13 research outputs found

    Intelligent Multi-Attribute Decision Making Applications: Decision Support Systems for Performance Measurement, Evaluation and Benchmarking

    Get PDF
    Efficiency has been and continues to be an important attribute of competitive business environments where limited resources exist. Owing to growing complexity of organizations and more broadly, to global economic growth, efficiency considerations are expected to remain a top priority for organizations. Continuous performance evaluations play a significant role in sustaining efficient and effective business processes. Consequently, the literature offers a wide range of performance evaluation methodologies to assess the operational efficiency of various industries. Majority of these models focus solely on quantitative criteria omitting qualitative data. However, a thorough performance measurement and benchmarking require consideration of all available information since accurately describing and defining complex systems require utilization of both data types. Most evaluation models also function under the unrealistic assumption of evaluation criteria being dependent on one another. Furthermore, majority of these methodologies tend to utilize discrete and contemporary information eliminating historical performance data from the model environment. These shortcomings hinder the reliability of evaluation outcomes leading to inadequate performance evaluations for many businesses. This problem gains more significance for business where performance evaluations are tied in to important decisions relating to business expansion, investment, promotion and compensation. The primary purpose of this research is to present a thorough, equitable and accurate evaluation framework for operations management while filling the existing gaps in the literature. Service industry offers a more suitable platform for this study since the industry tend to accommodate both qualitative and quantitative performance evaluation factors relatively with more ease compared to manufacturing due to the intensity of customer (consumer) interaction. Accordingly, a U.S. based food franchise company is utilized for data acquisition and as a case study to demonstrate the applications of the proposed models. Compatible with their multiple criteria nature, performance measurement, evaluation and benchmarking systems require heavy utilization of Multi-Attribute Decision Making (MADM) approaches which constitute the core of this research. In order to be able to accommodate the vagueness in decision making, fuzzy values are also utilized in all proposed models. In the first phase of the study, the main and sub-criteria in the evaluation are considered independently in a hierarchical order and contemporary data is utilized in a holistic approach combining three different multi-criteria decision making methods. The cross-efficiency approach is also introduced in this phase. Building on this approach, the second phase considered the influence of the main and sub-criteria over one another. That is, in the proposed models, the main and sub-criteria form a network with dependencies rather than having a hierarchical relationship. The decision making model is built to extract the influential weights for the evaluation criteria. Furthermore, Group Decision Making (GDM) is introduced to integrate different perspectives and preferences of multiple decision makers who are responsible for different functions in the organization with varying levels of impact on decisions. Finally, an artificial intelligence method is applied to utilize the historical data and to obtain the final performance ranking. Owing to large volumes of data emanating from digital sources, current literature offers a variety of artificial intelligence and machine learning methods for big data analytics applications. Comparing the results generated by the ANNs, three additional well-established methods, viz., Adaptive Neuro Fuzzy Inference System (ANFIS), Least Squares Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), are also employed for the same problem. In order to test the prediction capability of these methods, the most influencing criteria are obtained from the data set via Pearson Correlation Analysis and grey relational analysis. Subsequently, the corresponding parameters in each method are optimized via Particle Swarm Optimization to improve the prediction accuracy. The accuracy of artificial intelligence and machine learning methods are heavily reliant on large volumes of data. Despite the fact that several businesses, especially business that utilize social media data or on-line real-time operational data, there are organizations which lack adequate amount of data required for their performance evaluations simply due to the nature of their business. Grey Modeling (GM) technique addresses this issue and provides higher forecasting accuracy in presence of uncertain and limited data. With this motivation, a traditional multi-variate grey model is applied to predict the performance scores. Improved grey models are also applied to compare the results. Finally, the integration of the fractional order accumulation along with the background value coefficient optimization are proposed to improve accuracy

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies

    Optimization for Sustainable Design through Building Information Modeling

    Get PDF
    More than thirty years after the definition of the concept of sustainable development, the European Union's Agenda 2030 renews its commitment to protect the Planet and to support the needs of present and future generations. All sectors of human activity have to make their contribution to this significant challenge of our time. Therefore, the construction sector can also make an essential contribution in terms of its impact. In this context, designers are called upon to modify their actions in order to take into account the environmental, social, and economic impacts during the entire life cycle of construction. Therefore, a substantial transformation in the designer's "mentality" is necessary. The digital revolution could be a suitable opportunity for a profound renewal oriented towards sustainability. The new digital technologies and the increased computing power are useful to manage the increasing complexity in current projects and to support collaboration between the many experts involved. The thesis aim is to analyse the current state and identify the signs of change and the cues to imagine possible virtuous complicity between sustainable development goals and the potential of the digital revolution, supported by the operational features of optimization methods. The further intent is to translate the synergy between the three key topics - sustainability, digitization, and optimization - through an operational strategy that can be a concrete demonstration of what is proposed and offered to designers

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value

    Z-Numbers-Based Approach to Hotel Service Quality Assessment

    Get PDF
    In this study, we are analyzing the possibility of using Z-numbers for measuring the service quality and decision-making for quality improvement in the hotel industry. Techniques used for these purposes are based on consumer evalu- ations - expectations and perceptions. As a rule, these evaluations are expressed in crisp numbers (Likert scale) or fuzzy estimates. However, descriptions of the respondent opinions based on crisp or fuzzy numbers formalism not in all cases are relevant. The existing methods do not take into account the degree of con- fidence of respondents in their assessments. A fuzzy approach better describes the uncertainties associated with human perceptions and expectations. Linguis- tic values are more acceptable than crisp numbers. To consider the subjective natures of both service quality estimates and confidence degree in them, the two- component Z-numbers Z = (A, B) were used. Z-numbers express more adequately the opinion of consumers. The proposed and computationally efficient approach (Z-SERVQUAL, Z-IPA) allows to determine the quality of services and iden- tify the factors that required improvement and the areas for further development. The suggested method was applied to evaluate the service quality in small and medium-sized hotels in Turkey and Azerbaijan, illustrated by the example

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore