapper interface.

Figure 5-13: Logical and object wrappers in a Java environment.

Java technology
Java technologies (i.e., Java, Java-RMI, JavaBeans, JDBC, Java Naming, Object Serializa-
tion) are based on a distributed object-based client server model. These technologies bring
several sophisticated capabilities to the development of wrappers. Java is a platform indepen-
dent object-oriented programming language. It was designed to support applications on net-
works by bridging network and operating systems boundaries. In that way, Java applications
can be run anywhere, provided the Java virtual machine is available. The Java compiler does
this by generating the bytecode, which is independent of computer architectures. This bycode
is interpreted by the run time system.
The Java RMI provides remote method invocations on objects across Java virtual machines.
It offers ORB-like functionality with the Java object model in the sense that it uses Java as
both an interface definition language and an implementation language. 
The Java Native Interface (JNI) enables the integration of code written in the Java program-
ming language with code written in C++ [Liang, 1999]. JNI allows a program (e.g., the object
wrapper) that runs within the Java Virtual Machine to operate with the logical wrappers that
are written in  legacy languages (C++ or Cobol). 

  LPS

DB

Logical
Wrapper

Object
Wrapper

  WLS

  WOS

Java
Application

Wrapper

LQL

OO

RMI

Cobol DMS
Relational DBMS



5-76 5 • Wrapper Architecture

5.5.1 Logical Wrapper

The logical wrapper comprises two components, namely the logical module and the logical
middleware made up of the logical server and the InterDB driver, both dedicated to a data-
base (Figure 5-14). The logical module offers a unique interface to the applications whereas
the logical middleware provides a transparent distribution across the network.

Figure 5-14: InterDB components of logical wrappers dedicated to COBOL files and relational da-
tabases.

Middleware
The middleware is made up of the logical server and the InterDB driver, both dedicated to a
database. 
Logical server. The logical server manages the communications between the logical wrapper
and the InterDB driver. It offers the object distribution across the network: it receives the que-

Server

RMI

InterDB
Driver

Java
Application

Client

  LPS

  WLS

JDBC/LQL Interface

COBOL

Logical
Module

COBOL
Librairies

Data

Logical
Module

RDBMS

ODBC

COBOL C++

JNI JNI

Logical
Server

Logical
Server

Server

InterDB
Driver

RMI

JavaJava



5.5 InterDB Prototypes 5-77

ries sent by the InterDB driver and sends the result objects from the logical wrapper. We have
used the RMI system to manage the communications. 
InterDB driver. The JDBC-like driver is a Java API for executing LQL statements. Connect-
ed to the logical server, it provides to a Java application the JDBC-compliant classes and in-
terface. The driver offers a standard API for heterogeneous databases based on a pure Java
API and a common query language.

Logical module
All logical modules provide a common interface that is based on the wrapper logical model.
Three of the major characteristics of the SQL-like language are that:
• It directly supports all of the concepts of the wrapper logical schema.
• It includes selection and update queries.
• Its query mappings are hardcoded and generated from the schema transformations

between its physical and wrapper schemas (see Chapter 6). 

We have built hardcoded logical modules for relational databases (Oracle, InterBase and Ac-
cess) and others for files managers (COBOL programs). The modules for relation databases
have been written in C++ using ODBC for accessing the legacy databases whereas the mod-
ules for files managers have been enterly written in COBOL (Figure 5-14). This implemen-
tation strategy has been motivated by the fact that the languages and the capacities of these
DMS are different. Figure 5-15 draws up the services the logical modules provide and com-
pares their complexity according to the underlying DMS. 



5-78 5 • Wrapper Architecture

Figure 5-15: Wrapper services implemented by the InterDB prototypes, according to the underlying
DMS.

ODBC technology
The ODBC interface [Geiger, 1995] allows the logical wrapper to access data from a wide
range of RDBMS. Each logical wrapper uses the same code to communicate with a relational
database through any RDBMS. Therefore, the logical wrapper is independent of a particular
relational RDBMS. 

Client application example
The client application example covers the basic use of the JDBC-like interface of logical
wrappers. It shows a Java client application that accesses to a logical wrapper that offers the
wrapper logical schema of the Figure 5-16. The Java client application illustrates the steps to
connect, query and print the results of a wrapper request. The query retrieves all the instances
of the entity type Customer for which Ncli=1. Figure 5-17 shows the Java code of the client
application; Figure 5-18 shows the Java definition of the entity type Customer.

Wrapper Services Cobol Relational DMS

Syntactic analysis yes yes

Query translation yes (complex: query and language 
translation)

yes  (easy: only query translation)

Cursor concept yes no (delegated to ODBC)

Access optimization and 
processing

yes no (delegated to DMS)

Error reporting yes yes

Semantic Integrity Con-
trol

yes (implicit foreign keys and 
identifiers)

yes (implicit foreign keys and 
identifiers)

Memoryless yes no

Authorization control yes no (delegated to DMS)

Transaction management no no (but can be delegated to DMS)

Failure management no no



5.5 InterDB Prototypes 5-79

Figure 5-16: Wrapper logical example.

Figure 5-17: Java application example accessing to the logical wrapper through the InterDB driver.

import java.util.Vector;
class test
{
   public static void main (String args[]) 
   { 
     try
   {

     Connection con = DriverManager.getConnection("fuligule.info.fundp.ac.be/ServerLQL", 
                                                                                                "SYSDBA", "masterkey");
     Statement stmt = con.createStatement();
     ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMER WHERE NCLI=01;");
     CUSTOMER ca;
     if (rs.first()) 
                     {
                         System.err.println("\nCustomer:");   
                         ca = (CUSTOMER)rs.getObject("*");
                         System.err.println("customer:nom:"+ca.NAME);
                         System.err.println("customer.address.city:"+ca.ADDRESS.CITY); 
                     }
   }    
      catch (LQLException e) {System.err.println("LQL Error:"+e);}   
   }
}

 import java.io.*; // Serializable since these are distributed objects
 import java.util.Vector;
 public class Customer implements Serializable { 
                 public Integer custID;
                 public String name;
                 public oaddress address;
                 public Date birth-date;
                 public Vector phone;
}

 import java.io.*;
 public class oaddress implements Serializable { 
                 public Integer number;
                 public String street;
                 public Integer zip;

Order

NumOrder
Quantity
Date
Product
Ncli

id: NumOrder
ref: Ncli

Customer

Ncli
Name
Address

Street
Zip
City

Phone[0-5]

id: Ncli



5-80 5 • Wrapper Architecture

Figure 5-18: Java definition of the entity type Customer.

5.5.2 Object Wrapper

The object wrapper provides a remote object-oriented view of a local database.It is a Java-
written server that provides a remote read-only object interface. This interface is made up of
the objects defined in the wrapper object-oriented schema (WOS) of the underlying database.
We recall that the wrapper object-oriented schema is obtained by applying a model transla-
tion of  the wrapper logical schema of the underlying database (Chapters 3 and 4). 
The object wrapper doesn’t support any query language. It only provides an object-oriented
framework (i.e., object types and methods) for manipulating read-only data.

Figure 5-19: Object wrapper implementation and architecture.

The communication architecture of the object wrapper is shown in Figure 5-19. On one hand,
the object wrapper uses the InterDB driver to access to the logical wrapper of an underlying
database. On the other hand, it communicates with the Java application client by using the
RMI communication protocole.

Client application example
To illustrate the remote object interface of the object wrapper, we use the wrapper object
schema of Figure 5-20 that is the object-oriented view of the wrapper logical schema of Fig-
ure 5-16. Each object type corresponds to a Java remote object that can be manipulated by
any Java client applications by using the RMI protocole. An example of the Java remote ob-

                 public String city;
}

RMI

InterDB
Driver

Java
Application

  WLS

  WOS

Java
Application

Object
Wrapper

Logical
Server/Wrapper

Java
Application

RMI



5.5 InterDB Prototypes 5-81

ject definition of Order is shown in Figure 5-21.

Figure 5-20: Wrapper object-oriented schema example.

Figure 5-21: Remote object interface example: the object type Order.

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Date;

public interface Order extends Remote
{
Customer getCustomer() throws RemoteException, DOException;
Customer getNextCustomer() throws RemoteException, DOException;
Integer getquantity() throws RemoteException, DOException;
String getlabel() throws RemoteException, DOException;
Date getdate() throws RemoteException, DOException;
Integer getorderID() throws RemoteException, DOException;
}//End interface

1-1

1-1

has

0-N 1-1places

Order
oderID
date
label
quantity
id: oderID
getCustomer
getquantity
getlabel
getdate
getorderID

address
number
street
zip
city
getcity
getzip
getstreet
getnumber

Customer
custID
name
birth-date
phone[0-5]
id: custID
getFirstOrder
getNextOrder
getaddress
getFirstphone
getNextphone
getbirth-date
getname
getcustID



5-82 5 • Wrapper Architecture



 

Chapter 6

Wrapper Development

In which the development of a methodology for developing wrappers in
a semi-automatic way is discussed. Our experience in building wrap-
pers is presented and some issues in wrapper generation are discussed.
This leads to a proposal of wrapper development based on a practical
and generic approach.

6.1 Introduction

This chapter deals with developing wrappers for legacy data systems. Developing wrappers,
as we will see through this chapter, is an extensive and complex engineering activity that in-
volves experiment and method. This chapter describes the InterDB development of wrappers
and summarizes our experience in building data wrappers with Cobol files and relational da-
tabases. 
Our approach of wrapper development addresses the challenge of DMS diversity by propos-
ing a generic methodology for the wrapper development while taking a schema transforma-
tion approach to mapping definition. The key features of our approach of the wrapper
development can be summarized as follows:
• Hardcoded wrapper: the wrappers are developed as program components dedicated to a

database. The mapping rules are therefore hardcoded in the wrappers rather than inter-
preted from mapping tables.  

• Generated wrapper: the wrappers are generated from mapping and schema specification.
• Schema transformation-based wrapper generation:  the mapping rules are defined as

schema transformations that are used to automatically generate the query mappings.



6-84 6 • Wrapper Development

The approach presented in this chapter attempts to answer the wrapper development system-
atically and provides a road map to proceed with this venture. Our objective is to provide a
checklist of issues and suggested courses of actions which can be modified, extended, and
customized depending on the specific needs.

6.2 Wrapper Development Baselines

6.2.1 Observations

We have built hard-coded wrappers for several legacy data systems, including relational da-
tabases and COBOL files. Wrappers that are more than 10,000 LOC long are not uncommon,
so that developing them represents an important effort in extending, integrating and reusing
legacy systems. We observed that only a small part of the code of these wrappers actually
deals with a specific data source. The other part is common to all the wrappers of a DMS fam-
ily. We also demonstrated that the code specific to a particular legacy data system performs
the structural and instance mappings and that these mappings can be modeled through seman-
tics-preserving transformations. Therefore, it is possible to produce the procedural code of the
specific wrapper automatically and to build a common generator for all the wrappers of a fam-
ily of DMS.
However, based on the experiences in our application project areas of city administration sys-
tems, we have also stated that the formalized mappings cannot cover all the complexity of a
data source (for instance, conflicts occuring among data inside the legacy system itself). So,
we must admit that a part of the wrapper code have to be built manually. This is acceptable if
the manual intervention points are clearly identified in the wrapper structure.

6.2.2 Wrapper Dimensions 

Based on these observations, we define three dimensions of a wrapper dedicated to legacy
data sources (Figure 6-1): (1) the model wrapper; (2) the instance wrapper; and (3) the upper
wrapper. The first two dimensions are automated whereas the third dimension is built manu-
ally. The challenge is to reduce as much as possible the manual part.



6.2 Wrapper Development Baselines 6-85

Figure 6-1: The three dimensions and schemas of a wrapper and the three ways for accessing a
legacy data system.

With such an architecture, a legacy data system can be accessed in three ways (Figure 6-1):
(1) through the upper wrapper interface; (2) through the interface of the basic wrapper; or (3)
through its legacy interface.
Model and instance wrappers. The model wrapper is based on a legacy DMS family
whereas the instance wrapper operates within a particular legacy data system. These two
components form the logical wrapper. The logical wrapper wraps the legacy data system and
offers an interface based on the logical schema of the wrapped data system. The logical wrap-
per converts data and queries from the legacy data model (LDM) to the logical wrapper model
(WDM). The logical wrapper relies on schemas descriptions and mappings to translate queries
and to form the result instances. That is, they can be complex if the mapping rules are com-
plex and the wrapper data model is rich. As a result, a realistic logical wrapper should be
based on an operational model, such as the wrapper logical model described in Chapter 3, and
a realistic set of mapping rules.
The model wrapper is made up of the code common to wrappers dedicated to a DMS family,
and can be written once for all. The instance wrapper is a program component dedicated to a
particular database. It is based on the formalized physical/logical mapping rules. As we will
see, it can be automatically generated from schema and mapping description. 
The logical wrapper can be instanciated in two levels (Figure 6-2): 
• at the DMS level: the model wrapper and the generator of the instance wrapper;
• at the level of a particular legacy database: the generated instance wrapper.

Upper 
Wrapper

WOS

WLS

LPS

Legacy Data System

W
D

M
LD

M

Logical
Wrapper

O
D

M

Manually
Written

Automated

Inherited

Model 
Wrapper

Instance 
Wrapper

  
 1                 2              3                 

Object
Wrapper

DB



6-86 6 • Wrapper Development

Figure 6-2: Logical wrappers: model wrappers and instance wrapper generators dedicated to a
DMS family.

Upper wrapper. The upper wrapper is built on top of these two components. It offers an en-
riched view of the component schema. This view is based on a object-oriented model (ODM)
that is highly generic and more flexible than the wrapper and legacy data models (see Chapter
3). The complex mapping rules (that cannot be taken into account by the logical wrapper) are
programmed manually. The upper wrapper is named the object wrapper in the InterDB com-
ponent architecture. 

6.2.3 Wrapper Models and Schemas

The wrapper models include the legacy data models supported by the legacy databases and
the two canonical data models, namely, the wrapper logical model and the object-oriented
model:
• The legacy data models (LDM) are used to describe schemas compliant with DMS mod-

els, such as relational, CODASYL or IMS schemas.
• The wrapper logical model (WLM) is intended to describe all the structures and con-

straints that exist explicitly in all the legacy data models since a logical wrapper must be
able to keep all the structures and constraints of any underlying legacy data schema
based on any data model.

• The object-oriented data model (ODM) is defined highly expressive and more flexible
than the legacy data models. Such a model generally includes structures and constraints
(∆) that are unknown in the wrapper data model and hence in the legacy data models.

DMS families

Model 
Wrapper

Generator

Instance
Wrapper1

DB1

WLS1

LPS1

Instance
Wrappern

DBn

WLSn

LPSn



6.2 Wrapper Development Baselines 6-87

All these models have been defined in Chapter 3. We recall that they are defined as special-
izations of the generic model. As far as wrapper development is concerned, we state the se-
mantic relationships between these models:

WLM =  (instance wrapper)

ODM = WLM + ∆ (upper wrapper)

ODM = + ∆ (whole wrapper)

Based on these relationships, we can also state the relationships in the schema level:
WLS = LPS + ν  (instance wrapper)

WOS = WLS + ν’  (upper wrapper) 

WOS = WLS + ν + ν’ (whole wrapper)

where ν is the extra semantics of WLS emulated by the instance wrapper and ν’ is the
extra semantics of WOS implemented in the upper wrapper.

6.2.4 Wrapper Mapping

Wrapper mappings are defined as schema transformations (see Chapter 4). A set of generic
transformations Γ  can be defined for the generic model. These transformations can be instan-
ciated in order to get transformations defined in a schema level. The production of target
schema S' from source schemas S, defined in non necessarily distinct submodels, can there-
fore be described as a subsequence of transformations from Γ . In particular, LPS-to-WLS and
WLS-to-WOS can be defined by sequences of transformations. 

Figure 6-3: Instance wrapper generator and instance wrapper definition.

We can now refine the definition of the instance wrapper generator. It is based on a pre-
defined set of schema transformations  defined from two models (i.e., the legacy model
and the wrapper model):

LDMi( )
i

∪

LDMi( )
i

∪

Instance Wrapper 
Generator

ODM

Γ LW

Instance Wrapper 

WLS

LPS-to-WLS

is-of

is-of

WLM LPS
is-of

Model-driven
Transformation

Schema
Transformation

Γ LW



6-88 6 • Wrapper Development

 and LPS-to-LWS: T is defined in 

Therefore, for a given generator, the set of transformations  managed by the upper
wrapper should be:

 :  and LWS-to-WOS: T is defined in 

Figure 6-3 shows the relationships between the instance wrapper and its generator in terms of
models, schemas and mappings.

6.2.5 Logical Wrapper Architecture

The logical wrapper architecture shown in Figure 6-4 provides a generic wrapper framework,
i.e., independent of a particular legacy database and of a DMS family. The dark grey boxes
represent the model wrapper that is built once for a DMS family. A generator computes the
light grey boxes for a particular legacy data system. They are built from the results of the re-
verse engineering processus that will be discussed in Section 6.4.

Figure 6-4: The components of the model and instance wrappers.

Γ LW Γ⊆ T ∈∀ Γ LW

Γ UW

Γ UW Γ UW Γ LW∪ Γ= T ∈∀ Γ UW

Structural  
Mapping

Physical 
Schema

Implicit 
Constraints

Instance    
Mapping

   Query         Result      

 Model wrapper     

Instance wrapper

 DMS Query / Data     

Wrapper 
Schema

Semantic    
Analysis

Syntactic    
Analysis

Functionalities
Simulation

Query
Translation 

Data            
Conversion

Constraints       
Simulation

Access Plan &
Optimization

Access    
Processing



6.2 Wrapper Development Baselines 6-89

Model wrapper
The model wrapper is made up of components specific to a DMS family. For all the wrappers
related to a DMS family, the model wrapper is written once. It includes the syntactic analysis,
the functionality simulation and the access processing. As already stated in Chapter 5, the
functionality simulation varies according to the expressive power of the DMS family.

Example

Let us compare the model wrappers for COBOL data sources and two relational DBMS:
Oracle V5 and Oracle V8. Assume that the wrapper offers a SQL-like interface to the
new applications. Assume also that the wrapper allows update queries and the two phase
commit protocol. Figure 6-5 compares the complexity of the model wrappers according
to the services they emulate and the underlying DMS. 

Figure 6-5: Model wrappers and the services they emulate according to the underlying DMS.

Instance wrapper
The instance wrapper is made up of components specific to a particular legacy database of a
specific DMS family. This is the only dimension of a wrapper to be computed. The instance
wrapper relies, among others, on: 
• the structural mappings between the physical and wrapper logical schemas (LWS-to-LPS)

for the query translation (for instance: the translation of the input query into SQL query
or COBOL program codes);

• the instance mappings (lps-to-lws) that define the data assembly (for instance, building
an object from a set of rows);

• the implicit constraints ν to simulate (for instance, the simulation of a referential con-
straint);

• the structure of the data source (LPS) for the access plan and optimization (for
instance, the presence of access keys or clusters).

Wrapper Services Cobol Oracle V5 Oracle V8

Syntactic analysis yes yes yes

Query translation yes (complex) yes  (easy) yes (easy)

Cursor concept yes no (delegated to Oracle) no (delegated to Oracle)

Transaction concept  (pre-
pare-to-commit operator)

yes (complex) yes (complex) no (delegated to Oracle)

Access optimization and 
processing

yes no (delegated to Oracle) no (delegated to Oracle)



6-90 6 • Wrapper Development

Example

To illustrate the processes described above, let us consider a wrapper defined for
COBOL files and that offers an SQL-like interface. Through the reverse engineering pro-
cess (Section 6.4.1), we recover the physical schema and a semantically rich description
of the COBOL files. During this process, the physical schema is enriched with an
implicit foreign key (CustCode of Order). The names are translated to make them more
meaningful. Finally, the physical schema is cleaned from its physical structures (access
keys and files) (Figure 6-6). 

Figure 6-6: Physical and wrapper schema examples. 

Let us focus on an instance wrapper dedicated to COBOL files and let us assume that the
following update is processed by this wrapper: delete from customer c where c.CustCode
= 'HTB710'. The main tasks of the wrapper are the following: 
Query translation: translation of the query into COBOL program code:

Implicit constraints simulation: the foreign key CustCode of Order that references
CustCode of Customer (with renaming):

DELETE CUST 
* where CUST-Code = ’HTB710’ 
END-DELETE

* Before deleting:  
MOVE CUST-Code OF F-CUST 
          TO  ORD-CustCode OF F-ORD.
READ ORD KEY IS ORD-CustCode.
IF FSTAT IS EQUAL TO "00" 
    THEN MOVE 1 TO RECORD-FOUND
     ELSE MOVE 0 TO RECORD-FOUND
END-IF.
*  If at least one record is found then no action
*                                  else delete    

F-ORD
ORD-NUM
ORD-DATE
ORD-DETAIL

Q
L

ORD-CUSTCODE
id: ORD-NUM

acc 
acc: ORD-CUSTCODE

F-CUST
CUST-CODE
CUST-N
CUST-ADD
CUST-PHONE
id: CUST-CODE

acc 
acc: CUST-N

CUST

F-CUST

ORD

F-ORD

   Physical schema         Wrapper schema      

Order
OrdNum
OrdDate
Detail[0-5]

Quantity
Label

CustCode
id: OrdNum
ref: CustCode

Customer
CustCode
Name
Address
Phone[0-1]
id: CustCode



6.3 Methodology for Logical Wrapper Development 6-91

Optimization: the deleting is positioned by CustCode that is an indexed record key
(CUST-Code) in the physical schema, hence:

In short, by analyzing the input query, the wrapper dynamically defines a sequence of
operations that correspond to the program code below:

6.3 Methodology for Logical Wrapper Development

6.3.1 Overview

A large number of decisions need to be made to develop logical wrappers in a systematic way.
We suggest a procedure which can be used to systematically understand the various issues,
evaluate the difficulty, select an appropriate strategy, and implement/deploy a solution based
on a strategy. This procedure concentrates on four key steps (Figure 6-7): 
• wrapper definition;
• logical wrapper definition and generator implementation;
• wrapper packaging;
• generator application and maintenance.
The discussion in this section assumes that an initial stage has concluded that wrapping leg-
acy database is the right strategy. Our goal here is to proceed further by determining and im-
plementing the most appropriate approach for developing wrappers.

*  Indexed access:  
READ CUST KEY IS CUST-Code
DELETE CUST 
END-DELETE.   

MOVE CUST-Code OF F-CUST 
            TO  ORD-CustCode OF F-ORD.
READ ORD KEY IS ORD-CustCode.
IF FSTAT IS EQUAL TO "00" 
    THEN MOVE 1 TO RECORD-FOUND
     ELSE MOVE 0 TO RECORD-FOUND
END-IF.
IF RECORD-FOUND IS EQUAL TO 0 
THEN
     READ CUST KEY IS CUST-Code

     DELETE CUST 
     END-DELETE       
END-IF. 



6-92 6 • Wrapper Development

 

Figure 6-7: Main steps of the wrapper generator development with possible step backwards.

6.3.2 Development Baselines

Our experience in building wrappers demonstrates that their development must respect some
baselines that make them operational and efficient. We summarize these baselines here before
describing the methodology in details:
• The start-up cost to write a wrapper should be small. We require that the logical wrapper

provides a set of basic services only. For instance, its data model, query processing capa-
bilities and the set of mappings it manages must be operational and realistic.

• The architecture should be flexible and allow for graceful growth. A wrapper must be
able to incrementally improved to offer more sophisticated services. 

