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Summary and Introduction

This dissertation consists of two parts. We highlight the main results from each part.

Part I. 4-Dimensional Point Groups.
(This part is based on a joint work with Günter Rote [55].)

We propose the following classification for the finite groups of orthogonal transformations
in 4-space, the so-called 4-dimensional point groups.

Theorem A. The 4-dimensional point groups can be classified into

• 25 polyhedral groups (Table 5.1),
• 21 axial groups (7 pyramidal groups, 7 prismatic groups, and 7 hybrid groups,

Table 6.3),
• 22 one-parameter families of tubical groups (11 left tubical groups and 11 right

tubical groups, Table 3.1), and
• 25 infinite families of toroidal groups (Table 4.3), among them

– 2 three-parameter families,
– 19 two-parameter families, and
– 4 one-parameter families.

In contrast to earlier classifications of these groups (notably by Du Val in 1962 [23]
and by Conway and Smith in 2003 [14]), see Section 1.7), we emphasize a geometric
viewpoint, trying to visualize and understand actions of these groups. Besides, we correct
some omissions, duplications, and mistakes in these classifications.

Overview of the groups. The 25 polyhedral groups (Chapter 5) are related to the
regular polytopes. The symmetries of the regular polytopes are well understood, because
they are generated by reflections, and the classification of such groups as Coxeter groups
is classic. We will deal with these groups only briefly, dwelling a little on just a few
groups that come in enantiomorphic pairs (i.e., groups that are not equal to their own
mirror.)

The 21 axial groups (Chapter 6) are those that keep one axis fixed. Thus, they essen-
tially operate in the three dimensions perpendicular to this axis (possibly combined with
a flip of the axis), and they are easy to handle, based on the well-known classification of
the three-dimensional point groups.

The tubical groups (Chapter 3) are characterized as those that have (exactly) one
Hopf bundle invariant. They come in left and right versions (which are mirrors of each
other) depending on the Hopf bundle they keep invariant. They are so named because
they arise with a decomposition of the 3-sphere into tube-like structures (discrete Hopf
fibrations).

The toroidal groups (Chapter 4) are characterized as having an invariant torus. This
class of groups is where our main contribution in terms of the completeness of the
classification lies. We propose a new, geometric, classification of these groups. Essentially,
it boils down to classifying the isometry groups of the two-dimensional square flat torus.
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Summary and Introduction

We emphasize that, regarding the completeness of the classification, in particular
concerning the polyhedral and tubical groups, we rely on the classic approach (see Sec-
tion 1.6). Only for the toroidal and axial groups, we supplant the classic approach by
our geometric approach.

Hopf fibrations. We give a self-contained presentation of Hopf fibrations (Chap-
ter 2). In many places in the literature, one particular Hopf map is introduced as “the
Hopf map”, either in terms of four real coordinates or two complex coordinates, lead-
ing to “the Hopf fibration”. In some sense, this is justified, as all Hopf bundles are
(mirror-)congruent. However, for our characterization, we require the full generality of
Hopf bundles. As a tool for working with Hopf fibrations, we introduce a parameteriza-
tion for great circles in S3, which might be useful elsewhere.

Orbit polytope. Our main tool to understand tubical groups are polar orbit poly-
topes. (Chapter 1). In particular, we study the symmetries of a cell of the polar orbit
polytope for different starting points.

Part II. Realization Spaces of Polytopes.
(This part is based on a joint work with Rainer Sinn and Günter M. Ziegler [56].)

Robertson in 1988 [59] suggested a model for the realization space of a d-dimensional
polytope P , and an approach via the implicit function theorem to prove that the real-
ization space is a smooth manifold of dimension NG(P ) := d(f0 +fd−1)−f0,d−1. We call
NG(P ) the natural guess for (the dimension of the realization space of) P .

Combinatorial criteria. We build on Robertson’s model and approach to study the
realization spaces of higher-dimensional polytopes. We conclude combinatorial criteria
(Sections 9.3.3 and 9.4.1) to decide if the realization space of the polytope in con-
sideration is a smooth manifold of dimension given by the natural guess. As another
application, we study the realization spaces of the second hypersimplices (Section 9.4.2).

Counter-examples. We apply these criteria on 4-polytopes with small number of
vertices, and along the way, we analyze examples where Robertson’s approach fails,
identifying the three smallest examples of 4-polytopes, for which the realization space is
still a smooth manifold, but its dimension is not given by the natural guess (Section 9.5).

The 24-cell. Finally, we investigate the realization space of the 24-cell (Section 9.5.2).
We construct families of realizations of the 24-cell, and using them we show that the
realization space of the 24-cell has points where it is not a smooth manifold. This provides
the first known example of a polytope whose realization space is not a smooth manifold.
We conclude by showing that the dimension of the realization space of the 24-cell is at
least 48 and at most 52.
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Part I.

4-Dimensional Point Groups





1Orbit polytopes and point groups

1.1. Geometric understanding through orbit polytopes
A d-dimensional point group is a finite group of orthogonal transformations in Rd, or in
other words, a finite subgroup of O(d). One can try to visualize a point group G ⩽ O(d)
by looking at the orbit of some point 0 ̸= v ∈ Rd and taking the convex hull. This
is called the G-orbit polytope of v. For an in-depth study of orbit polytopes and their
symmetries, refer to [26, 27].

The orbit polytope will usually depend on the choice of v, and it may have other
symmetries in addition to those of G. For example, the Cn-orbit polytope in the plane
is always a regular n-gon, and this orbit polytope has the larger dihedral group D2n as
its symmetry group.

We will illustrate the usefulness of orbit polytopes with a three-dimensional example.
The pyritohedral group is perhaps the most interesting among the point groups in 3 di-
mensions. It is generated by a cyclic rotation of the coordinates (x1, x2, x3) 7→ (x2, x3, x1)
and by the coordinate reflection (x1, x2, x3) 7→ (−x1, x2, x3). It has order 24. Figure 1.1
shows a few examples of orbit polytopes for this group, and their polars. The elements
of the pyritohedral group are simultaneously symmetries of the octahedron (where it
is an index-2 subgroup of the full symmetry group) and the icosahedron (an index-5
subgroup), and of course of their polars, the cube and the dodecahedron. The group
contains reflections, but it is not generated by its reflections.

The orbit of the points (1, 0, 0) and (1, 1, 1) generate the regular octahedron and
the cube, respectively. These are each other’s polars, but they don’t give any specific
information about the pyritohedral group.

Figure 1.1a shows the orbit polytope (in yellow) of a generic point (2
3 , 1

2 , 1), and its
polar (in orange). The symmetries of these polytopes are exactly the pyritohedral group.
That orbit polytope has 6 rectangular faces (lying in planes of the faces of a cube), 8
equilateral triangles (lying in the faces of an octahedron), and 12 trapezoids (going
through the edges of some cube, but not of some regular octahedron). The polar has 24
quadrilateral faces, corresponding to the 24 group elements. For any pair of faces, there
is a unique symmetry of the polytope that maps one face to the other.1

If we choose one coordinate of the starting point to be 0, the rectangles shrink to
line segments, and the trapezoids become isosceles triangles. See Figure 1.1b. The orbit
polytope is an icosahedron with 20 triangular faces: 8 equilateral triangles and 12 isosceles
triangles. The polar polytope is a pyritohedron, that is, a dodecahedron with 12 equal
but not necessarily regular pentagons. For this choice, the orbit contains only 12 points,
but the polytope gains no additional symmetries beyond the pyritohedral symmetries.
However, for (0,

√
5−1
2 , 1), we get the regular icosahedron and the regular dodecahedron.

For the specific choice (0, 1
2 , 1), the polar orbit polytope is one of the crystal forms of

the mineral pyrite, which gave the polytope and group its name, see Figure 1.1b. This
polytope is also an alternahedron on 4 symbols [20]. An alternahedron can be constructed
as the orbit of a generic point (x1, x2, x3, x4) ∈ R4 under all even permutations. Since

1 In mineralogy, this shape is sometimes called a diploid, and diploidal symmetry is an alternative
name for pyritohedral symmetry. In our context, the term diploid will show up in a different sense.
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1. Orbit polytopes and point groups

the points lie in a hyperplane x1 + x2 + x3 + x4 = const, this is a three-dimensional
polytope. For the starting point (0, 1, 2), we obtain the alternahedron that results from
the canonical choice (x1, x2, x3, x4) = (1, 2, 3, 4), a scaled copy of Figure 1.1b.2

The pyritohedral group differs from the symmetries of the cube (or the octahedron)
by allowing only even permutations of the coordinates x1, x2, x3. When two coordinates
are equal, this distinction plays no role, and the resulting polyhedron will have all sym-
metries of the cube, see Figure 1.1f. (We mention that some special starting points of
this form lead to Archimedean polytopes: The starting point (1, 1,

√
2 + 1) generates

a rhombicuboctahedron with 8 regular triangles and 18 squares; (0, 1, 1) generates the
cuboctahedron with 8 regular triangles and 6 squares; with ( 1√

2+1 , 1, 1), we get the trun-
cated cube with 8 regular triangles and 8 regular octagons, similar to the yellow polytope
in Figure 1.1f.)

For the purpose of visualizing the pyritohedral group, we will try to keep the three
coordinates distinct. By choosing the point close to (1, 1, 1) or (0, 0, 1), we can empha-
size the cube-like or the octahedron-like appearance of the orbit polytope or its polar.
For example, the polar orbit polytope for (0, 1

10 , 1) resembles a cube whose squares are
subdivided into rectangles, like the orange polytope in Figure 1.1c. (Actually, the min-
eral pyrite has sometimes a cubic crystal form in which the faces carry parallel thin
grooves, so-called striations.3) See also Figure 1.1d for ( 2

10 , 1
10 , 1). The orbit polytope

in Figure 1.1c appears like an octahedron whose edges have been shaved off, but in an
asymmetric way that provides a direction for the edges (see Figure 5.4a on p. 83 in
Section 5.6).

On the other hand, the polar orbit polytope for ( 8
10 , 9

10 , 1) resembles an octahedron,
carrying a pinwheel-like structure on every face. See Figure 1.1e.

1.1.1. The pyritohedral group for flatlanders

We will be in the situation that we try to visualize 4-dimensional point groups through
orbit polytopes or their polars. So let us go one dimension lower and imagine that we,
as ordinary three-dimensional people, would like to explain the pyritohedral group to
flatlanders. We will see that different options have different merits, and there may be no
unique best way of visualizing a group.

Assuming that flatlanders accept the notions of a cube or an octahedron, we could tell
them that we build a cube whose squares are striped in such a way that the patterns on
adjacent squares never abut, similar to the orange polytope in Figure 1.1c. It is allowed
to map any square to any other square (6 possibilities) in such a way that the stripes
match (the dihedral group D4 with 4 possibilities, for a total of 24 transformations).

Alternatively, we could tell them that the edges of an octahedron are oriented such
that each triangle forms a directed cycle (Figure 5.4a on p. 83). It is allowed to map
any triangle to any other triangle (8 possibilities) in such a way that edge directions are
preserved (the cyclic group C3 with 3 possibilities, for a total of 24 transformations).

Another option is the polar of (c, 1, 1), where c ̸∈ {0, 1}, see the orange polytope in
Figure 1.1f. It has 24 isosceles triangles, one per group element, As c approaches 1 or
0, the polar orbit polytope converges to an octahedron or to a rhombic dodecahedron.
As a shape, the triangle does not reveal much about the group, so we have to add the
information that the base edge acts as a mirror, and the opposite vertex is a 3-fold
gyration point, i.e., there are three rotated copies that fit together. (This is essentially
what is expressed in the orbifold notation 3∗2.) We are not allowed to use the reflection

2 The illustration of this polytope in [20, Fig. 1] may make the wrong impression of consisting of
equilateral triangles only. However, its isosceles faces have base length 2 and two equal legs of length√

6 ≈ 2.45.
3 See http://www.mineralogische-sammlungen.de/Pyrit-gestreift-engl.html
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1.1. Geometric understanding through orbit polytopes

(a) ( 2
3 , 1

2 , 1) (b) (0, 1
2 , 1)

(c) (0, 1
10 , 1) (d) ( 2

10 , 1
10 , 1)

(e) ( 8
10 , 9

10 , 1) (f) ( 1
4 , 1, 1)

Figure 1.1.: Orbit polytopes of the pyritohedral group (yellow, on the left) and their polar
polytopes (orange, on the right) for various starting points. The pictures are rescaled to
uniform size; the scale is not maintained between the pictures.

that maps the triangle to itself, and we might indicate this by placing an arrow along
the base edge.

In most cases, it was advantageous to describe the group in terms of the polar orbit
polytope: We have many copies of one shape, and any shape can be mapped to any
other. It is not necessarily the best option to insist that all points of the orbit are
distinct. Sometimes it is preferable to allow also symmetries within each face. In this
case, the information, which of these symmetries are in the group must be conveyed as
side information, for example by decorations or patterns that should be left invariant,
such as the stripes in Figure 1.1c.

Figure 1.2 summarizes the relation between a polar orbit polytope and its group G.
All cells are equal, and the cells correspond to the points of the orbit. We know that
between any two cells, there is at least one transformation in G that carries one cell to
the other. However, it is not directly apparent which transformations carry one cell to
another cell, or to itself. If all symmetries of a cell belong to the group, the answer is
clear; otherwise we have to discuss this question and describe the answer separately.

The bottom row of Figure 1.2 splits this question into two subproblems that are
relevant only for tubical groups (Chapter 3), namely the relation between adjacent cells
in a tube, and between cells of different tubes.

1.1.2. Polar orbit polytopes and Voronoi diagrams

There is a well-known connection between polar orbit polytopes and spherical Voronoi
diagrams, or more generally, between polytopes whose facets are tangent to a sphere
and spherical Voronoi diagrams: The central projection of the polytope to the sphere

7



1. Orbit polytopes and point groups

Which symmetries of a cell are in G?

none some all. . . . . .

Which mappings between cells are in G?

orbit ≡ cells

(free orbit)︸ ︷︷ ︸

. . . between adjacent cells
on the top and bottom?

. . . in different tubes?

Figure 1.2.: Geometric understanding of a group G through is polar orbit polytope

Figure 1.3.: Spherical Voronoi diagrams of the orbits in Figure 1.1a and Figure 1.1e.

gives the spherical Voronoi diagram of the tangency points (the orbit points). Figure 1.3
shows spherical Voronoi diagrams for two orbits of Figure 1.1.

Thus, when we look at polar orbit polytopes, we may think about partitioning the
sphere according to the closest point from the orbit. The orbit polytope and the spher-
ical Voronoi diagram have the same combinatorial structure, but the faces of the orbit
polytope are true Euclidean polytopes, whereas the faces of the Voronoi diagram are
spherical polytopes. The closer the orbit points are together, the smaller the distortion
will be, and the more the orbit polytope will represent the true metric situation of the
Voronoi diagram.

In our illustrations of 4-dimensional groups, we will prefer to show orbit polytopes,
because these are easier to compute.

1.2. Fundamental domains and orbifolds
For comparison, we mention another way to characterize geometric groups, namely by
showing a fundamental domain of the group, possibly extended by additional information
that characterizes the type of rotations that fix an edge, such as in an orbifold. This is
particularly appropriate for Coxeter groups, which are generated by reflections and for
which the choice of fundamental domain is canonical.

Dunbar [24] studied orientation-preserving 4-dimensional point groups. He constructed
fundamental domains for 10 out of the 14 orientation-preserving polyhedral groups (omit-
ting ±[I × T ] and ±[I × O] and their mirrors). For each of the 21 orientation-preserving
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1.3. Left or right orientation of projected images: view from outside

polyhedral and axial groups, he showed the structure of the singular set (fixpoints of
some group elements) of the corresponding orbifold, which is a 3-valent graph where
each edge is labeled with the order of the rotational symmetry around the edge.4

The fundamental domain, possibly enriched by additional information, is a concise
way for representing some groups, but it does not have the immediate visual appeal of
polar orbit polytopes. For example, the fundamental domain of every Coxeter group is
a simplex, and the distinctions between different groups lies only in the dihedral angles
at the edges.

1.3. Left or right orientation of projected images: view
from outside

We will illustrate many situations in 4-space by three-dimensional graphics that are
derived through projection. Just as a plane in space has no preferred orientation, a 3-
dimensional hyperplane in 4-space has no intrinsic orientation. It depends on from which
side we look at it. Hence, it is important to establish a convention about the orientation,
in order to distinguish a situation from its mirror image.

Let us look at plane images of the familiar three-dimensional space “for orientation” in
this matter. For a polytope or a sphere, we follow the convention that we want to look at
it from outside, as for a map of some part of the Earth. Accordingly, when we interpret a
plane picture with an x1, x2-coordinate system (with x2 counterclockwise from x1), the
usual convention is to think of the third coordinate x3 as the “vertical upward” direction
that is facing us, leading to a right-handed coordinate system x1, x2, x3.

Similarly, when we deal with a 4-polytope and want to show a picture of one of its
facets, which is a three-dimensional polytope F , we use a right-handed orthonormal
x1, x2, x3-coordinate system in the space of F that can be extended to a positively
oriented coordinate system x1, x2, x3, x4 of 4-space such that x4 points outward from the
4-polytope.

We use the same convention when drawing a cluster of adjacent facets, or when illus-
trating situations in the 3-sphere, either through central projection or through parallel
projection. For example, a small region in the 3-sphere can be visualized as 3-space, with
some distortion, and we will be careful to ensure that this corresponds to a view on the
sphere “from outside”.

There are other contexts that favor the opposite convention. For example, stereo-
graphic projection is often done from the North Pole (x1, x2, x3, x4) = (0, 0, 0, 1) of S3,
and this yields a view “from inside” in the (x1, x2, x3)-hyperplane. See for example [67,
§7], or also [24, p. 123] for a different ordering of the coordinates with the same effect.

1.4. Point groups
The 2-dimensional point groups are the cyclic groups Cn and the dihedral groups D2n,
for n ≥ 1. For n ≥ 3, they can be visualized, respectively, as the n rotations of the
regular n-gon, and the 2n symmetries (rotations and reflections) of the regular n-gon.
See Figure 1.4.

The 3-dimensional point groups are well-studied (see Section 1.10 below). In one sen-
tence, they can be characterized as the symmetry groups of the five Platonic solids and
of the regular n-side prisms, and their subgroups. This gives a frame for classifying
these groups, but it does not give the full information. It remains to work out what

4 In the list of orientation-reversing polyhedral groups that are Coxeter groups [24, Figure 17], the
6th and 8th entries, which are the Coxeter-Dynkin diagrams for the orientation-reversing extensions
of T ×C3 T and J ×∗

J J1, must be exchanged.
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1. Orbit polytopes and point groups

C5 D10

Figure 1.4.: The group C5 consisting of the rotational symmetries of the regular pentagon,
and the group D10 of all symmetries of the regular pentagon.

the subgroups are, and moreover, there are duplications, for example: certain Platonic
solids are polar to each other; the vertices of the cube are contained in the vertices of an
icosahedron; and in turn, they contain the vertices of a tetrahedron; a cube is a special
quadrilateral prism.

1.5. The 4-dimensional orthogonal transformations

1.5.1. Orientation-preserving transformations

We call a 4-dimensional orientation-preserving transformation a rotation. In some ap-
propriate basis with coordinates x1, x2, x3, x4, every rotation has the form

Rα1,α2 =


cos α1 − sin α1 0 0
sin α1 cos α1 0 0

0 0 cos α2 − sin α2
0 0 sin α2 cos α2

 =
(

Rα1 0
0 Rα2

)
= diag(Rα1 , Rα2)

(1.1)
in block form, using the rotation matrices Rα =

( cos α − sin α
sin α cos α

)
as building blocks [16,

§12.1]. If α2 = 0, we have a simple rotation: a rotation in the x1x2-plane by the angle
α1, leaving the complementary x3x4-plane fixed. Thus, the general rotation is the product
of two simple rotations in two orthogonal planes, and we call it more specifically a double
rotation. If α2 ̸= ±α1 then the two planes are uniquely determined. Each plane is an
invariant plane: as a set, it is fixed by the operation.

