39 research outputs found

    Unimodular triangulations of dilated 3-polytopes

    Full text link
    A seminal result in the theory of toric varieties, due to Knudsen, Mumford and Waterman (1973), asserts that for every lattice polytope PP there is a positive integer kk such that the dilated polytope kPkP has a unimodular triangulation. In dimension 3, Kantor and Sarkaria (2003) have shown that k=4k=4 works for every polytope. But this does not imply that every k>4k>4 works as well. We here study the values of kk for which the result holds showing that: 1. It contains all composite numbers. 2. It is an additive semigroup. These two properties imply that the only values of kk that may not work (besides 1 and 2, which are known not to work) are k{3,5,7,11}k\in\{3,5,7,11\}. With an ad-hoc construction we show that k=7k=7 and k=11k=11 also work, except in this case the triangulation cannot be guaranteed to be "standard" in the boundary. All in all, the only open cases are k=3k=3 and k=5k=5.Comment: 23 pages, 17 figure

    On 4-Dimensional Point Groups and on Realization Spaces of Polytopes

    Get PDF
    This dissertation consists of two parts. We highlight the main results from each part. Part I. 4-Dimensional Point Groups. (based on a joint work with Günter Rote.) We propose the following classification for the finite groups of orthogonal transformations in 4-space, the so-called 4-dimensional point groups. Theorem A. The 4-dimensional point groups can be classified into * 25 polyhedral groups (Table 5.1), * 21 axial groups (7 pyramidal groups, 7 prismatic groups, and 7 hybrid groups, Table 6.3), * 22 one-parameter families of tubical groups (11 left tubical groups and 11 right tubical groups, Table 3.1), and * 25 infinite families of toroidal groups (2 three-parameter families, 19 two-parameter families, and 4 one-parameter families, Table 4.3.) In contrast to earlier classifications of these groups (notably by Du Val in 1962 and by Conway and Smith in 2003), see Section 1.7), we emphasize a geometric viewpoint, trying to visualize and understand actions of these groups. Besides, we correct some omissions, duplications, and mistakes in these classifications. The 25 polyhedral groups (Chapter 5) are related to the regular polytopes. The symmetries of the regular polytopes are well understood, because they are generated by reflections, and the classification of such groups as Coxeter groups is classic. We will deal with these groups only briefly, dwelling a little on just a few groups that come in enantiomorphic pairs (i.e., groups that are not equal to their own mirror.) The 21 axial groups (Chapter 6) are those that keep one axis fixed. Thus, they essentially operate in the three dimensions perpendicular to this axis (possibly combined with a flip of the axis), and they are easy to handle, based on the well-known classification of the three-dimensional point groups. The tubical groups (Chapter 3) are characterized as those that have (exactly) one Hopf bundle invariant. They come in left and right versions (which are mirrors of each other) depending on the Hopf bundle they keep invariant. They are so named because they arise with a decomposition of the 3-sphere into tube-like structures (discrete Hopf fibrations). The toroidal groups (Chapter 4) are characterized as having an invariant torus. This class of groups is where our main contribution in terms of the completeness of the classification lies. We propose a new, geometric, classification of these groups. Essentially, it boils down to classifying the isometry groups of the two-dimensional square flat torus. We emphasize that, regarding the completeness of the classification, in particular concerning the polyhedral and tubical groups, we rely on the classic approach (see Section 1.6). Only for the toroidal and axial groups, we supplant the classic approach by our geometric approach. We give a self-contained presentation of Hopf fibrations (Chapter 2). In many places in the literature, one particular Hopf map is introduced as “the Hopf map”, either in terms of four real coordinates or two complex coordinates, leading to “the Hopf fibration”. In some sense, this is justified, as all Hopf bundles are (mirror-)congruent. However, for our