• The architecture should be structured and allow reusing. The common parts among
wrappers must be easily identified and isolated from the parts specific to a particular
wrapper.

6.3.3 Wrapper Definition

The wrapper definition is the first phase that lays the foundation for the wrapper development.
Wrapper development is heavily dependent on the underlying DMS, the wrapper data model
and the query language selected. 

Requirement definition and analysis
The requirements gathered in this step are intended to drive the wrapper building. The spe-

3-Wrapper packaging    

1-Wrapper definition      

- Requirement definition and analysis
- Prototype implementation
- Prototype test and validation           

2-Logical wrapper definition and generator implementation

- Solution strategy
- Logical wrapper decomposition
- Generator implementation
- Validation and evaluation          

4-Generator application and maintenance    



6.3 Methodology for Logical Wrapper Development 6-93

cific activities are as following:
• Identify the legacy database(s) which need to be wrapped;
• Analyse the legacy databases according to their familly. Determine and compare the

capability of each DMS (e.g., query language, data model, functionality);
• Identify the client applications and/or tools which need to access the legacy databases

through a wrapper. In particular, you need to know the specifications (e.g., wrapper
model and query language) and services required by them (e.g., number of users, trans-
action management, etc.);

• Understand and document management and policy issues such as cost limitations, time
considerations, security considerations, conformance to corporate standards and infra-
structures;

• Determine the services (and their complexity) that must be managed/emulated by the
wrapper for each DMS family. It results of the comparison between steps 2 and 3 in
taken into account the requirements defined in step 4.

Prototype implementation
Implementation is concerned with building and depoying a wrapper prototype for each DMS
family. Specifically, this activity includes detailed design and implementation of each servic-
es emulated by the wrappers. Implementation is largely dependent on the underlying DMS
and its capability. Ideally, wrappers for the different DMS families should be implemented
by using a common language. This promotes the reuseness of services along the different
wrappers. However, a wrapper should use the legacy access techniques to improve data ac-
cess performance. That is, it needs to access the native API of the underlying DMS by using
the legacy language. 
Well-designed prototypes are essential to the development of wrapper generators and should
be designed to accomplish the following:
• Develop feedback from users;
• Use the experience to reduce time for developing a wrapper for another DMS family;
• Gain real insights into the infrastructure needed to support wrappers
• Develop an understanding of DMS families;
• Study the trade-offs in services among wrappers;
• Estimate the effort needed to add a new service to wrappers.

Prototype test and validation
Testing a wrapper is a challenging and expensive task. Why? Here are the main reasons. First,
wrapper applications are complex and shaky because they employ several program languages
and several technologies that must work together. Second, wrapper applications introduce
many points of failures that require thorough testing. Third, the impact of the wrapper in the
fonctionment of the legacy components (middleware, networks, DMS, legacy applications)



6-94 6 • Wrapper Development

must be thoroughly tested.

6.3.4 Logical Wrapper Definition

We require that the start-up automatic part of a wrapper is small. A wrapper provides a set of
basic services only. Pratically, we begin to manually write the whole wrapper as stated in Sec-
tion 6.3.3. Then, according to a complexity and reusability critera, we increase the automatic
parts of the wrapper. We can also gradually add a service to a wrapper as more functionality
is required later on.

Solution strategy
The solution strategy for each legacy DMS family and for each legacy database must answer
the following key question: is building a wrapper generator required? (i.e., can the wrapper
be  easily written manually ?)
The wrapper building is generally a mixture of manually and automatic parts. Their exact pro-
portion is based on the requirements above and an evaluation of the trade-offs among the two
extreme approaches: a manually written wrapper versus an automated wrapper. The two key
factors are (a) the number of legacy databases of a same DMS family; (b) the type and the
complexity of services that the wrapper is to be simulated for a DMS family. The following
guidelines can be used to make this decision:
• If the number of legacy databases which need to be wrapped is very high, then manually

written wrapper isn’t an appropriate approach;
• If a wrapper service is common of any legacy databases of a DMS family, then it can be

written once and reused for all the wrappers of that DMS family;
• If a wrapper service is specific to a legacy database, then it can be either generated or

written manually.

Logical wrapper decomposition
The purpose of this activity is to completely decompose logical wrappers into manually and
automatic parts that will drive the wrapper generator buildings. We assume that the automatic
parts are defined from schema transformations. The logical wrapper decomposition therefore
involves, for each DMS family, the following two main tasks:
• Defining the set of transformation types supported by the instance wrapper and the pro-

totype algorithm that emulates them; 
• Defining the constraint integrities emulated by the instance wrapper and the prototype

algorithm that emulates them.
Once each logical wrapper has been decomposed, a last task is to compare the common algo-
rithms among the logical wrappers of different DMS families. The goal is to maximize the
reusness of the wrapper components among them.



6.4 Methodology for Instance Wrapper Generation 6-95

Generator implementation and validation
Generator implementation is concerned with generating wrapper code specific to schema
transformartion type and constraint integrity. For each schema transformation type emulated
by the wrapper, this activity includes:
• Information extraction from history;
• Wrapper code generation;
• Test.
Wapper code generation as well as wrapper test are largely dependent on the DMS family and
the language used.

6.3.5 Wrapper Packaging

The wrapper author’s final task is to package all the wrapper components as a complete wrap-
per development kit. For each DMS family, a wrapper development kit may include three
kinds of components: the model wrapper that contains all components shared among all the
wrappers of the DMS family; the instance wrapper generator; and the documentation that ex-
plains how to compile and link all the components of wrappers.

6.3.6 Generator Application and Maintenance

After the wrapper packaging has been completed, it can be deployed and supported and man-
aged like any other technology. In particular, the following issues need to be considered:
• Estimate time and cost needed for wrapper deployment and support;
• Establish policies, procedures, and roles for wrapper deployment and support;
• Train analysts for wrapper development and support;
• Monitor for performance.

6.4 Methodology for Instance Wrapper Generation

After the logical wrapper has been defined and the instance wrapper generators have been im-
plemented, the next step is to provide a methodology to prepare the generation. That is, the
methodology aims to provide the schema and mapping specifications that are used for the in-
stance wrapper generation. The main steps of the methodology are shown in Figure 6-8. 
In this section, we develop a small example that illustrates some of the problems of instance
wrapper generation. The example comprises two independent heterogeneous databases both
describing aspects of a bookshop, that are required to be wrapped. The first one is made up
of two COBOL files and the second one includes two relational tables



6-96 6 • Wrapper Development

Figure 6-8: Main steps of the methodology for instance wrapper generation: (1) semantic recovery;
(2) schema definition; (3) mapping definition.

6.4.1 Data-centered Reverse Engineering

Both the basic and object wrappers require to recover the physical, wrapper logical and object
schemas of the legacy database. They also require to define the physical/logical and logical/
object mappings modeled through compound semantics preserving transformations. 
Extracting a semantically rich description from a database is the main goal of the Data-cen-
tered Reverse Engineering process (DRE). The InterDB approach relies on the general
DBRE methodology that has been developed in the DB-MAIN project and the architecture of
which is outlined in Figure 6-9. It shows clearly three main processes, namely the physical
extraction, the logical extraction and the DS conceptualization. They will be described and
illustrated in the following sections.
This methodology can be specialized according to the various data models which most legacy
systems are based on, such as standard files, CODASYL, IMS and relational databases. The
reader interested in more details on the DB-MAIN reverse engineering approach is suggested

Mapping
Definition

LCS

Legacy
Database

Data-centered
Reverse Eng.

LPS

Schema
Definition

WOSWLS

LPS-to-LCS

LCS-to-WLS

LCS-to-WOS

LPS-to-WLS WLS-to-WOS

Wrapper
Generator

Upper
Wrapper



6.4 Methodology for Instance Wrapper Generation 6-97

to consult [Hainaut, 1996b].
 

Figure 6-9: A Generic DRE methodology. The main processes extract the physical schema (LPS),
refine it to produce the logical schema (LLS) and interpret the latter as a conceptual schema (LCS).

Physical schema recovery
This phase consists in recovering the physical schema (LPS) made up of all the structures and
constraints explicitly declared. Databases systems generally provide a description of this
schema (catalogue, data dictionary contents, DLL texts, file sections, etc.). The process con-
sists in analyzing the data structure declaration statements (in the specific DDL) or the con-
tents of these sources. It produces the physical schema (LPS) based on the data model (LDM)
of the legacy database. The process is more complex for file systems, since the only formal
descriptions available are declaration fragments spread throughout the application programs.
This process is often easy to automate since it can be carried out by a simple parser which
analyses the DMS-DDL texts, extracts the data structures and expresses them as the LPS.  For
instance, several popular CASE tools include some sorts of extractors, generally limited to
RDB, but sometimes extended to COBOL files and IMS databases.

Example

By analyzing the COBOL programs and SQL DDL scripts, we can extract the local

LLS

DS
Conceptualization

Schema
Analysis

Data
Analysis

LCS

Program
Analysis

DMS/DDL
Schema

Physical
Extraction

LPS

Logical
Extraction

ProgramData



6-98 6 • Wrapper Development

physical schema of each database. Figure 6-10 shows the extracted schemas according to
their data model.
 

Figure 6-10: The local physical schemas. The relational database (left) comprises two tables,
namely CUSTOMER and ORDER. The COBOL database (right) is made of two files and two
record types (ORD and BOOK). BOOK-ID is a compound field and ORD-CUSTOMER is a non-
unique alternate record key.

Schema refinement
The LPS is a rich starting point that must be refined through the analysis of the other compo-
nents of the applications (views, subschemas, screen and report layouts, programs, fragments
of documentation, program execution, data, etc.). This schema is then refined by specific
analysis techniques that search non-declarative sources of information for evidences of im-
plicit constructs and constraints. This schema is finally cleaned by removing its non-logical
structures such as access keys and files. In this phase, three techniques are of particular im-
portance.
• Program analysis. This process consists in analyzing parts of the application programs

(the procedural sections, for instance) in order to detect evidences of additional data
structures and integrity constraints.

• Data analysis. This refinement process examines the contents of the files and databases
in order (1) to detect data structures and properties (e.g., to find unique fields or func-
tional dependencies in a file), and (2) to test hypotheses (e.g., Could this field be a for-
eign key to this file?).

• Schema analysis. This process consists in eliciting implicit constructs (e.g., foreign keys)
from structural evidence, in detecting and discarding non-logical structures (e.g., files
and access keys), in translating names to make them more meaningful, and in restructur-
ing some parts of the schema.

The end product of this phase is the Local Logical Schema (LLS) and the transformation se-
quences LPS-to-LLS.

BOOK

BOOK-ID
BOOK-ISBN
BOOK-ORDER

FILLER
id: BOOK-ID

acc 

ORD

ORD-CODE
ORD-CUSTOMER
id: ORD-CODE

acc 
acc: ORD-CUSTOMER

ORD-FILE

ORD

BOOK-FILE

BOOK

Order

Ord_number
Cust_ID
Ord_date
Amount
id: Ord_number

acc 
ref: Cust_ID

acc 

Customer

CustID
Name
Address[0-1]
id: CustID

acc 

Relational database COBOL



6.4 Methodology for Instance Wrapper Generation 6-99

Example

By applying the schema refinement, we obtain the local logical schemas of Figure 6-11,
that make two hidden constraints explicit, namely a foreign key and a functional depen-
dency in the COBOL database. They express the data structures in a form that is close to
the DMS model, enriched with semantic constraints. 

Figure 6-11: The local logical schemas of the relational database (left) and of the COBOL files
(right). We observe the elicitation of an implicit foreign key and of a functional dependency in the
COBOL database. The purely physical objects have been removed and names have been re-
worked.

Schema conceptualization
This process addresses the semantic interpretation of a logical schema, from which one tries
to extract a conceptual schema. The objective is to identify and to extract all the relevant se-
mantic concepts underlying the logical schema. It mainly consists in detecting and transform-
ing, or discarding, non-conceptual structures. Any logical schema can be obtained by a chain
of transformations applied to the source conceptual schema. The conceptualization process
can then be modeled as the undoing of the conceptual-to-logical translation, that is, applying
the inverse transformations. Three different problems have to be solved through specific
transformational techniques and reasoning.
1. Untranslation. Considering a target DMS model, each component of a conceptual

schema can be translated into DMS-compliant constructs through a limited set of trans-
formation rules.  The identification of the traces of the application of these rules and the
replacement of DMS constructs with the conceptual constructs they are intended to
translate, form the basis of the untranslation process.

2. De-optimization. Most developers introduced, consciously or not, optimization con-
structs and transformations in their logical schemas. These practices can be classified
into three families of techniques, namely structural redundancies (adding derivable con-
structs), unnormalization (merging data units linked through a one-to-many relationship)
and restructuring (such as splitting and merging tables). The de-optimization process
consists in identifying such patterns, and discarding them, either by removing or by

Book

ISBN
Order
Title
id: ISBN

Order
ref: Order

Order

Code
Customer

id: Code

Order

Number
Customer
Date
Amount

id: Number
ref: Customer

Customer

CustID
Name
Address[0-1]

id: CustID

COBOLRelational database

BOOK: ISBN →  TITLE



6-100 6 • Wrapper Development

transforming them.
3. Normalization. This process is similar to the conceptual normalization process.  It con-

sists in restructuring the raw conceptual schema obtained in Steps 1 and 2 in order to
give it such qualities as readability, conciseness, minimality, normality and conformity to
a corporate methodology standard.

The result of this process is the local conceptual schema (LCS) and the transformation se-
quences LLS-to-LCS.

Example

The underlying semanics of the logical structures are extracted and give rise to the con-
ceptual schema definition.

Figure 6-12: The local conceptual schemas (LCS) of the relational database (up) and of the CO-
BOL files (down). The relational foreign keys have been transformed into relationship types. The
BOOK record type has been normalized by splitting it into BOOK and REFERENCES, the latter
being transformed into a many-to-many relationship type.

6.4.2 Catalog of Implicit Constraints and Constructs

The variety of implicit constructs can be fairly large, even in small systems. This section sug-
gests just to mention the main implicit structures and constraints we found in reverse engi-
neering processes [Hainaut, 1996]. We will briefly describe the most common problems we
found when recovering the logical schemas of COBOL, SQL (ORACLE, InterBase). 

Implicit compound attribute
A field, or a full record type, declared as atomic, has an implicit decomposition, or is the con-

1-10-N places

Order

Number
Date
Amount
id: Number

Customer

CustID
Name
Address[0-1]
id: CustID

Relational database

COBOL

0-N0-N references

Book

ISBN
Title

id: ISBN

Order

Code
Customer

id: Code



6.4 Methodology for Instance Wrapper Generation 6-101

catenation of contiguous independent fields (C-ADDRESS, filler). This pattern is very com-
mon in standard files, but it has been found in modern databases as well, for instance in
relational tables. 

A sequence of seemingly independent fields (ADD-NUMBER, ADD-STREET, ADD-CITY) are
originated from a source compound field which was decomposed. This is a typical situation
in relational databases.

Implicit multivalued attribute
A field, declared as single-valued, appears as the concatenation of the values of a multivalued
field (PHONE). Relational databases commonly include such constructs.

Implicit identifiers
The identifier (or unique key) of a record type is not always declared. Such is the case for
sequential files for example. The fact that the CUST-ID values are unique among the CUSTO-
MER records must be proved.

C-ID
C-NAME
C-ADDRESS: char(64)
filler: char(30)

CUSTOM ER
C-ID
C-NAME
C-ADDRESS

NUMBER: num(8)
STREET: char(32)
CITY: char(24)

ACCOUNT: char(20)
AMOUNT: num(10)

 CUSTOMER 

  ⇒

C-ID
C-NAME
ADD-NUMBER
ADD-STREET
ADD-CITY

 CUSTOMER 

  ⇒
C-ID
C-NAME
ADDRESS

NUMBER
STREET
CITY

   CUSTOMER   

C-ID
C-NAME
C-ADDRESS
PHONE: char(36)

CUSTOMER
C-ID
C-NAME
C-ADDRESS
PHONE [0-3]: char(12)

 CUSTOMER 

  ⇒



6-102 6 • Wrapper Development

Implicit identifiers of multivalued attributes
Structured record types often include complex multivalued compound fields. Quite often too,
these values have an implicit identifier. In each CUSTOMER record, there are no two PUR-
CHASE values with the same PRODUCT value.

Implicit foreign keys
In multi-file applications, there can be inter-file links, represented by foreign keys, i.e. by
fields whose values identify records in another file. For instance, field O-CUST in record type
ORDER is used to designate a CUSTOMER record.

Implicit functional dependencies
As commonly recognized in the relational database domain, normalization is a recommended
property. However, many actual databases include unmormalized structures, generally to get
better performance. In the EMPLOYEE record type, the value of field LOCATION depends on
DEPARTMENT, which a non-key field. This record types is in 2nd normal form only. 

CUST-ID
NAME
ADDRESS

CUSTOMER
CUST-ID
NAME
ADDRESS
id: CUST-ID

CUSTOMER

  ⇒

CUST-ID
NAME
ADDRESS
PURCHASE[0-100]

PRODUCT
QTY

CUSTOMER
CUST-ID
NAME
ADDRESS
PURCHASE[0-100]

PRODUCT
QTY

id(PURCHASE):
PRODUCT

CUSTOMER

  ⇒

O-ID
O-DATE
O-CUST

   ORDER    CID
NAME
ADDRESS
id: CID

CUSTOMER
O-ID
O-DATE
O-CUST
ref: O-CUST

   ORDER    
CID
NAME
ADDRESS
id: CID

CUSTOMER

  ⇒



6.4 Methodology for Instance Wrapper Generation 6-103

Finding exact minimum cardinality of fields and rel-types
Multivalued fields are generally declared as arrays, whose maximum size is specified by an
integer, while the minimum size is not mentioned, and is under the responsibility of the pro-
grammer. For instance, field DETAIL has been declared as "occurs 20", and its cardinality has
been interpreted as [20-20]. Further analysis has shown that this cardinality actually is [1-20].

Implicit constraints on value domains
In most DBMS, declared data structures are very poor as far as their value domain is con-
cerned. Quite often, though, strong restriction is enforced on the admittable values. In the ex-
ample below, field Type has an enumerated domain, comprising two values "I" and "F", while
values of field Amount must fall into the interval [1..99,999]. 

Meaningful names
Some programming discipline, or technical constraints, impose the usage of meaningless
names, or of very condensed names whose meaning is unclear. On the contrary, some appli-
cations have been developed with no discipline at all, leading to poor and contradictory nam-
ing conventions.

EID
NAME
DEPARTMENT
LOCATION
id: EID

EMPLOYEE

EID
NAME
DEPARTMENT
LOCATION
id: EID

EMPLOYEE

  ⇒

O-ID
DATE
CUSTOMER
DETAIL[20-20]

PRODUCT
QTY

ORDER
O-ID
DATE
CUSTOMER
DETAIL[1-20]

PRODUCT
QTY

ORDER

  ⇒

Exp-Nbr
Date
Department
Type
Amount

EXPENSE
Exp-Nbr
Date
Department
Type: {'I', 'F'}
Amount: [1..99,999]

EXPENSE

  ⇒



6-104 6 • Wrapper Development

6.4.3 Wrapper Schema Definition

The objective is to identify and to extract all the constructs and constraints that are not sup-
ported by the wrapper models. This simply consists in a model translation of the LCS or LLS
according to the abstraction level selected. The result of this process is the wrapper logical
schemas and the object-oriented schemas (Figure 6-13). 

Figure 6-13: Wrapper schema definition: model translation of the physial and conceptual (or logical)
schemas into the wrapper data models.

Example

To illustrate the wrapper schema definition, let us take up the example of Figure 6-11
and consider the LLS of the wrapper for COBOL files only. This schema is also depicted
in the left side of Figure 6-14.
Let us suppose now that the wrapper model is the logical wrapper model defined in
Chapter 3. Consequently, the model translation only consists in removing the functional
dependency which is the only constraint not supported by the logical wrapper model.
The result of this model translation is the wrapper schema WLS shown in the right part of
Figure 6-14. 

I-003-01
D-003-02
D-003-03
D-003-04

REC-003
Acc-ID
Initial-Amount
Current-Amount
Department

Account

  ⇒

LCS/LLS

Model
Translation

LPS

Generic
Model

WLS WOSLPS

Legacy Data 
Model

Wrapper Logical  
Model

OO Model

Model
Translation

Wrapper

Reverse
Engineering



6.4 Methodology for Instance Wrapper Generation 6-105

Figure 6-14: Wrapper schema definition example: LLS is converted into the wrapper logical
model by dropping a constraint not supported by this model.

6.4.4 Mapping Definition

As shown in Chapter 4, the mappings are modeled through semantics-preserving transforma-
tions. Two transformation sequences have to be defined: 
• the sequence emulated by the instance wrapper (LPS-to-WLS);
• the sequence not supported by the instance wrapper (WLS-to-WOS).
These sequences are built from the transformation sequences LPS-to-LCS, LCS-to-WLS and
LCS-to-WOS got during the previous steps (Figure 6-15). That is:

LPS-to-LCS = Min(LPS-to-LLS o LLS-to-LCS)
LPS-to-WLS = Min(LCS-to-WLS o LPS-to-LLS)
WLS-to-WOS = Min (LCS-to-WOS o LPS-to-LCS)

Figure 6-15: Wrapper mapping definitions: minimal sequences of compound transformations de-
fined in the reverse engineering process.

Book

ISBN
Order
Title
id: ISBN

Order
ref: Order

Order

Code
Customer

id: Code

BOOK: ISBN →  TITLE

Book

ISBN
Order
Title
id: ISBN

Order
ref: Order

Order

Code
Customer

id: Code

LLS WLS

Model
Translation

LCSLPS

WLS WOSLPS

LPS-to-LCS

LC
S-

to
-W

LS

LPS-to-WLS WLS-to-WOS

LC
S-to-W

O
S

Wrapper

Reverse
Engineering



6-106 6 • Wrapper Development

6.5 Methodology for Upper Wrapper Development

The upper wrapper manages all the structures and constraints that are not defined in the wrap-
per model. It is built manually but can rely on some results of the reverse-engineering pro-
cess: (1) the wrapper logical and the object schemas; and (2) the logical/object mappings
(WLS-to-WOS).
The components of the upper wrapper can be allocated in serveral placements: they can be
integrated in the logical wrapper; they can be developed indepently and placed on top of the
logical wrapper. Placing these components at the most appropriate place is an important issue
that has yet to be worked out. Though we have no stable answer to this question yet, we can
identify three major criteria of the placement of the upper wrapper components:
• Optimization: optimization of the whole wrapper performance;
• Simplicity: simplicity of the upper wrapper code;
• Independence:  independence between the logical wrapper and the upper wrapper.



  

Chapter 7

Wrapper Development Support

In which we analyse the main requirements that a CASE tool should
meet for the development of wrapper. An operational CASE tool - DB-
MAIN, which is intended to address some of these requirements, is then
presented. 

7.1 Introduction

Like any complex process, developing a wrapper cannot be successful without the support of
adequate tools called CASE tools. Nevertheless, completely automating this process is unre-
alistic for real world systems. Hence the need for computer-based assistance tools which ad-
dress several aspects of the development of wrappers (see Chapter 6).
Few tools are now available for building data wrappers for legacy information systems and
database systems in particular (e.g., [Papakonstantinou, 1995] and [Vermeer, 1996]). Many
of these tools, however, appear to be limited in scope, and are generally based on the quality
and completeness of the database structures to be wrapped that cannot be relied on in many
practical situations. 
In such tools, it appears that only databases that can be processed are those that have been
obtained by a rigourous database design method. This condition cannot be assumed for most
large operational databases, particularly the oldest one. Moreover, these proposals are most
often dedicated to one data model and do not attempt to elaborate techniques and reasonings
common to several models, leaving the question of a general approach still unanswered.