If α1 = α2 = π, the matrix is the negative identity matrix, and we have the central
inversion or antipodal map, which we denote by −id. In R4, this is an orientation-
preserving transformation.

1.5.2. Absolutely orthogonal planes and circles

When we speak of orthogonal planes in 4-space, we always mean “absolutely” orthogonal,
in the sense that every vector in one plane is orthogonal to every vector in the other
plane.

We will mostly study the situation on the sphere. Here, an invariant plane becomes
an invariant great circle, and there are absolutely orthogonal great circles.

1.5.3. Left and right rotations

The rotations with α2 = ±α1 play a special role: Every point is moved by the same
angle |α1|, and there is no unique pair of invariant planes. The rotations with α2 = α1
are left rotations, and the rotations with α2 = −α1 are right rotations. It is easy to
see that every rotation Rα1,α2 is the product of a left and a right rotation (with angles
(α1 ± α2)/2). This representation is unique, up to a multiplication of both factors with
−id. Left rotations commute with right rotations. These facts are not straightforward,
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1.5. The 4-dimensional orthogonal transformations

but they follow easily from the quaternion representation that is discussed below. The
product of a left rotation by βL and a right rotation by βR is a rotation RβL+βR,βL−βR

.

1.5.4. Orientation-reversing transformations

An orientation-reversing transformation has the following form, in some appropriate
basis with coordinates x1, x2, x3, x4:

R̄α =


cos α − sin α 0 0
sin α cos α 0 0

0 0 −1 0
0 0 0 1

 = diag(Rα, −1, 1) (1.2)

It operates in some three-dimensional subspace x1, x2, x3 and leaves one axis x4 fixed.
The x3-axis is inverted. For α = 0, we have a mirror reflection in a hyperplane, R̄0 =
diag(1, 1, −1, 1). For α = π, we have R̄π = diag(−1, −1, −1, 1), which could be inter-
preted as a reflection in the x4-axis. In general, we have a rotary-reflection, which has
two unique invariant planes: In one plane, it acts as a rotation by α; in the other plane,
it has two opposite fixpoints in S3, and two other opposite points that are swapped. The
square of an orientation-reversing transformation R̄α is always a simple rotation.

1.5.5. Quaternion representation

The quaternions x1 + x2i + x3j + x4k are naturally identified with the vectors x =
(x1, x2, x3, x4) ∈ R4. We identify the set of unit quaternions with S3, the 3-sphere, and
the set of pure unit quaternions v1i + v2j + v3k with the points (v1, v2, v3) on S2, the
2-sphere.

Every 4-dimensional rotation can be represented by a pair [l, r] of unit quaternions
l, r ∈ S3. See [14, §4.1]. The pair [l, r] operates on the vectors x ∈ R4, treated as
quaternions, by the rule

[l, r] : x 7→ l̄xr.

The representation of rotations by quaternion pairs is unique except that [l, r] = [−l, −r].
The rotations [l, 1] are the left rotations, and the rotations [1, r] are the right rotations:
They correspond to quaternion multiplication from the left and from the right. A left or
right rotation moves every point by the same angular distance α. In fact, as we shall see
(Proportion 2.2.7(ii)), a left or right rotation by an angle α other than 0 or π defines
a Hopf bundle, a decomposition of the 3-sphere S3 into circles, each of which is rotated
in itself by α. As transformations on S3, they operate as left screws and right screws,
respectively. See Section 2.2.1.

We compose transformations by writing them from left to right, i.e. [l1, r1][l2, r2] de-
notes the effect of first applying [l1, r1] and then [l2, r2].5 Accordingly, composition can
be carried out as componentwise quaternion multiplication: [l1, r1][l2, r2] = [l1l2, r1r2].

Every orientation-reversing transformation can be represented as

∗[l, r] : x 7→ l̄x̄r.

See [14, §4.1]. The stand-alone symbol ∗ is alternate notation for quaternion conjugation
∗[1, 1] : x 7→ x̄. Then ∗[a, b] can be interpreted as a composition of the operations ∗ and
[a, b]. Geometrically, the transformation ∗ maps (x1, x2, x3, x4) to (x1, −x2, −x3, −x4),
and it is a reflection in the x1-axis. The transformation −∗ maps (x1, x2, x3, x4) to
(−x1, x2, x3, x4), and it is a reflection in the hyperplane x1 = 0.

5 Du Val [23] used the opposite convention, and accordingly his notation [l, r] denotes the map x 7→ lxr̄.
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1. Orbit polytopes and point groups

The inverse transformations are given by these formulas:

[l, r]−1 = [l̄, r̄]
(∗[l, r])−1 = ∗[r̄, l̄] = [l̄, r̄]∗ (1.3)

The last equation in (1.3) is also interesting: We may put the ∗ operation on the other
side of a transformation [l, r] after swapping the components l and r.

For l = r, it is easy to see that [l, l] maps the point 1 to itself, and thus operates only
on the pure quaternion part. Thus, the pairs [l, l] act as 3-dimensional rotations. For
l = cos α + sin α(ui + vj + wk), [l, l] performs a rotation by 2α around the axis with unit
vector (u, v, w) ∈ R3. We will denote [l, l] by [l] : x 7→ l̄xl. When viewed as an operation
on the unit sphere S2, [l] is a clockwise rotation by 2α around the point (u, v, w).6 Note
that, when the quaternion l is used as a left rotation [l, 1] or a right rotation [1, l] in
4-space, every point is rotated only by α, not by 2α.

1.6. The classic approach to the classification
For a finite subgroup G ⩽ SO(4), we can consider the group

A = { (l, r) ∈ S3 × S3 | [l, r] ∈ G },

which is a two-fold cover of G, as each rotation [l, r] ∈ G is represented by two quaternion
pairs (l, r) and (−l, −r) in A. The elements l and r of these pairs form the left and the
right group of G:

L := { l | (l, r) ∈ A }, R := { r | (l, r) ∈ A }

These are finite groups of quaternions.

Proposition 1.6.1. There is a one-to-one correspondence between

1. The finite subgroups G of SO(4)

2. The subgroups A of L × R that contain the element (−1, −1), where L and R are
finite groups of unit quaternions.

Since there are only five possibilities for finite groups of unit quaternions (including
two infinite families, see Section 1.11), this makes it easy, in principle, to determine the
finite subgroups of SO(4).

One task of this program, the enumeration of the subgroups A of a direct product
L×R is guided by Goursat’s Lemma, which was established by Goursat [30] in this very
context: The groups

L0 := { l | (l, 1) ∈ A }, R0 := { r | (1, r) ∈ A }

form normal subgroups of L and R, which we call the left and right kernel of G. The group
A, and hence G, is determined by L, R, L0, R0 and an isomorphism Φ : L/L0 → R/R0
between the factor groups:

G = { [l, r] ∈ SO(4) | l ∈ L, r ∈ R, Φ(lL0) = rR0 }

6 Measuring the rotation angle clockwise is opposite to the usual convention of regarding the coun-
terclockwise direction as the mathematically positive direction. This is a consequence of writing the
operation [l] as x 7→ l̄xl (as opposed to the alternative x 7→ lxl̄, which was chosen, for example, by
Du Val [23]) and regarding the quaternion axes i, j, k as a right-handed coordinate frame of 3-space,
see [18, Exercise 6.4 on p. 67, answer on pp. 189–190].
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1.7. Previous classifications

The task reduces to the enumeration of all possibilities for the components L, R, L0, R0, Φ,
and to the less trivial task of determining which parameters lead to geometrically equal
groups.

This approach underlies all classifications so far, and we call it the classic classification.

1.7. Previous classifications
• Goursat [30], in 1889, classified the finite groups of motions of elliptic 3-space.

Elliptic 3-space can be interpreted as the 3-sphere S3 in which antipodal points
are identified. Hence, these groups can be equivalently described as those groups
in O(4) that contain the central inversion −id (the so-called diploid groups, see
Section 1.12).

• Threlfall and Seifert [67, 68], in a series of two papers in 1931 and 1933, extended
this to the groups of Euclidean space, but they only concentrated on the chiral
groups, i.e., the groups of SO(4). Their goal was to study the quotient spaces of
the 3-sphere under fixpoint-free group actions, because these lead to space forms,
spaces of constant curvature without singularities.7

• Hurley [37], in 1951, independently of Threlfall and Seifert, built on Goursat’s clas-
sification and extended it to O(4). However, he considered only the crystallographic
groups, see Appendix D.

• Du Val [23], independently of Hurley, in a small monograph from 1964, took up
Goursat’s classification and extended it to all groups. From a geometric viewpoint,
he extensively discussed the symmetries of the 4-dimensional regular polytopes.

• Conway and Smith [14] in a monograph from 2003, took up the classification task
again, correcting some omissions and duplications of the previous classifications.
They gave geometric descriptions for the polyhedral and axial groups in terms of
Coxeter’s notation.

1.7.1. Related work

• De Medeiros and Figueroa-O’Farrill [22], in 2012, classified the groups of order
pairs (l, r) ∈ S3 × S3 of unit quaternions under componentwise multiplication
(using Goursat’s Lemma again). These form the 4-dimensional spin group Spin(4).
Since this is a double cover of SO(4), the results should confirm the classification
of the chiral point groups. Indeed, Tables 16–18 in [22, Appendix B] give references
to SO(4) and the classification of [14].8

7 The term “Diskontuinuitätsbereich” in the title of [67, 68] is used like a well-established concept
that does not require a definition. In the contemporary literature, it means what we today call a
fundamental domain. Seifert and Threlfall were in particular interested in its topological properties,
referring by “Diskontuinuitätsbereich” to the quotient space under a group action, with a specification
how the boundary faces of the fundamental domain are to be pairwise identified. Du Val [23, § 30] also
takes this interpretation and calls it a group-set space, where group-set is his term for orbit.

In modern usage, “region of discontinuity” has other meanings, closer to the literal meaning of the
words, where discontinuity plays a role.

8 However, besides noticing a few typographical errors, we found some discrepancies in these tables:
(i) The 6th entry in Table 18 lists a group ±[C2k+1 × D̄4m]. We cannot match this with anything in
the Conway–Smith classification, even allowing for one typo. (ii) The last entry in Table 4.2 of [14]
is + 1

f
[Cmf × Cnf ]. This group does not appear in the tables of [22]. We don’t know whether these

discrepancies arose in the translation from the classification in [22] to the notions of SO(4) or they
indicate problems in the classification itself.
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1. Orbit polytopes and point groups

• Marina Maerchik, in 1976 [47], investigated the groups that are generated by re-
flections and simple rotations (also in higher dimensions), as reported in Lange and
Mikhaîlova [42], (The term “pseudoreflections” in the title of [47] refers to simple
rotations.)

• We mention that the approach of understanding the 4-dimensional groups through
their orbits was pioneered by Robinson [60], who, in 1931, studied the orbits of
the polyhedral groups. He focused on the orbits themselves and their convex hulls
(and not on the polar orbit polytopes as we do).

1.8. Conjugacy, geometrically equal groups
Conjugation with a rotation [a, b] transforms a group into a different group, which is
geometrically the same, but expressed in a different coordinate system. Conjugation
transforms an orientation-preserving transformation [l, r] as follows:

[a, b]−1[l, r][a, b] = [a−1la, b−1rb]

Its effect is thus a conjugation of the left group by a and an independent conjugation of
the right group by b. As a conclusion, we can represent the left group L and the right
group R in any convenient coordinate system of our choice, and it is no loss of generality
to choose a particular representative for each finite group of quaternions. (Section 1.11
specifies the representatives that we use.)

1.9. Obtaining the achiral groups
The classic approach by Goursat’s Lemma leads only to the chiral groups. Since the
chiral part of an achiral group is an index-2 subgroup, every achiral group G is obtained
by extending a chiral group H with some orientation-reversing element

e = ∗[a, b].

We will now derive some conditions on e, and possibly by modifying the group G into a
geometrically conjugate group, constrain e to a finite number of possibilities.

Let H be a chiral group with left group L and right group R. For each [l, r] ∈ H, we
must have e−1[l, r]e ∈ H, i.e., H is normalized by e:

e−1[l, r]e = ∗[b̄, ā][l, r]∗[a, b] = [āra, b̄lb] ∈ H

This means that āra ∈ L and b̄lb ∈ R for every [l, r] ∈ H, which implies āRa = L and
b̄Lb = R, i.e., L and R are conjugate.

We conjugate G with [1, a], transforming G to some geometrically equivalent group G′

with left group L′ and right group R′. Let us see what happens to an arbitrary element
[l, r]:

[1, ā][l, r][1, a] = [l, āra] (1.4)

The set of values āra forms the new right group R′ = āRa = L, while the left group
remains unchanged: L′ = L. Thus, we have achieved L′ = R′, i.e., the left and right
groups are not just conjugate, but equal.

The extending element e = ∗[a, b] is transformed as follows:

e′ := [1, ā]∗[a, b][1, a] = ∗[1, ba] = ∗[1, c] (1.5)
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1.10. Point groups in 3-space and their quaternion representation

Thus we have simultaneously achieved e′ = ∗[1, c]. Moreover,

e′e′ = ∗[1, c]∗[1, c] = [c, c] ∈ H,

and thus, c must be an element of L = R.

Proposition 1.9.1. W.l.o.g., we can assume L = R, and the extending element is of
the form e = ∗[1, c], with c ∈ L.

This reduces the extending element to a finite number of possibilities. Conway and
Smith [14, p. 51] have sketched some additional considerations, which allow to further
restrict the extending element, sometimes at the cost of giving up the condition L = R,
see Figure G.4 on p. 166.

Conjugation by [a, a] changes the transformations as follows:

[a, a]−1[l, r][a, a] = [a−1la, a−1ra]
[a, a]−1∗[l, r][a, a] = ∗[a−1la, a−1ra]

Its effect is thus a conjugation of the left and right group L = R by a. As for the
chiral groups, we can therefore choose any convenient representation of the left and
right group L in Proposition 1.9.1.

1.10. Point groups in 3-space and their quaternion
representation

Table 1.1 lists the three-dimensional point groups that we will use. We will refer to
them by the notation of Conway and Smith [14], given in the first column. As alternate
notations, we give the orbifold notation, the Hermann-Mauguin notation or international
symbol [35], and the Coxeter notation, which we will revisit in Chapter 5.

the chiral groups
CS orbifold I.T. Coxeter name order orientation-preserving symmetries of . . .

+Cn nn n [n]+ n the n-sided pyramid n ≥ 1)
+D2n 22n n2 [2, n]+ 2n the n-sided prism (n ≥ 1)
+T 332 23 [3, 3]+ 12 the tetrahedron
+O 432 432 [3, 4]+ 24 the octahedron / the cube
+I 532 532 [3, 5]+ 60 the icosahedron / the dodecahedron

achiral polyhedral groups
CS orbifold I.T. Coxeter name order description of the group
TO ∗332 4̄3m [3, 3] 24 all symmetries of the tetrahedron
±T 3∗2 m3̄ [3+, 4] or [+3, 4] 24 the pyritohedral group
±O ∗432 m3̄m [3, 4] 48 all symmetries of the octahedron
±I ∗532 53m [3, 5] 120 all symmetries of the icosahedron

Table 1.1.: Some point groups in 3 dimensions

The table contains all polyhedral groups (3 chiral and 4 achiral ones): groups consisting
of symmetries of regular polytopes. The groups that are not polyhedral (subgroups of
the symmetry groups of regular prisms, related to the frieze groups) include, besides
+Cn and +D2n, five additional classes of achiral groups, which are not listed here. In
total, there are 14 types of three-dimensional point groups. Note that the subscript 2n
in D2n is always even; we follow the convention of using the order of the group, not the
number of sides of the polygon or prism of which it is the symmetry group.

The notations +I, ±I, etc. for the polyhedral groups are easy to remember. The one
that requires some attention is the full symmetry group of the tetrahedron, which is
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1. Orbit polytopes and point groups

denoted by TO, as opposed to the pyritohedral group ±T , which is obtained by extending
+T by the central reflection, and which we have discussed extensively in Section 1.1.

1.11. Finite groups of quaternions
The finite groups of quaternions are [14, Theorem 12]:

2I = ⟨iI , ω⟩ 2D2n = ⟨en, j⟩
2O = ⟨iO, ω⟩ 2Cn = ⟨en⟩
2T = ⟨i, ω⟩ 1Cn = ⟨en/2⟩ (n odd)

The generators are defined in terms of the following quaternions, which we will use
throughout:

ω = 1
2(−1 + i + j + k) (order 3)

iO = 1√
2(j + k) (order 4)

iI = 1
2
(
i +

√
5−1
2 j +

√
5+1
2 k

)
(order 4)

en = cos π
n + i sin π

n (order 2n)

(1.6)

We follow Conway and Smith’s notation for these groups. For each group +G < SO(3)
(see the upper part of Table 1.1), there is quaternion group 2G of twice the size, con-
taining the quaternions ±l for which [l] represents a rotation in +G. All these groups
contain the quaternion −1. In addition, there are the odd cyclic groups 1Cn, of order n.
They cannot arise as left or right groups, because (−1, −1) is always contained in A and
hence the left and right groups contain the quaternion −1.

1.12. Notations for the 4-dimensional point groups, diploid
and haploid groups

We use the notation by Conway and Smith [14] for 4-dimensional point groups G, except
for the toroidal groups, where we will replace it with our own notation. If L and R are
3-dimensional orientation-preserving point groups, ±[L × R] denotes full product group
{ [l, r] | (l, r) ∈ 2L×2R }, of order 2|L| · |R|. Note that the groups 2L and 2R that appear
in the definition are quaternion groups, while the notation shows only the corresponding
rotation groups L, R ∈ SO(3).

A group that contains the negation −id = [1, −1] is called a diploid group. A diploid
index-f subgroup of ±[L × R] is denoted by ± 1

f [L × R]. It is defined by two normal
subgroups of 2L and of 2R of index f . Different possibilities for the normal subgroups
and for the isomorphism Φ are distinguished by various ornamentations of the notation,
see Appendix G for some of these cases.

A haploid group, which does not contain the negation −id, is denoted by + 1
f [L × R],

and it is an index-2 subgroup of the corresponding diploid group ± 1
f [L × R]. Achiral

groups are index-2 extensions of chiral groups, and they are also denoted by various
decorations.

Du Val [23] writes the groups as (L/L0; R/R0), where the boldface letters distinguish
quaternion groups from the corresponding 3-dimensional rotation groups. Again, various
ornamentations denote different cases of normal subgroups and the isomorphism Φ.
Achiral extensions are denoted by a star. We will not work with this notation except for
reference in our tables, and then we will omit the boldface font. In some cases, we had
to adapt Du Val’s names, see Table 6.3 and footnote 19 on p. 77.
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2Hopf fibrations

We give a self-contained presentation of Hopf fibrations. In many places in the liter-
ature, one particular Hopf map is introduced as “the Hopf map”, either in terms of
four real coordinates or two complex coordinates, leading to “the Hopf fibration”. In
some sense, this is justified, as all Hopf bundles are (mirror-)congruent. However, for our
characterization, we need the full generality of Hopf bundles.

Our treatment was inspired by Lyons [46], but we did not see it anywhere in this
generality. As a tool, we introduce a parameterization of the great circles in S3, which
might be useful elsewhere. We also define oriented Hopf bundles: families of consistently
oriented great circles.

We summarize the main statements:

• The great circles in S3 can be parameterized by pairs p, q of pure unit quaternions,
or equivalently, by pairs of points p, q ∈ S2 (Section 2.1). The choice of parameters
is unique except that Kq

p = K−q
−p . The twofold ambiguity of the parameters can be

used to specify an orientation of the circles (Section 2.1.2).

• The great circles Kq
p with fixed q form a partition of S3, which we call the left Hopf

bundle Hq. It naturally comes with a left Hopf map hq : S3 → S2, which maps all
points of Kq

p to the point p ∈ S2.
This map provides a bijection between the circles of the left Hopf bundle Hq and
the points on S2.
Similarly, the great circles Kq

p with fixed p form a right Hopf bundle Hp, with a
right Hopf map hp, etc. In the following, we will mention only the left Hopf bundles,
but all statements hold also with left and right reversed.