characterization, we require the full generality of Hopf bundles. As a tool for working with Hopf fibrations, we introduce a parameterization for great circles in S^3 , which might be useful elsewhere. Our main tool to understand tubical groups are polar orbit polytopes. (Chapter 1). In particular, we study the symmetries of a cell of the polar orbit polytope for different starting points. Part II. Realization Spaces of Polytopes (based on a joint work with Rainer Sinn and Günter M. Ziegler.) Robertson in 1988 suggested a model for the realization space of a d-dimensional polytope P, and an approach via the implicit function theorem to prove that the realization space is a smooth manifold of dimension NG(P) := d(f_0 + f_{d−1} ) - f{0,d-1} . We call NG(P) the natural guess for (the dimension of the realization space of) P. We build on Robertson's model and approach to study the realization spaces of higher-dimensional polytopes. We conclude combinatorial criteria (Sections 9.3.3 and 9.4.1) to decide if the realization space of the polytope in consideration is a smooth manifold of dimension given by the natural guess. As another application, we study the realization spaces of the second hypersimplices (Section 9.4.2). We apply these criteria on 4-polytopes with small number of vertices, and along the way, we analyze examples where Robertson’s approach fails, identifying the three smallest examples of 4-polytopes, for which the realization space is still a smooth manifold, but its dimension is not given by the natural guess (Section 9.5). Finally, we investigate the realization space of the 24-cell (Section 9.5.2). We construct families of realizations of the 24-cell, and using them we show that the realization space of the 24-cell has points where it is not a smooth manifold. This provides the first known example of a polytope whose realization space is not a smooth manifold. We conclude by showing that the dimension of the realization space of the 24-cell is at least 48 and at most 52.Diese Dissertation befasst sich mit zwei verschiedenen Themen, von denen jedes seinen eigenen Teil hat. Der erste Teil befasst sich mit 4-dimensionalen Punktgruppen. Wir schlagen eine neue Klassifizierung für diese Gruppen vor (siehe Theorem A), die im Gegensatz zu früheren Klassifizierungen eine geometrische Sichtweise betont und versucht, die Aktionen dieser Gruppen zu visualisieren und zu verstehen. Im Folgenden werden diese Gruppen kurz beschrieben. Die polyedrischen Gruppen (Kapitel 5) sind mit den regelmäßigen Polytopen verwandt. Die axialen Gruppen (Kapitel 6) sind diejenigen, die eine Achse festhalten. Die schlauchartigen Gruppen (Kapitel 3) werden als solche charakterisiert, die genau eine invariantes Hopf-Bündel haben. Sie entstehen bei einer Zerlegung der 3-Sphäre in schlauchartige Strukturen (diskrete Hopf-Faserungen). Die toroidalen Gruppen (Kapitel 4) sind dadurch gekennzeichnet, dass sie einen invarianten Torus haben. Wir schlagen eine neue, geometrische Klassifizierung dieser Gruppen vor. Im Wesentlichen läuft sie darauf hinaus, die Isometriegruppen des zweidimensionalen quadratischen flachen Torus zu klassifizieren. Nebenbei geben wir eine in sich geschlossene Darstellung der Hopf-Faserungen (Kapitel 2). Als Hilfsmittel für die Arbeit mit ihnen führen wir eine Parametrisierung für Großkreise in S 3 ein, die an anderer Stelle nützlich sein könnte. Der zweite Teil befasst sich mit Realisierungsräumen von Polytopen. Wir bauen auf Robertsons Modell und Ansatz auf, um die Realisierungsräume von Polytopen zu untersuchen. Wir stellen kombinatorische Kriterien auf (Abschnitte 9.3.3 und 9.4.1), um zu entscheiden, ob der Realisierungsraum des betrachteten Polytops eine glatte Mannigfaltigkeit der durch die “natürliche Vermutung” gegebenen Dimension ist. Als weitere Anwendung, untersuchen wir die Realisierungsräume der zweiten Hypersimplices (Abschnitt 9.4.2). Nebenbei identifizieren wir die kleinsten Beispiele von 4-Polytopen, für die dieser Ansatz versagt (Abschnitt 9.5). Schließlich untersuchen wir den Realisierungsraum der 24-Zelle (Abschnitt 9.5.2). Wir zeigen, dass es Punkte gibt, an denen sie keine glatte Mannigfaltigkeit ist. Zuletzt zeigen wir, dass seine Dimension mindestens 48 und höchstens 52 beträgt