7-108 7 • Wrapper Development Support

7.2 CASE Tool Requirements 

This section states some of the most important requirements an ideal CASE tool environment
for the development of a wrapper should meet. Besides standard functions of a data-oriented
CASE tool, an ideal CASE tool for the development of FIS should support the specific as-
pects of the development of FIS: (1) semantics recovery of the information sources, (2) map-
ping definition and (4) generating the wrapper procedural code. The requirements are induced
by the analysis of each of these aspects.

7.2.1 General Support

Developing a wrapper is primarily a data-oriented engineering activity. Hence, the CASE tool
must offer standard functions that are now provided by most CASE tools dedicated to data-
oriented engineering. Moreover, since schema transformation is at the core of methodologies
that manipulate schemas, the CASE tool must provide a rich set of transformation techniques.
Building a wrapper is basically an exploratory and often unstructured activity. Some impor-
tant aspects of higher level specifications cannot be deterministically inferred. The tool must
allow users to follow any working patterns, including unstructured ones. It should allow var-
ious engineering strategies; ranging from formal approaches to informal and pragmatic ones.
In addition, the tool must be highly interactive.
There are no available tools that can satisfy all corporate needs in development of wrappers.
In addition, current CASE tools already provide elaborated techniques that deal with some
specific aspects of the design process. The CASE tool must communicate easily with the oth-
er development tools, exchanging specifications through common formats (such as XML, or
a common repository).

7.2.2 Support of the Data-centered Reverse Engineering

Wrapper architectures require to support a great variety of legacy systems running on differ-
ent platforms. These legacy systems include not only structured information sources but also
semi-structured and even unstructured information [Conrad, 1999]. Customizable DBRE
functions for automatic, interactive and assisted specification extraction should be available
for each source types. They should be easy to customize and to program.
Moreover, the semantic enrichment requires a great variety of information: data structure, da-
ta, CASE repository, documentation, domain knowledge, etc. Several ways of viewing and
querying these sources must be provided.
The canonical data model is designed to express all the semantics of the physical schema. It
must be highly generic and more flexible than the legacy data models (see Chapter 3).



7.3 DB-MAIN 7-109

7.2.3 Support of the Mapping Definition

Developing a wrapper includes at least three sets of specification: the physical schema, the
wrapper schema and the mappings between them. The forward and backward mappings be-
tween the schemas specification must be precisely and formally recorded in the repository of
the CASE tool. 

7.3 DB-MAIN

The DB-MAIN CASE environment [Hick, 2002] is a graphical, repository-based, software
engineering environment dedicated to database applications engineering. 
As far as wrapper development support is concerned, the DB-MAIN CASE tools and its
InterDB extensions have been designed to address as much as possible the requirements de-
veloped in the previous section.
As a large-scope CASE tool, DB-MAIN includes usual functions needed in data analysis and
design, e.g. entry, browsing, management, validation, transformation, as well as code and re-
port generation. However, the rest of this chapter concentrates only on the main aspects and
components of the tool which are directly related to wrapper development activities. In par-
ticular, we present the InterDB tools that have been built on top of DB-MAIN by adding con-
cepts and processors that support the wrapper generation.

7.3.1 User Interface

User interaction uses a fairly standard GUI. Browsing through several sources require an ad-
equate presentation of specifications. It appears that more than one way of viewing them is
necessary. For instance, a graphical representation of schemas allows an easy detection of
certain structural patterns, but it is useless to analyze the attribute domains. DB-MAIN cur-
rently offers six ways of presenting a schema (four hypertext views and two graphical views).
Four screens of them are illustrated in Figure 7-1.



7-110 7 • Wrapper Development Support

Figure 7-1: DB-MAIN can display a schema in six different formats. This screen copy shows four of
them: text extended (left), text sorted (bottom), graphical compact (top) and graphical standard
(right).

7.3.2 DB-MAIN Specification Model and Repository

The repository collects and maintains all the information related to a project. The repository
comprises three classes of information:
• a structured collection of schemas and texts used and produced in the wrapper develop-

ment;
• the specification of the methodology followed to conduct the wrapper development;
• the history (or trace) of the project.
We ignore the second class, which are related to methodological control and which is de-
scribed in [Roland, 1997]. We will discuss the third class in Section 7.3.7.
A schema is a description of the data structures to be processed, while a text is any textual
material generated or analyzed during the project (e.g. a program or an SQL script). A wrap-
per development usually comprises several schemas. The schemas of a project are linked
through specific relationships. The schema specification is based on a the generic model de-
fined in Chapter 3. Besides the standard concept of the generic model, the repository includes



7.3 DB-MAIN 7-111

some meta-objects which can be customized according to specific needs. In addition, anno-
tations can be associated with each object. These annotations can include semi-formal prop-
erties, made of the property name and its value, which can be interpreted by Voyager-2
functions (see Section 7.3.3). These features provide dynamic extensibility of the repository.
For instance, new concepts such as mapping definition can be represented by specializing the
meta-objects, while statistics about entity populations can be represented by semi-formal at-
tributes. 
The contents of the repository can be expressed as a pure text file through the ISL language,
which provides import-export facilities between DB-MAIN and its environment.

7.3.3 Voyager 2

DB-MAIN offers a complete development language, Voyager 2 [Englebert, 2001], through
which new functions and processors can be developed and seamlessly integrated into the tool.
Voyager 2 offers a powerful language in which specific processors can be developed and in-
tegrated into DB-MAIN. Basically, Voyager 2 is a procedural language which proposes prim-
itives to access and modify the repository through predicative or navigational queries, and to
invoke all the basic functions of DB-MAIN. It provides a powerful list manager as well as
functions to parse and generate complex text files. A user's tool developed in Voyager 2 is a
program comprising possible recursive procedures and functions. Once compiled, it can be
invoked by DB-MAIN just like any basic function. 
Figure 7-2 presents a small but powerful Voyager 2 function which displays some statistics
about an ER schema. 

ne, na, nr;
data_object: d;
integer: typ;
schema: sch;
owner_of_att: own;

/*****************************************
** compute the number of attributes owned
** by a "owner_of_att"
******************************************/

function integer nbr_att(owner_of_att: o)
attribute: a;
{ return Length(ATTRIBUTE[a]{@OWNER_ATT:[o]});
}
begin
     SetPrintList("","","");                          /* define the mask to print lists */
     sch:=GetCurrentSchema();       /* what is the current opend schema? */
     if IsVoid(sch) then {                          /* oh oh: there is no schema ! */
       print("No Schema !\n");
       halt;                                          /* stop here ! */
     }
     /* Initialization */
     ne:=0;
     na:=0;
     nr:=0;



7-112 7 • Wrapper Development Support

Figure 7-2: A Voyager 2 program example.

7.3.4 Transformation Toolkit

DB-MAIN proposes a three-level transformation toolset that can be used freely, according to
the skill of the user and the complexity of the problem to be solved: namely, elementary trans-
formations, global transformations and model-driven transformations.

Elementary transformations
A schema transformation is applied to the selected construct of a schema:

apply transformation T to current construct C

With these tools, the user keeps full control of the schema transformation. Indeed, similar sit-
uations can often be solved by different transformations; e.g., a multivalued attribute can be
transformed in a dozen ways. Figure 7-3 illustrates the toolbar for the attribute transforma-
tion. The current version of DB-MAIN proposes a toolset of about 30 elementary transforma-
tions.

     /* The Body */
     for d in DATA_OBJECT[d]{@SCH_DATA:[sch]} do { /* for each data_object in the schema */
       typ:=GetType(d);                                     /* but, what is the type of the data_object */
       switch (typ) {
       case ENTITY_TYPE:                              /* ... it is an entity_type */
          ne:=ne+1;
          own:=d;                                        /* type-casting of the argument */
          na:=na+nbr_att(own);                        /* how much attributes in it ? */
       case REL_TYPE:                                   /* ... it is a rel_type */
          nr:=nr+1; 
          own:=d;                                        /* type-casting of the argument */
          na:=na+nbr_att(own);                         /* how much attributes in it ? */
       }
     }
     print(["\nSTATISTICS:",
            "\n-----------",
            "\n#Entity types:\t",ne,
            "\n#Rel-types:\t",nr,
            "\n#Attributes:\t",na,
            '\n']);
end



7.3 DB-MAIN 7-113

Figure 7-3: Transformation menu of an attribute. For instance, a selected attribute can be trans-
formed into an entity type; a selected compound attribute can be disaggregated.

Global transformations
A selected elementary transformation is applied to all the objects of a schema that satisfy a
specified precondition:

apply transformation T to the constructs that satisfy the condition P

DB-MAIN offers some predefined global transformations, such as: replace all one-to-many
relationship types by foreign keys or replace all multivalued attributes by entity types. More-
over, the analyst can define its own toolset through the Transformation Assistant described
in Section 7.3.6.

Model-driven transformations
All the constructs of a schema that violate a given model M are transformed in such a way that
the resulting schema complies to M: 

apply the transformation plan which makes the current schema satisfy the model M

Such an operator is defined by the transformation plan described in Chapter 4. DB-MAIN of-
fers a dozen predefined model-based transformations such as relational, CODASYL and CO-
BOL translation, untranslation from these models. The analyst can define its own
transformation plans, either through the scripting facilities of the Transformation Assistant,
or, for more complex problems, through the development of Voyager 2 functions.

7.3.5 Text Analysis and Processing

This assistant provides a set of sophisticated tools to browse texts such as program source
files, to search them for complex text patterns, and to compute abstractions such as dataflow
graphs and call graphs. We briefly describe three processors provided by this assistant.
Physical schema extractor. The physical extraction process is carried out by a series of pro-



7-114 7 • Wrapper Development Support

cessors that automatically extract the data structures declared into a source text. These pro-
cessors identify and parse the declaration part of the source texts, or analyze catalog tables,
and create corresponding abstractions in the repository. Extractors have been developed for
SQL, COBOL, CODASYL, IMS and RPG data structures. Additional extractors can be de-
veloped easily thanks to the Voyager 2 environment.
Interactive pattern-matching engine. The pattern-matching engine searches text files for
definite patterns or clichés expressed in PDL, a Pattern Definition Language. This is the main
tool to perform usage patterns analysis in programs.
Dataflow graph builder and inspector. This tool is parametrized with the PDL syntactic
patterns that define the selected relationships between program variables. The analyst can se-
lect a variable A, then examine in context the statements that mention the variables that are
connected to A, directly or transitively.
Program slicer. This processor builds the program slice relative to a program point. The pro-
gram slice can be visualized in context, displayed in selected color, or extracted as an auton-
omous program on which other tools can be applied, such the pattern-matching engine, the
dataflow builder or the program slicer itself. 

7.3.6 Assistants

An assistant is a higher-level solver dedicated to coping with a special kind of problems, or
performing specific activities efficiently. It gives access to the basic toolboxes of DB-MAIN
but in a controlled and intelligent way.
The current version of DB-MAIN includes three general purpose assistants which can support
among other, the wrapper development processes, namely, the Transformation assistants, the
Schema Analysis assistant and the Text Analysis assistant. These processors offer a collection
of built-in functions that can be enriched by user-defined functions developed in Voyager 2.

Transformation assistants
The Transformation Assistant (Figure 7-4) allows applying one or several transformations to
selected constructs. Each operation appears as a a problem/solution couple, in which the
problem is defined by a pre-condition (e.g., the constructs are the many-to-many relationship
types of a schema) and the solution is an action resulting in eliminating the problem (e.g.,
transform them into entity types). Several dozens problem/solution items are proposed. The
analyst can select one of them, and execute it automatically or in a controlled way. 



7.3 DB-MAIN 7-115

Figure 7-4: The basic global transformation assistant allows the analyst to perform a transformation
on all the objects that satisfy a condition (left part). This screen copy shows that the analyst has de-
veloped a small script (right part) to conceptualize a COBOL schema. More complex scripts can be
developed with the Advanced Global Transformation assistant.

Moreover, the Advanced global transformations, a sophisticated version of the Transforma-
tion Assistant, proves more flexibility and power in script development. A script consists of
transformations and control structures. A transformation has the form A(P) where A is an ac-
tion (transform, remove, mark, etc.) and P is a predicate that selects specific objects in the
data schema. The meaning is obvious: apply action A on each object that satisfies predicate
P. The control structures include scope restrictions and loops. A library of advanced global
transformations can be defined and reused in the definition of new ones.

Example

The Advanced global transformation Assistant can be used to build the complex model-
driven transformation. Figure 7-5 presents the script of the transformation plan devel-
oped in Section 4.6. We recall that the transformation plan has been defined for translat-
ing any schema expressed in the wrapper logical model into an equivalent schema
expressed in the object-oriented model.



7-116 7 • Wrapper Development Support

Figure 7-5: The advanced global transformation assistant allows the analyst to write a complex
transformation plan like the model translation between the wrapper logical model and the object-
oriented model.

Schema analysis assistant
The Schema Analysis assistant is dedicated to the structural analysis of schemas. It uses the
concept of submodel, defined as a restriction of the generic model (see Chapter 3). This re-
striction is expressed by a boolean expression of elementary predicates stating which speci-
fication patterns are valid, and which ones are forbidden. An elementary predicate can specify
situations such as the following: "entity types must have from 1 to 100 attributes",  "relation-
ship types have from 2 to 2 roles", "entity type names are less than 18-character long",
"names do not include spaces", "no name belongs to a given list of reserved words", "entity
types have from 0 to 1 supertype",  "the schema is hierarchical", "there are no access keys".
A submodel appears as a script which can be saved and loaded. Predefined submodels are
available: Normalized ER, Binary ER, NIAM, Functional ER, Bachman, Relational, CODA-
SYL, etc. Customized predicates can be added via Voyager 2 functions. The Schema Analysis
assistant offers two functions, namely Check and Search. Checking a schema consists in de-
tecting all the constructs which violate the selected submodel, while the Search function de-
tects all the constructs which comply with the selected submodel.



7.3 DB-MAIN 7-117

Example

As an illustration, the Schema Analysis assistant is able to automatize the detection of all
the constructs and constraints that are not available in the wrapper logical model. Figure
7-6 presents the lists of rules that all the constructs must satisfy to comply with the wrap-
per logical model.

Figure 7-6: The schema assistant allows the analyst to detect the constructs that are not allowed
in a specific model.

Foreing key assistant
The Foreing Key Assistant proposes some popular heuristics to find foreign keys (as well as
inclusion and copy constraints, which generalize the concept of foreign key). The analyst
gives a list of groups and chooses one of the two strategies: 
• Given a candidate foreign key (in the list of groups), find the possible target record types

(a group);
• Given a group (usually an identifier - in the list of groups), find the field (an existing

group or an attribute) of the schema that could reference the group.
Depending on the chosen strategy, he gives the criteria to find the matching groups. When the



7-118 7 • Wrapper Development Support

matching groups are found, he can create the foreign keys.

Figure 7-7: The dialog box of the foreign key searching assistant.

7.3.7 History

DB-MAIN automatically generates and maintains a history log (say h) of all the schema
transformation that are carried out when the developer derives a schema B from schema A.
This history is completely formalized in such a way that it can be replayed, analyzed and
transformed. For example, any history h can be inverted into history h'. 
If h expresses the structural mapping between the physical and wrapper logical schemas, and
if t is the instance mapping of h, then {h',t} is the functional specification of the logical wrap-
per. h' explains how to translate queries while t explains how to form the result instances.
Therefore, history h can be used to generate the logical wrapper (see Section 7.4.1).

Example

Figure 7-8 presents a history log of a Att-ET/val transformation: the attribute address of
the entity type Customer has been transformed into an entity type address. This leads to
the creation of the relationship type has.



7.4 InterDB Tools 7-119

Figure 7-8: A history log example. The log records information about the transformation of the at-
tribute address into an entity type by value representation.

7.4 InterDB Tools

The InterDB tools have been built within the DB-MAIN environment. They have been devel-
oped in Voyager 2. The wrapper generation is performed by two specialized tools, namely the
history analyzer and the wrapper encoders (Figure 7-9):
• History analyzer. The history analyzer analyses the history h in order to enrich the wrap-

per logical schema of logical/physical semantics correspondences. The end product of
this phase is an enriched wrapper logical schema that holds all the information required
for the logical wrapper generator.

• Logical wrapper encoders. From the enriched wrapper logical schema, the logical wrap-
per encoder produces the procedural code of the specific logical wrapper and a docu-
mentation for the programmers whereas the object wrapper encoder generates the Java
code of the specific object wrapper and the definition of the wrapper object schema

*POT "begin-file"
*TRF att_to_et_inst
%BEG

%NAM "address"
%OWN 3 "SCHEMA"/"cobol-1"."Customer" 513
%OID 523
*POT "##1##getatt"
*CRE ENT
%BEG

%OID 529
%NAM "address"
%POX 126857
%POY 36776
%OWN 1 "SCHEMA"/"cobol-1" 476

%END
*POT "##1##getrel"
*CRE REL
%BEG

%OID 531
%NAM "has"
%SNA "C_a"
%POX 0
%POY 0
%OWN 1 "SCHEMA"/"cobol-1" 476

%END
*POT "##0##att_to_et_inst"

%END
*POT "end-file"



7-120 7 • Wrapper Development Support

Figure 7-9: InterDB CASE tools: history analyzer and wrapper encoders.

All these tools are built around the DB-MAIN repository (Figure 7-11): the history analyzer
extends it by adding meta-objects that represent the correspondence definitions whereas the
logical encoders access to it to generate wrapper codes.

Figure 7-10: History analyzer and wrapper encoders built around the DB-MAIN repository.

WLS

History  
Analyzer

LPS-to-WLS

Enriched
WLS

Log. Wrapper
Encoder

Obj. Wrapper
Encoder

Instance
Wrapper

Model
Wrapper

Object
Wrapper WOS

Repository

Mapping
Definition     

Schema
Definition

User
Interface    

Instance
Wrapper

DB-MAIN    

Transform.
History

Log. Wrapper 
Encoder

History  
Analyzer

CASE
Tool

DBRE
Processors

Obj. Wrapper 
Encoder

Object
Wrapper



7.4 InterDB Tools 7-121

7.4.1 History Analyzer

Principles
If h expresses the structural mappings between the physical and wrapper logical schemas and
if t is the instance mapping of h, that is, h=[LPS-to-WLS] and t=[lps-to-wls], then {h',t} is the
functional specification of the logical wrapper. Therefore, history h can be used to generate
the wrapper. However, this form does not provide a good support for reasoning and process-
ing, for which a functional expression is better suited. 
The history analyzer analyses h in order to transform it into functional specifications from
which the wrapper logical schema is enriched with physical/logical semantics correspondenc-
es. The end product of this phase is an enriched wrapper logical schema that includes, for each
construct, the way it has been mapped onto physical constructs. In this way, this schema holds
all the information required for the generators.

Repository extension
The main task of the history analyzer is to exend the DB-MAIN repository with meta-prop-
erties so that the DB-MAIN repository can represent the physical/logical semantics corre-
spondence between a wrapper logical schema and the underlying physical schema. The
history analyzer proceeds in two main steps:
• It extends the DB-MAIN repository with meta-properties that represent the physical/log-

ical correspondences. A meta-property is defined as a triple <name, construct, value
domain> that specifies that a construct is associated with a meta-property of value
domain value domain. Some of these meta-properties are represented in Figure 7-11.

• It analyzes the history log that holds {h',t} and computes, for each schema transformation,
the meta-properties of the construct(s) associated to that schema transformation. 



7-122 7 • Wrapper Development Support

Figure 7-11: Meta-properties defining the mapping properties between the physical and wrapper
logical schemas.

Example

To illustrate the history analyzer and the meta-properties it generate, we use the physical
and wrapper schemas in Figure 7-12 and consider the history h. The mappings between
them can easily be deduced in this figure.

Meta Property Construct Value
InterDB-file-name Entity type to be defined by the user - only for COBOL
InterDB-data-source-name Schema to be defined by the user - only for RDB
InterDB-Index Attribute true | false
InterDB-down-mapping Attribute

Entity type
rename: name at the physical level

InterDB-down-mapping Compound monov-
alued attribute

disaggregate | concatenate

InterDB-down-mapping n-level attribute 
(n>1)

substring(offset,length)

InterDB-down-mapping Simple multivalued 
attribute

M-concatenate | M-instanciate

InterDB-down-mapping Compound multi-
valuated attribute

M-instanciate-co-concatenate 
(liste_attributs)

InterDB-opt-implementation Optional attribute user default / system default / null
InterDB-default-str Schema to be defined by the user - string as the null 

value for the string values
InterDB-default-num Schema to be defined by the user - number as the 

null value for the number values
InterDB-FK-implementation Group declared / simulated: declared means 

explicit foreign key; simulated means 
implicit foreing key (that is emulated by the 
wrapper)

InterDB-ID-implementation Group declared / simulated: declared means 
explicit identifier; simulated means implicit 
identifier (that is emulated by the wrapper)



7.4 InterDB Tools 7-123

Figure 7-12: Wrapper logical and physical schemas example.

The analysis of the wrapper logical schema and the associated history h gives rise to the
meta-property definition of each construct of the wrapper logical schema. In Figure 7-13,
we present the main meta-properties and their values of three constructs: the entity type
Order; the attribute Phone of Customer and the group CustID of Order.

Figure 7-13: Meta-property examples.

7.4.2 Wrapper Encoders

Two kinds of wrapper encoders are available: the logical wrapper encoders and the object
wrapper encoder. They both analyze the enriched wrapper logical schema in order to produce
their respective codes.

Logical wrapper encoders
The logical wrapper encoders produce the procedural code of the logical wrapper and a doc-
umentation for the programmers. They also produce the environment data that will allow the
communication between the logical wrapper and the logical server (Chapter 5). These encod-

ORDER (entity type)
InterDB-down-mapping rename(F_ORD)

PHONE of CUSTOMER (attribute)
InterDB-down-mapping M-Instanciate;5
InterDB-opt-implementation system-default

CUSTID of ORDER (group)
InterDB-FK-implementation simulated

Wrapper schema

F_ORD
ORD_Num
ORD_Date
ORD_Detail
ORD_CustCode
id: ORD_Num

acc 
acc: ORD_CustCode

F_CUST
CUST_Code
CUST_N
CUST_Add
CUST_Phone
id: CUST_Code

acc 
acc: CUST_N

h

Order
orderID
date
label
custID
id: orderID
ref: custID

Customer
custID
name
address

number
street
zip
city

phone[0-5]
id: custID

Physical schema



7-124 7 • Wrapper Development Support

ers are specific to a DMS family (Chapter 6). At the current time, generators for COBOL files
and RDB data structures are available.

Object wrapper encoder
The object wrapper encoder generates the interface definition for each object type of the
wrapper object schema and their implementation (Chapter 5). The object wrapper is devel-
oped in Java on top of the logical wrapper. That is, the object wrapper encoder is independent
of the underlying DMS and platform. It is therefore written once for all.

 



                        

 Part III                                      

Mediator Technology



   



                        

Chapter 8

Mediator Architecture

In which the technology of mediators is presented. Their characteris-
tics are outlined and the different levels of service a mediator should
manage are presented and discussed. The architecture of the InterDB
mediator prototype is finally presented.

