1,703 research outputs found

    A Mental Workload Estimation Model for Visualization Using EEG

    Get PDF
    Various visualization design guides have been proposed and evaluated through quantitative methods that compare the response accuracy and time for completing visualization tasks. However, accuracy and time do not always represent the mental workload. Since quantitative approaches do not fully mirror mental workload, questionnaires and biosignals have been employed to measure mental workload in visualization assessments. The EEG as biosignal is one of the indicators frequently utilized to measure mental workload. Nevertheless, many studies have not applied the EEG for mental workload measurement in the visualization evaluation. In this work, we study the EEG to measure mental workload for visualization evaluation. We examine whether there is a difference in mental workload for the visualization designs suggested by the previously proposed visualization design guides. Besides, we propose a mental workload estimation model using EEG data specialized for each individual to evaluate visualization designs

    Detection, recuperation and cross-subject classification of mental fatigue

    Full text link
    La fatigue mentale est un Ă©tat complexe qui rĂ©sulte d'une activitĂ© cognitive prolongĂ©e. Les symptĂŽmes de la fatigue mentale inclus des changements d'humeur, de motivation et une dĂ©tĂ©rioration temporaire de diverses fonctions cognitives. Plusieurs recherches approfondies ont Ă©tĂ© menĂ©es pour dĂ©velopper des mĂ©thodes de reconnaissance des signes physiologiques et psychophysiologiques de la fatigue mentale. Les signes psychophysiologiques concernent principalement signaux d'activitĂ© cĂ©rĂ©brale et leur relation avec la psychologie et la cognition. Celles-ci ont permise le dĂ©veloppement de nombreux modĂšles basĂ©s sur l'IA pour classer diffĂ©rents niveaux de fatigue, en utilisant des donnĂ©es extraites d'un appareil eye-tracking, d'un Ă©lectroencĂ©phalogramme (EEG) pour mesurer l’activitĂ© cĂ©rĂ©brale ou d'un Ă©lectrocardiogramme (ECG) pour mesurer l’activitĂ© cĂ©rĂ©brale. Dans cette mĂ©moire, nous prĂ©sentons le protocole expĂ©rimental et dĂ©veloppĂ© par mes directeurs de recherche et moi-mĂȘme, qui vise Ă  la fois Ă  gĂ©nĂ©rer et mesurer la fatigue mentale, et Ă  proposer des stratĂ©gies efficaces de rĂ©cupĂ©ration via des sĂ©ances de rĂ©alitĂ© virtuelle couplĂ©es Ă  des dispositifs EEG et eye tracking. RĂ©ussir Ă  gĂ©nĂ©rer de la fatigue mentale est nĂ©cessaire pour gĂ©nĂ©rer un ensemble de donnĂ©es suivant l’évolution de la fatigue et de la rĂ©cupĂ©ration au cours de l’expĂ©rience, et sera Ă©galement utilisĂ© pour classer diffĂ©rents niveaux de fatigue Ă  l’aide de l’apprentissage automatique. Cette mĂ©moire fournit d'abord un Ă©tat de l'art complet des facteurs prĂ©dictifs de la fatigue mentale, des mĂ©thodes de mesure et des stratĂ©gies de rĂ©cupĂ©ration. Ensuite, l'article prĂ©sente un protocole expĂ©rimental rĂ©sultant de l'Ă©tat de l'art pour (1) gĂ©nĂ©rer et mesurer la fatigue mentale et (2) Ă©valuer l'efficacitĂ© de la thĂ©rapie virtuelle pour la rĂ©cupĂ©ration de la fatigue, (3) entrainer un algorithme d'apprentissage automatique sur les donnĂ©es EEG pour classer 3 niveaux de fatigue diffĂ©rents en utilisant un environnement simulĂ© de rĂ©alitĂ© virtuelle (VR). La thĂ©rapie virtuelle est une technique favorisant la relaxation dans un environnement simulĂ© virtuel et interactif qui vise Ă  rĂ©duire le stress. Dans notre travail, nous avons rĂ©ussi Ă  gĂ©nĂ©rer de la fatigue mentale en accomplissant des tĂąches cognitives dans un environnement virtuel. Les participants ont montrĂ© une diminution significative du diamĂštre de la pupille et du score thĂȘta/alpha au cours des diffĂ©rentes tĂąches cognitives. Le score alpha/thĂȘta est un indice EEG qui suit les fluctuations de la charge cognitiveet de la fatigue mentale. Divers algorithmes d'apprentissage automatique ont Ă©tĂ© formĂ©s