    Some virtually special hyperbolic 3-manifold groups

    Full text link
    Let M be a complete hyperbolic 3-manifold of finite volume that admits a decomposition into right-angled ideal polyhedra. We show that M has a deformation retraction that is a virtually special square complex, in the sense of Haglund and Wise and deduce that such manifolds are virtually fibered. We generalise a theorem of Haglund and Wise to the relatively hyperbolic setting and deduce that the fundamental group of M is LERF and that the geometrically finite subgroups of the fundamental group are virtual retracts. Examples of 3-manifolds admitting such a decomposition include augmented link complements. We classify the low-complexity augmented links and describe an infinite family with complements not commensurable to any 3-dimensional reflection orbifold.Comment: 51 pages, 13 figures. Referee's comments incorporated. To appear in Commentarii Mathematici Helvetic

    Special vector configurations in geometry and integrable systems

    Get PDF
    The main objects of study of the thesis are two classes of special vector configurations appeared in the geometry and the theory of integrable systems. In the first part we consider a special class of vector configurations known as the V-systems, which appeared in the theory of the generalised Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. Several families of V-systems are known, but their classification is an open problem. We derive the relations describing the infinitesimal deformations of V-systems and use them to study the classification problem for V-systems in dimension 3. In particular, we prove that the isolated cases in Feigin-Veselov list admit only trivial deformations. We present the catalogue of all known 3D V-systems including graphical representations of the corresponding matroids and values of ν-functions. In the second part we study the vector configurations, which form vertex sets for a new class of polyhedra called affine B-regular. They are defined by a 3-dimensional analogue of the Buffon procedure proposed by Veselov and Ward. The main result is the proof of existence of star-shaped affine B-regular polyhedron with prescribed combinatorial structure, under partial symmetry and simpliciality assumptions. The proof is based on deep results from spectral graph theory due to Colin de Verdière and Lovász

    Recognition of affine-equivalent polyhedra by their natural developments

    Full text link
    The classical Cauchy rigidity theorem for convex polytopes reads that if two convex polytopes have isometric developments then they are congruent. In other words, we can decide whether two polyhedra are isometric or not by using their developments only. In this article, we study a similar problem about whether it is possible, using only the developments of two convex polyhedra of Euclidean 3-space, to understand that these polyhedra are (or are not) affine-equivalent.Comment: 23 pages, 4 figures, in Russia

    Polytopes and Loop Quantum Gravity

    Get PDF
    The main aim of this thesis is to give a geometrical interpretation of ``spacetime grains'' at Planck scales in the framework of Loop Quantum Gravity. My work consisted in analyzing the details of the interpretation of the quanta of space in terms of polytopes. The main results I obtained are the following: We clarified details on the relation between polytopes and interwiners, and concluded that an intertwiner can be seen unambiguously as the state of a \emph{quantum polytope}. Next we analyzed the properties of these polytopes: studying how to reconstruct the solid figure from LQG variables, the possible shapes and the volume. We adapted existing algorithms to express the geometry of the polytopes in terms of the holonomy-fluxes variables of LQG, thus providing an explicit bridge between the original variables and the interpretation in terms of polytopes of the phase space. Finally we present some direct application of this geometrical picture. We defined a volume operator such as in the large spin limit it reproduce the geometrical volume of a polytope, we computed numerically his spectrum for some elementary cases and we pointed out some asymptotic property of his spectrum. We discuss applications of the picture in terms of polytopes to the study of the semiclassical limit of LQG, in particular commenting a connection between the quantum dynamics and a generalization of Regge calculus on polytopes

    Reshaping Convex Polyhedra

    Full text link
    Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.Comment: Research monograph. 234 pages, 105 figures, 55 references. arXiv admin note: text overlap with arXiv:2008.0175

    Commensurability of hyperbolic Coxeter groups: theory and computation

    Get PDF
    For hyperbolic Coxeter groups of finite covolume we review and present new theoretical and computational aspects of wide commensurability. We discuss separately the arithmetic and the non-arithmetic cases. Some worked examples are added as well as a panoramic viewto hyperbolic Coxeter groups and their classification

    Virtual Polytopes

    Get PDF
    Originating in diverse branches of mathematics, from polytope algebra and toric varieties to the theory of stressed graphs, virtual polytopes represent a natural algebraic generalization of convex polytopes. Introduced as elements of the Grothendieck group associated to the semigroup of convex polytopes, they admit a variety of geometrizations. The present survey connects the theory of virtual polytopes with other geometrical subjects, describes a series of geometrizations together with relations between them, and gives a selection of applications
    corecore