8.1 Introduction

The interest of integrated databases has been continuously growing in the last years. Many
organizations face the problem of integrating data residing in several distributed databases.
Companies that build a data warehouse or an enterprise resource planning system must ad-
dress the problem. Also, integrating legacy data in the web is the subject of several investi-
gations and projects nowadays. 
This problem can be addressed by using mediators that offer a virtual and integrated view of
legacy and distributed databases. The function of a mediator is to provide integrated informa-
tion, without the need to integrate the data resources. A mediator hides details about the lo-
cation and representation of relevant data to applications. 

8.2 Mediator Definition

The term mediator was introduced by Wiederhold [Wiederhold, 1992]. In general, a mediator
is a software that mediates between the client applications and (distributed) date sources. It
exploits encoded knowledge about some sets or subsets of data to create (integrated) infor-



8-128 8 • Mediator Architecture

mation for client applications [Wiederhold, 1992].
As far as database integration is concerned, mediators are considered as software components
that obtain information from wrapped databases or other mediators. They provide informa-
tion to the other mediators above them or to the client applications of the system. The medi-
ator exports a global schema which is an integrated representation of data sources. A mediator
can be seen as a view of the data found in one or more data sources. Data are not stored in a
mediator. The users query the mediator schema, and the mediator transforms these queries
between the mediator schema and the wrapper schemas of the data sources.

Mediator issues
The mediator design is a very complex task which comprises several different issues. The
main issues are: 
• Dealing with heterogeneity of the sources;
• Specifying the mappings; 
• Processing queries expressed on the global schema.
Dealing with heterogeneity of the legacy databases. It refers to the fact that sources adopt
different semantics, models and systems for storing data. This issue is partially resolved by
wrapping the legacy databases so as to give them uniform and transparent interfaces using a
common wrapper model and a common query language (see Chapter 5). 
Specifying the mappings. With regard to this issue, two basic approaches have been used to
specify the mappings between the wrapper and the global schemas [Li, 2000]. The first ap-
proach, called global-as-view - GaV (also global-schema centric, or simply global-centric),
requires that each construct of the global schema be expressed as a view on the local databas-
es. Several projects like Tsimmis [Chawathe, 1994] and Disco [Tomasic, 1996] adopt the
GaV approach. In the second approach, called local-as-view - LaV (or source-centric), the
mappings are defined in an opposite way: each object in a given local database is defined as
a view on the global schema. The LaV approach is used in the Information Manifold system
[Levy, 1996] and the Infomaster system [Genesereth, 1997]. An example that illustrates and
compares LaV and GaV approaches is given in Section 8.4.2.
Processing queries expressed on the global schema. This is concerned with one of the
most important problems in the design of a mediator system, namely, the choice of the meth-
od for computing the answer to queries posed in terms of the global schema. For this purpose,
the system should be able to decompose the query in terms of a suitable set of queries posed
to the wrappers. In the reformulation process, the crucial step is to decide how to decompose
the query on the global schema into a set of subqueries on the wrappers, based on the meaning
of the mappings. The computed subqueries are then shipped to the wrappers, and the results
are assembled into the final answer. It is well known that processing queries in the local-as-
view approach is a difficult task [Ullman, 1997]. Indeed, in this approach, the only knowledge
we have about the data in the global schema is through the views representing the local data-
bases, and such views provide the partial information about the data. Therefore extracting in-



8.3 Architecture 8-129

formation for the data integration is similar to query answering with incomplete information.
On the other hand, query processing looks much easier in the global-as-view approach, where
in general it is assumed that answering a query means unfolding its structures according to
their definitions in terms of the sources.

8.3 Architecture

8.3.1 General Framework

The basic idea is that mediators access to legacy data through wrappers. Figure 8-1 shows the
general framework that we overview the different aspects of mediators. The framework con-
sists of the following components:
• Wrapper technology that attempts to hide the characteristics of the legacy databases from

the mediators;
• Access paradigms that are used to remotely access the legacy resources;
• Mediator technology that offers a unique and integrated view of the legacy databases;
• New applications that access to distributed legacy databases through the mediator.

Figure 8-1: Mediator framework.

Wrapped legacy resources
Wrappers are developed on top of legacy databases to give them transparent access interfaces

Mediator

New
Application

DB

Legacy
DMS

Wrapper

DB

Legacy
DMS

Wrapper

Wrapper 
Schema

Physical 
Schema

Global 
Schema



8-130 8 • Mediator Architecture

(see Chapter 5). That is, a wrapper exports and homogenizes the physical schema and the que-
ry interface of an underlying database. 

Access paradigms
Access infrastructure consists of technologies such as computers, networks and transaction
managers. An important part of the platform is middleware, an increasingly crucial and, at the
same time, bewildering component of the access infrastructure. Middleware services typical-
ly include directories, facilities to call remotely located functions and software to access and
manipulate remotely located databases. Middleware services are typically provided by spe-
cialized software package. However, middleware services may reside in a combination of da-
tabase management systems, computer operating systems, and transaction management
system.
The middleware manages the communications between mediators and wrappers. CORBA
[Mowbray, 1995] and RMI [Reese, 1997] are two examples of middleware technologies.
CORBA and RMI are two distributed object standards supported by the OMG (Object Man-
agement Group). CORBA is an architecture standard for building heterogeneous distributed
systems. RMI supports distributed objects written entirely and only in the Java programming
language. For the future, it's expected to enable RMI to use the IIOP protocol to communicate
with CORBA-compliant remote objects. 
By using CORBA, it is possible to encapsulate the wrapper as a set of distributed objects and
their associated operations [Dogac, 1995]. These properties provide the means to handle the
heterogeneity at platform and location levels, the semantic heterogeneity being solved by the
wrapper and the mediator. That is, CORBA allows mediators to communicate with the wrap-
per without having knowledge of its location. 

New applications
New applications are the software components that access to distributed legacy databases
through a mediator interface. A new application can be, among others, another mediator or a
web application.

8.3.2 Mediator Interface

A mediator is developed on top of legacy databases to give them a transparent and unique ac-
cess interface. The interface is made up of: (1) an global schema of the wrapped databases,
expressed in a canonical data model and (2) a common query language which uses the seman-
tics defined in the global schema.

Schema interface
The global schema is the result of a schema integration process (see Chapter 9). The wrapper
schemas expressed in a canonical data model are integrated into one (global) schema ex-



8.3 Architecture 8-131

pressed in the same model. As a result, a mediator hides the location and representation of the
relevant data to the new applications.

Example

Let us consider a mediator that offers a uniform and global schema resulting of the inte-
gration of two wrapper schemas (Figure 8-2). The global schema includes all the seman-
tics of the wrapper schemas. In the wrapper schemas, ORDER entity types are similar.
Data analysis, i.e., examination of actual instances of the physical data types shows that
all the ORDER.Code values are in the ORDER.Number value set. Therefore, this similar-
ity has been interpreted as a supertype/subtype relation: ORDER of source 2 (renamed
BOOK-ORDER) is made a subtype of ORDER of source 1. 

Figure 8-2: Global schema resulting of the integration of two wrapper schemas.

0-N 0-Nreferences

1-1 0-Nplaces

   

ORDER

CODE
DATE
AMOUNT

id: CODE

CUSTOMER

REFERENCE
NAME
ADDRESS[0-1]

id: REFERENCE

BOOK-ORDER

BOOK

ISBN
NAME

id: ISBN

1-10-N of

ORDER

CODE
CUSTOMER
id: CODE

BOOK

ISBN
NAME

id: ISBN

Mediator

Wrapper Wrapper

Source 2     

Data

Source 1     

Data

G
lo

ba
l S

ch
em

a

1-10-N places

ORDER

NUMBER
DATE

id: NUMBER

CUSTOMER

NUMBER
NAME
ADDRESS[0-1]

id: NUMBER



8-132 8 • Mediator Architecture

Query interface
The query language of a mediator allows writing queries expressed on global schema con-
structs, that is, queries addressing the data independently of their distribution across the dif-
ferent sites. 

Example

Let us consider the mediator example of Figure 8-3. The mediator query showed in the
upper part of Figure 8-3 uses the semantics of the global schema. The query asks for the
customers that have placed an order for definite books. The query is decomposed into
local queries and local data into global data. 

Figure 8-3: Query decomposition example.

Query decomposition
One major mediator service is the query decomposition of a mediator query into wrapper que-
ries. A common architecture of query processing is illustrated in Figure 8-4. This architecture

Mediator

Wrapper Wrapper

Source 2     

Data

Source 1     

Data

M
ed

ia
to

r 
Q

ue
ry

select C.Reference,C.Name
from   BOOK B,BOOK-ORDER O,CUSTOMER C
where  B.ISBN = '2-02-025247-3'
and    O references B and C places O

insert into TMP-O1(OrdCode)
select O.Code
from   BOOK B,ORDER O
where  B.ISBN = '2-02-025247-3'
and    O of B

insert into TMP-03(Custid,Name)
select C.Number,C.Name
from   ORDER O,CUSTOMER C, TMP-01 T
where  O.Number = T.Code
and    C places O

W
ra

pp
er

 Q
ue

rie
s



8.3 Architecture 8-133

is presented according to the temporal sequence of actions that compose the query processing.
Seven actors are identified in this processing [Bouguettaya, 1998]: the query analyzer, the
query decomposer, the plan generator, the cost evaluator, the statistics manager, the dispatch-
er and the execution monitor. We discuss hereinafter the main roles of each of these actors.
A global query is first parsed by the query analyzer and then decomposed into subqueries by
the query decomposer. A subquery usually accesses only a single wrapper and can possibly
be composed of one or more of the primitive operations (such as selection, projection, or join
on available data at single database site) needed to process a query. The basic principle here
is to decompose a query to the finest level in order to explore all possible execution plans.
Given a subquery, the plan generator interacts with the cost evaluator and the statistics man-
ager to generate possible query execution plans and the expected response time and process
cost. Subqueries for each query execution plan are formed by grouping adjacent query unit
graph together. This grouping process is guided by the cost functions as well as the heuristics
which help reduce the search space.

Figure 8-4: Mediator query processor architecture (from [Bouguettaya, 1998]).

The function of the cost evaluator is to provide an estimated cost based on a cost model using
statistics managed by the statistics manager. For each global query, there can be a number of
query execution plans. Moreover, these plans may have different numbers of subqueries and,
hence, different numbers of invocations of wrappers. The parallelism and the size of data to
be transferred among the participating wrappers may also differ. Furthermore, the frequency
and cost of context mediations will certainly be different as well. All of these differences con-
tribute to different performances of query execution plans which can be generated. The cost

   Mediator Query      

Local  Wrapper Queries    

Query
Analyzer

Query
Decomposer

Dispatcher

Global 
Schema

Schema

M
ap

pi
ng

s 
   

 

Plan 
Generator

Execution 
Monitor

Wrapper 
Schema

Cost
Evaluator

Statistics
Manager

Repository



8-134 8 • Mediator Architecture

evaluator must take into consideration each of these contributing factors in order to provide
an estimated cost. The information related to these contributing factors are kept and managed
by the statistics manager. The statistics manager uses the techniques discussed below, such
as query sampling and calibration, to obtain such information.
After an optimal plan is chosen, the dispatcher dispatches the plan to the relevant site, and the
execution monitor coordinates the execution of the chosen plan. 

8.4 Mediator Services

Figure 8-5 shows the major services of a mediator, namely, the query analysis, the query pro-
cessing, the global semantics integrity control and the functionality emulation. To provide
these services, a mediator can take advantage of specialized services the wrappers already
provide (Chapter 5). We will explain and discuss all these services in the next sections.
 

Figure 8-5: Main services of a mediator: (1) query analysis; (2) query processing; (3) global seman-
tic integrity control and (4) functionality emulation.

8.4.1 Query Analysis

The first task of a mediator is the analysis of the input queries. Query analysis enables rejec-
tion of queries for which further processing is either impossible or unnecessary [Ozsü, 1991].
The main reasons for rejection are that the query is syntactically or semantically incorrect.
When one of these cases is detected, the query is simply returned to the user with an expla-
nation. Otherwise, query processing is continued. A query is incorrect if any of its attribute
or entity type names are not defined in the global schema, or if operations are being applied

2-Query Processing      

1-Query Analysis      

Query Decomposition          

Data Formation                                      

Query Optimization   

3-Global Semantic Integrity Control     

4-Functionality Emulation   

Security                                  

Transaction Management 



8.4 Mediator Services 8-135

to attributes of the wrong type. 

Example

The following query on a mediator that offers a SQL-like query language and the global
schema of the Figure 8-2:
select C.Ref-id,C.Name
from   BOOK B, CUSTOMER C
where B.ISBN = 2020252473
and    O references B 
is incorrect for two reasons. First; attribute Ref-id is not declared in the schema. Second,
the operation =2020252473 is incompatible with the type string of ISBN.

Query analysis can be viewed as three successive steps. First, the query is syntactically anal-
ysis. Second, the query is analyzed semantically so that incorrect queries are detected and re-
jected as early as possible. Techniques to detect incorrect queries use some sort of graph that
captures the semantics of the query. Third, the correct query is decomposed into wrapper que-
ries (see Section 8.4.2). 

8.4.2 Query Processing

Only in very rare cases, mediator queries against the global schema can not be answered di-
rectly by sending them entirely to one wrapper. Instead, the mediator has to find combinations
of queries against wrappers that, if combined in a meaningful way, together yield correct re-
sults to the original query. 
There are four major steps in processing a mediator query: query analysis, query planning,
query execution and result integration. 
• Query analysis is the process of syntactic and semantic analysis of the mediator query

(Section 8.4.1).
• Query planning is the process of finding a correct plan of executable source queries for a

given query against the federated schema. Query planning must be based on predefined
correspondences between queries or concepts in different local schemas.

• Plan execution is the process of executing a plan. This comprises (1) optimization steps
that decide which query operations are performed by which wrapper; (2) the shipping of
subqueries and the collection of the results; and (3) applying potentially necessary post-
processing such as computing inter-source joins inside the mediator.

• Result integration finally tries to homogenize the obtained data by removing redundancy,
identifying identical objects and resolving inconsistent data values (i.e. performing
fusion integration).

Query planning
Any query planning must be based on some description of the source with respect to the glo-



8-136 8 • Mediator Architecture

bal schema, for instance by means of views as defined in SQL. We call the language to ex-
press these correspondences correspondence specification language (CSL). Hence, query
planning must find correct plans by exploiting the semantic knowledge that is expressed in
rules of a certain CSL (e.g., [Catarci, 1993], [Spaccapietra, 1991]). Finding such correspon-
dences is usually the task of a human operator, since they encode the semantic relationships
between concepts.
There are two basic classes of CSL. Following the Global-as-View (GaV) paradigm, the glo-
bal construct is defined by having one or more views over the source schemas for each con-
struct. Hence, each correspondence rule has a single global class on one side and defines its
semantic equivalence to a source query on the other side (of the rule). The situation is re-
versed in the Local-as-View (LaV) paradigm, where the classes of the source schemas are de-
scribed by giving equivalent view on the global schema [Hull, 1997]. Again, each rule has a
class and a query; but here, it is a local construct and a global query.
The mainly difference in the perception of the global schema is the following: while GaV sees
the global schema as something artificial that must be filled with life by accessing sources,
the LaV rather assumes each source as a certain part of overall, global information space.
Global-as-View. Query translation in a GaV approach basically requires the expansion of the
structures in a user query into the corresponding source queries [Meng, 1995]. The expansion
step "global structure → source query" is hardcoded in the definition of the structures (as
views). Usually, also the information fusion rules are contained in this definition. 
Local-as-View. LaV query planning requires a more complex process, because it is a-priori
unclear which parts of a given user query are defined through a view. Every single global
view can potentially contribute to a plan for the query. This problem, also known as "answer-
ing queries using only views" is shown to be NP-complete already for conjunctive queries and
conjunctive view definitions in [Levy, 1995]; it can be solved by enumerating a possibly ex-
ponential number of view combinations, and testing query containment for each of these
combinations. The problem quickly becomes undecidable, e.g., if negation is allowed.

Example

To illustrate GaV and LaV, we follow an example given by [Lenzerini, 2001]. For sim-
plicity, we consider a relational global schema that is made up of three following rela-
tions:
movie(Title, Year, Director)
european(Director)
review(Title, Critique)

The global schema is the result of the integration of two relational local schemas:
r1(Title, Year, Director), in source 1, has recorded the european directors since 1960;
r2(Title, Critique), in source 2, has recorded all the directors since 1990.



8.4 Mediator Services 8-137

Assume now that the following mediator query is expressed in the global schema:
{ (T, R) |  movie(T, 1998 ,D) ∧ review(T, R)}

Local-as-View. The local relations are defined in terms of the global schema. That is,
r1(T, Y, D) → { (T, Y, D) |  movie(T,Y,D) ∧ european(D) ∧ Y ≥ 1960}
r2(T, R) → { (T, R) |  movie(T,Y,D) ∧ review(T,R) ∧ Y ≥ 1990}

The query { (T, R) |  movie(T, 1998 ,D) ∧ review(T, R)} is processed by means of an
inference mechanism that aims at re-expressing the constructs of the global schemas in
term of constructs at the sources. In this case:
{ (T, R) |  r2(T, R) ∧ r1(T, 1998, D)}.

Global-as-View. The global schema is defined in terms of the sources:
movie(T, Y, D) → { (T, Y, D) |  r1(T,Y,D)}
european(D) → { (D) |  r1(T,Y,D)}
review(T, R) → { (T, R) |  r2(T, R)}

The query { (T, R) |  movie(T, 1998 ,D) ∧ review(T, R)} is processed by means of unfold-
ing, i.e., by expanding the structures according to their definition in the sources. In this
case:
{ (T, R) |  movie(T, 1998 ,D) ∧ review(T, R)}

{ (T, R) |  r1(T, 1998, D) ∧ r2(T, R)}.

Query optimization
In a distributed database system, data is shared across a network of homogeneous databases.
As a result of this distribution, the query processor must take into account the locality of in-
formation when performing heuristic optimization as well as the cost of transferring data over
the network when applying the cost model optimization [Bouguettaya, 1998]. Moreover, it
can exploit the potential of parallelism in processing a query.
Query optimization techniques in mediator systems are not significantly different from query
processing in distributed database systems [Ozsü, 1991] but more complex ([Sheth, 1989],
[Chen, 1998]). How the query optimization paradigm can be implemented in the two envi-
ronments is very different due the autonomy of the local sites. 
Site autonomy. As a result of site autonomy, some local information needed for mediator
query optimization may not be available. For example, cost formulas of local DMS, which
are essential to global query optimization, are usually not known to the mediator. Even if the
cost formulas are available, the mediator still lacks the ability to obtain run-time cost param-



8-138 8 • Mediator Architecture

eters, such as data buffer size, that are needed in estimating costs of global subqueries.
Execution autonomy. Execution autonomy means that the mediator cannot influence the
way individual DMS process query. The mediator can only interact with it via its wrapper (or
its external interface). In other words, the mediator is unable to access internal data structures
and functions of the underlying DMS. There is no opportunity for low-level cooperations.

8.4.3 Security Management

A critical feature of mediators concerns the management of confidential data. For that, we
need powerful mechanisms for user management, authorization and authentication. Without
going into details, we discuss some basic assumptions about security requirements in media-
tors. Several factors determine these requirements [Schwarz, 1999b]:
• Autonomy factor. This means that all local database systems have the right to implement

and enforce their own security measures. As a result, the mediator has to respect, to sup-
port and to cooperate with the local mechanisms. 

• Heterogeneity factor. This means, that the local measures rely on different mechanisms
and that the local database systems have or more or less trust in a person regarding
secrecy and integrity. 

As a result, we need global security measures which can provide, among others, (1) a uniform
security interface for all federated users based on a locally accepted federated security policy;
and (2) approaches to resolve security conflicts that arise from the syntactic and the semantic
heterogeneity among the local systems.
The identification and authentication of users in mediators is a more complex process than in
traditional distributed systems [Schwarz, 1999b]. We now discuss the main reasons and the
resulting tasks.
Heterogeneity. The local authentication components can base on the variety of security con-
cepts. As a result, users have to pass through all these different procedures to gain access. Be-
sides, the identity of a user can vary from system to system. The task is to overcome this
heterogeneity without a violation of security. That means, each user is authenticated once but
correct to all relevant participating systems per session in a federated environment.
Autonomy. The local authentication decision is dependent on the delivery of the correct iden-
tifier about a user access wish. The maintenance of this kind of autonomy can be necessary
to secure the trust of the local database systems.
Population control. A user can operate in a mediator with different identities and identifiers.
Otherwise, a user should be handled as a single subject independent of the identify he logs in.
The authentication of users without local identities can be a task in environments with closed
local populations.

Example

There exist many works in the area of authorization for mediators and, more generally,



8.4 Mediator Services 8-139

for federated database systems. We refer to [De Capitani, 1997] for a theoretical intro-
duction and we refer to [Schwarz, 1999] for a practical approach. 

8.4.4 Global Semantic Integrity Management

The global schema of a mediator reflects all local integrity constraints. That is, local integrity
constraints must be integrated (see Chapter 9). For instance, when two local entity types are
merged into one common global entity type, the corresponding integrity constraints must be
merged in an appropriate way. Afterwards, new global integrity constraints can be defined on
the global schema [Türker, 1999]. They can be used to semantically enrich the global schema.
In general, the global integrity constraints a mediator can manage are the following ([Türker,
1999], [Castellanos, 1994]): global uniqueness constraints, global referential constraints and
global value dependencies. We hereafter present these global integrity constraints and illus-
trate them by examples given by [Türker, 1999]. 

Global uniqueness constraints
A global uniqueness constraint is defined on an entity type or a relationship type of the global
schema. Since such a global construct can be defined from several local constructs, a global
uniqueness constraint can concern constructs of different wrapper schemas. Often, global
uniqueness constraints have to be introduced due to semantic heterogeneity [Garcia, 1996].

Example

Assume that there are two departments managing the information about their projects in
own local databases. Each of these databases contains the entity type Project. Suppose
that these entity types are integrated into a common entity type Project which represents
all projects of the both departments. In order to guarantee that the projects are uniquely
identified in the context of the global schema, the project identifier of each project has to
be unique. To ensure this, the mediator has to manage a global uniqueness constraint.

Global referential constraints
Global referential constraints are used to describe existence dependencies between entity
types of different wrapper schemas. A global referential constraint expresses the following
statement: an entity type ET1 of a wrapper schema of a local database DB1 cannot exist unless
another entity type ET2 exists in a wrapper schema of another local database DB2. In this case,
the entity type ET1 is called existence dependent on the entity type ET2.

Example

For instance, in one local database, all the sales information about the products of the
company is stored and managed whereas, in another local database, the technical infor-
mation about the products is available. In this case, we can define a global referential



8-140 8 • Mediator Architecture

constraint stating that for each product in the sales database they must exist a product in
the technical database. In this way, we can ensure that the sales database only contains
products that are produced by the company.

Global value dependencies
A global value dependency concerns the value correspondence between two entity types of
different wrapper schemas. An entity type ET1 is called value dependent on another entity
type ET2 if any changes in the attribute values of the entity type ET1 cause changes to the
corresponding attribute values of the entity type ET2.

Examples

The address of an employee must be equal in both the local databases. If the address is
changed on one database, this change has to be propagated to the other database.
Another example of global value dependencies is "the number of running projects must
not exceed the number of employees".

Global semantic control by the mediator
Few solutions exist for handling global integrity constraints in (heterogeneous) distributed
systems [Özsu, 1999]. The main reason is that semantic data control can be prohibitive. The
two main issues for efficiently performing global semantic control are the definition and stor-
age of the rules (site selection) and the design of enforcement algorithms which minimize
communication costs. The problem is difficult since increased functionality tends to increase
site communications. The reader interested about implementations of global semantic control
is invited to read [Özsu, 1999].