et testĂ©s sur des segments de donnĂ©es EEG afin de sĂ©lectionner le modĂšle qui s'ajuste le mieux Ă  ces donnĂ©es en ce qui concerne la mĂ©trique d'Ă©valuation "prĂ©cision Ă©quilibrĂ©e" et "f1". Parmi les 8 diffĂ©rents classificateurs, le SVM RBF a montrĂ© les meilleures performances avec une prĂ©cision Ă©quilibrĂ©e de 95 % et une valeur de mesure f de 0,82. La prĂ©cision Ă©quilibrĂ©e fournit une mesure prĂ©cise de la performance dans le cas de jeu de donnĂ©es dĂ©sĂ©quilibrĂ©es, en tenant compte de la sensibilitĂ© et de la spĂ©cificitĂ©, et le f-score est une mesure d'Ă©valuation qui combine les scores de prĂ©cision et de rappel. Finalement, nos rĂ©sultats montrent que le temps allouĂ© Ă  la thĂ©rapie virtuelle n'a pas amĂ©liorĂ© le diamĂštre pupillaire en pĂ©riode post-relaxation. D'autres recherches sur l'impact de la thĂ©rapie devraient consacrer un temps plus proche du temps de rĂ©cupĂ©ration standard de 60 min.Mental fatigue is a complex state that results from prolonged cognitive activity. Symptoms of mental fatigue can include change in mood, motivation, and temporary deterioration of various cognitive functions involved in goal-directed behavior. Extensive research has been done to develop methods for recognizing physiological and psychophysiological signs of mental fatigue. Psychophysiological signs are mostly concern with patterns of brain activity and their relation to psychology and cognition. This has allowed the development of many AI-based models to classify different levels of fatigue, using data extracted from eye-tracking devices, electroencephalogram (EEG) measuring brain activity, or electrocardiogram (ECG) measuring cardiac activity. In this thesis, we present the experimental protocol developed by my research directors and I, which aims to both generate/measure mental fatigue and provide effective strategies for recuperation via VR sessions paired with EEG and eye-tracking devices. Successfully generating mental fatigue is crucial to generate a time-series dataset tracking the evolution of fatigue and recuperation during the experiment and will also be used to classify different levels of fatigue using machine learning. This thesis first provides a state-of-the-art of mental fatigue predictive factors, measurement methods, and recuperation strategies. The goal of this protocol is to (1) generate and measure mental fatigue, (2) evaluate the effectiveness of virtual therapy for fatigue recuperation, using a virtual reality (VR) simulated environment and (3) train a machine learning algorithm on EEG data to classify 3 different levels of fatigue. Virtual therapy is relaxation promoting technique in a virtual and interactive simulated environment which aims to reduce stress. In our work, we successfully generated mental fatigue through completion of cognitive tasks in a virtual simulated environment. Participants showed significant decline in pupil diameter and theta/alpha score during the various cognitive tasks. The alpha/theta score is an EEG index tracking fluctuations in cognitive load and mental fatigue. Various machine learning algorithm candidates were trained and tested on EEG data segments in order to select the classifier that best fits EEG data with respect to evaluation metric ‘balanced accuracy’ and 'f1-measures'. Among the 8 different classifier candidates, RBF SVM showed the best performance with 95% balanced accuracy 0.82 f-score value and on the validation set, and 92% accuracy and 0.90 f-score on test set. Balanced accuracy provides an accurate measure of performance in the case of imbalanced data, considering sensitivity and specificity and f-score is an evaluation metric which combines precision and recall scores. Finally, our results show that the time allocated for virtual therapy did not improve pupil diameter in the post-relaxation period. Further research on the impact of relaxation therapy should allocate time closer to the standard recovery time of 60 min