• Every great circle of S3 belongs to a unique left Hopf bundle. In other words, the
left Hopf bundles form a partition of the set of great circles of S3.

• For every left Hopf bundle Hq, there is a one-parameter family of right rotations
that maps every circle in Hq to itself, rotating each circle by the same angle α.
Conversely, a right rotation by an angle α /∈ {0, π} rotates every point of S3 by
the same angle α, and the set of circles along which these rotations happen form
a left Hopf bundle (Proposition 2.2.7).

• The following statements discuss the behavior of Hopf bundles under orthogonal
transformations (Proposition 2.2.5):

– Any left rotation leaves the left Hopf bundle Hq fixed, as a partition. It
permutes the great circles of the bundle.

– Any rotation maps the left Hopf bundle Hq to another left Hopf bundle. Any
two left Hopf bundles are congruent (by some right rotation).

– Left Hopf bundles and right Hopf bundles are mirrors of each other.

• The intersection of a left Hopf bundle and a right Hopf bundle consists of two
absolutely orthogonal circles (Corollary 2.2.3).
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2. Hopf fibrations

• Any two great circles in the same Hopf bundle are Clifford-parallel (Proposi-
tion 2.2.8). This means that a point moving on one circle maintains a constant
distance to the other circle.

2.1. Parameterizing the great circles in S3

Definition 2.1.1. For any two pure unit quaternions p, q ∈ S2, we define the following
subset of unit quaternions:

Kq
p := { x ∈ S3 | [x]p = q } (2.1)

This can be interpreted as the set of rotations on S2 that map p to q.

Proposition 2.1.2. Kq
p has an alternative representation

Kq
p = { x ∈ S3 | [p, q]x = x }, (2.2)

and it forms a great circle in S3. Moreover, every great circle in S3 can be represented
in this way, and the choice of parameters p, q ∈ S2 is unique except that Kq

p = K−q
−p .

This gives a convenient parameterization of the great circles in S3 (or equivalently,
the planes in R4) by pairs of points on S2, which might be useful in other contexts.
For example, they might be used to define a notion of distance between great circles (or
planes in R4). (Other distance measures are discussed in [41, 40] and [13]. The connection
to these different distance notions remains to be explored.)

Before giving the proof, let us make a general remark about quaternions. Multiple
meanings can be associated to a unit quaternion x: Besides treating it (i) as a point on
S3, we can regard it (ii) as a rotation [x] of S2, or (iii) as a left rotation [x, 1] of S3, or
(iv) as a right rotation [1, x] of S3. Rather than fixing an opinion on what a quaternion
really is (cf. [2, p. 298]), we capitalize on this ambiguity and freely switch between the
definitions (2.1) and (2.2).

Proof of Proposition 2.1.2. The two expressions (2.1) and (2.2) are equivalent by a sim-
ple rearrangement of terms:

[x]p = q ⇐⇒ x̄px = q ⇐⇒ px = xq ⇐⇒ x = p̄xq ⇐⇒ x = [p, q]x

The expression (2.2) shows that Kq
p is the set of fixpoints of the rotation [p, q]. Since p

and q are unit quaternions, the rotation [p, q] is a simple rotation by 180◦ (a half-turn).
Its set of fixpoints is a two-dimensional plane, or when restricted to unit quaternions, a
great circle.

Conversely, if a great circle K is given and we want to determine p and q, we know that
we are looking for a simple rotation by 180◦ whose set of fixpoints is K. This rotation
is uniquely determined, and its quaternion representation [p, q] is unique up to flipping
both signs simultaneously.

The effect of orthogonal transformations on great circles is expressed easily in our
parameterization:

Proposition 2.1.3. Let p, q ∈ S2. Then for any l, r ∈ S3,

(i) [l, r]Kq
p = K

[r]q
[l]p .

(ii) (∗[l, r])Kq
p = K

[r]p
[l]q , and in particular, ∗Kq

p = Kp
q .
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2.1. Parameterizing the great circles in S3

Proof. The following calculation proves part (i).

[l, r]Kq
p = { l̄xr | x̄px = q }

= { y | rȳl̄plyr̄ = q } = { y | ȳl̄ply = r̄qr } = { y | [y][l]p = [r]q } = K
[r]q
[l]p ,

where we have substituted x by y := l̄xr. Part (ii) follows from part (i) and ∗Kq
p = Kp

q .
This last statement expresses the fact that the inverse rotations [x̄] of the rotations [x]
that map p to q are the rotations mapping q to p. More formally,

∗Kq
p = { x̄ | x̄px = q } = { y | ypȳ = q } = { y | p = ȳqy } = Kp

q ,

with y := x̄.

The elements of Kp
p form a subgroup of the quaternions [24]: According to (2.1), Kp

p

is the stabilizer of p. Its cosets can be characterized by Proposition 2.1.3(i):

Corollary 2.1.4. The left cosets of Kp
p are the circles Kp

p′, and the right cosets of Kp
p

are the circles Kp′
p , for arbitrary p′ ∈ S2.

We emphasize that the two parameters p and q in Kq
p “live on different spheres S2”:

Any relation between them has no intrinsic geometric meaning, and will be changed
by coordinate transformations according to Proposition 2.1.3. This is despite the fact
that p = q has an algebraic significance, since the circle Kp

p goes through the special
quaternion 1, which is one of the coordinate axes, and hence Kp

p forms a subgroup of
quaternions.

2.1.1. Keeping a circle invariant

The following proposition characterizes the transformations that map a given great circle
to itself. Moreover, it describes the action of these transformations when restricted to
that circle. For a pure unit quaternion p ∈ S2 and an angle θ ∈ R we use the notation

exp pθ := cos θ + p sin θ,

so that [exp pθ] is a clockwise rotation around p by 2θ on S2.

Proposition 2.1.5. Consider the circle Kq
p , for p, q ∈ S2. The rotations [l, r] that leave

Kq
p invariant fall into two categories, each of which is a two-parameter family.

(a) The orientation-preserving case: [l]p = p and [r]q = q.
Every transformation in this family can be written as [exp pφ, exp qθ] for φ, θ ∈ R.
This transformation acts on the circle Kq

p as rotation by |θ − φ|.

(b) The orientation-reversing case: [l]p = −p and [r]q = −q.
After choosing two fixed quaternions p′, q′ ∈ S2 orthogonal to p and q, respectively,
they can be written as the transformations [p′ exp pφ, q′ exp qθ] for φ, θ ∈ R, and they
act on Kq

p as reflections.

Note that the transformations that we consider are always orientation-preserving
when considered in 4-space; they can be orientation-reversing when considered as (2-
dimensional) operations on the circle Kq

p .

Proof. Let [l, r] ∈ SO(4) be a rotation. Then we have the following equivalences.

[l, r]Kq
p = Kq

p ⇐⇒ K
[r]q
[l]p = Kq

p ⇐⇒ ([l]p = p ∧ [r]q = q) ∨ ([l]p = −p ∧ [r]q = −q)
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2. Hopf fibrations

For the first case, the transformations [l] on S2 that leave the point p fixed are the
rotations around p, and they are given by the quaternions l = exp pφ, and similarly
for r. For the second case, the transformations [l] on S2 that map p to −p can be written
as a composition of [p′], which maps p to −p, and an arbitrary rotation around the
axis through p and −p, which is expressed as [exp pφ]. This establishes that [l, r] can be
written in the claimed form.

We now investigate the action of these rotations on Kq
p .

(a) Let x ∈ Kq
p . Since xq = px, we have x exp qθ = (exp pφ)x. In particular,

[exp pφ, exp qθ]x = exp(−pφ)x exp qθ = exp(−pφ)(exp pθ)x = (exp p(−φ + θ))x.

Thus, [exp pφ, exp qθ] acts on Kq
p like the left multiplication with exp p(θ−φ), which

(being a left rotation) moves every point by the angle |θ − φ|.

(b) It is enough to show that [p′, q′] acts as a reflection on Kq
p . We will show that

Kq
p ∩ Kq′

p′ ̸= ∅ and Kq
p ∩ K−q′

p′ ̸= ∅. Thus, there is a point x ∈ Kq
p with [p′, q′]x = x

and another point y ∈ Kq
p with [p′, q′]y = −y, and this means that [p′, q′] fixes some,

but not all, points on Kq
p , and thus its action cannot be a rotation.

Let [x0] be a rotation that maps p to q. Then it maps p′ to some point p′′ that is
orthogonal to q. Let [y0] be the rotation that fixes q and maps p′′ to q′. The rotation
[x0y0] maps p to q and p′ to q′. Thus, x0y0 ∈ Kq

p ∩Kq′

p′ . Similarly, if [z0] is the rotation
that fixes q and maps p′′ to −q′, then x0z0 ∈ Kq

p ∩ K−q′

p′ .

Proposition 2.1.6. The great circles Kq
p and K−q

p = Kq
−p are absolutely orthogonal.

Proof. The simple rotation [p, −q] = [−p, q] maps x ∈ Kq
p to −x ∈ Kq

p . That is, [p, −q]
preserves (not pointwise) Kq

p . Since K−q
p is the fixed circle of [p, −q] and the invariant

circles of a simple rotation are absolutely orthogonal, we are done.

2.1.2. Oriented great circles

By Proportion 2.1.5, the left rotation [exp(−pθ), 1] has the same effect on the circle Kq
p

as the right rotation [1, exp qθ]. This allows us to specify an orientation for Kq
p . For some

starting point x ∈ Kq
p , we write

Kq
p = { (exp pθ)x | θ ∈ R } = { x exp qθ | θ ∈ R }, (2.3)

and both parameterizations traverse the circle in the same sense, for increasing θ. We may
thus introduce the notation K⃗q

p to denote an oriented great circle on S3. If we use K⃗−q
−p in

(2.3), the same circle will be traversed in the opposite sense. Thus, we obtain a notation
for oriented great circles on S3, and for this notation, the choice of parameters p, q ∈ S2

is unique. Only for an oriented circle, the phrase “rotation by π/4” or “rotation by −π/3”
has a well-defined meaning, and we can give a more specific version of Proposition 2.1.5a:
The operation [exp pφ, exp qθ] rotates K⃗q

p by θ − φ.
In Appendix E, we give a direct geometric view of this orientation, based on the original

interpretation of Kq
p as the set of rotations on S2 that map p to q (Definition 2.1.1).

Proposition 2.1.3 extends to oriented circles as follows:

Proposition 2.1.7. [l, r]K⃗q
p = K⃗

[r]q
[l]p and ∗K⃗q

p = K⃗−p
−q .

Proof. For x ∈ Kq
p ,

[l, r](x exp qθ) = l̄x(exp qθ)r = l̄xrr̄(exp qθ)r = (l̄xr) exp(r̄qrθ) = y exp(([r]q)θ)

20



2.2. Hopf bundles

with y = l̄xr ∈ [l, r]Kq
p = K

[r]q
[l]p . Thus, the orientation that we get on [l, r]K⃗q

p coincides
with the orientation prescribed in (2.3) for K⃗

[r]q
[l]p . Similarly,

∗(x exp qθ) = (exp q̄θ)x̄ = exp(−qθ) y

with y = x̄ ∈ ∗Kq
p = Kp

q = K−p
−q , and this is the correct orientation for K⃗−p

−q in accordance
with (2.3).

2.2. Hopf bundles
Hopf bundles are families of circles Kq

p with fixed p or with fixed q:

Definition 2.2.1. Let q0 ∈ S2 be a pure unit quaternion. The left Hopf bundle Hq0 is

Hq0 := { Kq0
q | q ∈ S2 },

and the right Hopf bundle Hq0 is

Hq0 := { Kq
q0 | q ∈ S2 }.

The oriented left and right Hopf bundles are defined analogously:

H⃗q0 := { K⃗q0
q | q ∈ S2 }

H⃗q0 := { K⃗q
q0 | q ∈ S2 }

The convention for left and right was adopted from Dunbar [24]: According to Corol-
lary 2.1.4, the circles Kq0

q of the left Hopf bundle Hq0 are the left cosets of the circle
Kq0

q0 .
We can naturally assign a Hopf map to each bundle, such that the circles of a bundle

become the fibers of the associated Hopf map:

Definition 2.2.2. Let q0 ∈ S2 be a pure unit quaternion. The left Hopf map associated
with q0 is

hq0 : S3 → S2

x 7→ [x̄]q0 = xq0x̄,

and the right Hopf map associated with q0 is

hq0 : S3 → S2

x 7→ [x]q0 = x̄q0x.

Corollary 2.2.3. The following statements are direct consequences of the definitions:

• The choice of the parameter q0 in the left Hopf bundle Hq0 is unique except that
Hq0 = H−q0. As oriented Hopf bundles, H⃗q0 and H⃗−q0 contain the same circles in
opposite orientation.
The same statement holds for right Hopf bundles.

• No two different left Hopf bundles share a circle. That is,

Hp0 ∩ Hp1 = ∅ if p0 ̸= ±p1.

A similar statement holds for right Hopf bundles.
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2. Hopf fibrations

• A left Hopf bundle intersects a right Hopf bundle in exactly two circles, which are
absolutely orthogonal:

Hq0 ∩ Hp0 = {Kp0
q0 , K−p0

q0 = Kp0
−q0}.

• Every great circle Kp0
q0 in S3 belongs to a unique left Hopf bundle Hp0 and to a

unique right Hopf bundle Hq0.

From Proposition 2.1.7, we can directly work out the effect of a transformation on an
(oriented) Hopf bundle:

Proposition 2.2.4. (a) [l, r]H⃗q = H⃗[r]q and [l, r]H⃗p = H⃗[l]p; (b) ∗H⃗q = H⃗−q and
∗H⃗p = H⃗−p.

We get consequences about the operations that leave a Hopf bundle invariant and
about mappings between Hopf bundles.

Proposition 2.2.5. The following statements about the operations that leave a left Hopf
bundle invariant hold, and similar statements hold for right Hopf bundles.

(i) Any left rotation leaves an oriented left Hopf bundle H⃗q invariant. It permutes the
great circles of the bundle.

(ii) A right rotation [1, r] leaves the oriented left Hopf bundle H⃗q invariant iff [r]q = q.

(iii) A right rotation [1, r] maps the oriented left Hopf bundle H⃗q to the opposite bundle
H⃗−q iff [r]q = −q.

(iv) Any two oriented left Hopf bundles are congruent, and can be mapped to each other
by a right rotation.

(v) Any oriented right Hopf bundle and any oriented left Hopf bundle are mirrors of
each other.

We can summarize properties (i)–(iii) in the following statement, which character-
izes the transformations that leave a given left Hopf bundle invariant, in analogy to
Proposition 2.1.5.

Proposition 2.2.6.

(i) A rotation [l, r] preserves Hq0 if and only if [r]q0 = ±q0.

(ii) More precisely, these rotations come in two families.
(a) The rotations with [r]q0 = q0 can be written as [l, exp q0θ] for θ ∈ R, and they

map H⃗q0 to H⃗q0, preserving the orientation of the circles.
(b) The rotations with [r]q0 = −q0 can be written as [l, q′ exp q0θ] for θ ∈ R, where

q′ ∈ S2 is some fixed quaternion orthogonal to q0. They map H⃗q0 to H⃗−q0,
reversing the orientation of the circles.

Note that an orientation-reversing transformation sends a left Hopf bundle to a right
one, and those two share exactly two circles. Thus, no orientation-reversing transforma-
tion can preserve a Hopf bundle.
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2.2. Hopf bundles

2.2.1. Left and right screws

A generic rotation has two circles that it leaves invariant. The left and right rotations
are special: they have infinitely many invariant circles, and as we will see, these circles
form a Hopf bundle. In contrast to Proposition 2.2.6, we now discuss rotations that leave
every individual circle of a Hopf bundle invariant:

Proposition 2.2.7.

(i) For the oriented left Hopf bundle H⃗q0, the one-parameter subgroup of right rotations
[1, exp q0φ] rotates every circle of H⃗q0 in itself by the same angle φ.

(ii) Conversely, for a right rotation [1, r] with r ̸= 1, −1, the set of circles that it leaves
invariant forms a left Hopf bundle Hq0, and [1, r] rotates every circle of H⃗q0 in
itself by the same angle φ.

Proof. Part (i) is a direct consequence of the definition (2.3) of oriented circles.
According to Proposition 2.1.5, the right rotation [1, r] leaves a circle Kq

p invariant iff
[r]q = q. (Case (b) of Proposition 2.1.5, where [l]p = −p, does not apply since l = 1.)
After writing r = exp q0φ with φ ̸= 0, π, the condition [r]q = q translates to q = ±q0, and
the circles { K±q0

p | p ∈ S2 } form the Hopf bundle Hq0 . The last part of the statement
repeats (i).

r

α

ϕ
α+ ϕ

1 i

j

k

keiϕ

Figure 2.1.: A right screw

Geometrically, these rotations are screw motions. If we look at one circle Kq0
p from

the bundle, the adjacent circles form helices that wind around this circle, see Figure 2.1.
The right multiplication by exp q0φ effects a forward motion of φ along every circle, and
a simultaneous clockwise rotation by the same angle φ around the circle, when seen in
the direction of the forward movement, and is thus a right screw.9 In contrast to the

9 While not everything that is associated to right rotations is “right”, it is a lucky coincidence that at
least right rotations effect right screws, and left rotations effect left screws. This view depends on the
convention that we have chosen in Section 1.3 for viewing parts of the 3-sphere as three-dimensional
space.

Here is a check of this fact at an example: Figure 2.1 shows the situation around the point
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situation in Euclidean 3-space, these screws have no distinguished axis. The blue circle
seems to wind around the red circle, but this is an artifact of the projection of this
picture. All circles are in fact equivalent, and the situation looks the same for every
circle of the bundle.

2.2.2. Clifford-parallel circles

We measure the distance between two points p, q ∈ S3 as the geodesic distance on
the sphere, which equals the angular distance along the great circle through p and q:
dist(p, q) := arccos⟨p, q⟩, where ⟨p, q⟩ denotes the scalar product. The distance between
two sets K, K ′ ⊆ S3 is dist(K, K ′) = inf{ dist(p, q) | p ∈ K, q ∈ K ′ }.

Two great circles K and K ′ in S3 are called Clifford-parallel if dist(x, K ′) does not
depend on x ∈ K. See for example [7, Section 18.8] for more information on Clifford
parallelism.

Proposition 2.2.8 ([7, Exercise 18.11.18]). Great circles in the same Hopf bundle Hq

are Clifford-parallel, and dist(Kq
p , Kq

r ) = dist(p, r)/2.

Proof. By Proposition 2.1.5a, the right rotations [1, exp qθ] rotate x ∈ Kq
p along the

circle Kq
p while keeping Kq

r invariant as a set. Thus, dist(x, Kq
r ) is constant as x moves

on Kq
p , showing that Kq

p and Kq
r are Clifford-parallel.

Since Kq
r is a left coset of Kq

q , by applying some left rotation to Kq
p and Kq

r , we
may assume that r = q. That is, it is enough to show that dist(Kq

p , Kq
q ) = dist(p, q)/2.

Since 1 ∈ Kq
q and the circles Kq

p and Kp
p are Clifford parallel, it is enough to show that

dist(Kq
p , 1) = dist(p, q)/2.

The points x = cos α + v sin α ∈ Kq
p represent the rotations [x] on S2 that map p to q,

and dist(x, 1) = arccos cos α = α, assuming 0 ≤ α ≤ π. Thus, we are trying to minimize
α, which is half the rotation angle of [x]. The rotation that minimizes the rotation angle
is the one that moves p to q along the great circle through p and q, and its rotation angle
2α is dist(p, q).

We mention that Clifford parallelism arises in two kinds: left and right, accordingly as
the circles belong to a common left or right Hopf bundle. Each kind of Clifford parallelism
is transitive, but Clifford parallelism in itself is not.