8.4.5 Transaction Management

Transaction management is probably the major open question in mediator systems. The chal-
lenge is to permit concurrent global updates to the underlying databases through their wrap-
pers without violating the database autonomy. Most current prototypes either do not permit
updates to the local databases or execute updates off-line and in batch mode. Recently, much
attention has been focused on providing support for updates that span multiple autonomous
database systems. 

Distributed transaction architecture
Let us first focus on the architectural aspects of mediation transaction processing (Figure 8-
6). The federated database architecture involves a number of wrappers, each with its own
transaction manager (called wrapper transaction managers or WTM) and a mediator on top.
A wrapper can use the transaction manager features of the underlying DMS (called legacy
transaction managers or LTM) if such exists. The transaction manager of the mediator is



8.4 Mediator Services 8-141

called the global transaction manager (GTM) since it manages the execution of global trans-
actions.

Figure 8-6: Transaction managers in a wrapper/mediator architecture.

Since the wrapper hides the legacy DMS interface (and therefore LTM), we’ll hereafter only
consider two types of transaction managers: WTM, which are submitted to each wrapper, and
GTM, which is submitted to the mediator. Local transactions execute on a single database
through a wrapper, whereas global transactions access multiple databases through their wrap-
pers. A global transaction is divided into a set of global subtransactions, each of which exe-
cutes on one wrapper. 
In such an execution environment, it is necessary to discuss the responsibilities of the local
and global transaction managers. A series of conditions have been defined that specify when
global transactions can safely update a federated system [Gligor, 1986]. These conditions are
helpful in determining the minimal functionality required of the various transaction manag-
ers.
The first condition for providing global concurrency control is to have wrappers guarantee
local synchronization atomicity. This means that the wrapper transaction managers are sim-
ply responsible for the correct execution of the transactions on their respective databases. If
serializability is the correctness criterion used, each wrapper transaction manager is respon-
sible for maintaining that its schedule is serializable and recoverable. These schedules are
made up of global subtransactions as well as local ones (local applications). The fundamental
point to watch out for here is that the wrapper accepts a transaction and executes it until its
termination.
The second condition requires each WTM maintains the relative execution order of the sub-
transactions determined by the GTM. The global transaction manager then is responsible for
coordinating the submission of the global subtransactions to the WTM and coordinating their
execution.

Mediator

DB

Legacy
DMS

Wrapper

DB

Legacy
DMS

Wrapper

GTM

WTMWTM

LTMLTM



8-142 8 • Mediator Architecture

Mediation transaction issues
Designing a concurrency control strategy for a heterogeneous database environment is more
difficult than designing one for its homogeneous counterpart [Ozsü, 1991], because we must
deal with the data distribution but also with heterogeneity and autonomy of the underlying
databases. Such a system must deal with problems caused by the autonomy of the local data-
bases:
• Design autonomy: local transaction managers are designed in such a way that they are

totally unaware of other local database systems and of the integration process. 
• Communication autonomy: the global transaction manager needs information about local

executions in order to maintain global database consistency. However, the GTMhas no
direct access to this information and cannot force the local concurrency controllers to
supply it.

• Execution autonomy: local transaction managers make decisions about transaction com-
mitments based entirely on their own considerations. They don’t know or care whether
commitment of a particular transaction will introduce global database inconsistency. In
addition, the GTM has no control over the LTM at all. For example, a GTM cannot force
a LTM to restart a local transaction, even if the commitment of this local transaction will
introduce global database inconsistency.

DMS Heterogeneity adds further difficulty since it becomes difficult to make uniform as-
sumptions about the functionality and the efficiency provided by the underlying DMS. How-
ever, wrapper can partially hides the DMS heterogeneity by providing a uniform transaction
manager (WTM) (Chapter 5).

Global transaction protocols 
In the literature, a variety of transaction protocols have been proposed, most of which are
based on 2PC protocol (two-phase protocol). The 2PC protocol extends the affects of local
atomic actions to distributed transactions by insisting that all sites involved in the execution
of a distributed transaction agree to commit the transaction before its effects are made perma-
nent [Samaras, 1995]. A brief description of the 2PC protocol that does not consider failures
is as follows [Reddy, 1998]. Initially, the GTM writes a BEGIN-COMMIT record in the log,
sends a PREPARE message to all participating sites, and enters the wait state. When a wrap-
per receives PREPARE message, it checks if it can commit the transaction. Of so, the partic-
ipant writes a ready record in the log, sends a VOTE-COMMIT to the GTM, and enters the
ready state. Otherwise, the participant writes an abort and sends a VOTE-ABORT message to
the GTM. If the decision of the wrapper is to abort, it can forget about the transaction. The
coordinator aborts the transaction globally, even it receives VOTE-ABORT message from one
wrapper. Then it writes an abort record, sends a GLOBAL-ABORT message to all participant
sites, and enters the abort state; Otherwise, it writes a commit record, sends a GLOBAL-COM-
MIT message to all sites, and enters the commit state. The participants either commit or abort
the transaction according to the GTM instructions and sends back ACK (acknowledgment)



8.5 InterDB Prototype 8-143

message at which point the GTM terminates the transaction by writing an END-TRANSAC-
TION record in the log.

8.5 InterDB Prototype

An InterDB mediator server appears as a virtual OO interface layer defined by the federated
object-oriented schema (FOS). OO views provide transparent read-only access to data sourc-
es from wrapper and other mediator servers.
For flexibility reason, the InterDB mediator is based on the DB-MAIN repository that de-
scribes the federated object-oriented schema, the local object-oriented schema of each wrap-
per, its location, and the relationships between local and global schemas. Information
concerning data replication, semantic conflicts and data heterogeneity allows the InterDB
mediator to interpret and distribute the global objects, and to collect and integrate the results
sent back by the wrappers. The extension of the DB-MAIN repository is presented in Chapter
10.

8.5.1 Mediator Architecture

The InterDB mediator architecture as illustrated in Figure 8-7 consists of the following main
components: 
• the object mediator that links the global objects to the local objects provided by the

object wrappers (see Chapter 5);
• the DB-MAIN repository that is accessed by the object mediator through the JiDBM

interface (see Chapter 10);
• RMI that supports the communications between object wrappers and mediators and

between mediators and client applications.

That is, the object mediator offers remote global objects (FOS) that can be accessed by any
Java client applications. Local objects (WOS) that participates in the definition of the global
objects must be homogenized against FOS.



8-144 8 • Mediator Architecture

Figure 8-7: InterDB Java Mediator based on the DB-MAIN Repository.

8.5.2 Object Mediator and DB-MAIN Repository

The InterDB object mediator is based on a simple object-oriented model (Chapter 3). Object
types describe the definition of objects by their attributes, properties and meta-properties
(Chapter 10). We recall that the definition of all the object types are recorded in the DB-
MAIN repository. More details about the extension of the DB-MAIN repository can be found
in Chapter 10.
The object meta-properties specify the source objects by using operators like selection, union
and join. They also specify mappings between local and global attributes if required. An at-
tribute mapping can be described in the following variants:
• without an explicit mapping: a local attribute corresponding to an attribute defined by the

global object in the FOS in terms of identifier and type becomes an attribute of the global
object.

• with a renaming mapping: localName ← rename(globalName) means renaming the local
attribute to globalName.

JiDBM

Object
Wrapper

Logical
Wrapper

DB

Legacy
DMS

DB

Legacy
DMS

Logical
Wrapper

Object
Wrapper

OO

OO
Object

Mediator

  LPS

 WOS

 FOS

DB-MAIN
Repository

RMI RMI

Java

Java
Application

RMI



8.5 InterDB Prototype 8-145

• with a functional mapping: localName ← function(globalName) defines that the global
attribute value is calculated by using the user-defined conversion function on the local
attribute value.

The union and join operators must be specified with the comparison attributes for union op-
erators or the comparison expression for join operators. Both the union and join operators can
be applied with a user-defined function for the conflict resolution. 
User-defined functions are manually implemented in Java and registered in the mediator sys-
tem. They are used as conversion functions for attributes or as reconciliation functions for re-
solving conflicts. 

Example

Figure 8-8 depicts a global object type (FOS) containing product information. This
object type is the result of the integration of two local object types (WOS1 and WOS2).
More precisely, the global object type is defined as the union of the two local object
types using the product number (Npro) as the matching attribute.

Figure 8-8: Local and global object example.

The two local object types hold some conflicts: (1) in WOS1, the price data is recorded in
Euro while in WOS2, the same data is recorded in Belgian Franc; (2) in WOS1, the object
type includes the attribute vendor that is not took up in WOS2; (3) For a same product
number (Npro), the prices can be different according to the sources. That is, we assume

Product

Npro
Vendor
Price

id: Npro

getNpro
getVendor
getPrice

Product

Npro
Price

id: Npro
getNpro
getPrice

FOS 

WOS1 WOS2

Site1 Site2

Product

Npro
Vendor[0-1]
Price

id: Npro
getNpro
getPrice



8-146 8 • Mediator Architecture

that the prices in Euro (from WOS1) are the most up-to-date prices. Therefore, the price
in Euro should be used if there are two different prices for a same product.
The integration mappings are translated as meta-properties of the global object type and
its attributes. Some examples of meta-properties for the global object type Product and
one of its attribute (Price) are given in Figure 8-9. 

Figure 8-9: Meta-property examples.

In Figure 8-9, we point out that Product includes a reconciliation function resolveConflict
(Figure 8-10) whereas Price specifies a functional mapping BelgianFranc2Euro (Figure
8-11). We recall that all these functions are manually written in Java.

Figure 8-10: Reconcilation function example.

Figure 8-11: Attribute functional mapping example.

FOS.Product (object type)
Operator Union
Local objects WOS1.Product

WOS2.Product

Matching attributes WOS1.Product.Npro

WOS2.Product.Npro

Reconciliation function resolveConflict(WOS1.Product, WOS2.Product)

FOS.Product.Price (attribute)
Local attributes WOS1.Product.Price

WOS2.Product.Price

Conversion function BelgianFranc2Euro(WOS2.Product.Price)

GlobalObject resolveConflict(LocalObject i1, LocalObject i2) {
GlobalObject res = new GlobalObject();
// resolve price and vendor attribute:
if (i1 != null) {res.setString("Vendor", i1.getString("Vendor"));
                     res.setFloat("Price", i1.getFloat("Price"));
                     res.setString("Npro", i1.getString("Npro"));} // copy npro

else              {res.setString("Vendor", null);
                     res.setFloat("Price", i2.getFloat("Price"));
                     res.setString("Npro", i2.getString("Npro")); } // copy npro
return res;

}

Integer BelgianFranc2Euro(Integer price) {
Integer priceEuro = new Integer();
priceEuro = price / 40,3399;
return priceEuro;

}



8.5 InterDB Prototype 8-147

8.5.3 Algorithm Principle of the Object Mediator

This section presents the example-driven algorithm principle of the object mediator. The
main idea is to present the main mechanisms for data merging and conflict resolution.

Attribute and matching operators
For understanding the mediator algorithm principle, we introduce the concept of Global Iden-
tifier (GID). It is the identifier of a global object. The GID is used by the mediator for object
matching, to identify instances for local sources that describe the same object so that they can
be combined to form instances in the global schema.
The mediator uses the attribute and matching operators (union, join) to build the instances of
the global object using the corresponding local objects based on GID values. 

Example

To illustrate the mediator algorithm principle, we use the example of Figure 8-8. The
GID of FOS is Npro. 
Assume that the WOS1 and WOS2 represent instance sets as shown in Figure 8-12. By
applying the attribute operators (BelgianFranc2Euro defined on Price of WOS2) and the
union operator between WOS1 and WOS2, the mediator derives instance of FOS as
shown in Figure 8-13.

Figure 8-12: Instance sets of WOS1and WOS2

Figure 8-13: Derived instances of FOS.

WOS1.Product

Npro Vendor Price (euro)
1 Michaux 123
2 Gide 10

WOS2.Product

Npro Price (BEF)
1 4420
2 400
3 4000

FOS.Product
Npro Vendor Price (euro)

1 Michaux 123
1 null 109.58
2 Gide 10
2 null 9.92
3 null 99.16



8-148 8 • Mediator Architecture

Instance conflict resolution
In Figure 8-12, WOS1 indicates that the product 1 is sold at 123 euro while WOS2 indicates
that the same product is sold at 109.58 euro. This conflict is reflected in Figure 8-13 as a vi-
olation of the GID since they are more than one instance with Npro=1. These instances form
the Alternative Instance Set for Npro=1, denoted as AIS(FOS.Product, 1). An alternative in-
stance set containing more than one distinct value indicates an instance level conflict. 

Example

For example, we have the following AIS in Figure 8-13:
AIS(FOS.Product, 1) = {(1, Michaux, 123), (1, null, 109.58)}
AIS(FOS.Product, 2) = {(2, Gide, 10), (2, null, 9.92)}
AIS(FOS.Product, 3)= {(3, null, 99.16)}

As a result, there are conflicts with Npro=1 and Npro=2.

At this point of the algorithm, the mediator has not yet removed any instance conflicts. The
conflict resolution is performed by applying the reconciliation function resolveConflict for
each |AIS|>1. In other words, the reconciliation function resolves the conflict values for all
the non-GID attributes of FOS over which there may exists conflicts.

Example

The reconciliation function resolveConflict is applied for AIS(FOS.Product, 1) and
AIS(FOS.Product, 2). That is, resolveConflict (Figure 8-10) resolves conflicts on attribute
Vendor and Price of FOS.Product. The result is given in Figure 8-14.

Figure 8-14: Conflict-free instances of FOS.

FOS.Product
Npro Vendor Price (euro)

1 Michaux 109,58
2 Gide 9,92
3 null 99,16



 

Chapter 9

Mediator Development

In which we present an overview of database integration. The issues
are raised and the approaches that have been proposed to tackle the
problem are discussed. The InterDB approach is then presented and its
main characteristics are outlined.

9.1 Introduction

Mediator provides an homogeneous interface to distributed and heterogeneous databases.
This homogeneous interface consists of a global (or federated) schema which is the result of
the integration of the schemas of the corresponding local databases. Simply stated, database
integration is the process which takes as input a set of databases, and produces as output a
single unified description (the global schema) of the input schemas and the associated map-
ping information supporting integrated access to existing data through the integrated schema
[Parent, 1998]. Schema integration is a complex and time-consuming problem ([Heimbigner,
1985], [Parent, 1998], [Elmagarmid, 1999]), primarily because the same fact may be con-
tained in several databases yet be represented using different conceptual structures. A main
problem in schema integration therefore concerns the detection and resolution of semantic
heterogeneity.
The rest of this chapter is organized as follows. Section 9.2 presents a framework for schema
integration. Section 9.3 discusses the main issues of schema integration and their possible so-
lutions. In Section 9.4, we describe the InterDB approach in schema integration in detail.



9-150 9 • Mediator Development

9.2 Framework for Schema Integration

This chapter provides a survey of most significant trends in schema integration. To provide a
framework for schema integration, we first outline the main steps of a typical methodology
and then present the main issues of schema integration. A typical schema integration meth-
odology can be divided into four phases. The steps shown in Figure 9-1, are as follows:
• Pre-integration where local schemas are transformed to make them homogeneous (both

syntactically and semantically);
• Correspondence identification devoted to the identification and categorization of inters-

chema relationships;
• Schema integration which solves interschema conflicts;
• Mapping definition involves storing information about the mappings between constructs

in the transformed (global/integrated) schema (FCS) and constructs in the local schemas
(LCS).

Figure 9-1: Framework for schema integration: the main steps.

Legacy
Systems

Pre-
Integration

LCS

FCS

Legacy
Systems

Pre-
Integration

Legacy
Systems

Pre-
Integration

LCS LCS

Correspondence
Identification

Schema
Integration

Mappings

Interschema 
correspondence 
assertions

Mapping
Definition

Conflict
resolution



9-151 9 • Mediator Development

In this section, we take up and develop the example that has been introduced in Chapter 6.
We recall that this example comprises two independent heterogeneous databases both de-
scribing aspects of a bookshop. The first one is made up of two COBOL files and the second
one includes two relation tables (Figure 9-3). Through this example, we have already illus-
trated some of the problems of the pre-integration phase (i.e. semantic enrichment and syn-
tactic rewriting). This example is the starting point for the illustration of the integration
processes.    

9.2.1 Integration Strategies

In this phase, policies and rules of integration are set. Integration methodologies can be clas-
sified as binary or nary mechanisms [Batini, 1986] (Figure 9-2):
• Binary integration methodologies involve the manipulation of two schemas at time.

These can occur in a stepwise fashion where intermediate schemas are created for inte-
gration with subsequent schemas or in a purely binary fashion where each schema is
integrated with one other, creating an intermediate schema for integration with other
intermediate schemas. 

• Nary integration methodologies integrate more than two schemas at each iteration. One-
pass integration occurs when all schemas are integrated at once, producing the global
schema after one iteration. 

The binary strategy is simple and efficient, but may lose global information during each in-
termediate step because not all the information is available at the same time. Although the
one-pass integration is complex, it benefits of the availability of complete information about
all the databases at integration time. Moreover, there is not implied priority for the integration
order of schemas, and the trade-offs, such as the best representation for data items or the must
understandable structure, can be made between all schemas rather than between a few.

Figure 9-2: Binary and nary method examples.

9.2.2 Pre-integration

In this phase, schemas that correspond to the individual databases being integrated are trans-

Binary Method Nary Method



9-152 9 • Mediator Development

lated into schemas using a canonical data model. This phase partially corresponds to the log-
ical wrapper development presented in Chapter 6. We recall that the pre-integration process
includes two main tasks, namely, the syntactic rewriting and the semantic enrichment.
Syntactic rewriting.  Local schemas are translated into a canonical data model. This allows
for resolving syntactic heterogeneity this is the result of different data models.
Semantic enrichment. This is the process that aims at augmenting the knowledge about the
semantics of data. Extracting a semantically rich description from a data source is the main
goal of the data reverse engineering process (DBRE). Reverse engineering relies on the anal-
ysis of whatever information is available: schema specifications, index definitions, data, que-
ries in existing programs. Combining these analysis makes it possible to recover hidden
structures and constraints [Hainaut, 1996].

Example

Figure 9-3 shows the extracted schemas of the relational database and of the COBOL
files according to their data model. 

Figure 9-3: The local physical schemas of the relational database (left) and of the COBOL files
(right).

The physical schemas of Figure 9-3 have been translated into a canonical data model (the
generic model) and they have been enriched with implicit constraints and constructs
(Figure 9-4).

BOOK

BOOK-ID
BOOK-ISBN
BOOK-ORDER

FILLER
id: BOOK-ID

acc 

ORD

ORD-CODE
ORD-CUSTOMER
id: ORD-CODE

acc 
acc: ORD-CUSTOMER

ORD-FILE

ORD

BOOK-FILE

BOOK

Order

Ord_number
Cust_ID
Ord_date
Amount
id: Ord_number

acc 
ref: Cust_ID

acc 

Customer

CustID
Name
Address[0-1]
id: CustID

acc 

Relational database COBOL



9.2 Framework for Schema Integration 9-153

Figure 9-4: The local conceptual schemas (LCS) of the relational database (up) and of the CO-
BOL files (down). 

9.2.3 Correspondence Identification

The objective of this phase is to identify objects in the underlying schemas that may be related
and to categorize the relationships among them. This is done by examining the semantics of
the structures in the different databases and identifying relationships based on their seman-
tics. The semantics of an object can be ascertained by analyzing schematic properties of entity
types, attributes, and relationships in the schema as well as by interacting with designers and
exploiting their knowledge and understanding of the application domain. For example, integ-
rity constraints, cardinality, and domains are properties of attributes that convey their partial
semantics. The ultimate objective of this step is the generation of a reliable set of relationships
among database constructs. It is important that these relationships be accurate because they
are used as input to the schema integration phase. 

Example

For example, in Figure 9-4, we identify the two entity types Order in the relation data-
base and Order in the COBOL files are related to each other. Moreover, we identify the
attributes Code and Number in the two entity types are related. 

9.2.4 Schema Integration

In this phase, the interschema relationships generated previously are used to generate an in-
tegrated representation of the underlying schemas. Generating such a representation involves
resolving various forms of heterogeneity that may exist between related constructs. [Sheth,

1-10-N places

Order

Number
Date
Amount

id: Number

Customer

CustID
Name
Address[0-1]

id: CustID

Relational database

COBOL

0-N0-N references

Book

ISBN
Title

id: ISBN

Order

Code
Customer

id: Code



9-154 9 • Mediator Development

1993b] classifies these heterogeneities into five major categories: domain definition, entity
definition, data value, abstraction level and schematic incompatibilities. The integrated sche-
ma generation process resolves these different forms of heterogeneity and generates an inte-
grated schema that hides the heterogeneity from the user. 
Taxonomies of conflicts abound in the literature, from very detailed ones [Sheth, 1992] to
simpler ones [Spaccapietra, 1991]. Some examples of well-known conflict categories are:
• Heterogeneity conflicts: different data models support the input schemas;
• Generalization/specialization conflicts: related databases represent different view-points

on the same set of objects, resulting in different generalization/specialization hierarchies,
with objects distributed according to different classification abstractions;

• Description conflicts: the related types have different sets of properties and/or their cor-
responding properties are described on different ways;

• Structural conflicts: the constructs used for describing the related types are different;
• Data conflicts: corresponding instances have different values for corresponding proper-

ties.

Example

In our example, in the integrated schema, an equivalent relationship between the entity
types Order is generated to reflect the nature of the relationship among these entity types.
Note that the attributes Number and Code have been integrated into a single attribute
(Code) in the super entity type. This type of integration assumes that these attributes
have been identified as being equivalent to each other in the interschema relationship
generation step.

Figure 9-5: Global conceptual schema.

9.2.5 Mapping Definition

This step accompanies the integrated schema generation step and involves storing informa-
tion about the mappings between structures in the transformed (global/integrated) schemas
and structures in the (local) wrapper schemas. Such mappings are important for query trans-
formation. It should be note that these steps may need to be performed iteratively to resolve

0-N 0-Nreferences

1-1 0-Npasses

   

ORDER

CODE
DATE
AMOUNT

id: CODE

CUSTOMER

REFERENCE
NAME
ADDRESS[0-1]
id: REFERENCE

BOOK-ORDER

BOOK

ISBN
NAME
id: ISBN



9.3 Schema Integration Issues 9-155

the heterogeneity and arrive at an integrated representation of the underlying schemas.

Example

For example, we note that the attribute Code in the integrated schema maps back to Code
in the conceptual schema of the Cobol files and Number in the conceptual schema of the
relational database.

9.3 Schema Integration Issues

The purpose of this section is to provide a clear picture of what are the main issues and the
current solutions in the schema integration field. The focus is on the concepts, the proposed
solutions, not on detailed technical discussions. We identify two major issues in schema in-
tegration:
• Interschema correspondence;
• Interschema conflict.