    Validation of fNIRS System as a Technique to Monitor Cognitive Workload

    Get PDF
    CognitiveWorkload (CW) is a key factor in the human learning context. Knowing the optimal amount of CW is essential to maximise cognitive performance, emerging as an important variable in e-learning systems and Brain-Computer Interfaces (BCI) applications. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising avenue of brain discovery because of its easy setup and robust results. It is, in fact, along with Electroencephalography (EEG), an encouraging technique in the context of BCI. Brain- Computer Interfaces, by tracking the user’s cognitive state, are suitable for educational systems. Thus, this work sought to validate the fNIRS technique for monitoring different CW stages. For this purpose, we acquired the fNIRS and EEG signals when performing cognitive tasks, which included a progressive increase of difficulty and simulation of the learning process. We also used the breathing sensor and the participants’ facial expressions to assess their cognitive status. We found that both visual inspections of fNIRS signals and power spectral analysis of EEG bands are not sufficient for discriminating cognitive states, nor quantify CW. However, by applying machine learning (ML) algorithms, we were able to distinguish these states with mean accuracies of 79.8%, reaching a value of 100% in one specific case. Our findings provide evidence that fNIRS technique has the potential to monitor different levels of CW. Furthermore, our results suggest that this technique allied with the EEG and combined via ML algorithms is a promising tool to be used in the e-learning and BCI fields for its skill to discriminate and characterize cognitive states.O esforço cognitivo (CW) Ă© um factor relevante no contexto da aprendizagem humana. Conhecer a quantidade Ăłptima de CW Ă© essencial para maximizar o desempenho cognitivo, surgindo como uma variĂĄvel importante em sistemas de e-learning e aplicaçÔes de Interfaces CĂ©rebro-Computador (BCI). A Espectroscopia Funcional de Infravermelho PrĂłximo (fNIRS) emergiu como uma via de descoberta do cĂ©rebro devido Ă  sua fĂĄcil configuração e resultados robustos. É, de facto, juntamente com a Electroencefalografia (EEG), uma tĂ©cnica encorajadora no contexto de BCI. As interfaces cĂ©rebro-computador, ao monitorizar o estado cognitivo do utilizador, sĂŁo adequadas para sistemas educativos. Assim, este trabalho procurou validar o sistema de fNIRS como uma tĂ©cnica de monitorização de CW. Para este efeito, adquirimos os sinais fNIRS e EEG aquando da execução de tarefas cognitivas, que incluiram um aumento progressivo de dificuldade e simulação do processo de aprendizagem. UtilizĂĄmos, ainda, o sensor de respiração e as expressĂ”es faciais dos participantes para avaliar o seu estado cognitivo. VerificĂĄmos que tanto a inspeção visual dos sinais de fNIRS como a anĂĄlise espectral dos sinais de EEG nĂŁo sĂŁo suficientes para discriminar estados cognitivos, nem para quantificar o CW. No entanto, aplicando algoritmos de machine learning (ML), fomos capazes de distinguir estes estados com exatidĂ”es mĂ©dias de 79.8%, chegando a atingir o valor de 100% num caso especĂ­fico. Os nossos resultados fornecem provas da prospecção da tĂ©cnica fNIRS para supervisionar diferentes nĂ­veis de CW. AlĂ©m disso, os nossos resultados sugerem que esta tĂ©cnica aliada Ă  de EEG e combinada via algoritmos ML Ă© uma ferramenta promissora a ser utilizada nos campos do e-learning e de BCI, pela sua capacidade de discriminar e caracterizar estados cognitivos

    A Novel Analysis of Performance Classification and Workload Prediction Using Electroencephalography (EEG) Frequency Data

    Get PDF
    Across the DOD each task an operator is presented with has some level of difficulty associated with it. This level of difficulty over the course of the task is also known as workload, where the operator is faced with varying levels of workload as he or she attempts to complete the task. The focus of the research presented in this thesis is to determine if those changes in workload can be predicted and to determine if individuals can be classified based on performance in order to prevent an increase in workload that would cause a decline in performance in a given task. Despite many efforts to predict workload and classify individuals with machine learning, the classification and predictive ability of Electroencephalography (EEG) frequency data has not been explored at the individual EEG Frequency band level. In a 711th HPW/RCHP Human Universal Measurement and Assessment Network (HUMAN) Lab study, 14 Subjects were asked to complete two tasks over 16 scenarios, while their physiological data, including EEG frequency data, was recorded to capture the physiological changes their body went through over the course of the experiment. The research presented in this thesis focuses on EEG frequency data, and its ability to predict task performance and changes in workload. Several machine learning techniques are explored in this thesis before a final technique was chosen. This thesis contributes research to the medical and machine learning fields regarding the classification and workload prediction efficacy of EEG frequency data. Specifically, it presents a novel investigation of five EEG frequencies and their individual abilities to predict task performance and workload. It was discovered that using the Gamma EEG frequency and all EEG frequencies combined to predict task performance resulted in average classification accuracies of greater than 90%

    SAFECAR: A Brain–Computer Interface and intelligent framework to detect drivers’ distractions

    Full text link
    As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been proposed as a promising way to detect distractions. However, existing solutions are not well suited for driving scenarios. They do not consider complementary data sources, such as contextual data, nor guarantee realistic scenarios with real-time communications between components. This work proposes an automatic framework for detecting distractions using BCIs and a realistic driving simulator. The framework employs different supervised Machine Learning (ML)-based models on classifying the different types of distractions using Electroencephalography (EEG) and contextual driving data collected by car sensors, such as line crossings or objects detection. This framework has been evaluated using a driving scenario without distractions and a similar one where visual and cognitive distractions are generated for ten subjects. The proposed framework achieved 83.9% -score with a binary model and 73% with a multiclass model using EEG, improving 7% in binary classification and 8% in multi-class classification by incorporating contextual driving into the training dataset. Finally, the results were confirmed by a neurophysiological study, which revealed significantly higher voltage in selective attention and multitasking
    • 

    corecore