3,550 research outputs found

    Classifying High-Dimensional Patterns Using a Fuzzy Logic Discriminant Network

    Get PDF
    Although many classification techniques exist to analyze patterns possessing straightforward characteristics, they tend to fail when the ratio of features to patterns is very large. This “curse of dimensionality” is especially prevalent in many complex, voluminous biomedical datasets acquired using the latest spectroscopic modalities. To address this pattern classification issue, we present a technique using an adaptive network of fuzzy logic connectives to combine class boundaries generated by sets of discriminant functions. We empirically evaluate the effectiveness of this classification technique by comparing it against two conventional benchmark approaches, both of which use feature averaging as a preprocessing phase

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    A survey on artificial intelligence based techniques for diagnosis of hepatitis variants

    Get PDF
    Hepatitis is a dreaded disease that has taken the lives of so many people over the recent past years. The research survey shows that hepatitis viral disease has five major variants referred to as Hepatitis A, B, C, D, and E. Scholars over the years have tried to find an alternative diagnostic means for hepatitis disease using artificial intelligence (AI) techniques in order to save lives. This study extensively reviewed 37 papers on AI based techniques for diagnosing core hepatitis viral disease. Results showed that Hepatitis B (30%) and C (3%) were the only types of hepatitis the AI-based techniques were used to diagnose and properly classified out of the five major types, while (67%) of the paper reviewed diagnosed hepatitis disease based on the different AI based approach but were not classified into any of the five major types. Results from the study also revealed that 18 out of the 37 papers reviewed used hybrid approach, while the remaining 19 used single AI based approach. This shows no significance in terms of technique usage in modeling intelligence into application. This study reveals furthermore a serious gap in knowledge in terms of single hepatitis type prediction or diagnosis in all the papers considered, and recommends that the future road map should be in the aspect of integrating the major hepatitis variants into a single predictive model using effective intelligent machine learning techniques in order to reduce cost of diagnosis and quick treatment of patients

    LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System

    Full text link
    Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR {(Light Detection and Ranging)} and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.Comment: 34 page

    A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions

    Get PDF
    Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measurements are selected as fault indicators to extract meaningful features, using a discrete wavelet transform. These features are further reduced via the application of orthogonal fuzzy neighbourhood discriminative analysis. A recurrent neural network is then used to detect and classify the presence of bearing faults. The proposed system is implemented and tested in simulation on data collected from an experimental setup, to verify its effectiveness and reliability in accurately detecting and classifying the various faults

    Connectionist techniques to approach sustainability modelling

    Get PDF
    When defining a context of sustainability, capturing the complexity of data and extracting as much information as possible are fundamental challenges. Normally, quantitative and qualitative indicators are defined. While the definition and calculation of the former is direct, the latter are difficult to manage. This document provides tools based on connectionist techniques for managing complex information combining the use of imprecise and qualitative variables. The application of these tools to evaluate non-numerical sustainability indicators is presented. The results obtained in some first approaches are briefly presented to illustrate the connectionist paradigm
    • …
    corecore