9.3.1 Interschema Correspondences

Interschema correspondences are frequently found by looking for similarities in the input
schemas. Two local schemas are said to have something in common if the real world subsets
they represent have some common elements (i.e., a non-empty intersection) or have some el-
ements related to each other in a way that is of interest for future applications [Parent, 2000].
At the instance level, two constructs (occurrence, value, tuple, link,...) from two databases are
said to correspond to each other if they describe the same world element (object, link or prop-
erty).
If a correspondence can be defined such that it holds for every construct in an identifiable set
(e.g., the population of a type), the correspondence is stated at the schema level. This defini-
tion of a correspondence is called an Interdatabase Correspondence Assertion (ICA). The
complete integration of existing databases requires an exhaustive identification and process-
ing of all relevant ICA. 
In an exhaustive approach, the integration process consists in finding all interschema corre-
spondences and for each correspondence adding to the integrated schema and an integrating
description of the related elements (supporting the mapping at the instance level). Local ele-
ments with no counterpart are directly integrated in the global schema. At the end of the pro-
cess, the integrated schema provides a complete and non-redundant description of all data in
the global schema. The mappings between the integrated schema and the local schemas sup-
port integrated data access for users of the global schema.



9-156 9 • Mediator Development

Classification and detection
The objective of this phase is to identify constructs in the local schemas that may be related
and to classify the relationships among them. It is a two-phases process consisting of:
• identifying constructs that are related; 
• classifying the relationships among constructs.
The first phase requires that the intended semantics of constructs in databases be extracted
and constructs that are semantically related be identified. Once a potential set of related con-
structs has been identified, the second phase involves classifying these relationships into var-
ious categories. 
Roughly speaking, two categories of approaches are distinguished: approaches based on a
structural analysis and approaches based on an instance analysis.
Approaches based on a structural analysis. Approaches based on a structural analysis use
the knowledge conveyed by the various schematic constructs to deduce relationships among
constructs. Entity types, attributes and relationships represent the primary schematic con-
structs that can be analyzed to arrive at these relationships. [Larson, 1989] uses various prop-
erties of an attribute to establish relationships among attributes of two different entities
belonging to different schemas. The author suggests that attributes be compared on their
properties, and it provides definitions for assessing the degree of equivalence of the attributes.
For example, entity type could be compared on their names and the description of their roles
in the schema. To support the comparison on names, role, etc., sophisticated dictionary and
thesauri could be used. 
The objective of analyzing these schemas is to identify constructs that are semantically relat-
ed. However, it is necessary not only to identify but also to classify the relationships among
these constructs. The classification generated is dependent on the methodology used. For in-
stance, [Larson, 1989] generates four types of equivalences between attributes. There are a
EQUAL b, a CONTAINS b, a CONTAINED-IN b, a OVERLAP b. It goes on to define five types
of relationships among entities and relationships, each of which can be derived based on at-
tribute equivalences of key attributes. These relationships include A EQUAL B, A CONTAINS
B, A CONTAINED-IN B, A OVERLAP B and A DISJOINT B. Users are asked to specify one of
these types of relationships for every entity/relationship whose attributes have equivalence
relationships specified on them.
Approaches based on an instance analysis. The objective of these approaches is to deter-
mine instances of entity types in different sources that refer to the same real-world entity. The
simplest approach assumes that relations from different databases have a common key.
Hence, types that have a common key value identify the same real-world entity [DeMichiel,
1989]. However, a common key may not always be available. This is referred to as the key
equivalence problem. More details can be found in [Elmagarmid, 1999] and [Ramesh, 1997].



9.3 Schema Integration Issues 9-157

Resolution
As mentioned before, schema integration consists in determining the interschema correspon-
dence assertions (ICA) by considering both the instance and structural levels. At the instance
level, the entity types of the local schemas are usually set into a relationship with respect to
the extensional assertions [Spaccapietra, 1991]. According to [Spaccapietra, 1991], the fol-
lowing binary extensional assertions can be specified between two classes: disjointness (≠),
equivalence (≡), containment (⊇), and overlap (∩). The disjointness assertion states that the
two types are extensionally disjoint in each corresponding database state. The equivalence as-
sertion says that the two types are always extensionally equivalent. The containment assertion
is used to describe the fact that one type always extensionally contains the other class. The
overlap assertions means that the two types can overlap, that is, they may contain types that
refer the same real-world objects.
Types of different local schemas are set into a relationship by a set of schema integration op-
erations. The following list, proposed by [Türker, 1999], enumerates the basic operations for
"integrating" two entity types ET1 and ET2 with the respective intensions1 I1 and I2 and ex-
tensions2 C1 and C2.
• Generalization: the entity types ET1 and ET2 are generalized by a new entity type. The

intension of the new entity type is determined by the intersection of the intensions of the
entity types ET1 and ET2. The extension of the new entity type is given by the union of
the extensions of the entity types ET1 and ET2.

• Specialization: a new entity type is created as a specialization of the entity types ET1 and
ET2. The intension of the new entity type is determined by the union of the intensions of
the entity types ET1 and ET2. The extension of the new entity type is given by the inter-
section of the extensions of the entity types ET1 and ET2.

• Subtype: one entity type becomes the subtype (supertype) of the other entity type in the
global schema.

• Merging: the entity types ET1 and ET2 are merged into a new entity type. The intension
of the new entity type is determined by the union of the intension of the entity types ET1
and ET2. The extension of the new entity type is given by the union of the extensions of
the entity types ET1 and ET2. However, since the new entity type contains more
attributes than the input entity types, default or null values have to be generated for some
attributes.

• Partitioning: the entity types ET1 and ET2 are partitioned into entity types with disjoint
instance sets. Extensionally, overlapping entity types lead to three entity types (ET1 \
ET2), (ET1 ∩ ET2), (ET2 \ ET1) in the global schema. The entity type (ET1 \ ET2) con-
tains all the structures of the entity type ET1 that are not in ET2. Analogously, the entity

1. The intension of an entity type is determined by the set of structure definitions.
2. The extension of an entity type refers to an actual state of the database at a given time. 



9-158 9 • Mediator Development

type (ET2 \ ET1) refers to all structures of the entity type ET2 that are not in ET1. The
entity type (ET1 ∩ ET2) comprises all structures that are in both entity types. The inten-
sion of the entity type (ET1 \ ET2) equals the intension of the entity type ET1. Analo-
gously, the intension of the entity type (ET2 \ ET1) equals the intension of the entity type
ET2. The intension of the entity type (ET1 ∩ ET2) contains the union of the intensions of
both entity types.

The basic schema integration operations are illustrated in Figure 9-6.

Figure 9-6: Schema integration strategies (from [Türker, 1999]).

9.3.2 Interschema Conflicts

When an ICA describes the corresponding types as identical, integration is straightforward.
Most frequently, however, the corresponding types can have some discrepancies at both the
structural and instance levels. This situation is called a conflict.
A detailed taxonomy of conflicts can be found in [Sheth, 1993b]. In this section, we classify
the most common conflicts. Starting with structural conflicts for an overall view, we relate
them to instance conflicts and discuss basic techniques for conflict detection.

Structural conflicts
Due to heterogeneity at the schema level, schema integration has to deal with various kinds

C1 ∪ C2

I1 ∩ I2

C1

I1

C2

I2

Generalization

C1

I1

C2

I2

C1 ∩ C2

I1 ∪ I2

Specialization

C2

I2

C1

I1

Subtype

C1 ∪ C2

I1 ∪ I2

C1 \ C2

I1

C1 ∩ C2

I1 ∪ I2

C2 \ C1

I2

C1

I1

C2

I2

Merge Partition Preserve



9.3 Schema Integration Issues 9-159

of conflicts. A basic classification of structural conflicts has been introduced in [Spaccapietra,
1991]. Following this classification, structural conflicts are classified according two main
classes:
• description conflicts;
• semantic conflicts.
Description conflicts. The class of description conflicts comprise a large number of more
specific conflicts. Here, we only give some examples that illustrate typical description con-
flicts. 
Corresponding entity types are often described by different attributes in the local schemas.
This is due to different requirements of the local applications. In one legacy system, local ap-
plications need a certain attribute of the entity type whereas in another legacy system, no ap-
plication requires this attribute. This refers to the missing attribute in similar entity types in
different schemas [Elmagarmid, 1999]. The solution is to define an abstract type that contains
an aggregation of attributes from the underlying types and returns null for those instances that
originate from the type that has the missing attribute. However, the query that explicitly re-
trieves those instances that have null value for the attribute must not retrieve instances from
the type that has the missing attribute, since the attribute itself is undefined rather than the
values being unavailable.
Other often occurring description conflicts result from the usage of homonomyms and syn-
onyms for attribute names, entity type names, etc. In general, homonyms and synonyms can-
not be resolved in a fully automated way.
Further examples for description conflicts are that corresponding attributes may have differ-
ent data types or ranges in different legacy systems. Even if they have the same data type,
different units of measurement or a different scaling can be using within the legacy systems.
Semantics conflicts. This class of conflicts is caused by the usage of different modeling con-
cepts for expressing the same real-world fact. All data models offer several possibilities to
model the same real-world fact. Thereby, local schemas expressed in the same data model can
have different structures and constraints although they describe the same real-words facts. 
Semantics conflict detection requires knowledge about the problem domain, the local sche-
mas and the extensional correspondences. This task can be supported by thesauri or ontolo-
gies, but in general an automatic detection can only succeed in very restricted cases or
application domains.

Instance conflicts
This type of conflict occurs at the instance level if corresponding occurrences have conflict-
ing values for corresponding structures. For instance, the same order is stored in two different
databases with different customer identification values. Sources for instance conflicts include
typing errors, variety of information providers, different versioning, deferred updates [Parent,
2000]. These conflicts are normally found during query processing. The system may just re-
port the conflicts to the user, or might apply some heuristic to determine the appropriate val-



9-160 9 • Mediator Development

ue. 
[Sattler, 2002] identifies three kinds of instance conflicts; namely, representation conflicts,
identifier equivalence conflicts and attribute value conflicts. For data models with richer ex-
pressive power, we could add a further conflict class which refers to relationship conflicts
[Lim, 1998].
Representation conflicts. This refers to different representation of data values correspond-
ing to the same real-world fact. This could be caused, e.g., by different unit of measurements
(e.g., Belgian Franc vs. Euro), by different notations (e.g., "firstname lastname" vs. "last-
name, firstname") or simply different representations (e.g., ISBN with dashes vs. without
dashes).
Identifier equivalence conflicts. These arise when instances from different entity types re-
fer to the same real-world object but contain different identifiers. 
Attribute value conflicts. They occur when instances, which correspond to the same real-
world type and share an equivalent identifier, differ in other attributes. One reason for this
problem could be a situation, where two entity types from different sources overlap semanti-
cally and one of the entity type contains older or outdated data. 

9.4 InterDB Approach

The InterDB approach does not impose strict guidelines to integrate schemas. Experience has
shown that this process must be coped with through very flexible techniques, and that differ-
ent problems in the same federation may require different techniques. In addition, steps gen-
erally addressed in theoretical approaches to schema integration are of a lesser importance in
the InterDB framework since they have been performed in the reverse engineering process.
This is the case for conflict identification and conflict resolution.
Indeed, the reverse-engineering process (Chapter 6) has given analysts a strong knowledge of
the semantics of each construct of the local conceptual schemas. In addition, the normaliza-
tion step should have produced fairly neutral schemas, in which few complex representation
conflicts should remain. Therefore, identifying similar constructs and merging them is much
easier than when one processes still unidentified logical schemas as proposed in most feder-
ated schema building methodologies.

9.4.1 InterDB Principles

Conflict identification
In the InterDB integration methodology, conflicts can occur in three possible ways: syntactic,



9.4 InterDB Approach 9-161

semantic and instance. 
Syntactic conflict. Besides the usual conflicts related to synonyms and homonyms, a syntac-
tic conflict occurs when the same concept is presented by different object types in local sche-
mas. 

Example

For instance, the concept OrderDetail can be represented by an attribute (Figure 9-7, site
1) or by an entity type (Figure 9-7, site 2).

Figure 9-7: Syntactic conflict examples. The concept OrdDetail is a multivalued attribute in the
site 1 whereas it is represented by an entity type in the site 2.

Semantic conflict. A semantic conflict appears when a contradiction appears between two
representations A and B of the same application domain concept or between two integrity con-
straints. Solving such conflicts uses reconciliation techniques, generally based on the identi-
fication of set-theoretic relationships between these representations: A = B, A in B, A and B in
AB, etc.

Example 

Figure 9-8 shows an example of a semantic conflict between two attributes. In the site 1,
the attribute Phone is optional (its minimal cardinality is 0) whereas the same attribute is
mandatory in the site 2.

Order

OrdNum
Date
OrdDetail[0-N]

DetailNum
Quantity
Price
Label

id: OrdNum
id': OrdDetail[*].DetailNum

1-10-N of

OrdDetail
DetailNum
Quantity
Price
Label

id: DetailNum

Order

OrdNum
Date

id: OrdNum

Site 1 Site 2



9-162 9 • Mediator Development

 

Figure 9-8: Semantic conflict example. The attribute Phone is optional in the site 1 and manda-
tory in the site 2.

Instance conflicts. Instance conflicts are specific to existing data. Though their schemas
agree, the instances of the databases may conflict. This problem has been discussed in [Ver-
meer, 1996]. This process is highly knowledge-based and cannot be performed automatically.

Example

Consider the two local schemas of the top part of Figure 9-9. Common knowledge sug-
gests that USER be a subtype of EMPLOYEE. However, data analysis shows that
inst(EMPLOYEE) ⊆ inst(USER), where inst(A) denotes the set of instances of data type A.

Customer

CustID
Name
Phone[0-2]
Address

id: CustID

Customer

CustID
Name
Phone[1-2]
Address

id: CustID

Site 1 Site 2



9.4 InterDB Approach 9-163

Figure 9-9: Instance conflict example.

Conflict resolution
In the InterDB project, we state that most conflicts can be solved through four main tech-
niques that are used to rework the local schemas before their integration: renaming, general-
izing, transforming and discarding. 
1. Renaming. Constructs that denote the same application domain concepts are given the

same name.
2. Generalizing. If two constructs denote the same application domain concept, and if one

of them is more constrained, the constraint is relaxed. For example, a [0-10] cardinality
conflicts with a [1-N] cardinality. Both will be replaced with cardinality [0-N], which is
the strongest constraint compatible with both source cardinalities.

3. Transforming. An application domain concept can be represented by constructs of differ-
ent nature in source schemas. A supplier can be represented by an entity type in schema
1 and by an attribute in schema 2. The latter construct will be transformed into an entity
type to give both representations the same nature.

   

User

Number
Name
Department

id: Number

Employee

   

Employee

Number
Name
Department

id: Number

User

(a) (b)

Employee

Number
Name
Department

id: Number

User

Number
Name
Department

id: Number

Site 1 Site 2

OR

Conflict resolution

Common knowledgeInstance analysis



9-164 9 • Mediator Development

4. Discarding. A construct that conflicts with others can be merely ignored. his is the case
when the former appears to be a wrong translation of the application domain concept.

LCS merging
Since the syntactic, semantic and instance conflicts have been resolved by restructuring the
local schemas, merging the latter is fairly straightforward, and can be automated to a large
extent. Note that conflict resolution need not be completed as a preliminary process. Indeed,
conflicts can be completely or partially solved when merging schemas. According to this
strategy, the source schemas are left unchanged, and merging each pair of (sets of) constructs
can imply on-the-fly restructuring in order to solve conflicts.

9.4.2 Practical InterDB Methodologies

The InterDB approach recommends flexible and adaptive procedures, that are supported by
the DB-MAIN CASE tool, as will be shown in Chapter 10. Two main complementary strat-
egies are proposed. They will be described as scenarios for integrating two schemas, though
they can be generalized to N-ary strategies. In actual situations, both strategies can be used
alternately to solve different parts of the integration work.

Synthetic strategy
This procedure is proposed for situations in which semantically similar parts of the schemas
have almost identical representations. It is based on the following denotation assumptions:
• two objects of the same nature (entity type, relationship type or attribute) with the same

name denote exactly the same application domain concept,
• any pair of objects that does not satisfy this condition denote independent application

domain concepts.
This traditional strategy includes two sequential steps.
1. Pre-integration. This step is intended to make both schemas satisfy the denotation

assumptions. Similar objects are identified and, if needed, their name and nature are
modified accordingly. New objects can be introduced. For instance, if entity type E2 in
schema 2 is recognized as a subtype of E1 in schema 1, then an empty entity type with
name E1 is created in schema 2, and made a supertype of E2. 

2. Global merging. The schemas are merged according to the denotation assumptions. It is
based on the following rules:

• if two entity types have the same name, they are merged, i.e., only one is kept,
and their attributes are merged; non matching attributes of both entity types are
kept;

• if two attributes of merged objects have the same name, they are merged, i.e.,
only one is kept, and their attributes, if any, are merged; non matching attributes



9.4 InterDB Approach 9-165

of both parent objects are kept;
• if two relationship types have the same name, they are merged, i.e., only one is

kept and their roles and attributes are merged; non matching roles and attributes
of both relationship types are kept;

• if two roles of merged relationship types have the same name, they are merged,
i.e., only one is kept, and their attributes, if any, are merged.

This leads to a straightforward algorithm that can be easily automated.

Analytical strategy
The second strategy will be used in more complex situations. It consists in integrating pairs
of constructs individually.
1. Identifying similar constructs and their semantic relation. The process is based on the

knowledge gained by the analyst during the reverse engineering process, and on similar-
ities between related parts on the source schemas (such as name and structural close-
ness). The semantic relation is identified. We suggest to choose one of the following five
situations:

• identity: the constructs denote the same concept;
• complementarity: the constructs represent two facets of the same concept;
• subtyping: one construct denotes a subclass of the concept denoted by the other

one;
• common supertype: both constructs denote subclasses of an implicit concept;
• independence: the constructs denote independent concepts.

2. Solving representation conflicts. If necessary, names are changed and transformations are
applied to make merging in step 3 easier.

3. Merging. We consider the typical binary strategy in which the master schema is enriched
from the contents of a slave schema, which remains unchanged. According to the five
situations identified in step 1, applied to constructs M in the master schema, and S in the
slave schema, six actions will be proposed.

• identical(M,S): the components of S are transferred to M;
• complementarity(M,S): a copy of S is created in the master schema and is linked

to M;
• subtype_of(M,S): a copy of S is created in the master schema and is made a sub-

type of M;
• subtype_of(S,M): a copy of S is created in the master schema and is made a super-

type of M;
• common_supertype(M,S): a copy of S is created in the master schema and a new

construct is created and made the common supertype of M and S;
• independent(M,S): if the relation is true for all M's, a copy of S is created in the



9-166 9 • Mediator Development

master schema.
To make things more complex, the process must be considered recursively. Indeed, each con-
struct generally has components: an entity type has a name, attributes, roles, constraints and
textual annotations; an attribute has a name, a type, a length, sub-attributes and textual anno-
tations; a relationship type has a name, roles, attributes and textual annotations; a role has a
name, cardinality, one or several participating entity types and textual annotations. 
In each merging technique (but the last one) the components of M and S must be compared
pairwise, to identify their semantic relation and to decide on their integration strategy. For in-
stance, considering attribute AS of S, either AS is identical to attribute AM of M, in which case
they will be merged, or AS must be added to M. In the former case, C components (name,
type, annotation, etc.) of AS and AM are compared pairwise. Either they match, in which case
AM.C is kept, or they conflict, in which case a human decision must be made: either AM.C or
AS.C is kept, or a combination of both is adopted as AM.C (e.g., the concatenation of the an-
notations). 

Building the inter-schema mappings 
As stated in Chapter 4, our approach is schema transformation oriented in that we focus on
providing mechanisms for defining schema correspondences between each local schemas and
the global schema (Figure 9-10), and, on then using that equivalences to defined the mediator
mappings. As a result, transformation sequences for each pair of <local schema, global sche-
ma> have to be defined.

Figure 9-10: Schema integration as a set of schema transformation sequences.

Global
Schema

Local
Schema

Local
Schema

T1 T2



          

Chapter 10

Mediator Development Support

In which we analyse the requirements that CASE tools should meet for
the development of mediator systems. We then present an operational
CASE tool - DB-MAIN - which is intended to address some of these
requirements. 

10.1 Introduction

The mediator development methodology presented in Chapter 9 describes the general princi-
ples that can be used to achieve schema integration and mediator definition. It is clear from
this discussion that mediator development and schema integration are complex and time-con-
suming processes, and automation is desirable. However, automation of the process presents
number of challenges. [Sheth, 1989] notes that the schema integration process cannot be com-
pletely automated. This is primarily because two same schemas can be integrated differently
based on their intended use [Sheth, 1991]. It is however possible to reduce the amount of hu-
man interaction [Elmagarmid, 1999].
No tool has yet been developed as a commercial product. Some research projects have pro-
duced significant prototypes. They are dedicated either to the integration process or to the
building of mediators:
• For the integration process: [Hayne, 1992], [Gotthard, 1992] and [Ramesh, 1995] pro-

pose tools for automated interschema relationship identification. [Schwarz, 1998] pre-
sents a set of tools that support different issues of the process, e.g., methodology,
conflicts and similarities identification, semantics extraction.



10-168 10 • Mediator Development Support

• For the building of federation components: [Papakonstantinou, 1995] proposes an imple-
mentation toolkit that facilitates the rapid development of mediators; [Vidal, 1998] pre-
sents a meta-mediator providing a single meta-mediator interface for all the sources.
HERMES [Subrahmanian, 1995] provides a set of tools to support the construction of
mediators.

Many of these tools, however, appear to be limited in scope, and are generally dedicated to a
limited aspect of the federation development. They do not attempt to integrate techniques and
reasoning common to the integration process and the building of federation components,
leaving the question of a general tool for developing a mediator unanswered.

10.2 CASE Tool Requirements

The requirements of CASE tools dedicated to the mediator development are quite similar to
those dedicated to the wrapper development (Chapter 7). In this section, we study some prob-
lems specific of the mediation.

Support of the integration
Several integration strategies can be applied, depending on the complexity and the heteroge-
neity of the source databases and on the skill of the analyst. However, there exists a collection
of commonly used conflicts strategies that can be applied for conflicts solving [Subrahma-
nian, 1995]. The tool must include a collection of basic techniques for the integration instead
of a unique, automated, schema integrator. It must include a set of predefined functions for
detecting conflicts.
Each federation is a new problem of its own, requiring specific reasoning and techniques. In-
tegrating local schemas appears as a learning activity. The predefined tools should be easy to
customize and to program, and, specific functions should be easy to develop.
Solving syntactic, semantic and instance conflicts requires a great variety of information
sources: schemas, data (files, databases, spreadsheets, etc.), data mining analysis, domain
knowledge, etc. Hence, the tool must include browsing and querying interfaces with these
sources. Customizable functions for assisted specification analysis should be available for
each of them. In particular, the tool must include data mining techniques for the instance con-
flict identification.

Support of the mapping definition
Mediator specifications are based on mapping definition. The CASE tool should automatical-
ly generate and maintain information about mappings between schemas. It must also include
sophisticated automatic or assisted mapping analyzers and provide several ways of viewing
both mapping definition and schemas. 



10.3 DB-MAIN 10-169

Moreover, further information (e.g., transaction management or security) is necessary to
build efficient mediators. The CASE tool should maintain any type of information that can
be used for specific need. 

10.3 DB-MAIN

The DB-MAIN CASE environment [Hick, 2002] is a complete set of tools dedicated to data-
base applications engineering. This graphical, repository-based, software engineering envi-
ronment is dedicated to database applications engineering. The DB-MAIN CASE tool
addresses the main requirements developed in the previous sections. As a large-scope CASE
tool, DB-MAIN includes usual functions needed in data analysis and design, e.g. entry,
browsing, management, validation, transformation, as well as code and report generation. 
This graphical, repository-based, software engineering environment is dedicated to database
applications engineering. Besides standard functions such as specification entry, examination
and management, it includes advanced processors such as transformation toolboxes, reverse
engineering processors and schema analysis tools.    
It also provides powerful assistants to help developers and analysts carry out complex and te-
dious tasks in a reliable way. The assistants offer scripting facilities through which method
fragments can be developed and reused.
One of the main features of DB-MAIN is the Meta-CASE layer, which allows method engi-
neers to customize the tool and to add new concepts, functions, models and even new meth-
ods. The InterDB project has customized the DB-MAIN tool by extending its repository and
by adding concepts and processors specific to the mediator development. 