(x1, x2, x3, x4) = (0, 0, 0, 1) ≡ k ∈ Ki
−i. According to our conventions from Section 1.3, we draw

this in 3-space by projecting to the tangent space x4 = 1, i.e., omitting the x4-coordinate, and draw-
ing (x1, x2, x3) ≡ (1, i, j) as a right-handed coordinate system. The great circle Ki

−i is invariant under
the family of right rotations [1, exp iφ], which move the point k along the circle:

K⃗i
−i = { k exp iφ } = { k(cos φ + i sin φ) } = { k cos φ + j sin φ }

The tangent vector at φ = 0 points in the direction j ≡ (0, 0, 1, 0).
Let us look at a small circle of radius r around Ki

−i, centered at k: It lies in a plane parallel to the
1, i-plane and can be written as

1√
1+r2

(k + r(cos α + i sin α)) = 1√
1+r2

(k + r exp iα).

The right rotation [1, exp iφ] maps this to
1√

1+r2
(k + r exp iα) exp iφ = 1√

1+r2
(k exp iφ + r exp i(α + φ))

i.e., it increases α together with φ. As can be seen in Figure 2.1, this is a right screw.
Du Val [23, § 14, p. 36], for example, considers right quaternion multiplications as left screws, without

giving reasons for this choice, and he draws his illustrations accordingly. On the other hand, Coxeter
[18, Chapter 6, p. 70] considers right quaternion multiplications as right screws.

24



2.3. Classification of the point groups

2.3. Classification of the point groups
We make a coarse classification of the groups by their invariant Hopf bundles. The
following observation of Dunbar [24, p. 124] characterizes this in terms of the left and
right groups.

Proposition 2.3.1. A 4-dimensional point group leaves some left Hopf bundle invariant
if and only if its right group is cyclic or dihedral. A similar statement holds for right
Hopf bundles and the left group.

Proof. By Proposition 2.2.6(i), a transformation [l, r] ∈ SO(4) preserves Hq0 if and only
if [r] keeps the line through q0 invariant. The set of such r’s form an infinite group that
is isomorphic to O(2). Its finite subgroups are either cyclic or dihedral.

As we have seen, the left and right groups L and R are one of the five classes
2I, 2O, 2T, 2D2n, and 2Cn. Besides the infinite families of cyclic groups 2Cn and di-
hedral groups 2D2n, there are the three polyhedral groups 2I, 2O, 2T . Accordingly, we
get a rough classification into three classes of groups.

1. The left subgroup is cyclic or dihedral, and the right subgroup is polyhedral, or
vice versa.
These groups leave some left or right Hopf bundle invariant, and they are the
tubical groups, to be discussed in Chapter 3.

2. Both the left and right subgroup are cyclic or dihedral.
These groups leave some both some left and some right Hopf bundle invariant.
They form a large family, the toroidal groups, to be discussed in Chapter 4.

3. Both the left and right subgroup are polyhedral.
These groups leave no Hopf bundle invariant. There are finitely many groups of
this class: the polyhedral groups and the axial groups.

For all classes except the tubical groups, there is the possibility that L = R, and hence
we also consider the achiral extensions of these groups.

2.4. The Clifford torus
The toroidal groups are characterized as leaving both some left Hopf bundle Hp and
some right Hopf bundle Hq invariant. By Corollary 2.2.3, these two bundles intersect
in two orthogonal circles Kq

p ∪ K−q
p , and hence these two circles must also be invariant.

We conclude that the set Tq
p of points that are equidistant from these two circles is

also invariant. We will see that this set is a Clifford torus. It has several alternative
representations.

Tq
p = { x ∈ S3 | dist(x, Kq

p) = dist(x, K−q
p ) } (2.4)

= { x ∈ S3 | dist(x, Kq
p) = π

4 }
= { x ∈ S3 | dist(x, K−q

p ) = π
4 }

= { x ∈ S3 | dist(x, Kq
p) = dist(x, Kq

−p) }

Proposition 2.1.3 tells us how an orthogonal transformation acts on the circle Kq
p that

defines the torus Tq
p. As an immediate corollary, we obtain:

Proposition 2.4.1. Let p, q ∈ S2. Then for any l, r ∈ S3,
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2. Hopf fibrations

(i) [l, r]Tq
p = T[r]q

[l]p .

(ii) (∗[l, r])Tq
p = T[r]p

[l]q , and as a special case, ∗Tq
p = Tp

q.

From Tq
p, we can recover the two defining circles Kq

p ∪ K−q
p as those points whose

distance from Tq
p takes the extreme values π/4:

Kq
p ∪ K−q

p = {x ∈ S3 | dist(x,Tq
p) = π

4 }

Since the choice of parameters p, q for circles Kq
p is unique up to simultaneous sign

changes, the choice of parameters p, q ∈ S2 for the torus Tq
p is unique up to independent

sign changes: Tq
p = T−q

−p = Tq
−p = T−q

p .
By Proposition 2.4.1, any two Clifford tori are related by an appropriate orientation-

preserving transformation. There are no “left” or “right” Clifford tori. Thus, it is sufficient
to study one special torus. In particular, Ti

i is the “standard” Clifford torus:

Ti
i = { 1√

2(cos θ, sin θ, cos φ, sin φ) | 0 ≤ θ, φ < 2π } = { x ∈ R4 | x2
1 + y2

1 = x2
2 + y2

2 = 1
2 }

(2.5)
It is a square flat torus, and we name the coordinates (x1, y1, x2, y2) to emphasize that
it is the Cartesian product of a circle of radius

√
1/2 in the x1, y1-plane and a circle of

radius
√

1/2 in the x2, y2-plane. For this torus, the two circles of extreme distance are
Ki

i and K−i
i , the great circles in the x1, y1-plane and in the x2, y2-plane.

In Section 4.11.2, we will see another torus, Ti
k, with a different, but equally natural

equation (4.10).
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3The tubical groups

In this chapter we consider the point groups that preserve a left or a right Hopf bundle,
but not both. By Proposition 2.3.1, these groups are characterized as the groups for
which the left or the right group, but not both, is cyclic or dihedral. These groups
will be called tubical groups. We have chosen this name because, as we will see (see
for instance Figure 3.1), for large enough order, the polar orbit polytope consists of
intertwined congruent tube-like structures.10

Since any two left (resp. right) Hopf bundles are congruent, it is enough to consider the
tubical groups that preserve a specific left (resp. right) Hopf bundle. We will call these
the left tubical groups and the right tubical groups. Since left and right Hopf bundles are
mirror-congruent, we can restrict our attention to the left tubical groups.

The classic classification leads to 11 classes of left tubical groups. Table 3.1 lists them
with the notation from Conway and Smith [14, Table 4.1] in the first column, together
with their generators. In Appendix F, we depict subgroup relations between these groups.

G ⩽ SO(4) parameter n generators order Gh ⩽ O(3)
cyclic type

±[I × Cn] n ≥ 1 [iI , 1], [ω, 1]; [1, en] 120n +I

±[O × Cn] n ≥ 1 [iO, 1], [ω, 1]; [1, en] 48n +O

± 1
2 [O × C2n] n ≥ 1 [i, 1], [ω, 1]; [1, en]; [iO, e2n] 48n +O

±[T × Cn] n ≥ 1 [i, 1], [ω, 1]; [1, en] 24n +T

± 1
3 [T × C3n] n ≥ 1 [i, 1]; [1, en]; [ω, e3n] 24n +T

dihedral type
±[I × D2n] n ≥ 2 [iI , 1], [ω, 1]; [1, en], [1, j] 240n ±I

±[O × D2n] n ≥ 2 [iO, 1], [ω, 1]; [1, en], [1, j] 96n ±O

± 1
2 [O × D4n] n ≥ 2 [i, 1], [ω, 1]; [1, en], [1, j]; [iO, e2n] 96n ±O

± 1
2 [O × D2n] n ≥ 2 [i, 1], [ω, 1]; [1, en]; [iO, j] 48n TO

± 1
6 [O × D6n] n ≥ 1 [i, 1]; [1, en]; [iO, j], [ω, e3n] 48n TO

±[T × D2n] n ≥ 2 [i, 1], [ω, 1]; [1, en], [1, j] 48n ±T

Table 3.1.: Left tubical groups [14, Table 4.1]. See (1.6) on p. 16 for definitions of the
quaternions iI , iO, ω, en.

According to the right group, there are 5 tubical group classes of cyclic type and 6
tubical group classes of dihedral type. The left Hopf bundle that they leave invariant
is Hi. This follows from Proposition 2.2.6(ii) and our choice for the generators of 2Cn

and 2D2n. The cyclic-type groups are those tubical groups that moreover preserve the
consistent orientation of the circles in Hi. That is, they preserve H⃗i. Each of these classes
is parameterized by a positive integer n, which is the largest integer n such that [1, en]
is in the group.

In some cases the parameter n starts from 2 in order to exclude the groups D2, which
is geometrically the same as C2. We also exclude ±1

2 [O × D4] because the notation D4n

indicates that the normal subgroup D2n of D4n is used, and not C2n. For n = 1, this

10 There is a notion of tubular groups, which is something completely different, see for example [11].
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3. The tubical groups

distinction disappears, and hence ±1
2 [O×D4] is geometrically the same as ±1

2 [O×D4] (see
also Appendix G.1). In this case and in all other cases where C2 and D2 are exchanged,
the respective groups are conjugate under [1, 1√

2(i+j)], which exchanges [1, i] with [1, j].

Convention. For ease of use, we drop the word “left” from “left tubical group” and
call it simply “tubical group” in this chapter. We will denote Hi by H and call it the
Hopf bundle. We will also denote hi(x) = xix̄ by h(x) and call it the Hopf map.

3.1. Orbit circles
An element of a tubical group has one of the following two forms, and Proposition 2.1.5
describes its action on the circles of H:

• [l, es
m], which maps K⃗p to K⃗[l]p, and

• [l, jes
m], which maps Kp to K−[l]p with a reversal of orientation. More precisely,

this rotation maps K⃗p = K⃗i
p to K⃗−i

[l]p, which is the reverse of K⃗i
−[l]p = K⃗−[l]p. These

elements occur only in the groups of dihedral type.

Thus, the rotations permute the Hopf circles of H. Via the one-to-one correspondence
of the Hopf map, they induce mappings on the Hopf sphere S2:

Proposition 3.1.1. A tubical group G induces a 3-dimensional point group Gh via the
Hopf map h. This group Gh is isomorphic to G/⟨[1, en]⟩, where n is the largest integer
such that [1, en] ∈ G.

Proof. The above considerations show that [l, es
m] induces the orientation-preserving

transformation [l] on S2, and [l, jes
m] induces the orientation-reversing transformation

−[l] on S2. We are done since the image of G in the homomorphism

G → O(3)
[l, es

m] 7→ [l]
[l, jes

m] 7→ −[l]

is Gh, and the kernel is ⟨[1, en]⟩.

The column “Gh ⩽ O(3)” in Table 3.1 lists the induced group for each tubical group
G. Tubical groups of cyclic type induce chiral groups Gh, and tubical groups of dihedral
type induce achiral groups Gh.

As a consequence, the orbit of some starting point v ∈ S3 can be determined as follows:

1. The starting point lies on the circle Kh(v). The subgroup ⟨[1, en]⟩ generates a regular
2n-gon in this circle.

2. For each t ∈ Gh, there is a coset of elements that map Kh(v) to the circle Kt(h(v)),
and these elements generate a regular 2n-gon in this circle.

Proposition 3.1.2. Let G be a tubical group. The orbit of a point v ∈ S3 is the union
of regular 2n-gons on the circles Kt(h(v)) for t ∈ Gh.

We call these circles the orbit circles of G.
If the Gh-orbit of h(v) is not free, several of these 2n-gons will share the same circle,

and they may overlap. The 2n-gons may coincide, or they may form polygons with more
vertices. It turns out that they can intersperse to form a regular 2fn-gon or, in the case
of dihedral-type groups, the union of two regular 2fn-gons, for some 1 ≤ f ≤ 5.
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3.2. Tubes

The Gh-orbit of h(v) is always free when the starting point does not lie on a rotation
center or a mirror of Gh. The following corollary follows directly from the previous
proposition.

Corollary 3.1.3. Let G be a tubical group and let v ∈ S3 be a point. If the Gh-orbit of
h(v) is free, then the G-orbit of v is also free.

For tubical groups of cyclic type, the orbit has the following nice property.

Proposition 3.1.4. Let G be a cyclic-type tubical group. The G-orbit of a point v ∈ S3,
up to congruence, depends only on the circle of H on which v lies.

Proof. Rotation of v along Kh(v) can be performed by a right rotation of the form
[1, exp θi]. Since the right group of G is cyclic, elements of G have the form [l, es

m]. These
elements commute with right rotations of the form [1, exp θi]. In particular,

orbit([1, exp θi]v, G) = [1, exp θi]orbit(v, G).

3.2. Tubes
If n is large, the orbit fills the orbit circles densely. Figure 3.1a shows the cells (i.e.
facets) of the polar orbit polytope that correspond to orbit points on three orbit circles.
Here orbit points form a regular 80-gon on each orbit circle. We clearly see twisted and
intertwined tubes, which are characteristic for these groups, and which we have used
to assign their names. Figures 3.1c and 3.1e show a single cell. It has two large flat
faces, where successive cells are stacked on top of each other with a slight twist. On the
boundary of the tubes in Figure 3.1a we can distinguish two different sets of “parallel”
curves. One set of curves comes from the boundaries between successive slices (cells) of
the tubes, and the other set of curves is a trace of the slices of the adjacent tubes. At
first sight, it is hard to know which of the two line patterns is which. In Figure 3.1b, we
have cut the tubes open to show where the boundaries between the slices are, revealing
also the three orbit circles.

If we let n grow to infinity, the tubes become smooth, see Figure 3.1d. We explore
the limiting shape of these tubes in Section 3.3. We will see that the tubes are either
3-sided, 4-sided, or 5-sided, and their shape as well as their structure, how they share
common boundaries and how they meet around edges, can be understood in terms of
the spherical Voronoi diagram on the Hopf sphere S2. Figure 3.1f shows this Voronoi
diagram for our example.

We will show some more examples of cells below (Figures 3.7 and 3.8) and in Ap-
pendix B. In general, the cell of a polar orbit polytope of a tubical group for large
enough n will always exhibit the following characteristic features.

• It is a thin slice with a roughly polygonal shape.

• The top and bottom faces are parallel.

• Moreover, the top and bottom faces are congruent and slightly twisted with a right
screw. (There are, however exceptions for tubical groups of dihedral type: With
some choices of starting points, there is an alternative way of stacking the slices:
every other slice is upside down, as in Figure 3.4.)

• The top and bottom faces approach the shape of a triangle, quadrilateral or pen-
tagon with curved sides.

• The sides are decorated with slanted patterns, which come from the boundaries of
the adjacent tubes.
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3. The tubical groups

(a) Three tubes (b) Three partial tubes

(c) A single cell (d) Three smooth tubes

(e) Top view of a cell in orthogonal projection (f) Voronoi diagram on the Hopf sphere

Figure 3.1.: (a) Three tubes (out of twenty-four) of the polar ±[O × Cn]-orbit polytope
for a generic starting point v and n = 40. Each tube consists of 80 cells (slices). The
tubes are shown in a central projection. (b) Some of the cells are removed to make the
slices visible. We also show the corresponding orbit circles. (c) A single cell (with its
cell axis) from those tubes, in a perspective view from the side, and (e) a top view in
orthogonal projection. (f) The spherical Voronoi diagram of the +O-orbit of h(v). The
colored points correspond to the tubes of the same color. (d) The tubes as n goes to
infinity.
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3.3. The geometry of the tubes

• The tube twists around the orbit circle by one full 360◦ turn as it closes up on
itself.

If n is small, these properties break down: The circles are not filled densely enough
to ensure that the cells are thin slices. Sometimes they are regular or Archimedean
polytopes, and the orbit polytopes coincide with those of polyhedral groups, and the
“tubes” may even be disconnected, see for example Figures B.1 or B.9 in Appendix B.
See Section 3.12 for more examples.

Figure 3.1 shows a case where the 2n-gons lie on different circles. Then the orbit is
free: for any two cells, there is a unique transformation in the group that moves one cell
to the other. If the starting point is generic enough, the cells have no symmetries. (See
Proposition 3.4.1 below for a precise statement.) Then the given group is the symmetry
group of its orbit polytope: There is a unique transformation mapping one cell to the
other even among all orthogonal transformations, not just the group elements.

3.2.1. Mapping between adjacent cells

Definition 3.2.1. The cell axis of a cell of the polar orbit polytope is the orthogonal
projection of the orbit circle into the 3-dimensional hyperplane of the cell.

The cell axis thus gives the direction in which consecutive cells are stacked upon each
other along the orbit circle. It is a line going through the orbit point. Figure 3.1c shows
a cell together with its axis. The cell axis is not necessarily a symmetry axis. The cell
axis intersects the boundary of the cell in two poles.

This is where consecutive cells are attached to each other (unless n is too small and
the tubes are disconnected.) More precisely: For the orbit polytope of a generic starting
point, the next cell is attached as follows. We translate the cell C from the bottom pole
to the top pole. Call the new cell C ′. We rotate C ′ slightly until its bottom face matches
the top face of C, and we attach it there (with a bend into the fourth dimension, as for
every polytope).

3.3. The geometry of the tubes
We investigate the structure of the tubes in the limiting case as n → ∞, where they
become smooth objects. As n gets larger, the orbit circle is filled more and more densely,
and the slices get thinner. In the limit, every slice becomes a flat plane convex region,
which we call a tangential slice. The tangential slices around an orbit circle sweep out the
tangential tube as v moves around the circle. The limit of the polar orbit polytope consists
of tangential tubes, and this is what is shown in Figure 3.1d. The central projections of
these tubes and slices to the sphere are the spherical tubes and the spherical slices of
these tubes. The spherical tubes are the Voronoi diagram on S3 of the orbit circles.

This gives us a way to generalize these notations to any finite set of circles from a
common Hopf bundle. For that we first need the definition of the spherical Voronoi
diagram. Let X be a finite collection of nonempty subsets of Sd, and let X ∈ X be one
of these subsets. The spherical Voronoi cell of X with respect to X is

VorX (X) := {x ∈ Sd | dist(x, X) ≤ dist(x, Y ) for all Y ∈ X }.

The spherical Voronoi cells of the subsets in X give a decomposition of Sd, denoted by
VorX and called the spherical Voronoi diagram. If the subsets in X are singletons, we
get the usual spherical Voronoi diagram.

Let C be a finite set of at least two circles from a common Hopf bundle, and let K ∈ C
be one of them. We can assume that the common Hopf bundle is H. The Voronoi cell
of K with respect to C is called a spherical tube. The intersection of VorC(K) with the
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3. The tubical groups

hyperplane perpendicular to K at a point v ∈ K gives two (2-dimensional) patches. One
contains v and one contains −v. These are spherical slices. The tangential slices and
tangential tubes are defined as above in the special case of orbit circles.

We will show that the spherical tubes are bounded by patches of Clifford tori (Theo-
rem 3.3.2), and the tangential slices are polygons of circular arcs (Theorem 3.3.3).

3.3.1. The spherical tubes

Given that the circles belong to a common Hopf bundle and the Hopf map transforms
distances appropriately (Proposition 2.2.8), it is no surprise that the Voronoi diagram
of the set of circles on S3 is closely related to the Voronoi diagram of the corresponding
points on S2 (see Figure 3.1f.)

Proposition 3.3.1. Let C ⊂ H be a finite set of circles from H, and let K ∈ C be one of
them. The spherical tube VorC(K) is the union of circles from H that are the preimages
under h of the points in Vorh(C)(h(K)), where h(C) := { h(C) | C ∈ C }.