10.3.1 DB-MAIN Repository 

The repository collects and maintains all the information related to a schema integration. The
repository comprises three classes of information:
• a structured collection of schemas and texts used and produced in the wrapper develop-

ment,
• the specification of the methodology followed to conduct the wrapper development,
• the history (or trace) of the schema integration.
We will ignore the second class, which are related to methodological control and which is de-
scribed in [Roland, 1997]. We will discuss the third class in Section 10.3.3.
A schema is a description of the data structures to be processed, while a text is any textual
material generated or analyzed during the project (e.g. a program or an SQL script). A medi-
ator development comprises several schemas. The federation schemas are linked through spe-
cific relationships. The schema specification is based on the generic model defined in Chapter



10-170 10 • Mediator Development Support

3. Besides the standard concept of the generic model, the repository includes some meta-ob-
jects which can be customized according to specific needs. In addition, annotations can be
associated with each object. These annotations can include semi-formal properties, made of
the property name and its value. These features provide dynamic extensibility of the reposi-
tory. For instance, new concepts such as mapping definition can be represented by specializ-
ing the meta-objects, while statistics about entity populations can be represented by semi-
formal attributes. 

10.3.2 Integration Assistants

Schema integration occurs mainly when merging the local conceptual schemas into the global
schema. It also appears in reverse engineering to merge multiple descriptions into a unique
logical schema. In addition, several strategies can be applied, depending on the complexity
and the heterogeneity of the source databases and on the skill of the analyst. As a conse-
quence, DB-MAIN offers a toolbox for schema integration instead of a unique, automated,
schema integrator. Together with the transformation toolbox, the integration toolbox allows
manual, semi-automatic and fully automatic integration. The synthetic strategy is supported
by a schema integration processor that is based on the denotation assumptions. The analytical
strategy uses different processors, namely, the schema integration assistant and the object in-
tegration assistant.

Figure 10-1: Schema and object integration.

Schema integration assistant
This assistant integrates a schema into another schema (Figure 10-2) by using predefined
rules.



10.3 DB-MAIN 10-171

Figure 10-2: Schema integration assistant.

The rules used to integrate a (slave) schema into the another one (the master) are:
• If the slave data schema contains a new entity type, it is created. If the entity type already

exists, see the rules for two entity types with the same name.
• If the slave data schema contains a new rel-type, it is created. If the rel-type already

exists, see the rules for two rel-types with the same name.
• If the slave data schema contains a new collection, it is created. If the collection already

exists, see the rules for two collections with the same name.
• Two entity types with the same name: the short name is not modified. If there is an is-a

relation in the slave schema, the connection is created to the cluster if the connection
does not exist. If the entity type in the slave schema contains a new attribute, it is created.
If the attribute already exists, see the rules for two attributes with the same name. If the
entity type in the slave schema contains a new group, it is created. If the group already
exists, see the rules for two groups with the same name.

• Two rel-types with the same name: the short name is not modified. If the rel-type in the
slave schema contains a new attribute, it is created. If the attribute already exists, see the
rules for two attributes with the same name. If the rel-type in the slave schema contains a
new role, it is created. If the role already exists, see the rules for two roles with the same
name. If the rel-type in the slave schema contains a new group, it is created. If the group
already exists, see the rules for two groups with the same name.

• Two roles with the same name: the short name and the cardinality are not modified. If, in
the slave schema, the role is connected to an entity type to which it is not connected in
the schema, then the connection is created.



10-172 10 • Mediator Development Support

• Two attributes with the same name: the cardinality and the short name are not modified.
If the master is a not compound attribute and the slave is a compound attribute, the mas-
ter attribute is deleted and replaced by the slave one. If the master is a compound
attribute and the slave not, the master is not modified. If they are both compound or not,
the master is not modified. If the attribute in the slave schema is a compound attribute
that contains a new attribute, it is created. If the attribute already exists, see the rules for
two attributes with the same name. If the attribute in the slave schema contains a new
group, it is created. If the group already exists, see the rules for two groups with the same
name.

• Two groups with the same name: add the components that are defined in the slave
schema to the group if they are not present in the master. If, in the slave schema, the
group is the origin of a constraint, this constraint is added and the other one in the master
(if it exists) is deleted. 

• Two collections with the same name: Short name is not modified. Add to the collection
the entity type that were not connected.

Object integration assistant 
The object integration tool (Figure 10-3) integrates two objects (entity types, relationship
types or compound attributes) in the same data schema or between two different schemas
(from the slave to the master). There are six integration strategies. Attributes, processing
units, roles, is-a relations and their properties can be migrated selectively.
The object matching dialog box (Figure 10-4) is called by the same button and compares two
different components (attributes, processing units, roles or is-a relations) of the master and
slave objects. 

Example

Figure 10-3 shows the integration of entity types ORDER and ORD. When asserting that
ORDER.OrdNumber and ORD.Ord-Code are the same (Figure 10-3, button Same), the
assistant compares their properties and presents them whenever a conflict is detected.
Solving this conflict is up to the analyst (Figure 10-4).



10.3 DB-MAIN 10-173

Figure 10-3: The integration assistant. Entity types ORDER and ORD of two distinct local schemas
are examined for integration. Among the six integration strategies, the analyst chose the fourth one,
according to which ORDER is a supertype for ORD. The attributes and roles are compared and ei-
ther migrated (button <<Move) or merged (button Same). Here, the analyst is going to tell that at-
tributes OrdNumber and OrdCode have the same semantics, and that only the first one must be
kept.



10-174 10 • Mediator Development Support

Figure 10-4: The integration assistant: resolving the conflicting properties of attributes OrdNumber
and OrdCode that have been declared to be the same. Three conflicting properties have been iden-
tified: name, type and semantic description.

10.3.3 History

DB-MAIN automatically generates and maintains a history log (say h) of all the activities that
are carried out when the developer derives a schema B from schema A. This history is com-
pletely formalized in such a way that it can be replayed, analyzed and transformed. For ex-
ample, any history h can be inverted into history h'. Histories must be normalized to remove
useless sequences and dead-end exploratory branches. 
If hi expresses the structural mapping between a local schema LSi and the global schema GS,
and if ti is the instance mapping of hi, then {hi', ti} is the functional specification of the mapping
pair <LSi, GS>. For the global query decomposition into local queries, the mediator relies on
the set of pairs <LSi, GS> defined on each local schema and the global schema (Figure 10-5).

Figure 10-5: Histories between each pair of <local schema, global schema>.

Global
Schema

LS1

{h1',t1} {h2',t2}

LS2



10.4 InterDB Tools 10-175

10.4 InterDB Tools

The mediator is based on an extension of the DB-MAIN repository that describes the feder-
ated (or global) object-oriented schema, the local object-oriented schema of each wrapper, its
location, and the relationships between local and global schemas.
Two tools have been built around the DB-MAIN repository:
• History analyzer. A history basically is a procedural description of inter-schema map-

pings. The history analyzer analyses the histories in order to transform them into func-
tional specifications from which the global schema is enriched with its correspondences.
At current time, the history analyzer is not yet developed.

• JiDBM interface. The JiDBM interface is a Java API for accessing to the DB-MAIN
repository. JiDBM gives the Java-written mediator the access to the DB-MAIN reposi-
tory.

The interaction between these tools and the DB-MAIN repository is illustrated in Figure 10-6. 

Figure 10-6: The DB-MAIN tool and its interface with the mediator.

10.4.1 InterDB Extension of the DB-MAIN Repository

The DB-MAIN repository has been extended so that it is able to collect and maintain all the
information related to a database federation. The repository comprises three classes of infor-
mation:
• Schema description; 
• User-defined definition;
• Mediation operators (selection, union or join). 

DBRE
Processors

DB-MAIN Environment  

JiDBMMediator

Java Environement    

Object
Wrapper

Object
Wrapper

Repository

InterDB
Extension

Schema
Definition

User
Interface    

Transform.
History

History  
Analyzer

CASE
Tool



10-176 10 • Mediator Development Support

Schema description
A schema is a description of the data structures to be processed. A database federation usually
comprises many (i.e. dozens to hundreds of) schemas. The schemas of a database federation
are linked through specific relationships; they pertain to the federation hierarchy structure.
The DB-MAIN repository has been extended with meta-properties that represent the global/
local correspondences. A meta-property is defined as a triple <name, construct, value do-
main> that specifies that a construct is associated with a meta-property of value domain value
domain. Some of these meta-properties are represented in Figure 10-7.

Figure 10-7: Meta-properties defining the mapping properties between the local and global object
schemas.

User-defined function
For resolving domain discrepancies, user-defined functions are introduced. A typical appli-
cation is the conversion of attribute values (for instance, the Euro conversion of the Belgian
Franc) which are represented in a legacy database in a different way than needed by the actual
applications.
As introduced in the previous section, the schema transformations are defined as functional
extensions of the object types. A user-defined function can be attached to a schema transfor-
mation of a domain. Such a function is therefore used to transform attribute values if the func-
tion is attached to an attribute. We define the user-defined functions as: 
Definition. Let us consider an attribute A of a global object type OT: ƒ : tA → t is a function

which can be applied to values of domain tA defined for the attribute A of OT resulting in
values of domain t. 

Example

As an example for user-defined function, consider the conversion function for a price
attribute which converts Belgian Franc to Euro (Figure 10-8).

Meta Property Construct Value
InterDB-operator Object type selection | union | join
InterDB-local-sources Object type list of the sources
InterDB-local-objects Object type list of the local object types
InterDB-matching Object type list of the comparison local attributes
InterDB-function Object type name of the reconciliation function
InterDB-local-attributes Attribute list of the local corresponding attributes 
InterDB-function Attribute name of the conversion function



10.4 InterDB Tools 10-177

Figure 10-8: User-defined function example.

Mediation operators
For resolving instance discrepancies or conflicts, three mediation functions are introduced:
the selection, join and union operators. 
Selection function. The selection function is defined for resolving instance conflicts in a
same object by selecting and applying a reconciliation function. A reconciliation function is
a user-defined function which is called for each instances fulfilling the selection condition.
The affected instances are passed as arguments to the function, the resulting instance leads to
the object result. 
Definition. Let us consider a global object type OT which is defined by the selection of an

entity types OT1. OT and OT1 belong to different schemas. Let us consider α as the selec-
tion condition and ƒ  as the reconciliation function. The general form of this selection
function is: OT ←  selection(OT1,α,ƒ )

The function ƒ  is mandatory. The selection function is considered to be the selection product
of OT1 using the selection condition α. In summary, the join operation with a reconciliation
function ƒ  can be represented as follows: OT ←  ƒ (σα(OT1) )  where σα is the selection func-
tion defined by the selection condition α.
Join function. The join function is defined for integrating two local objects by joining and
applying a reconciliation function for resolving possible conflicts between certain attributes.
A reconciliation function is a user-defined function which is called for each instances fulfill-
ing the comparison condition. The affected instances are passed as arguments to the function,
the resulting instance is inserted into the global object. In this way, the value of a global at-
tribute can be computed from the (possibly) conflicting values of the corresponding local at-
tributes.
Definition. Let us consider a global object type OT which is defined by the join of two local

object types OT1 and OT2. OT1 and OT2 can belong to different schemas. Let us consider
α as the join condition and ƒ  as the reconciliation function. The general form of this join
function is: OT ←  join(OT1,OT2,α,ƒ ).

The function ƒ  is optional. Without a reconciliation function, the join function is considered
to be a Cartesian product of OT1 and OT2 with a subsequent selection using the selection con-
dition α. 
In summary, the join operation with a reconciliation function ƒ  can be represented as follows:
OT ←  ƒ (σα(OT1 ×  OT2) )  where σα is the selection function defined by the join condition α.

Integer BelgianFranc2Euro(Integer price) {
Integer priceEuro = new Integer();
priceEuro = price / 40,3399;
return priceEuro;

}



10-178 10 • Mediator Development Support

Example

Consider the local object types in Figure 10-9. WOS1 holds information about customers
whereas WOS2 holds information about their orders. In WOS2, the object type Customer

has an attribute CustID that references the customers recorded in WOS1.

Figure 10-9: Global object defined as the join of two local objects.

The parameters of the join operator are translated as meta-properties of the global object
type. Its meta-properties for the global object type OrderCustomer are given in Figure
10-10. 

Customer

CustID
Name
Address
Phone[0-1]

id: CustID

getCustID
getName
getAddress
getPhone

Order

OrderID
Date
Quantity
Product
CustID
id: OrderID

getCode
getDate
getQuantity
getProduct
getCustomer

OrderCustomer

CustID
Name
Address
Phone[0-1]
OrderID
Date
Quantity
Product
id: OrderID

CustID

getCustID
getName
getAddress
getPhone
getOrderID
getDate
getQuantity
getProduct

FOS 

WOS1 WOS2

Site1

Site2



10.4 InterDB Tools 10-179

Figure 10-10: Meta-property examples.

Union function. The union function is another way for integrating two objects by merging
them.
Definition. Let us consider a global object type OT which is defined by the union of two

local object types OT1 and OT2. OT1 and OT2 are of the same type. Let us consider α as
the union condition and ƒ  as the reconciliation function. The general form of this join
function is: OT ←  union(OT1,OT2,α,ƒ )

ƒ  is a reconcilation function which takes an instance from the union product of OT1 and OT2
and produces an instance of the type OT. 
We restrict the type OT in a way that it is the common super type being compatible to both
types OT1 and OT2. OT has exactly the same attributes (names) and each attribute has the
same type.
A union function can in principle be computed in the following way:
• by means of a standard union (in the set-theoretic sense, i.e., elimating duplicates);
• by applying the reconciliation function to each instance produced in the preceding step

we compute from the pair of values for each attribute one resolved value. For the
attributes in the union condition, the resolved value should be the common value or the
value which is different from the NULL value.

Example

To illustrate the union function, let us take up the example of Chapter 8. This example is
also showed in Figure 10-11. We recall that the example presents a global object type
(FOS) containing product information. This object type is the result of the union of two
local object types (WOS1 and WOS2) using the product number (Npro) as the matching
attribute and a reconciliation function resolveConflict (Figure 10-13) for resolving con-
flicts between two local objects Product having the same product number but two differ-
ent prices.

FOS.Product (object type)
Operator Join
Local objects WOS1.Customer

WOS2.Order

Matching attributes WOS1.Customer.CustID

WOS2.Order.CustID

Reconciliation function null



10-180 10 • Mediator Development Support

Figure 10-11: Global object type defined as the union of two local object types.

The parameters of the union operator are translated as meta-properties of the global
object type. Its meta-properties for the global object type Product are given in Figure 10-
12. 

Figure 10-12: Meta-property examples.

FOS.Product (object type)
Operator Union
Local objects WOS1.Product

WOS2.Product

Matching attributes WOS1.Product.Npro

WOS2.Product.Npro

Reconciliation function resolveConflict(WOS1.Product, WOS2.Product)

Product

Npro
Vendor
Price

id: Npro

getNpro
getVendor
getPrice

Product

Npro
Price

id: Npro
getNpro
getPrice

FOS 

WOS1 WOS2

Site1 Site2

Product

Npro
Vendor[0-1]
Price

id: Npro

getNpro
getPrice



10.4 InterDB Tools 10-181

Figure 10-13: Reconciliation function example.

10.4.2 History Analyzer

DB-MAIN can automatically generate and maintain a history log of all the transformations
that are applied when the developer carries out a schema integration. This history is complete-
ly formalized in such a way that it can be replayed, analyzed and transformed. 
A history basically is a procedural description of inter-schema mapping. This form does not
provide a good support for reasoning and processing, for which a functional expression is bet-
ter suited. 
A Voyager II program - history analyzer - analyses history log in order to transform them into
functional specifications from which the global schema is enriched with its correspondences.
The end product is an enriched global schema that includes, for each construct of a schema,
the way it has been mapped onto the constructs of the underlying local schemas. 
The type of the schema transformation is very important since they induce the presence of a
user-defined function or a mediation function. For instance, a domain transformation defined
for an attribute leads to a user-defined function that is used for transforming attribute values.
On the other hand, a naming transformation is sufficient by itself. Other illustrative examples
are shown in Figure 10-14.
 

GlobalObject resolveConflict(LocalObject i1, LocalObject i2) {
GlobalObject res = new GlobalObject();
// resolve price and vendor attribute:
if (i1 != null) {res.setString("Vendor", i1.getString("Vendor"));
                     res.setFloat("Price", i1.getFloat("Price"));
                     res.setString("Npro", i1.getString("Npro"));} // copy npro

else              {res.setString("Vendor", null);
                     res.setFloat("Price", i2.getFloat("Price"));
                     res.setString("Npro", i2.getString("Npro")); } // copy npro
return res;

}

Transformation (sequence) type Meta property Constructs

Renaming an attribute InterDB-local-attributes Attribute

Transforming a domain of an attribute InterDB-function Attribute

Adding an integrity constraint InterDB-function Object type



10-182 10 • Mediator Development Support

Figure 10-14: Transformation types and meta-properties. Some examples.

10.4.3 Java Access to the DB-MAIN Repository

JiDBM (Java Interface for DB-MAIN) is a Java API for accessing to the DB-MAIN reposi-
tory [Hainaut, 1998]. It consists of a set of classes written in Java programming language.
JiDBM makes therefore possible to write Java applications accessing the DB-MAIN reposi-
tory.

Example
Figure 10-15 presents a small java program which displays some statistics about an ER
schema. 

Merging two identical entity types into one 
entity type

InterDB-operator=UNION

InterDB-local-objects

InterDB-local-sources

InterDB-matching

Object type

Merging two different entity types into one 
entity type

InterDB-operator=JOIN

InterDB-local-objects

InterDB-local-sources

InterDB-matching

Object type

class test 
{

public static void main(String[] args) 
{

dbmRepository R = new dbmRepository("g:\\dbmain\\essai.lun");
dbmSystem dbm = R.getSystem();
System.out.println("\nProject" );
System.out.println("-----------------------");
System.out.println("  Name:" + dbm.name);
dbmSchema s = dbm.getFirstSchema();

        
if (s!=null)
{

   System.out.println("\nSchema" );
  System.out.println("--------------------------");

            System.out.println("  Name:" + s.name);
            System.out.println("  Version:" + s.version);

  System.out.println("\nRelationships" );
        System.out.println("---------------------------");

  dbmRelType rt = s.getFirstRelType();
            dbmRelType rt_c = rt;          

  while (rt!=null)
  {

             System.out.println("  " + rt.name);
dbmRole ro = rt.getFirstRole();
dbmRole ro_c = ro;
while (ro!=null)
{

Transformation (sequence) type Meta property Constructs



10.4 InterDB Tools 10-183

Figure 10-15: Java program example accessing to the DB-MAIN repository.

                 System.out.println("     " + ro.name+ 
                                                  "["+ro.minCon+":"+ro.maxCon+"]");

  ro = rt.getNextRole(ro_c);
  ro_c = ro;
}

    rt = s.getNextRelType(rt_c);
    rt_c = rt;
  }
  System.out.println("\nEntities and attributes" );

        System.out.println("---------------------------");
  dbmEntityType et = s.getFirstEntityType();

            dbmEntityType et_c = et;
  while (et!=null)
  {

                 System.out.println("  " + et.name);
       dbmAttribute att = et.getFirstAttribute();  

     dbmAttribute att_c = att;
        while (att!=null)

    {
                                           System.out.println("      " + att.name + 
                                                                                  "["+att.minRep+":"+att.maxRep+"]");

  att = et.getNextAttribute(att_c);
   att_c = att;

    }
    et = s.getNextEntityType(et_c);
    et_c = et;
  }

}
else {System.out.println("No schema");}

 }
}



10-184 10 • Mediator Development Support



 

References

[Aslan, 1999] G. Aslan, D. McLeod, "Semantic Heterogeneity Resolution in Federated Databases by
Metadata Implementaion and stepwise evolution", The VLDB Journal, Vol. 8, pp. 120-132, 1999.

[Atzeni, 1993] P. Atzeni, R. Torlone, "A Metamodel Approach for the Management of Multiple Models
and the Translation of Schemas", Information Systems, 18(1), pp. 134-143, 1993.

[Batini, 1986] C. Batini, M. Lenserini, and S.B. Navathe, "A Comparative Analysis of Methologies for
Database Schema Integration", ACM Computing Surveys, 18(4), Dec. 1986, pp. 323-364.

[Batini, 1992] C. Batini, S. Ceri and S.B. Navathe, "Conceptual Database Design - An Entity-Relation-
ship Approach", Benjamin/Cummings, 1992.

[Bayardo, 1997] R.J. Bayardo et al., "InfoSleuth: Agend-based Semantic Integration of Information in
Open and Dynamic Environment", SIGMOD Record, 26(2), pp. 195-206, June 1997.

[Beneventano, 1997] D. Beneventano, S. Bergamaschi, C. Sartori, M. Vincini, "ODB-QOPTIMIZER:
a Tool for Semantic Query Optimization in OODB", in Proc. of Int. Conference on Data Engineer-
ing (ICDE’97), 1997.

[Bergamaschi, 2001] S. Bergamaschi, S. Castano, D. Beneventano, M. Vinci, "Retrieving and Integrat-
ing Data for Multiple Sources: the MOMIS Approach", Data and Knowledge Engineering, 36,
2001.

[Bouguettaya, 1998]  A. Bouguettaya, B. Benetallah, A. Elmagarmid,  "Interconnecting Heterogeneous
Information Systems", Kluwer Academic Publishers, 1998.

[Brodie, 1995] M. Brodie, M. Stonebraker, "Migrating Legacy Systems", Morgan Kaufmann, 1995
[Busse, 2000] S. Busse, R-D. Kutsche, U. Leser, "Strategies for the Conceptual Design of Federated In-

formation Systems", in Proceedings of EFIS'00, pp. 23-32, IOS Press and Infix, 2000.
[Cali, 2001] A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini, "Accessing Data Integration Systems

through Conceptual Schemas", in Proceedings of ER’01, pp. 271-284, LNCS 2224, Springer-Ver-
lag, 2001.

[Castellanos, 1994] M. Castellanos, T. Kudrass, F. Saltor and M. Garcia-Solaco, "Interdatabase Exist-
ence Dependencies: a Metaclass Approach", in Proc. 3rd. Int. Conf. on Parallel and Distributed
Database System, pp. 213-216, IEEE Computer Society Press, 1994.

[Catarci, 1993] T. Catarci, M. Lenzerini, "Representing and Using Interschema Knowledge in Cooper-
ative Information Systems", Journal for Intelligent and Cooperative Information Systems, 2(4),



186 • References

WorldScientific Press, pp.375-399, 1993.
[Chandra, 1977] A.K. Chandra, P.M. Merlin, "Optimal Implementation of Conjunctive Queries in Re-

lational Databases", in  Proc. 9th Annual ACM Symposium on Theory of Computing, pp. 77-90,
ACM Press, 1977.

[Chawathe, 1994] S.S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.D.
Ullman, J. Widom, "The TSIMMIS Project: Integration of Heterogeneous Information Sources", in
Proceedings of the 10th Meeting of the Information Processing Society of Japan, pp. 7-18, 1994.