Proof. First we will show that for any point x′ ∈ VorC(K), the great circle K ′ from
H on which x′ lies is also in VorC(K). Since all the circles in H are Clifford-parallel
(Proposition 2.2.8), dist(K ′, C) = dist(x′, C) for all C ∈ C. Thus, we get the following
equivalence.

dist(x′, K) ≤ dist(x′, C) ⇐⇒ dist(K ′, K) ≤ dist(K ′, C),

for all C ∈ C. That is, K ′ ⊂ VorC(K). By Proposition 2.2.8 we know that

dist(K ′, K) ≤ dist(K ′, C) ⇐⇒ dist(h(K ′), h(K)) ≤ dist(h(K ′), h(C)),

for all C ∈ C. That is, K ′ ∈ VorC(K) if and only if h(K ′) ∈ Vorh(C)
(
h(K)

)
.

3.3.2. The spherical tube boundaries

Theorem 3.3.2. Let C ⊂ H be a finite set of circles from H. The boundaries of the
corresponding spherical tubes consist of patches of Clifford tori. The edges of these tubes
are great circles from H.

Proof. As in Proposition 3.3.1, the boundary between two tubes is the preimage, under
the Hopf map h, of the boundary between the two corresponding Voronoi regions in
Vorh(C). Such a boundary edge on the Hopf sphere S2 is contained in a great circle.
A great circle can be described as the points that are equidistant from two antipodal
points ±p on S2, and under the inverse Hopf map, these become the points on S3 that are
equidistant from two absolutely orthogonal circles Kp and K−p, and this is, by definition,
a Clifford torus.

The tube edges, where three or more tubes meet, are the preimages of the Voronoi
vertices of Vorh(C). Thus, they are circles from H.

3.3.3. The tangential slices

Theorem 3.3.3. Let C ⊂ H be a finite set of circles from H. The corresponding tan-
gential slices are (flat) convex regions bounded by circular arcs.

Proof. Let K ∈ C be one of the circles. We want to consider the tangential slice of K
at a point v ∈ K. Without loss of generality, we may assume that v = i, because the
left rotation [−vi, 1] preserves H (see Proposition 2.2.5(i)) and maps v to i. Then K is
actually Ki, the great circle through the points 1 and i.
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ẑŷ p

i

kj

T

AT

A

(b) S0 ⊂ Q

Figure 3.2.: The procedure to get the tangential slice AT . (a) The spherical pentagon
B is the Voronoi cell of the point i = h(Ki) with respect to h(C). The pentagon in the
plane passing through i is the central projection of B onto that plane. (b) The spherical
pentagon A is the spherical slice at i, which we get from a radial contraction of B. The
circular-arc pentagon AT in the tangent plane T passing through i is the corresponding
tangential slice, which we get from a central projection of A to T . This example is
constructed from the orbit circles of Figure 3.1.

The tangent direction of K at v is the quaternion 1. The hyperplane Q perpendicular
to K at v is spanned by i, j and k, which we represent in a 3-dimensional coordinate
system x̂, ŷ, ẑ, see Figure 3.2b. Q intersects S3 in a great 2-sphere S0. The spherical
tube VorC(K) cuts out two opposite patches from S0: the spherical slices. Denote by
A the slice that contains v. The slice A intersects each circle of VorC(K). Thus, by
Proposition 3.3.1, h(A) equals Vorh(C)(h(v)), which we will denote by B.

Using spherical coordinates, a point in S0 has the form i cos θ + p sin θ, where the
direction vector p is a unit vector in the ŷ, ẑ-plane that plays the role of the longitude,
and θ ∈ R is the angular distance on S0 between that point and i. See Figure 3.2. Since
p and i are pure unit quaternions, they anticommute, and in particular, pip = −ipp = i.
We will now apply the Hopf map h to a point in S0:

h(i cos θ + p sin θ) = (i cos θ + p sin θ) i (−i cos θ − p sin θ)
= i cos2 θ − pip sin2 θ + p cos θ sin θ + p cos θ sin θ

= i(cos2 θ − sin2 θ) + 2p cos θ sin θ

= i cos 2θ + p sin 2θ.

That is, h maps a point whose angular distance from i is θ to the point in the same
direction but with angular distance 2θ. Thus, if we identify S0 with S2 using the natural
identification (on S2, we denote the i, j and k directions by x, y and z, respectively),
we see that A is obtained from B by a radial contraction. That is, we look from i in all
directions and multiply the angular distance between i and each point in B by 1/2.

The intersection of Q with the (3-dimensional) tangent space of S3 at v is the 2-
dimensional tangent plane T of S0 at v. For our choice v = i, T is the plane in Q defined
by x̂ = 1. The tangential slice lies in this plane.

So to get the tangential slice AT at v, we radially contract B to get A, and then
centrally project A to T . We will describe this procedure algebraically. The radial con-
traction towards i is the map

i cos θ + p sin θ 7→ i cos θ
2 + p sin θ

2 .
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3. The tubical groups

This map is not uniquely determined at the South Pole (θ = π), and we will tacitly
exclude this point from further consideration. Writing p as j cos φ+ k sin φ, the map can
be described as follows:x

y
z

 =

 cos θ
cos φ sin θ
sin φ sin θ

 7→

x̂
ŷ
ẑ

 =

 cos θ
2

cos φ sin θ
2

sin φ sin θ
2


Using the identities cos θ

2 =
√

1+cos θ√
2 and sin θ = 2 sin θ

2 cos θ
2 , the map is written as

follows.
(x, y, z) 7→ (x̂, ŷ, ẑ) = 1√

2

(√
1 + x,

y√
1 + x

,
z√

1 + x

)
Combining this with the central projection from the origin onto T gives the following
map f .

f : (x, y, z) 7→ (x̂, ŷ, ẑ) =
(
1,

y

1 + x
,

z

1 + x

)
=
(
1,

y/x

1 + 1/x
,

z/x

1 + 1/x

)
If we apply f to a boundary edge of B, it will turn out the resulting curve is part

of a circle. The boundary edges of B are arcs of great circles on S2. We obtain such
an arc by centrally projecting to S2 a straight segment in the tangent plane of S2 at
h(v) = i. Without loss of generality suppose that one of these segments lies on the line
(x, y, z) = (1, c0, t), t ∈ R, for some constant c0 ̸= 0, see the blue line in Figure 3.2a. The
central projection of this line to S2 lies on the great circle{ ±1√

c2
0 + t2 + 1

(1, c0, t)
∣∣∣ t ∈ R

}
.

See the blue curve in Figure 3.2a. The map f transforms this great circle into the set{(
1,

c0

1 ±
√

c2
0 + t2 + 1

,
t

1 ±
√

c2
0 + t2 + 1

) ∣∣∣ t ∈ R
}

. (3.1)

See the blue curve in the tangent plane in Figure 3.2b. Straightforward manipulations
show that this set is a circle:

ŷ = c0

1 ±
√

c2
0 + t2 + 1

⇐⇒ ±ŷ
√

c2
0 + t2 + 1 = c0 − ŷ

⇐⇒ ŷ2c2
0 + ŷ2t2 + ŷ2 = ŷ2 − 2c0ŷ + ŷ2

0 ⇐⇒ ŷ2c2
0 + ŷ2t2 + 2c0ŷ = c2

0

Dividing both sides by c2
0 and then substituting the relation ẑ

ŷ = t
c0

, which follows
from (3.1), gives

ŷ2 + ẑ2 + 2
c0

ŷ = 1 ⇐⇒
(
ŷ + 1

c0

)2
+ ẑ2 = c2

0 + 1
c2

0
, (3.2)

which is the equation of a circle.

The circle defined in (3.2) belongs to the pencil of circles through the points (x̂, ŷ, ẑ) =
(1, 0, ±1), because these points fulfill the equations (3.2). The center (x̂, ŷ, ẑ) = (1, − 1

c0
, 0)

lies on the axis (x̂, ŷ, ẑ) = λ(c0, −1, 0) perpendicular to the plane c0x = y containing the
great circle and the line that started the construction.

If the set of great circles C in the previous theorem are the orbit circles of a tubical
group G, then the spherical Voronoi cell B on S2 can have 3, 4 or 5 sides, because the
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3.4. Generic starting points

cells form a tiling of the sphere with equal cells. Thus, the spherical slice is also 3, 4 or
5 sided. In particular, we get the following corollary.

Corollary 3.3.4. The tangential slice of an orbit of a tubical group is a convex plane
region whose boundary consists of 3, 4, or 5 circular arcs.

3.3.4. The tangential tube boundaries

The boundary surfaces of the tangential tubes (shown in Figure 3.1d) carry some inter-
esting structures, but we don’t know what these surfaces are.

The points on such a surface are equidistant from two circles K and K ′, and we denote
the surface by B(K, K ′). We know from Theorem 3.3.2 that its central projection to the
sphere is a Clifford torus T, whose image h(T) is the bisector between h(K) and h(K ′)
on S2. According to the relation between Voronoi diagrams and polar orbit polytopes
(as briefly discussed in Section 1.1.2), a circle K ∈ H that belongs to T is expanded by
some factor, depending on the distance to K and K ′, to become a circle on B(K, K ′).
Thus, the surface B(K, K ′) is fibered by circles (of different radii) around the origin.

Another fibration by circles, this time of equal radii, can be obtained by taking the
circular arc that forms the boundary of the tangential slice towards K ′, and sweeping
it along the circle K. In Figure 3.2b, the circle K proceeds from the point i into the
fourth dimension, and the circular boundary arc must simultaneously wind around K
as it moves along K. A third fibration, by circles of the same radius, is obtained in an
analogous way from K ′. Each of these fibrations leads to a straightforward parametric
description of B(K, K ′).

Alternatively, an implicit description B(K, K ′) by two equations can be obtained as
the intersection of two “tangential hypercylinders” in which the two tangential tubes of
K and K ′ lie. (If the circle K is described by the system x2

1 + x2
2 = 1, x3 = x4 = 0 in an

appropriate coordinate system, its tangential hypercylinder is obtained by omitting the
equations x3 = x4 = 0.)

3.4. Generic starting points
We return to the analysis of the polar orbit polytope, and start with the easy generic
case.

Proposition 3.4.1. Let G be a tubical group whose right group is Cn or Dn for n ≥ 6.
Let v ∈ S3 be a point. If the Gh-orbit of h(v) has no symmetries other than Gh, then
the same holds for the G-orbit of v: the symmetry group of this orbit is G.

Proof. Since no Cn or Dn for n ≥ 6 is contained in a polyhedral group, the only groups
containing G are tubical. In particular, the symmetry group H of the G-orbit of v is
tubical. Since the symmetry group of the Gh-orbit of h(v) is Gh by assumption, the point
h(v) does not lie on any rotation center or a mirror of a supergroup of Gh. In particular,
the Hh-orbit of h(v) is free. Thus, by Corollary 3.1.3, the H-orbit of v is free. So G and
H have the same order. Since G ⩽ H, we get G = H.

According to our goal of obtaining a geometric understanding through the orbit poly-
tope, as described in Figure 1.2 in Chapter 1, we are done, in principle. Since the cell
has no nontrivial symmetries, all symmetries of a cell are in G. We are in the branch of
Figure 1.2 that requires no further action. Every cell can be mapped to every other cell
in a unique way.

In particular, for two consecutive cells on a tube it is obvious what the transformation
between them is: a small translation along the orbit circle combined with a slight twist
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3. The tubical groups

around the orbit circle, or in other words, a right screw, effected by the right rotation
[1, en].

Between cells on different tubes, the transformation is not so obvious. For example,
in Figure 3.1c, we see a vertical zigzag of three short edges between the front corner
of the upper (roughly pentagonal) face and the corresponding corner of the lower face.
These edges are part of a longer sequence of edges, where 3 tubes meet, and which
closes in a circular way. How are the cells arranged around this “axis”, and how does
the group map between them? To investigate this question, it is helpful to move the
starting point closer to the axis to look what happens there. In particular, this will help
us to distinguish different classes of groups G with the same group Gh. We will see an
example in Section 3.14. Eventually, we will also consider starting points on the axis.

3.5. Starting point close to a mirror
Let G be a dihedral-type tubical group, and p ∈ S2 be a point close to the mirror of a
reflection of Gh. Moreover, assume that p does not lie on any rotation center of Gh. The
point p has a neighboring partner p′, which is obtained from p by reflecting it across that
mirror. We call the corresponding circles Kp and Kp′ neighboring circles. The red point
and the blue point in Figure 3.3a form a neighboring pair for the group ±T .

We will now discuss the G-orbit under different choices for the starting point v on Kp.

Case 1. Choose v ∈ Kp such that for each orbit point, the closest point on the neigh-
boring circle is also in the orbit. See Figure 3.3c. Thus, in the polar G-orbit
polytope, each cell has a “big” face that directly faces the closest point on the
neighboring circle.

Case 2. If we move v in one direction, the orbit points on the neighboring circle move in
the opposite direction. We choose v such that the orbit points on neighboring
circles are in “alternating positions”. That is, the distance between orbit points
on neighboring circles is maximized. See Figure 3.3d. Thus, in every cell of the
polar G-orbit polytope, the side that is close to the neighboring circle is divided
into two faces, on each a cell of the neighboring tube is stacked.

Case 3. Figure 3.3e shows an intermediate situation.

3.6. Starting point on a mirror
It is also interesting to see what happens if we move p to lie on that mirror of Gh. We
still assume that p does not lie on any rotation center of Gh. In this case, the neighboring
pairs on S2 coincide, and thus the corresponding neighboring circles also coincide. We
describe next what happens in each of the previous cases.

Case 1. The orbit points coincide in pairs, and thus they form a regular 2n-gon on
Kp. Each orbit point can be mapped to any other orbit point by two different
elements of G, one of which rotates Kp and one of which reverses the orientation
of Kp. Thus, in the polar orbit polytope, each cell has a half-turn symmetry
that flips the direction of the cell axis, and exchanges the top and bottom faces.
We call it a flip symmetry. (For small n, top and bottom faces might not be
defined.)
It is interesting to notice that for this choice of the starting point, the G-orbit
of v coincides with the orbit of v under the cyclic-type index-2 subgroup GC of
G. Since the GC-orbit is the same up to congruence for any starting point on
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3.6. Starting point on a mirror

(a) The ±T -orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) (d) (e)

Figure 3.3.: Orbits of the group G = ±[T × D20] for a starting point v whose image
p := h(v) lies near a mirror of Gh = ±T . The top row shows the three-dimensional ±T -
orbit polytope of p and the corresponding spherical Voronoi diagram. The red and the
blue points form a neighboring pair. The next row shows different possible configurations
for orbit points on the corresponding neighboring circles. Red points and blue points are
orbit points on the two neighboring circles. Yellow points are midpoints of orbit points on
the red circle. They are not orbit points. The third row shows a cell of the corresponding
polar orbit polytope.

Kp (Proposition 3.1.4), the GC-orbit of any starting point on Kp has the extra
symmetries coming from a dihedral-type group that is geometrically equal to
G. (This geometrically equal group has the generators of G with j replaced by
a different unit quaternion q′ orthogonal to i, which is the quaternion q′ from
Proposition 2.1.5(b).) We put this in a proposition since we will need it later.

Proposition 3.6.1. Let GC be a cyclic-type tubical group, and let GD be a
dihedral-type tubical group containing GC as an index-2 subgroup. If p lies on a
mirror of Gh

D, then the GC-orbit of any point on Kp has the symmetries from
(a geometrically equal copy of) GD.

Case 2. Orbit points on Kp form a regular 4n-gon. Each orbit point can be mapped
to any other orbit point by a unique element of G. However, this orbit has
extra symmetries, which come from the supergroup of G that we obtain by
extending G by the new symmetry [1, e2n]. This orbit of the supergroup follows
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3. The tubical groups

the behavior described in Case 1. Accordingly, each cell of the polar G-orbit
polytope has a flip symmetry.
In almost all choices for G, the supergroup has the same class as G but with
twice the parameter n. The only exceptional case is G = ±1

2 [O × D4n]. In this
case, the supergroup is ±[O × D4n].

Case 3. Orbit points on Kp form two regular 2n-gons whose union is a 4n-gon with
equal angles, and side lengths alternating between two values. The orbit points
come in close pairs. Accordingly, the cells of the polar orbit polytope come in a
sequence of alternating “up-and-down pancakes” stacked upon each other. See
the two cells in Figure 3.4.

Figure 3.4.: Two cells stacked upon each other with a 180◦ rotation. The two left figures
show each cell individually.

3.7. Starting point close to a rotation center
Let G be a cyclic-type tubical group, and let p be an f -fold rotation center11 of Gh. Let
[g] ∈ Gh be the clockwise rotation of Gh around p by 2π

f . That is, g = cos π
f + p sin π

f .
Choose a point p1 ∈ S2 close to p. Since p1 avoids rotation centers of Gh, its images

under [g] are all distinct:

p1, p2 := [g]p1, . . . , pf := [g]f−1p1

Figure 3.5a and Figure 3.6a show these points around a 4-fold rotation center and a
5-fold rotation center, respectively.

We want to describe the G-orbit for a starting point on Kp1 . By Proposition 3.1.4,
any point on Kp1 will give the same G-orbit, up to congruence. Thus, let v ∈ Kp1 be
any point on Kp1 and consider its G-orbit.

We will now discuss the G-orbit of v under different assumptions on the subgroup H
of elements of G that preserve Kp.

Case 1. H contains a simple rotation fixing Kp of order f : Orbit points around Kp can
be grouped into regular f -gons (if f ≥ 3) or pairs (if f = 2). See Figure 3.5c
and Figure 3.6c.

Case 2. H contains no simple rotation fixing Kp: Orbit points around Kp form different
types of staircases. See Figures 3.5d and 3.5f, and Figures 3.6d–3.6g.

11 We call p an f-fold rotation center of some 3-dimensional point group if f is the largest order of
a rotation around p in that group. Hence, a 4-fold rotation center of a group is not a 2-fold rotation
center of that group.
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3.8. Starting point on a rotation center

Case 3. H contains a simple rotation fixing Kp of order not equal to f : This case can
only occur when f = 4 and the order of that simple rotation is 2. Orbit points
around Kp can be grouped into pairs. See Figure 3.5e.

(a) The +O-orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) ±[O × C20]
squares

(d) ±[O × C21]
3/4 (right) staircase

(e) ±[O × C22]
pairs

(f) ±[O × C23]
1/4 (left) staircase

Figure 3.5.: Orbits of the groups G = ±[O × Cn] for a starting point v whose image
p := h(v) lies near a 4-fold rotation center of Gh = +O. The top row shows the three-
dimensional +O-orbit polytope of p and the corresponding spherical Voronoi diagram.
The four images of p under the 4-fold rotation are colored. The next row shows all
possible configurations for orbit points on the corresponding colored circles. The vertical
line in each figure is the great circle of H that correspond to the rotation center. The
third row shows a cell of the corresponding polar orbit polytope, and the bottom row
combines the previous two rows.

3.8. Starting point on a rotation center
It is also interesting to see what happens if we move p1 to p. In this case, the points
p1, . . . , pf coincide with p, and thus the corresponding circles Kp1 , . . . , Kpf

coincide with
Kp. We describe next what happens in each of the previous cases.
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3. The tubical groups

(a) The +I-orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) ±[I × C20]
pentagons

(d) ±[I × C21]
4/5 staircase

(e) ±[I × C22]
2/5 staircase

(f) ±[I × C23]
3/5 staircase

(g) ±[I × C24]
1/5 staircase

Figure 3.6.: Orbits of the groups G = ±[I × Cn] for a starting point v whose image
p := h(v) lies near a 5-fold rotation center of Gh = +I. The top row shows the three-
dimensional +I-orbit polytope of p and the corresponding spherical Voronoi diagram.
The five images of p under the 5-fold rotation are colored. The next row shows all possible
configurations for orbit points on the corresponding colored circles. The vertical line in
each figure is the great circle of H that correspond to the rotation center. The third row
shows a cell of the corresponding polar orbit polytope, and the bottom row combines
the previous two rows.

Case 1. The orbit points coincide in groups of size f , and thus they form a regular 2n-
gon on Kp. Each orbit point can be mapped to itself by f different elements of G.
Thus, in the polar orbit polytope, each cell has an f -fold rotational symmetry
whose axis is the cell axis.

Case 2. Orbit points on Kp form a regular 2fn-gon. Each orbit point can be mapped
to itself by a unique element of G. However, the orbit has extra symmetries,
which come from the supergroup of G that we obtain by extending G by the
new symmetry [1, efn]. Thus, in total, each orbit point can be mapped to itself
by f symmetries. Accordingly, in the polar orbit polytope, each cell has an
f -fold rotational symmetry whose axis is the cell axis.

Case 3. Orbit points on Kp form a regular 4n-gon. Each orbit point can be mapped to
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3.9. Two examples of special starting points

itself by 2 different elements of G. However, the orbit has extra symmetries,
which come from the supergroup of G that we obtain by extending G by the
new symmetry [1, e2n]. Thus, each orbit point can be mapped to itself by extra
2 symmetries. Accordingly, in the polar orbit polytope, each cell has a 4-fold
rotational symmetry whose axis is the cell axis.

See Section 3.9 for particular examples and Appendix B for a coverage of all groups.

3.8.1. Supergroups of cyclic type

The cyclic-type supergroups described in Case 2 and Case 3 are listed in Table 3.2 for
each group class and each type of rotation center. For large enough n, this supergroup is
the largest cyclic-type symmetry group of the orbit. In most cases, this is the same class
of group with a larger parameter n. The only exception are the groups G = ±[T × Cn]
when p is a 2-fold rotation center of Gh = +T . As can be seen in Table 3.2, the symmetry
groups of cyclic type of the orbit are then of the form ±[O × Cn′ ] or ±1

2 [O × Cn′ ].
The reason for this exceptional behavior can already be seen at the level of the groups

Gh in three dimensions: On S2, the group +T is an index-2 subgroup of +O. The 2-fold
rotation centers p of +T coincide with the 4-fold rotation centers of +O, and the orbit
has size 6 in both cases.

The group G1 := ±[T ×Cn] is an index-2 subgroup of G2 := ±[O ×Cn]. One can show
that when n ≡ 0 mod 4, the orbits of both groups have a simple rotation fixing Kp of
order 2 (for G1) and of order 4 (for G2). In particular, both orbits follow Case 1 above
and they form a regular 2n-gon on each orbit circle. Since they also have the same orbit
circles, these two orbits coincide. The other cases (n ≡ 2 mod 4, and n odd) are similar.

Accordingly, all cells of the groups ±[T × Cn] when p is a 2-fold rotation center (Sec-
tion B.4.2), appear also as cells of the groups ±1

2 [O × Cn′ ] when p is a 4-fold rotation
center (Figure 3.8), and those when n is a multiple of 4 also appear for the groups
±[O × Cn′ ] (Section B.2.1).

It is perhaps instructive to look at a particular example and compare the groups
±[T × C24] (Figure B.9) and ±1

2 [O × C24] (Figure 3.8 for n = 12), which have equal,
4-sided cells. The allowed rotations between consecutive cells, apart from the necessary
adjustment of π/24, are 0◦ and 180◦ in the first case and ±90◦ in the second case. The
common supergroup that has all four rotations is ±[O × C24] (Figure B.3).

3.8.2. Supergroups of dihedral type, and flip symmetries

For each cyclic-type tubical group and for each rotation center p of its induced group
on S2, there is a dihedral-type tubical group whose induced group on S2 has a mirror
through p, and the cyclic-type group is an index-2 subgroup of the dihedral-type group.
Thus, by Proposition 3.6.1, the orbit of the cyclic-type group for a starting point on
Kp has extra symmetries coming from (a geometrically equal copy of) that dihedral-
type tubical group. In particular, each cell of the polar orbit polytope will have a flip
symmetry. See the figures in Section 3.9 and Appendix B. The dihedral-type supergroups
are listed in Table 3.2.

3.9. Two examples of special starting points
In this section we will discuss two cases of non-generic starting points. In particular,
we want to consider orbits of cyclic-type tubical groups where the image of the starting
point under h is a rotation center of the induced group. In Table 3.2 and Appendix B,
we summarize the results for the remaining groups and rotation centers.
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center #tubes n
orbit cyclic-type dihedral-type figuretype size supergroup supergroup

± [I × Cn]

5-fold 12 0 mod 5 24n – ±[I × D2n] 3.7
else 120n ±[I × C5n] ±[I × D10n]

3-fold 20 0 mod 3 40n – ±[I × D2n] B.1
else 120n ±[I × C3n] ±[I × D6n]

2-fold 30 0 mod 2 60n – ±[I × D2n] B.2
else 120n ±[I × C2n] ±[I × D4n]

± [O × Cn]

4-fold 6
0 mod 4 12n – ±[O × D2n]

B.32 mod 4 24n ±[O × C2n] ±[O × D4n]
else 48n ±[O × C4n] ±[O × D8n]

3-fold 8 0 mod 3 16n – ±[O × D2n] B.4
else 48n ±[O × C3n] ±[O × D6n]

2-fold 12 0 mod 2 24n – ±[O × D2n] B.5
else 48n ±[O × C2n] ±[O × D4n]

± 1
2 [O × C2n]

4-fold 6
2 mod 4 12n – ± 1

2 [O × D4n]
3.80 mod 4 24n ±[O × C2n] ±[O × D4n]

else 48n ±[O × C4n] ±[O × D8n]

3-fold 8 0 mod 3 16n – ± 1
2 [O × D4n] B.6

else 48n ± 1
2 [O × C6n] ± 1

2 [O × D12n]

2-fold 12 0 mod 2 24n – ± 1
2 [O × D4n] B.7

else 48n ± 1
2 [O × C4n] ± 1

2 [O × D8n]
± [T × Cn]

3-fold 4 0 mod 3 8n – ± 1
2 [O × D2n] B.8

else 24n ±[T × C3n] ± 1
2 [O × D6n]

2-fold 6
0 mod 4 12n ±[O × Cn] ±[O × D2n]

B.92 mod 4 12n ± 1
2 [O × C2n] ± 1

2 [O × D4n]
else 24n ± 1

2 [O × C4n] ± 1
2 [O × D8n]

± 1
3 [T × C3n]

3-fold I 4 1 mod 3 8n – ± 1
6 [O × D6n] B.11

else 24n ±[T × C3n] ± 1
2 [O × D6n]

3-fold II 4 2 mod 3 8n – ± 1
6 [O × D6n] B.10

else 24n ±[T × C3n] ± 1
2 [O × D6n]

2-fold 6 0 mod 2 12n – ± 1
6 [O × D6n] B.12

else 24n ± 1
3 [T × C6n] ± 1

6 [O × D12n]

Table 3.2.: The columns “cyclic-type supergroup” and “dihedral-type supergroup” indi-
cate the largest symmetry group of the orbit that is tubical of that type. In Section 3.9,
we extensively discuss two cases from the table. For the other cases, we summarize the
results in Appendix B. The last column refers to the figure that shows cells of the corre-
sponding polar orbit polytope with different values for n. The two types of 3-fold rotation
centers for ±1

3 [T × C3n] (3-fold I and 3-fold II) are defined in Section 3.14.
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3.9.1. ±[I × Cn], 5-fold rotation center

Let G = ±[I × Cn]. We want to consider the G-orbit of a point whose image under h
is a 5-fold rotation center p of +I. By Proposition 3.1.4, any starting point on Kp will
give the same orbit, up to congruence. Notice also that the other orbit circles correspond
to the other 5-fold rotation centers of +I. Thus, choosing p to be an arbitrary 5-fold
rotation center will yield the same orbit, up to congruence.

So let p be the 5-fold rotation center p = 1√
φ2+1

(0, 1, φ), where φ = 1+
√

5
2 . Then

g = −ωiI = cos π
5 +p sin π

5 ∈ 2I defines the 72◦ clockwise rotation [g] ∈ +I around p. By
Proposition 2.1.5, we know the elements of G that preserve Kp. These elements form a
subgroup H = ⟨[g, 1], [1, en]⟩ of order 10n. Proposition 2.1.5 also tells us the H acts on
Kp as a 2-dimensional cyclic group.

The rotation [g, 1] rotates K⃗p by −π
5 , while [1, en] rotates it by π

n . Thus, the G-orbit
of a point on Kp forms a regular lcm(2n, 10)-gon on Kp. We will discuss the orbit of
a point v ∈ Kp depending on the value of n. Figure 3.7 shows cells of the polar orbit
polytopes for different values of n.

• If n is a multiple of 5, then the orbit points form a regular 2n-gon on each orbit
circle. So, every orbit point can be mapped to itself by 5 different elements of G.
This is reflected on the cells of the polar orbit polytope where each cell has a 5-fold
rotational symmetry whose axis is the cell axis.
This case corresponds to Case 1 in Section 3.8, where H contains a simple rotation
of order 5 fixing Kp.
The element [1, en] of G maps an orbit point to an adjacent one on the same circle.
Correspondingly, on each tube, the cells of the polar orbit polytope are stacked
upon each other with a right screw by π

n .

• If n is not a multiple of 5, then the orbit points form a regular 10n-gon on each
orbit circle. That is, the orbit is free. So, every orbit point can be mapped to itself
by a unique element of G. However, this orbit has extra symmetries. In particular,
the rotation [1, e5n] maps each orbit point to an adjacent one on the same circle.
Adjoining [1, e5n] to G gives the supergroup ±[I ×C5n], whose orbit of n follows the
first case. Accordingly, each cell of the polar orbit polytope has a 5-fold symmetry
whose axis is the cell axis.
This case corresponds to Case 2 in Section 3.8, where H does not contain any
simple rotation fixing Kp.
The symmetry [1, e5n] (which is not in G) maps an orbit point to an adjacent
one on the same circle. Correspondingly, on each tube, the cells of the polar orbit
polytope are stacked upon each other with a right screw by π

5n .

In accordance with Section 3.8.2, every cell has a flip symmetry, which is not included
in G. It comes from (a group geometrically equal to) the group ±[I×D2n], which contains
G as an index-2 subgroup.

The top and bottom faces in each cell are congruent. They resemble the shape of a
pentagon. This corresponds to the fact that the spherical Voronoi cell of the +I-orbit of
p on the 2-sphere is a spherical regular pentagon, as shown in the top right picture of
Figure 3.7. (Refer to the discussion in Section 3.3.)

Since the +I-orbit of p has size 12, the G-orbit of v lies on 12 orbit circles. Accord-
ingly, the cells of the polar orbit polytope can be decomposed into 12 tubes, each with
lcm(2n, 10) cells. In the PDF-file of this article, the interested reader can click on the pic-
tures in Figure 3.7 for an interactive visualization of these tubes. We refer to Section 3.13
for more details.
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n = 1, 5
( 4

5 + 1
10 ) · 2π

n = 2, 10
( 2

5 + 1
20 ) · 2π

n = 3, 15
( 3

5 + 1
30 ) · 2π

n = 4, 20
( 1

5 + 1
40 ) · 2π

n = 25
( k

5 + 1
50 ) · 2π

n = 6, 30
( 4

5 + 1
60 ) · 2π

n = 7, 35
( 2

5 + 1
70 ) · 2π

n = 8, 40
( 3

5 + 1
80 ) · 2π

n = 9, 45
( 1

5 + 1
90 ) · 2π

n = 50
( k

5 + 1
100 ) · 2π

n = 11, 55
( 4

5 + 1
110 ) · 2π

n = 12, 60
( 2

5 + 1
120 ) · 2π

n = 13, 65
( 3

5 + 1
130 ) · 2π

n = 14, 70
( 1

5 + 1
140 ) · 2π

n = 75
( k

5 + 1
150 ) · 2π

Figure 3.7.: The +I-orbit polytope of the 5-fold rotation center p = (1/
√

φ2 + 1)(0, 1, φ)
of +I, where φ = (1 +

√
5)/2 (top left), and the spherical Voronoi diagram of that orbit

(top right). The remaining pictures show cells of polar ±[I × Cn]-orbit polytopes for a
starting point on Kp for different values of n. In addition we indicate the counterclockwise
angle (as seen from the top) by which the group rotates as it proceeds from a cell to
the consecutive cell above. When the same orbit arises for several values of n, then
the indicated angle is the unique valid angle only for the smallest value n0 that is
specified. For a larger value n = 5n0, this can be combined with arbitrary multiples
of a 5-fold rotation. The polar orbit polytope can be decomposed into 12 tubes, each
with lcm(2n, 10) cells. The blue vertical line indicates the cell axis, the direction towards
the next cell along Kp. For an appropriate choice of starting point on Kp, the group
±[I × D2n] produces the same orbit.
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3.9. Two examples of special starting points

In accordance with the program set out in Figure 1.2 in Chapter 1 to understand the
group by its action on the orbit polytope, we will now work out how each cell is mapped
to the adjacent cell in the same tube. This requires a small number-theoretic calculation.
The mapping between adjacent cells is obtained in cooperation between the right group
and the left group. In particular, to get a rotation by 2π

lcm(2n,10) along the orbit circle K⃗p,
we have to combine a left rotation by −a · π

5 with a right rotation by b · π
n , resulting in

the angle
bπ

n
− aπ

5 = 2π

lcm(2n, 10) . (3.3)

For example, for n = 12 we can solve this by a = 2, b = 5. The right screw angle between
consecutive slices (or orbit points) is then bπ

n + aπ
5 . Using (3.3), this can be rewritten as

aπ

5 + bπ

n
= 2aπ

5 + 2π

lcm(2n, 10) =
(

a

5 + 1
lcm(2n, 10)

)
· 2π, (3.4)

which is (2
5 + π

120) ·2π in our example. This angle is always of the form (a
5 + 1

lcm(2n,10)) ·2π
for some integer a, in accordance with the requirement to match the pentagonal shape.
The value a can never be 0. The rotation angles for different values of n are listed in
Figure 3.7.

When n is not a multiple of 5, there is one element of the group that maps a cell to
the upper adjacent one. Thus, a has a unique value. When n is a multiple of 5, each cell
has a 5-fold symmetry included in the group. Thus, all values of a are permissible.

3.9.2. ±1
2 [O × C2n], 4-fold rotation center

Let G = ±1
2 [O × C2n]. We want to consider the G-orbit of a point whose image under h

is a 4-fold rotation center p of +O. The discussion will closely parallel that of the group
from the previous section, but in connection with the 4-fold rotation, we will also meet
Case 3. Any of the 4-fold rotation centers p gives the same orbit. So let p be the 4-fold
rotation center p = (0, 1, 0). Then g = −ωiO = cos π

4 + p sin π
4 ∈ 2O defines the 90◦

clockwise rotation [g] ∈ +O around p. By Proposition 2.1.5, we determine the elements
of G that preserve Kp as the subgroup H = ⟨[g, e2n], [1, en]⟩ of order 8n, which acts on Kp

as a 2-dimensional cyclic group. The rotation [g, e2n] rotates K⃗p by −π
4 + π

2n = − (n−2)π
4n .

Its order is

2π

gcd( (n−2)π
4n , 2π)

= 2π
π
4n gcd(n − 2, 8n) = 8n

gcd(n − 2, 8n − 8(n − 2)) = 8n

gcd(n − 2, 16) .

The other operation, [1, en] rotates it by π
n . Thus, the G-orbit of a point on Kp forms a

regular polygon with lcm(2n, 8n
gcd(n−2,16)) sides on Kp. The denominator gcd(n − 2, 16)

can take the values 1, 2, 4, 8, 16, but in the overall expression, the values 4, 8, 16 make no
distinction, and thus we can simplify the expression for the number of sides to 8n

gcd(n−2,4) .
The structure of the orbit of a point v ∈ Kp depends on n. Cells of the polar orbit

polytopes for different values of n are shown in Figure 3.8.

• If n − 2 is a multiple of 4, then gcd(n − 2, 4) = 4 and 8n
gcd(n−2,4) = 2n. The orbit

points form a regular 2n-gon on each orbit circle, and every point can be mapped
to itself by 4 different elements of G. This is reflected on the polar orbit polytope
where each cell has a 4-fold symmetry whose axis is the cell axis.
This corresponds to Case 1 in Section 3.8, where H contains a simple rotation of
order 4 fixing Kp.
The element [1, en] of G maps an orbit point to an adjacent one on the same circle.
Correspondingly, on each tube, the cells of the polar orbit polytope are stacked
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3. The tubical groups

n = 2
( k

4 + 1
4 ) · 2π

n = 1
( 1

4 + 1
8 ) · 2π

n = 6
( k

4 + 1
12 ) · 2π

n = 4
( 2k+1

4 + 1
16 ) · 2π

n = 10
( k

4 + 1
20 ) · 2π

n = 3
( 3

4 + 1
24 ) · 2π

n = 14
( k

4 + 1
28 ) · 2π

n = 8
( 2k+1

4 + 1
32 ) · 2π

n = 18
( k

4 + 1
36 ) · 2π

n = 5
( 1

4 + 1
40 ) · 2π

n = 22
( k

4 + 1
44 ) · 2π

n = 12
( 2k+1

4 + 1
48 ) · 2π

Figure 3.8.: The +O-orbit polytope of the 4-fold rotation center p = (0, 1, 0) of +O (top
left), and the spherical Voronoi diagram of that orbit (top right). The remaining pictures
show cells of polar ±1

2 [O × C2n]-orbit polytopes for a starting point on Kp for different
values of n. In addition we indicate the counterclockwise angle (as seen from the top)
by which the group rotates as it proceeds from a cell to the consecutive cell above. The
polar orbit polytope can be decomposed into 6 tubes, each with 8n

gcd(n−2,4) cells. The blue
vertical line indicates the cell axis, the direction towards the next cell along Kp. For an
appropriate choice of starting point on Kp, the group ±1

2 [O × D4n] produces the same
orbit. When n = 2, the cells that should form a tube touch each other only in a vertex.
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3.10. Consequences for starting points near rotation centers

upon each other with a right screw by π
2n .

• If n − 2 ≡ 2 mod 4, then gcd(n − 2, 4) = 2 and 8n
gcd(n−2,4) = 4n. The orbit points

form a regular 4n-gon on each orbit circle, and every point can be mapped to
itself by 2 different elements of G. However, this orbit has extra symmetries. In
particular, the rotation [1, e2n] maps each orbit point to an adjacent one on the
same circle. Adjoining [1, e2n] to G gives the supergroup ±[O×C2n], which contains
G as an index-2 subgroup. Thus, each orbit point can be mapped to itself by 2
extra symmetries that are not in G. Accordingly, as in the first case, every cell of
the polar orbit polytope has a 4-fold symmetry whose axis is the cell axis.
This corresponds to Case 3 in Section 3.8, where H contains a simple rotation of
order 2 fixing Kp.
The symmetry [1, e2n] (which is not in G) maps an orbit point to adjacent one on
the same circle. Correspondingly, on each tube, the cells of the polar orbit polytope
are stacked upon each other with a right screw by π

2n .

• If n − 2 is odd, then gcd(n − 2, 4) = 1 and 8n
gcd(n−2,4) = 8n. The orbit is free. The

orbit forms a regular 8n-gon on each orbit circle. Every point can be mapped to
any other point by a unique element of G. Again, the orbit has extra symmetries.
In particular, the rotation [1, e4n] maps each orbit point to an adjacent one on
the same circle. Adjoining [1, e4n] to G gives the supergroup ±[O × C4n], which
contains G as an index-4 subgroup. Thus, each orbit point can be mapped to itself
by 4 symmetries. Accordingly, as in the other cases, every cell of the polar orbit
polytope has a 4-fold symmetry whose axis is the cell axis.
This corresponds to Case 2 in Section 3.8, where H does not contain a simple
rotation fixing Kp.
The symmetry [1, e4n] (which is not in G) maps an orbit point to the next one on
the same circle. Correspondingly, on each tube, the cells of the polar orbit polytope
are stacked upon each other with a right screw by π

4n .

In accordance with Section 3.8.2, every cell has a flip symmetry, which is not included
in G. It comes from (a group geometrically equal to) the group ±1

2 [O × D4n], which
contains G as an index-2 subgroup.

The top and bottom faces in each cell are congruent. They resemble the shape of a
rounded square, in agreement with the quadrilateral Voronoi cell on the 2-sphere, as
shown in the top right figure in Figure 3.8.