[Chen, 1998] Y. Chen, W. Benn, "Query Evaluation for Distributed Heterogeneous Relational Databas-
es", in Procceding of CoopIS’98, IEEE Computer Science Press, 1998.

[Cimitile, 1998] A. Cimitile, U. de Carlini, A. De Lucia, "Incremental Migration Strategies: Data Flow
Analysis For Wrapping", in Proc. of WCRE’98, IEEE Computer Society Press, pp. 59-68, 1998.

[Cluet, 1998] S. Cluet, Cl. Delobel, J. Siméon, K. Smaga, "Your Mediators Need Data Conversion!", in
Proceedings of SIGMOD Conference, pp. 177-188, 1998.

[Conrad, 1999] S. Conrad, W. Hasselbring, U. Hohenstein, R-D. Kutsche, M. Roantree, G. Saake, F.
Saltor, "Engineering Federated Information Systems - Report of EFIS'99 Workshop", ACM SIG-
MOD Record, 28(3), 1999.

[Date, 1995] C.J. Date, "An Introduction to Database Systems", 6th Edition, Addison-Wesley, 1995.
[Deacon, 1996] A. Deacon, H-J. Sheck, G. Weikum, "Semantics-based Multi-level Transaction Man-

agement in Federated Systems" in Proc. of 9th Conference on Parallel and Distributed Computing
Systems, pp. 759-765, Releigh, 1996.

[De Capitani, 1997] S. De Capitani di Vimercati and P. Samariti, "Authorization Specification and En-
forcement in Federated Database Systems", Journal of Computer Society, 5(2), pp. 155-188, 1997.

[Delcroix, 2001] C. Delcroix, Ph. Thiran, J-L. Hainaut, "Approche Transformationnelle de la Ré-in-
génierie des Données", Ingénierie des Systèmes d'Information, Hermes-Sciences, Paris, December
2001.

[DeMichiel, 1989] L. DeMichiel, "Resolving Database Incompatibility: an Approach to Performing Re-
lational Operations over Mismatched Domains", in IEEE Transactions on Knowledge and Data En-
gineering, 1(4), pp. 484-493, 1989.

[Denis, 2002] R. Denis, "Support à la Conception de Wrappers Conceptuels pour Bases de Données",
Mémoire de Graduat en Informatique, HEMES Liège, 2002.

[Dogac, 1995] A. Dogac and al., "METU Interoperable Database System", SIGMOD RECORD, Vol.
24(3), pp. 56-61, 1995.

[Elmagarmid, 1999] A. Elmagarmid, M. Rusinkiewicz, A. Sheth, "Management of Heterogeneous and
Autonomous Database Systems", Morgan Kaufmann, 1999.

[Englebert, 2001] V. Englebert, "Voyager II Manual", DB-MAIN Series, Institut d’Informatique, Uni-
versity of Namur, 2001.

[Gall, 1995] H. Gall, R. Klösh, "Finding Objects in Procedural Programs", in Proc. of the 2nd IEEE
Working Conf. on Reverse Engineering, Toronto, IEEE Computer Society Press, July 1995.

[Garcia, 1995] M. Garcia-Solaco, F. Saltor, M. Castellanos, "A Structure Based Schema Integration
Methodology", in Proceedings of the 11th International Conference of Interoperable Database Sys-
tems, IEEE CS Press, pp. 505-512, 1995.

[Garcia, 1996] M. Garcia-Solaco, F. Saltor, M. Castellanos, "Semantic Heterogeneity in Multidata-
base Systems", in Object-oriented Multidatabase Systems, O.A. Bukhres and A.K. Elmagarmid, ed-



187

itors, Prentice Hall, 1996. 
[Garcia, 1997] H. Garcia-Molina , Y. Papakonstantinou , D. Quass , A. Rajaraman , Y. Sagiv, J. Ullman,

V. Vassalos , J. Widom, "The TSIMMIS approach to mediation: Data models and Languages",
Journal of Intelligent Information Systems, 1997.

[Gardarin, 2002] G. Gardarin, A. Mensch, A. Tomasic, "An Introduction to the e-XML Data Integration
Suite", in Proceedings of EDBT 2002, pp. 297-306, LNCS, 2002.

[Geiger, 1995] K. Geiger, "Inside ODBC", Microsoft Programming Series, Microsoft Press, 1995.
[Genesereth, 1997] M.R. Genesereth, A.M. Keller, O.M. Dushcka, "Infomaster: an information integra-

tion system", in Proc. of ACM SIGMOD International Conference on Management of Data, pp.
539-542, 1997.

[Gligor, 1986] V. Gliglor and R. Popescu-Zeletin, "Transaction Management in Distributed and Heter-
ogeneous Database Management Systems", Information System, 11(4), pp. 287-297, 1986.

[Gray, 1993] J. Gray, A. Reuter, "Transaction Processing: Concepts and Techniques", Morgan Kauf-
mann Publishing, 1993.

[Hainaut, 1993b] J-L. Hainaut, M. Chandelon, C. Tonneau and M. Joris, Contribution to a Theory of
Database Reverse Engineering, in Proc. of the IEEE Working Conf. on Reverse Engineering, IEEE
Computer Society Press, pp. 161-170, May 1993.

[Hainaut, 1996] J-L. Hainaut, "Specification preservation in schema transformations - Application to
semantics and statistics", Data & Knowledge Engineering, Elsevier Science Publish, 16(1), 1996.

[Hainaut, 1996b] J-L. Hainaut, J. Henrard, J-M. Hick, D. Roland, V. Englebert, Database Design Re-
covery, in Proc. of the 8th Conf. on Advanced Information Systems Engineering (CAiSE'96),
Springer-Verlag, 1996.

[Hainaut, 1999] J-L. Hainaut, Ph. Thiran, J-M. Hick, S. Bodart, A. Deflorenne, "Methodology and
CASE tools for the development of federated databases", International Journal of Cooperative In-
formation Systems, 8(2-3), pp. 169-194, World Scientific, June and September, 1999.

[Hammer, 1997] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yernemi, M. Breunig, V. Vassalos,
"Template-based Wrappers in the TSIMMIS System", in SIGMOD Record, 26(2), pp. 532-535,
June 1997.

[Härder, 1999] Th. Härder, G. Sauter, J. Thomas, "The Intrinsic Problems of Structural Heterogeneity
and an Approach to their Solution", The VLDB Journal, Vol. 8, pp. 25-43, 1999.

[Hasselbring, 1999] W. Hasselbring, "Top-down vs. Bottom-up engineering of federated information
systems", in Proceedings of EFIS'99, pp. 131-138, Infix Verlag, 1999.

[Heimbigner, 1985] D. Heimbigner, D. McLoed, "A Federated Architecture for Information System",
ACM Transactions on Office Information Systems, 3(3), 1985.

[Henrard, 1999] J. Henrard, J-L. Hainaut, J-M. Hick, D. Roland, V. Englebert, "Data structure extrac-
tion in database reverse engineering, in REIS'99 Workshop, 1999.

[Hick, 2002] J-M. Hick, V. Englebert, J. Henrard, D. Roland, J-L. Hainaut, "The DB-MAIN Database
Engineering CASE Tool (version 6.5) - Functions Overview", DB-MAIN Technical manual, Institut
d'informatique, University of Namur, November 2002.

[Hull, 1997] R. Hull, "Managing Semantic Heterogeneity in Databases: A Theorical Perspec-
tive" in Proc. of ACM PODS, 1997.

[Hurson, 1994] A. R. Hurso, M. W. Bright, H. Pakzad, "Multidatabase Systems: An Advanced Solution
for Global Information Sharing", IEEE Computer Society Press, Los Alamitos, 1994.



188 • References

[Kaiser, 1992] G. Kaiser, C. Pu, "Dynamic Restructuring of Transactions", in Transaction Models for
Advanced Applications. Data Management Systems., A. Elmagarmid Ed., Morgan-Kaufman, 1992.

[Keim, 1996] D.A. Keim, H-P. Kriegel and A. Miethsam, "Object-oriented querying of Existing Rela-
tional Databases", in Fourth International Conference Database and Expert System Applications,
pp. 325-336, Springer-Verlag, 1993.

[Larson, 1989] J. Larson, S.B. Navathe and R. El-Masi, "A Theory of Attribute Equivalence and its Ap-
plications to Schema Integration", IEEE Transactions on Software Engineering, 15(4), pp. 449-462,
April 1989.

[Lenzerini, 2001] M. Lenzerini, "Data Integration is Harder than you Thought", Slides of an invited
talk in CoopIS’01, 2001.

[Levy, 1995] A.Y. Levy, D. Srivastava, T. Kirk, "Data Model and Query Evaluation in Global Informa-
tion Systems", Journal of Intelligent Information Systems, Special Issue on Networked Information
Discovery and Retrieval, 5(2), pp. 121-143, 1995.

[Levy, 1996] A. Levy, A. Rajamaran, J. Ordille, "Query Heterogeneous Information Sources Using
Source Description", in Proc. of the 22nd VLDB, pp. 252-262, 1996.

[Li, 2000] C. Li, E. Chang, "Query Planning with Limited Source Capabilities", in Proc. of  ICDE 2000,
pp. 401-412, 2000.

[Liang, 1999] S. Liang, "The Java Native Interface - Programmer’s Guide and Specification", The Java
Series, Addison-Wesley, 1999.

[Lim, 1998] E-P. Lim and R.H.L. Chiang, "A Global Object Model for Accomodating Instance Heter-
ogeneity", in Proceedings of ER’96, LNCS, Vol. 1507, pp. 435-448, Springer-Verlag, 1998. 

[Lim, 1999] E-P. Lim, H-K. Lee, "Export Database Derivation in Object-oriented Wrappers", in Infor-
mation and Software Technology, Vol. 41, pp. 183-196, Elsevier Science, 1999.

[Litwin, 1986] W. Litwin, A. Abdellatif, "Mutltidatabase Interoperability", IEEE Computer Magazine,
19(12), pp.10-18, 1986. 

[Litwin, 1994] W. Litwin, "Multidatabase Systems", Prentice Hall: Englowood Cliffs, 1994.
[Liu, 2000] D. Liu, K. Law, G. Wiederhold, "CHAOS: An Active Security Mediation System", in Pro-

ceedings of CAiSE, pp. 5 - 9, LNCS, Springer-Verlag, June 2000.
[Maniola, 1998] F. Manola and al., "Supporting Cooperation in Enterprise-Scale Distributed Object

Systems" in Cooperative Information Systems - Trends and Directions, M.P. Papazoglou and G.
Schlageter editors, Academic Press, 1998.

[Manolescu, 2001] I. Manolescu, D. Florescu, D. Kossman, "Pushing XML Queries inside Relational
Databases", Reasearch Report, INRIA Rocquencourt, 2001.

[Markowitz, 1993] V.M. Markowitz, A. Shoshani, "Object queries over relational databases: Language,
Implementation and Applications", in Proceedings of the Ninth International Conference on Data
Engineering, IEEE Computer Sciences Press, 1993.

[McBrien, 2000] P. McBrien, A. Poulovassilis, "Schema Evolution in Heterogeneous Database Archite-
tures- A Schema Transformation Approach", in Proceedings of CoopIS’00, LNCS, Springer-Ver-
lag, 2000.

[Meng, 1995] W. Meng, C. Yu, "Query Processing in Multidatabase Systems", in W. Kim (editor) Mod-
ern Database Systems, Addison-Wesley, pp. 551-572, 1995.

[Moss, 1985] J.E. Moss, "Nested Transactions: an Approach to Reliable Distributed Computing", The
MIT Press, Cambridge, USA, 1985.



189

[Mowbray, 1995] T. Mowbray and R. Zahavi, "The Essential CORBA: Systems Integration Using Dis-
tributed Objects", Wiley, New-York, 1995.

[Noël, 2001] B. Noël, "Générateur de serveurs de Business Objects pour Wrappers", Mémoire de Grad-
uat en Informatique, HEMES Liège, 2001.

[Özsu, 1991] M.T. Özsu, P. Valduriez, "Principles of Distributed Database Systems", Prentice Hall,
New Jersey, 1991.

[Özsu, 1999] M.T. Özsu, P. Valduriez, "Principles of Distributed Database Systems ", Prentice Hall,
Second Edition, New Jersey, 1999.

[Palopoli, 1999] L. Palopoli, G. Terracina, D. Ursino, "Semi-Automatic Techniques for Deriving Inter-
scheme Properties from Database Schemes", Data and Knowledge Engineering, 30(3), pp. 239-273,
1999.

[Parent, 1998] C. Parent and S. Spaccapietra, "Issues and Approaches of Database Integration", Com-
munications of the ACM, 41(5),  pp.166-178, 1998.

[Parent, 2000] Ch. Parent and St. Spaccapietra, "Database Integration: the Key of Data Interoperability",
in M.P. Papazoglou, S. Spaccapietra, Z.Tari, editors, Advances in Object-Oriented Data Modeling,
MIT Press, 2000.

[Papakonstantinou, 1995] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman, "A Query
Translation Scheme for Rapid Implementation of Wrappers", International Conference on Deduc-
tive and Object-Oriented Databases, 1995.

[Quian, 1995] X. Quian and L. Raschid, "Query Interoperation among Object-oriented and Relational
Databases", in Proceedings of the Eleventh International Conference on Data Engineering, IEEE
Computer Society Press, 1995.

[Radulescu, 2001] A. Radulescu, C. Nicolescu, A.J.C. van Gemund, P. Jonker, "CPR: Mixed Task and
Data Parallel Scheduling for Distributed Systems", in Proceedings of IPDPS, 2001.

[Ram, 1999] S. Ram and V. Ramesh, "Schema Integration: Past, Present and Future. In A.K. Elmagar-
mid, A.Sheth and M. Rusinkiewicz, editors, Management of Heterogeneous and Autonomous Da-
tabase Systems, pp. 119-155, Morgan Kaufmann, 1999.

[Ramesh, 1995] V. Ramesh and S. Ram, "A methodology for interschema relationship identification in
heterogeneous databases, Proceedings of the Hawaii International Conference on Systems and Sci-
ences, pp. 263-272, 1995.

[Ramesh, 1997] V. Ramesh and S. Ram, "Integrity Constraint Integration in Heterogeneous Databases:
an Enhanced Methodology for Schema Integration, Information Systems, 22(8), pp. 423-446, 1997.

[Reddy, 1998] P.K. Reddy and M. Kitsuregawa, "Reducing the Blocking in Two-Phase Commit Proto-
col Employing Backup Sites", in Proceedings of Coopis’98, IEEE Computer Sciences Press, 1998.

[Reese, 1998] Reese, "Database Programming with JDBC and JAVA", O'Reilly, Sebastopol, 1997.
[Roantree, 2001] M. Roantree, J.B. Kennedy, P.J. Barclay, "Using a Metada Software Layer in Infor-

mation Systems Integration", in Proceedings of CAiSE’01, pp. 299-314, LCNS 2068, 2001.
[Roland, 1997] D. Roland, J-L. Hainaut, "Database Engineering Process Modeling", in Proc. of the Int

Conference on The Many Facets of Process Engineering, 1997.
[Rosenthal, 1994] A. Rosenthal, D.S. Reiner, "Tools and Transformations - Rigorous and Otherwise -

for Practical Database Design", TODS, 19(2), pp.167-211, 1994.
[Roth, 1997] M. T. Roth, P. Schwarz, "Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data

Sources", in the Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997.



190 • References

[Rugaber, 1998] S. Rugaber and J. White, "Restoring a Legacy: Lessons learned", IEEE Software,
15(4):28-33, July-Aug 1998.

[Rushby, 1983] J. Rushby, B. Randell, "A Distributed Secure System", IEEE Computer, 16(7):55-67,
July, 1983.

[Sandu, 1996] R.S. Sandu, E.J. Coyne, H.L. Feinstein and C.E. Youman, "Role-based access control
models", IEEE Computer, 16(7):38-47, Feb. 1996.

[Samaras, 1995] G. Samaras, K. Britton, A. Citron and C. Mohan, "Two-phase Commit Optimizations
in a Commercial Distributed Environment", in Journal of Distributed and Parallel Databases, 3(4),
1995.

[Sattler, 2002] K-U. Sattler, S. Conrad, G. Saake, "Interactive Example-Driven Integration and Recon-
ciliation for Accessing Database Federations", Research Report, Magdeburg Universität, 2002.

[Schmitt, 1996] I. Schmitt, G. Saake, "Integration of Inheritance Trees as Part of View Generation For
Database Federations", in Proceedings of ER’96, pp. 195-210, 1996

[Schwarz, 1999] K. Schwarz, I. Schmitt, C. Türker, M. Höding, E. Hildebrandt, S. Balko, S. Conrad, G.
Saake, "Design Support for Database Federations", in Proceedings of ER'99, Paris, November 1999.

[Schwarz, 1999b] K. Schwarz, I. Schmitt, C. Türker, M. Höding, E. Hildebrandt, S. Balko, S. Conrad,
G. Saake, "Tool Support for the Design of Database Federations in SIGMA(FDB)", Technical Re-
port, Magdeburg University, 1999.

[Sheck, 1991] H-J. Sheck, G. Weikum, W. Schaad, "A Multi-level Transaction Approach to Federated
DBMS Transaction Management" in Proc. 1st Workshop on Interoperability of Multidatabase Sys-
tems, pp. 280-287, IEEE Computer Society Press, 1991.

[Sheth, 1989] A.P. Sheth and S. Gala, "Attribute relationships: an Impediment in Automating Schema
Integration", In Proceedings of the NSG Workshop on Heterogeneous Databases, December 1989.

[Sheth, 1990] A.P. Sheth and J.A. Larson "Federated Database Systems for Managing Distributed, Het-
erogeneous and Autonomous Databases", ACM Computing Surveys, 22(3):183-236, September
1990.

[Sheth, 1991] A.P. Sheth, "Issues in Schema Integration: Perspective of an Industrial Researcher", ARO
Workshop on Heterogeneous Databases, 1991.

[Sheth, 1993] A. Sheth, S. Gala and S. Navathe, "On Automatic Reasoning for Schema Integration",
International Journal on Intelligent and Cooperative Information Systems, 2(1), March 1993.

[Sheth, 1993b] A. Sheth and V. Kashyap, "So far (schematically), yet so near (semantically)", in Pro-
ceedings of the IFIP TC2/WG2.6 Conference on Semantics of Interoperable Database Systems, DS-
5, North-Holland, 1993.

[Sheth, 1990] A.P. Sheth and J.A. Larson "Federated Database Systems for Managing Distributed, Het-
erogeneous and Autonomous Databases", ACM Computing Surveys, 22(3):183-236, September
1990.

[Sneed, 1997] H.M. Sneed, "Program Interface Reengineering for Wrapping", in Proc. of the 4rd IEEE
Working Conf. on Reverse Engineering, IEEE Computer Society Press, 1997.

[Souder, 2000] T. Souder and S. Mancoridis, "A Tool for Securely Integrating Legacy Systems into a
Distributed Environment", in Proceedings of WCRE’00, IEEE Computer Society Press, 2000.

[Spaccapietra, 1991] S. Spaccapietra and C. Parent, "Conflicts and correspondence assertions in intero-
perable databases",  SIGMOD Record, 20(4), pp. 49-54, December 1991.

[Spaccapietra, 1994] S. Spaccapietra and C. Parent, "View Integration - A Step Forward in Solving



191

Structural Conflicts", IEEE Transactions on Knowledge and Data Engineering, 6(2), pp. 258-274,
1994.

[Templeton, 1995] M. Templeton, H. Henley, E. Maros, D.J. Van Buer, "InterVisio: Dealing with the
Complexity of Federated Database Access", The VLDB Journal, 4(2), pp. 287-317, 1995.

[Thiran, 1998] Ph. Thiran, J-L. Hainaut, S. Bodart, A. Deflorenne, J-M. Hick, "Interoperation of Inde-
pendent, Heterogeneous and Distributed Databases. Methodology and CASE Support: the InterDB
Approach" in Proceedings of CoopIS'98, IEEE, New-York, August 1998.

[Thiran, 1999] Ph. Thiran, J-L. Hainaut, J-M. Hick, A. Chougrani, "Generation of Conceptual Wrappers
for Legacy Databases", in Proceedings of DEXA'99, LCNS, Springer-Verlag, September 1999.

[Thiran, 2001a] Ph. Thiran, J-L. Hainaut, "Interoperability of Legacy Databases - A Combined Top-
Down and Bottom-Up Approach", in Proceedings of the Doctoral Consortium of CAiSE’01, 2001

[Thiran, 2001b] Ph. Thiran, J-L. Hainaut, "Wrapper Development for Legacy Data Reuse", in Proceed-
ings of WCRE’01, 2001

[Thiran, 2001c] Ph. Thiran, J-L. Hainaut, "Evolving Hybrid Databases: Architecture and Methodolo-
gy", in Proceedings of EFIS’01, October 2001.

[Terracina, 2000] G. Terracina and D. Ursino, "Deriving Synonymies and Homonymies of Object class-
es in semi-structured Information Sources", in Proc. of International Conference on Management
of Data (COMAD 2000), pp. 21-32, McGraw Hill, 2000.

[Tomasic, 1996] A. Tomasic, L. Raschid, P. Valduriez, "Scaling Heterogeneous Databases and the De-
sign of Disco", in Proceedings of the International Conference on Distributed Computer Systems,
1996.

[Türker, 1999] C. Türker, "Semantic Integrity Constraints in Federated Database Schemata", PhD The-
sis, Magdeburg Universität, Infix Press, 1999.

[Ullman, 1997] J.D. Ullman, "Information Integration Using Logical View", in Proc. of ICDE’97, vol-
ume 1186 of LNCS, pp. 19-40, Springer-Verlag, 1997.

[Umar, 1997] A. Umar, "Application (Re)Engineering - Building Web-Based Applications and Dealing
whith Legacies", Prentice Hall, 1997.

[Urban, 1991] S. Urban, J. Wu, "Resolving Semantic Heterogeneity Through the Explicit Representa-
tion of Data Model Semantics", SOGMOD Record, 20(4), pp. 55-58, 1991.

[van den Heuvel, 2000] W.J. van den Heuvel, W. Hasselbring, M. Papazoglou, "Top-Down Enterprise
Application Integration with Reference Models" in Proceedings of EFIS'00, pp. 11-22, IOS Press
and Infix, 2000.

[Vermeer, 1996] M.W.W. Vermeer and P.M.G Apers, "On the Applicability of Schema Integration
Techniques to Database Interoperation", in Proc. Of 15th Int. Conf. On Conceptual Modeling,
ER'96, Cottbus, pp. 179-194, Oct. 1996.

[Vermeer, 1997] M.W.W. Vermer, "Semantic Interoperability for Legacy Databases", PhD Thesis,
Twente University, 1997.

[Vidal, 1998] M.E. Vidal, L. Raschid, J-R. Gruser, "A Meta-Wrapper for Scaling up to Multiple Auton-
omous Distributed Information Sources", in Proc. of CoopIS’98, pp. 148-157, IEEE Computer Sci-
ences Press, 1998.

[Wiederhold, 1992] G. Wiederhold, "Mediators in the Architecture of Future Information Systems",
IEEE Computer, pp. 38-49, March 1992.

[Wiederhold, 1995] G. Wiederhold, "Value-Added Mediation in Large-Scale Information Systems",



192 • References

IFIP Data Semantics (DS-6), Atlanta, Georgia, 1995.
[Wiggerts, 1997] T. Wiggerts, H. Bosma, E. Fielt, "Scenarios for the Identification of Objects in Legacy

Systems", in Proceedings of WCRE’97, IEEE Computer Society Press, 1997.