Since the +O-orbit of p has size 6, the G-orbit of v lies on 6 orbit circles. Accordingly,
the cells of the polar orbit polytope can be decomposed into 6 tubes, each with 8n

gcd(n−2,4)
cells.

Similar to the previous section, one can work out the right screw angle (in G) between
consecutive slices. To summarize: When n−2 is odd, there is a unique angle of the form:
(k0

4 + 1
8n) ·2π (with specific k0 = 1, 2, or 3). When n−2 ≡ 2 mod 4, there are two angles:

(2k+1
4 + 1

4n) · 2π (with arbitrary k). When n − 2 is a multiple of 4, there are four angles:
(k

4 + 1
2n) · 2π (with arbitrary k).

3.10. Consequences for starting points near rotation
centers

In Sections 3.7 and 3.8 we have discussed the different cases that can arise for an orbit
near a rotation axis and on a rotation axis. Indeed, we can confirm this relation by
comparing Figure 3.6 and Figure 3.7. By the analysis that lead to Figure 3.6, an orbit
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of ±[I × Cn] near a 5-fold rotation axis forms a 4/5, 2/5, 3/5, or 1/5 staircase if n ≡
1, 2, 3, 4 mod 5, respectively, and it forms pentagons if n is a multiple of 5. We can check
in Figure 3.7 that these values are precisely the specified rotations (up to the twist by
π
5n), except when n is a multiple of 5, and in that case all five rotations are allowed.
Similarly, Figure 3.5 corresponds with Figure B.3.

Conversely, we can consult the appropriate entries in Appendix B for orbits on a
rotation axis to conclude what type of pentagons, quadrilaterals, triangles, pairs, or
staircases to expect for an orbit near this rotation axis.

3.11. Mappings between different tubes
Continuing the discussion of the tubes for the groups G = ±1

2 [O × C2n], from Sec-
tion 3.9.2, we will now continue with the program set out in Figure 1.2 in Chapter 1,
by asking, for this example, how cells in different tubes are mapped to each other. The
cells in Figure 3.8 have a roughly four-sided shape. At corners of these quadrilaterals,
three tubes meet.

To understand what is happening there, we imagine putting a starting point v′ near a
corner. Then h(v′) is near a three-fold rotation center of +O. Near such a rotation center,
the orbit forms either a set of triangles, or a left or right staircase. As just discussed,
we can check this by consulting the pictures for the orbit on a three-fold rotation axis:
Figure B.6.

We see that those cells of Figure 3.8 that have a straight line segment A between the
top and the bottom face at the corners (n = 6, 3, 18, 12) correspond to cases where the
orbit of v′ consists of triangles. Indeed, one can imagine three cells arranges around a
common edge A. (The cells don’t lie perpendicular to the axis A, but they are twisted.)

For the remaining cases (n = 1, 4, 10, 14, 8, 5, 22) the edge is broken into three parts
between the top and the bottom face, and this is where the cells are arranged in a
staircase-like fashion.

3.12. Small values of n

For small values of n, some of the cyclic-type tubical groups recover well-known decom-
positions of regular/uniform polytopes into tubes (or more commonly knows as rings).
These appear in various places in the literature. We list some of the references. Next to
each group, we state the rotation center of the induced group that is the image of the
starting point.

• ±[I × C1] and 5-fold rotation center (Figure 3.7): We get the decomposition of
the 120-cell into 12 tubes, each with 10 regular dodecahedra.12. Figure 5.2 shows
a picture of three dodecahedra from one tube, see also [23, Figure 21], [15, p. 75]
and Coxeter [18, p. 53].

• ±[O×C1] and 4-fold rotation center (Figure B.3): We get the decomposition of the
bitruncated 24-cell (the 48-cell) into 6 tubes, each with 8 truncated cubes, stacked
upon the octagonal faces.

• ±[O×C1] and 3-fold rotation center (Figure B.4): We get the decomposition of the
bitruncated 24-cell (the 48-cell) into 8 tubes, each with 6 truncated cubes, stacked
upon the triangular faces. [15, p. 75-76].

12 A remarkable paper model of a Schlegel diagram with two rings was produced by Robert Webb,
https://youtu.be/2nTLI89vdzg. An interesting burr puzzle was made in [64] using pieces of these
rings.
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3.13. Online gallery of polar orbit polytopes

• ±[T × C1] and 3-fold rotation center (Figure B.8): We get the decomposition of
the 24-cell into 4 tubes, each with 6 octahedra [15, p. 74], [3].

• ±[T × C1] and 2-fold rotation center (Figure B.9): We get the decomposition of
the 24-cell into 6 tubes, each with 4 octahedra, touching each other via vertices.

• ±1
3 [T × C3] and 3-fold (type I) rotation center (Figure B.10): This is a degenerate

case. We get the decomposition of the hypercube into 4 “tubes”, but each “tube”
is just a pair of opposite cube faces.

We remark that the orbit of G = ±[L × C1], is the same, up to congruence, for any
starting point. This follows since the G-orbit of a point v ∈ R4 can be obtained from the
G-orbit of the quaternion 1 by applying the rotation [1, v]:

orbit(v, G) = { l̄v | l ∈ L} = [1, v]{ l̄ | l ∈ L} = [1, v]orbit(1, G).

3.13. Online gallery of polar orbit polytopes
The interested reader can explore polar orbit polytopes for the cyclic-type tubical groups
with all special choices of starting points in an online gallery that provides interactive
three-dimensional views.13

The polytopes are shown in a central projection to the three-dimensional tangent space
at the starting point v of the orbit. The projection center lies outside the polytope, close
to the cell F0 opposite to v. In the projection, F0 becomes the outer cell that (almost)
encloses all remaining projected cells. The orientation of the outer cell is reversed with
respect to the other cells. We are mostly interested not in F0 but in the cells near v, which
are distorted the least in the projection, and as a consequence, we go with the majority
and ensure that these cells are oriented according to our convention (Section 1.3). For
large values on n, we have refrained from constructing true Schlegel diagrams, because
this would have resulted in tiny inner cells. As a result, cells near the boundary of the
projection wrap around and overlap.

The goal of the gallery is to show the decomposition of the polytopes into tubes, and
how these tubes are structured and interact with each other. It is possible to remove
cells one by one to see more structure. The order of the cells is based on the distances
of their orbit points to the starting point v.

3.14. ±[T × Cn] versus ±1
3 [T × C3n]

Looking at the tubical groups in Table 3.1, we see that there are groups G with the same
induced symmetry group Gh on S2. Thus, for the same starting point, these groups have
the same orbit circles. However, they differ in the way how the points on different circles
are arranged relative to each other.

In this section we will consider the case where the induced group is +T . For the same
n, we will compare the actions of ±[T × Cn] and ±1

3 [T × C3n] on and around the circles
of H that correspond to rotation centers of +T . We will see that these two groups have
different sets of fixed circles of H, which correspond to 3-fold rotation centers of +T . On
such a fixed circle, the size of the orbit is reduced by a factor of 3 (from 24n to 8n, see
Table 3.2). In Figures 3.10 and 3.11, we visualize the effect of that difference on the orbit
points and the cells of the polar orbit polytope around these circles. We will see that
triangles and both types of staircases appear in ±[T × Cn] and ±1

3 [T × C3n], depending
on n. In this sense, there is no sharp geometric distinction between the two families.

13 https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/. In the PDF-
file of this article, the pictures of the cells in the figures in Section 3.9 and Appendix B are linked to
the corresponding entries in the gallery.
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2-fold rotation center. Let p ∈ S2 be a 2-fold rotation center of +T and let [g] ∈ +T
be the 180◦ rotation around p. If n is even, then [g, e2] is in both groups, and it is a
simple rotation that fixes Kp. If n is odd, then Kp is not fixed. Thus, for the same n,
±[T × Cn] and ±1

3 [T × C3n] have the same set of fixed circles that correspond to 2-fold
rotation centers of +T .

3-fold rotation center. The eight 3-fold rotation centers of +T belong to two con-
jugacy classes, depending on which +T -orbit they are in. The rotation centers of type I,
are the ones in the orbit of p0 = (−1, −1, −1), and the rotation centers of type II, are
the ones in the orbit of −p0 = (1, 1, 1). We will see that the group ±[T × Cn] does not
distinguish between the circles Kp0 and K−p0 . In particular, the orbit of a starting point
on p0 is congruent to the one of a starting point on −p0. However, this is not the case
for ±1

3 [T × C3n].
The quaternion −ω ∈ 2T defines the 120◦ clockwise rotation [−ω] around p0. That

is −ω = cos π
3 + p0 sin π

3 . The quaternion −ω2 ∈ 2T defines the 120◦ clockwise rotation
[−ω2] around −p0. That is −ω2 = cos π

3 − p0 sin π
3 .

By Proposition 2.1.5, the set of rotations that preserve Kp0 is the same as the set of
rotations that preserve K−p0 . Let’s look at these rotations inside each of the two groups.

• The elements of ±[T × Cn] that preserve Kp0 (and K−p0) form the subgroup

⟨[−ω, 1], [1, en]⟩ = ⟨[−ω2, 1], [1, en]⟩

of order 6n. The rotation [−ω, 1] rotates Kp0 by π
3 in one direction, while [1, en]

rotates it by π
n in the other direction. Thus, the ±[T ×Cn]-orbit of a starting point

on Kp0 forms a regular lcm(2n, 3)-gon on Kp0 . Similarly, the ±[T × Cn]-orbit of
a starting point on K−p0 forms a regular lcm(2n, 3)-gon on K−p0 . In particular, if
n is a multiple of 3, ±[T × Cn] has a simple rotation ([−ω, e3]) fixing Kp and a
simple rotation ([−ω2, e3]) fixing K−p0 . If n is not a multiple of 3, ±[T × Cn] has
no simple rotation fixing Kp0 or K−p0 , and the orbit points on the three circles
form a left or right staircase.

• The elements of 1
3 [T × C3n] that preserve Kp0 (and K−p0) form the subgroup

⟨[−ω, e3n], [1, en]⟩ = ⟨[−ω2, e2
3n], [1, en]⟩

of order 6n. We will now consider the action of this subgroup on the circles Kp0

and K−p0 . On Kp0 , the rotation [−ω, e3n] rotates Kp0 by π
3 − π

3n = (n−1)π
3n . Its order

is

2π

gcd( (n−1)π
3n , 2π)

= 2π

gcd( π
3n(n − 1), 6n π

3n) = 2π
π
3n gcd(n − 1, 6n) = 6n

gcd(n − 1, 6) .

Thus, the ±1
3 [T × C3n]-orbit of a starting point on Kp0 forms a regular polygon

with lcm(2n, 6n
gcd(n−1,6)) = 6n

gcd(n−1,3) sides. In particular, if n − 1 is a multiple of 3,
±1

3 [T ×C3n] has a simple rotation fixing Kp0 . Otherwise, G has no simple rotation
fixing Kp0 . On K−p0 , the rotation [−ω2, e2

3n] rotates K−p0 by π
3 − 2π

3n = (n−2)π
3n . Its

order is

2π

gcd( (n−2)π
3n , 2π)

= 2π

gcd( π
3n(n − 2), 6n π

3n) = 2π
π
3n gcd(n − 2, 6n) = 6n

gcd(n − 2, 12) .

Thus, the ±1
3 [T × C3n]-orbit of a starting point on K−p0 forms a regular polygon

with lcm(2n, 6n
gcd(n−2,12)) = 6n

gcd(n−2,3) sides. In particular, if n − 2 is a multiple of
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3, ±1
3 [T × C3n] has a simple rotation fixing K−p0 . Otherwise, G has no simple

rotation fixing K−p0 .

To summarize, ±[T × Cn] fixes Kp0 and K−p0 if and only if n ≡ 0 mod 3. While,
±1

3 [T × C3n] fixes Kp0 if and only if n ≡ 1 mod 3, and it fixes K−p0 if and only if
n ≡ 2 mod 3.

Here, we have discussed the situation in terms of orbits near the axis. As discussed in
Section 3.10, the results can be checked against Figures B.8, B.11, and B.10.
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Figure 3.9.: The +T -orbit polytope of a starting point near a 3-fold rotation center of
+T (left), and the spherical Voronoi diagram of this orbit (right). The picture looks the
same for a Type I or a Type II center.

(a) ±[T × C15] (b) ±[T × C16] (c) ±[T × C17]

(d) ± 1
3 [T × C45] (e) ± 1

3 [T × C48] (f) ± 1
3 [T × C51]

Figure 3.10.: Cells of polar orbit polytopes of the corresponding groups, where the im-
age of the starting point lies near a 3-fold rotation center of type I. The colors are in
correspondence with Figure 3.9.

(a) ±[T × C15] (b) ±[T × C16] (c) ±[T × C17]

(d) ± 1
3 [T × C45] (e) ± 1

3 [T × C48] (f) ± 1
3 [T × C51]

Figure 3.11.: Cells of polar orbit polytopes of the corresponding groups, where the image
of the starting point lies near a 3-fold rotation center of type II. The colors are in
correspondence with Figure 3.9.
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4.1. The invariant Clifford torus
We will now study the large class of groups of type [D × D] or [C × C] or [C × D], where
both the left and the right group are cyclic or dihedral. At the beginning of Section 2.4,
we have seen that these groups have an invariant Clifford torus Tq

p. All tori Tq
p are the

same up to orthogonal transformations. We can thus, without loss of generality, restrict
our attention to the standard torus Ti

i. Indeed this is the torus that is left invariant by
the left and right multiplication with the groups ±[D2m × D2n] and their subgroups, as
follows from Proposition 2.2.6. When we speak of the torus in this chapter, we mean the
torus Ti

i and we denote it by T.
Since we also have cases where the left and right subgroup are equal, we also have

to deal with their achiral extensions. According to Proposition 1.9.1, the extending
element can be taken as e = ∗[1, c], which is a composition of ∗ : (x1, y1, x2, y2) 7→
(x1, −y1, −x2, −y2), which leaves the torus fixed, with [1, c], for an element c of the right
group, which also leaves the torus fixed. This means that the achiral extensions can also
be found among the groups that leave the torus fixed.

We call these groups, namely the subgroups ±[D2m×D2n] and their achiral extensions,
the toroidal groups.

We will study and classify these groups by focusing on their action on T. In particular,
it will be of secondary interest whether the groups are chiral or achiral, or which Hopf
bundles they preserve. These properties were important to derive the existence of the
invariant torus, but we will not use them for the classification.

Since T is a two-dimensional flat surface, the symmetry groups acting on T bear much
resemblance to the discrete symmetry groups of the plane, i.e., the wallpaper groups.
These groups are well-studied and intuitive. All wallpaper groups except those that
contain 3-fold rotations will make their appearance (12 out of the 17 wallpaper groups).
The reason for excluding 3-fold rotations is that a Clifford torus has two distinguished
directions, which are perpendicular to each other, and these directions must be preserved.
We don’t assume familiarity with the classification of the wallpaper groups. We will
develop the classification as we go and adapt it to our needs.

4.2. Torus coordinates and the torus foliation
The Clifford torus belongs to a foliation of S3 by a family of tori, which, in terms of
Cartesian coordinates (x1, y1, x2, y2), have the equations

x2
1 + y2

1 = r2
1, x2

1 + y2
2 = r2

2 (4.1)

for fixed radii r1, r2 with 0 < r1, r2 < 1 and r2
1 + r2

2 = 1. The standard Clifford torus
has the parameters r1 = r2 =

√
1/2. As limiting cases, r1 = 1 gives the great circle in

the x1, y1-plane, and r1 = 0 gives the great circle in the x2, y2-plane. Every torus in this
family is the Cartesian product of two circles, and thus is a flat torus, with a locally
Euclidean metric, forming a 2πr1 × 2πr2 rectangle with opposite sides identified.
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4. The toroidal groups

ϕ1

ϕ2

(0, 0)

(2π, 2π) ≡ (0, 0)

(π, 0) (2π, 0) ≡ (0, 0)

(0, 0) ≡ (0, 2π)

(0, π)

ϕ2 = const + ϕ1

ϕ2 = const− ϕ1

ϕ2 = const

ϕ1 = const

Figure 4.1.: Torus coordinates for the Clifford torus

The best way to see the mapping to the rectangle is to use double polar coordinates:
x1
y1
x2
y2

 =


r1 cos φ1
r1 sin φ1
r2 cos φ2
r2 sin φ2

 (4.2)

Then φ1 and φ2 (appropriately scaled) can be used as rectangular two-dimensional
coordinates, see Figure 4.1.

The lines with φ1 = const and φ2 = const are what we would normally call meridian
circles and parallel circles of the torus, except that there is no natural way to distinguish
the two classes. These circles have radius

√
1/2. The 45◦ lines with φ2 = const + φ1 and

φ2 = const − φ1 are great circles. They are the circles from the Hopf bundles Hi and Hi.
Figure 4.2 gives a picture of corresponding patches around the origin φ1 = φ2 = 0 for

three tori. The middle one is the Clifford torus with r1 = r2 =
√

1/2 ≈ 0.7, the top one
has r1 = 0.55 < r2 ≈ 0.835, and the bottom one has the reversed values r1 and r2.

Each torus is intrinsically flat, i.e., isometric to the Euclidean plane in every small
patch, but, as the figure suggests, it is embedded as a “curved” surface inside S3. The
only “lines” in the torus that are geodesics of S3 are those that are parallel to the
diagonal lines φ2 = ±φ1. The dotted “vertical” lines connect points with the same
φ1, φ2-coordinates on different tori. They are great circles, and they intersect every
torus of the family orthogonally.

In Section 4.11.2, we will see the easy equation x1x3 = x2x4 (4.9) for the same torus
in a different coordinate system.

4.3. Symmetries of the torus
Since the torus is locally like the Euclidean plane, and the plane is the universal covering
space of the torus, we can investigate the isometric symmetries of the torus by studying
the isometries of the plane. However, not every isometry of the plane can be used as a
symmetry of the torus; it must be “compatible” with the torus structure. The following
theorem makes this precise:

Theorem 4.3.1. There is a one-to-one correspondence between

• groups G of isometries of the torus [0, 2π) × [0, 2π),
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+r2 − r1

F = ·

ϕ2

r2 = r1 =
√

1
2

r2 > r1

r2 < r1

ϕ1

ϕ2 = ϕ1

S+ =

S− =

ϕ2 = −ϕ1

−r2 + r1

O

Figure 4.2.: Patches of flat tori in the 3-sphere. This illustration is a central projec-
tion from the 3-sphere to the 3-dimensional tangent hyperplane at the point O =
(
√

1/2, 0,
√

1/2, 0), which is the marked point in the center. Great circles, i.e. geodesics
on the 3-sphere, appear as straight lines. The axes of the flip half-turns F and the swap
half-turns S+ and S− are indicated.
The tangent in direction φ1 points in the direction (0, 1, 0, 0) and the tangent vector in
direction φ2 points in the direction (0, 0, 0, 1). The “perpendicular direction”, which is
the vertical axis +r2 − r1 in the figure, is the direction (−

√
1/2, 0,

√
1/2, 0).
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4. The toroidal groups

• groups Ĝ of isometries x 7→ Ax + t of the (φ1, φ2)-plane with the following prop-
erties:

(i) The directional part A of every isometry in Ĝ keeps the integer grid Z2 in-
variant.

(ii) The group contains the two translations φ1 7→ φ1 + 2π and φ2 7→ φ2 + 2π.

The proof uses the following lemma, which shows how to lift torus isometries to plane
isometries:

Lemma 4.3.2. Let Λ denote the scaled integer grid { (k12π, k22π) | k1, k2 ∈ Z }, and let
p : R2 → R2|Λ be the quotient map from the plane to the torus [0, 2π) × [0, 2π):

p(φ1, φ2) = (φ1 mod 2π, φ2 mod 2π)

For every isometry T of the torus [0, 2π) × [0, 2π), there is an isometry T̂ of the plane
with the following properties.

(a) T (p(x)) = p(T̂ (x)) for all x ∈ R2.

(b) T̂ maps the grid Λ to a translate of Λ.

The isometry T̂ is unique up to translation by a grid vector t ∈ Λ.

Proof. Pick some point y0 of the torus and let T (y0) = y′
0. Find points x0, x′

0 ∈ R2 with
y0 = p(x0) and y′

0 = p(x′
0). Since p is locally injective, the mapping T can be lifted to a

mapping T̂ (x) = p−1(T (p(x))) in some neighborhood N(x0) of x0 ∈ R2:

R2 : x0 x′
0

T : y0 y′
0

T̂

p

T

p (4.3)

In other words, T̂ (x0) = x′
0, and for all x ∈ N(x0):

p(T̂ (x)) = T (p(x)) (4.4)

Moreover, since both p and T are locally isometries, T̂ is an isometry in N(x0). This
isometry can be extended to a unique isometry T̂ of the plane.

To extend the validity of (4.4) from N(x0) to the whole plane, we look at a path x0+λt
from x0 to an arbitrary point x0 + t of the plane, where (0 ≤ λ ≤ 1). On the torus, it
corresponds to a path p(x0 +λt), which is mapped to an image path T (p(x0 +λt)), which
in turn can be lifted to a path on R2. Since p is locally invertible and an isometry, (4.4)
must hold along the whole path, and therefore for an arbitrary point x0 + t of the plane.
This is claim (a).

To show claim (b), consider any t ∈ Λ. By (4.4),

p(T̂ (t)) = T (p(t)) = T (p(0))

that is, all values T̂ (t) for t ∈ Λ project to the same point T (p(0)) on the torus. It follows
that the image of Λ under T̂ is contained in a translate of Λ. But then it must be equal
to this translate of Λ.

Once x0 and x′
0 have been chosen, the construction gives a unique transformation T̂ .

The result can be varied by adding an arbitrary translation t ∈ Λ to x0 (before applying
T̂ ) or t′ ∈ Λ to x′

0 (after applying T̂ ). By property (b), it makes no difference whether
we are allowed to translate by an element of Λ before applying T̂ or after (or both). This
proves the uniqueness claim of the lemma.
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4.3. Symmetries of the torus

As a consequence, we can write a torus isometry like a plane isometry in the form
x 7→ Ax + t with an orthogonal matrix A and a translation vector t, bearing in mind
that t is unique only up to grid translations.

Proof of Theorem 4.3.1. Given a group G, we can construct the lifted group Ĝ as the
set of lifted isometries T̂ of the transformations T ∈ G according to the lemma. The
group property of Ĝ can be easily shown by extending the diagram (4.3):

R2 : x0 x′
0 x′′

0

T : y0 y′
0 y′′

0

T̂ T̂ ′

T̂ T̂ ′

p

T T ′

T T ′

p p

The translations φ1 7→ φ1 + 2π and φ2 7→ φ2 + 2π arise as lifts of the identity id ∈ G.
It is clear that a matrix A keeps the scaled integer grid Λ := { (k12π, k22π) | k1, k2 ∈ Z }
invariant (Property (b)) if and only if it keeps the standard integer grid Z2 invariant
(Property (i)).

Conversely, given a transformation T̂ in the group Ĝ, we can define T as follows: For
a point y0 of the torus, pick a point x0 with p(x0) = y0, and define T (y0) through the
relation (4.3): T (y0) := p(T̂ (x0)). The choice of x0 is ambiguous. It is determined only
up a translation by t ∈ Λ, but we see that this has no effect on T (y0):

p(T̂ (x0 + t)) = p(T̂ (x0) + t′) = p(T̂ (x0))

By property (i), or property (b), t′ ∈ Λ, and therefore the ambiguity evaporates through
the projection p.

4.3.1. Torus translations

The simplest operations are the ones that appear as translations on the torus, modulo
2π. We denote them by

Rα1,α2 : (φ1, φ2) 7→ (φ1 + α1, φ2 + α2)

in accordance with (1.1). In this notation, a left rotation [exp αi, 1] turns out to be a
negative translation along the 45◦ direction: T−α,−α. A right rotation [1, exp αi] is a
translation in the −45◦ direction: Rα,−α. Arbitrary torus translations can be composed
from left and right rotations, and the general translation is written in quaternion notation
as

Rα1,α2 =
[
exp(−α1−α2

2 i), exp(α1−α2
2 i)

]
.

The torus translations Rα,0 and R0,α along the φ1 and φ2-axis are simple rotations,
leaving the x2, y2-plane or the x1, y1-plane fixed, respectively.

One should bear in mind that all “translations”, as they appear on the torus, are
actually rotations of S3. (Only the left and right rotations among them may be called
translations of S3 with some justification, because they correspond to the translations
in elliptic 3-space.)

4.3.2. The directional group: symmetries with a fixed point

We pick the point O = (
√

1/2, 0,
√

1/2, 0) with torus coordinates φ1 = φ2 = 0 as a
reference point or origin on T. Every isometry of T can be decomposed in a unique way
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4. The toroidal groups

into a symmetry that leaves O fixed (the directional part), plus a torus translation (the
translational part).

Let us therefore study the symmetries that leave O fixed. In the plane, these would
be all rotations and reflections. However, according to Theorem 4.3.1 we can only use
symmetries that leave the standard square grid Z2 invariant, apart from a translation.
This allows rotations by multiples of 90◦, as well as reflections in the coordinate axes
and in the 45◦-lines.

In the plane, these seven operations together with the identity form the dihedral group
D8, the symmetries of the square. We denote the group by DT

8 , to indicate that we think
of the transformations of S3 that leave the torus T invariant. Table 4.1 summarizes these
operations and their properties. For each operation, we have chosen a symbol indicating
the axis direction in case of a reflection, or otherwise some suggestive sign, and a name.
We also give the quaternion representation, the effect in terms of the φ1, φ2-coordinates,
and the order of the group element.

Some transformations may swap the two sides of T, exchanging the tori with param-
eters r1, r2 and r2, r1. This is indicated by a “−” in the column “side”, and the names
of these operations include the term “swap”. The nonswapping operations leave every
torus of the foliation (4.1) invariant, not just the “central” Clifford torus.

The column “det” indicates whether the operation is orientation-preserving (+) or
orientation-reversing (−). One must keep in mind that the operation on the torus T
induces a transformation of the whole S3, and what appears as a reflection in the planar
φ1, φ2-picture of T may or may not be an orientation-reversing transformation of S3.
Thus, it may at first sight come as a surprise that the torus swap is orientation-
preserving. The reason is that it goes together with a swap of the sides. As shown in
Figure 4.2, it is actually a half-turn around the axis S+. (The product of the signs in
the “side” and “det” columns tells whether the operation is orientation-preserving when
considered purely in the plane.)

Figure 4.2 makes it clear why there is no “pure swap”, no “inversion” at the central
torus that would keep the torus pointwise fixed and swap the two sides of the torus: such
a mapping would flip the dashed perpendicular lines and thus map the long side of the
rectangular patch on the top to the short side of the rectangular patch at the bottom.
We see that a swap is only possible if it goes hand in hand with an exchange of the φ1
and φ2 axes. In particular, such an exchange comes with the rotations by ±90◦, the right
and left swapturn operations, which are accordingly orientation-reversing.

The column “conj.” indicates operations that are conjugate to each other, i.e., geo-
metrically equivalent. Thus, for example, the operation may, in a different coordinate
system, appear as the operation −. By contrast, and are distinguished: the axis of
belongs to the invariant left Hopf bundle Hi, and the axis of belongs to the invariant
right Hopf bundle Hi. The operations and are mirrors of each other, i.e., conjugate
under an orientation-reversing transformation. This is indicated in the last column.

When viewed in isolation, the half-turns S+ = , S− = , and F = · are conjugate
to each other. However, they are distinct when considering only transformations that
leave the torus invariant.

4.3.3. Choice of coordinate system

The conjugacies discussed above introduces ambiguities in the representation of torus
translations, which depend on the choice of the coordinate system for a given invariant
torus. Rα1,α2 may, in a different coordinate system, appear as R−α1,−α2 (conjugacy by
· ), or as Rα2,α1 (conjugacy by ), or as R−α2,−α1 (conjugacy by ). (The operation
Rα1,−α2 or R−α1,α2 is its mirror operation.) The choice of origin in the φ1, φ2-plane,
on the other hand, has no influence on the torus translations. It only affects the other
operations.
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4.3. Symmetries of the torus

symbol name [l, r] (φ1, φ2) → order side det conj. mirror
identity [1, 1] (φ1, φ2) 1 + + –
horizontal reflection ∗[i, i] (−φ1, φ2) 2 + − − –

− vertical reflection ∗[k, k] (φ1, −φ2) 2 + − –
· torus flip F = − · [j, j] (−φ1, −φ2) 2 + + – ·

torus swap S+ [i, k] (φ2, φ1) 2 − + –
alternate torus swap S− [−k, i] (−φ2, −φ1) 2 − + –

⟲ left swapturn · ∗[−j, 1] (φ2, −φ1) 4 − − ⟳ –
⟳ right swapturn ⟲ −1 ∗[1, j] (−φ2, φ1) 4 − − ⟲ –

Table 4.1.: The directional parts of the torus symmetries, the elements of the group DT
8 .

Some come in conjugate pairs, as indicated in the column “conj.”, meaning that they are
geometrically equivalent. The conjugacy is established by any of the operations or in
these cases. The torus flip · commutes with all other operations. The last column shows
the mirror transformation for each transformation of determinant +1 (the orientation-
preserving transformations).

group name chirality swapping conjugate mirror
= { } translation chiral no –
= { , } reflection achiral no − , by –

− = { ,−} reflection achiral no , by –
· = { , · } flip chiral no – ·
+ = { , ,−, · } full reflection achiral no – –

= { , } swap chiral yes –
= { , } swap chiral yes –

× = { , , , · } full swap chiral yes – ×
⟲ = { , ⟲, · , ⟳} ∼= C4 swapturn achiral yes – –
+× = { , ⟲, · , ⟳, ,−, , } full torus achiral yes – –

Table 4.2.: The 10 subgroups of DT
8 . A group is achiral if it contains an orientation-

reversing transformation. A group is swapping if it contains a transformation that swaps
the two sides of the torus. The fifth column shows to which other groups the group
is conjugate by an orientation-preserving transformation. The last column shows the
mirror group of each chiral group, i.e., the conjugate group by an orientation-reversing
transformation. (Each achiral group in this list is its own mirror image.)

4.3.4. The directional group and the translational subgroup

We have mentioned that every symmetry of the torus can be decomposed in a unique
way (after fixing an origin) into a directional part and a translational part.

For a group G, the torus translations contained in it form a normal subgroup, the
translational subgroup, which we denote by G□. The directional parts of the group op-
erations form the directional group of G. It is a subgroup of DT

8 , and we will use it as a
coarse classification of the toroidal groups. (The directional group is isomorphic to the
factor group G/G□.)

The ten subgroups of DT
8 are listed in Table 4.2, together with a characteristic symbol

and a name. Figure 4.3 shows their pictorial representation.
The following lemma is useful in order to restrict the translational subgroup for a

given directional group.

Lemma 4.3.3. For a group G of torus symmetries, the translational subgroup G□ is
closed under every symmetry in the directional group of G.

Proof. Assume that t ∈ G□, and we have an operation in G/G□ that is represented
by an orthogonal 2 × 2 matrix A. This means that G contains some transformation
x 7→ Ax + b. If we conjugate the translation x 7→ x + t with this transformation, we get
x 7→ A(A−1(x − b) + t) + b = x + At, i.e., a translation by At.

59



4. The toroidal groups

− · +

× ⟲ +×

Figure 4.3.: The 10 subgroups of DT
8 . See Table 4.2.

4.4. Overview of the toroidal groups
After fixing the directional group, we have to look at the translational subgroup, and
the interaction between the two. The result is summarized as follows.

Proposition 4.4.1. The 4-dimensional point groups that have an invariant torus can
be classified into 25 infinite families of toroidal groups, among them

• 2 three-parameter families

• 19 two-parameter families

• 4 one-parameter families

as shown in Table 4.3.

The last column of Table 4.3 shows the names of these groups in the classification of
Conway and Smith.14 We make a comparison in Section 4.12.

There is one difficulty that we have not addressed: We look at the groups that leave
one particular Clifford torus invariant. However, there are some groups, in particular
small groups, that have several invariant Clifford tori. This leads to ambiguities. For
example, a torus translation by 180◦ on one torus may appear as a swapturn on a
different torus. We investigate these cases in detail in Section 4.11.

The natural constraint on the parameters m and n is m, n ≥ 1 in all cases of Table 4.3,
in the sense that all these choices (in a few cases under the additional constraint that
m ≡ n (mod 2)) lead to valid groups. (But note that some extra evenness constraints are
already built into the notation, for example, when we write pm

2m,2n instead of pm
m,n.) For

the swapturn groups ⟲ a,b, the natural choices are a, b ≥ 0 except for (a, b) = (0, 0). The
stricter conditions on m and n in Table 4.3 are imposed in order to exclude duplications.

We will now go through the categories one by one. This closely parallels the classifi-
cation of the wallpaper groups. When appropriate, we use the established notations for
wallpaper groups to distinguish the torus groups. We have to choose suitable parameters
for the different dimensions of each wallpaper group, and in some cases, we have to refine
the classification of wallpaper groups because different axis directions are distinguished.

14 To get a closer correspondence with our parameterization for the groups of type and · in the
first two rows, we swap the role of the left and right factors in the generators given in Conway and
Smith. Effectively, we consider the mirror groups. Accordingly, we have adapted the Conway–Smith
convention of writing 1

f
[Cm × C

(s)
n ], by decorating the left factor with the parameter s. More details

are given in Appendix G.
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4.4. Overview of the toroidal groups

group order parameters names in Conway–Smith [14, Tables 4.1–4.3]
torus translation groups (chiral, wallpaper group p1)

(s)
m,n mn m, n ≥ 1, − m

2 ≤ s ≤ n−m
2 m ≡ 0 (mod 2): ± 1

f [C(s′)
mf/2 × Cn]

m ≡ 1 (mod 2): + 1
f [C(s′)

mf × Cn]
torus flip groups (chiral, wallpaper group p2)
· (s)

m,n 2mn m, n ≥ 1, − m
2 ≤ s ≤ n−m

2 m ≡ 0 (mod 2): ± 1
2f [D(f−s′)

mf × D2n]
(m, n) ̸= (1, 1), (2, 1) m ≡ 1 (mod 2): + 1

2f [D(2f−s′)
2mf × D2n]

torus swap groups (chiral) n even n odd
pm
2m,2n 4mn m, n ≥ 2 ±[D2m × Cn] ± 1

2 [D2m × C2n]
pg
2m,2n 4mn m ≥ 2, n ≥ 1 ± 1

2 [D2m × C2n] ±[D2m × Cn]
cm
m,n 2mn m ≥ 3, n ≥ 2, m − n even ± 1

2 [D2m × Cn] + 1
2 [D2m × C2n]

pm
2m,2n 4mn m, n ≥ 2 mirrors of the groups pm

2n,2m
pg
2m,2n 4mn m ≥ 1, n ≥ 2 mirrors of the groups pg

2n,2m
cm
m,n 2mn m ≥ 2, n ≥ 3, m − n even mirrors of the groups cm

n,m

full torus swap groups (chiral) m n even n odd
× p2mm

2m,2n 8mn m, n ≥ 2 m even ±[D2m × D2n] ± 1
2 [D2m × D4n]

m odd ± 1
2 [D4m × D2n] ± 1

4 [D4m × D4n]
× p2mg

2m,2n 8mn m, n ≥ 2 m even ± 1
2 [D2m × D4n] ±[D2m × D2n]

m odd ± 1
4 [D4m × D4n] ± 1

2 [D4m × D2n]
× p2gm

2m,2n 8mn m, n ≥ 2 m even ± 1
2 [D4m × D2n] ± 1

4 [D4m × D4n]
m odd ±[D2m × D2n] ± 1

2 [D2m × D4n]
× p2gg

2m,2n 8mn m, n ≥ 2 m even ± 1
4 [D4m × D4n] ± 1

2 [D4m × D2n]
m odd ± 1

2 [D2m × D4n] ±[D2m × D2n]
× c2mm

m,n 4mn m, n ≥ 3, m − n even m ≡ n ± 1
2 [D2m × D2n] + 1

4 [D4m × D4n]
torus reflection groups (achiral)

pm
m,n 2mn m, n ≥ 1

{
+ or ± 1

f [Cn′f × C
(s)
n′f ] · 2(0) or

+ 1
f [Cn′f × C

(s)
n′f ] · 2(2)

pg
m,n 2mn m, n ≥ 1

{
+ or ± 1

f [Cn′f × C
(s)
n′f ] · 2(1) or

+ 1
f [Cn′f × C

(s)
n′f ] · 2(0)

cm
m,n 4mn m, n ≥ 1 ± 1

f [Cn′f × C
(s)
n′f ] · 2(0) or + 1

f [Cn′f × C
(s)
n′f ] · 2(0)

full torus reflection groups (achiral)
+ p2mm

m,n 4mn m ≥ n ≥ 1, (m, n) ̸= (1, 1)
+ p2mg

m,n 4mn m, n ≥ 1, (m, n) ̸= (1, 1)

 ± 1
2f [D2n′f × D

(s)
2n′f ] · 2(α,β) or

+ 1
2f [D2n′f × D

(s)
2n′f ] · 2(α,β)

+ p2gg
m,n 4mn m ≥ n ≥ 1, (m, n) ̸= (1, 1)

+ c2mm
m,n 8mn m ≥ n ≥ 1, (m, n) ̸= (1, 1) ± or + 1

2f [D2n′f × D
(s)
2n′f ] · 2(0,0)

torus swapturn groups (achiral, wallpaper group p4)
⟲ a,b 4(a2+b2) a ≥ b ≥ 0 a ≡ b (mod 2): ± 1

2f [D2nf × D
(s)
2nf ] · 2

a ≥ 2, (a, b) ̸= (2, 0) a ̸≡ b (mod 2): + 1
2f [D2nf × D

(s)
2nf ] · 2

full torus groups (achiral) n even n odd
+× p4mmU

n 8n2 n ≥ 3 ± 1
2 [D2n × D2n] · 2 + 1

4 [D4n × D4n] · 21

+× p4gmU
n 8n2 n ≥ 3 ± 1

2 [D2n × D2n] · 2 + 1
4 [D4n × D4n] · 23

+× p4mmS
n 16n2 n ≥ 2 ±[D2n × D2n] · 2 ± 1

4 [D4n × D4n] · 2
+× p4gmS

n 16n2 n ≥ 2 ± 1
4 [D4n × D4n] · 2 ±[D2n × D2n] · 2

Table 4.3.: Overview of the toroidal groups. In the Conway–Smith names, we write n′

and s′ when these parameters don’t directly correspond to our parameters n, s.
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α1

α2

(0, 0)

(2π, 2π)

t1 = ( 2πm ,
2π
m )

t2

t1 − t2

(πn ,−
π
n )

α1

α2

(0, 0)

(2π, 2π)

nt2

(x, x)

s( 2πm ,
2π
m )

Figure 4.4.: A lattice of torus translations. In the right part, we see that it is given by
the parameters m = 2, n = 5, and s = 1. The vectors t1 = (π, π) and t2 = (π

5 , −π
5 ) +

(2π
5 , 2π

5 ) = (3π
5 , π

5 ) generate the group (1)
2,5. This lattice happens to be a square lattice,

but this plays no role.

4.5. The torus translation groups, type
These are the groups that contain only torus translations. The pure translation groups
are the simplest class, but they are also the richest type of groups, requiring three
parameters for their description. The translations (α1, α2) with Rα1,α2 ∈ G form an
additive group modulo (2π, 2π), and hence a lattice modulo (2π, 2π). In accordance with
Theorem 4.3.1 we can also view it as a lattice in the plane that contains all points whose
coordinates are multiples of 2π, see Figure 4.4.

We parameterize these lattices with three parameters m, n, s: The lattice subdivides
the principal diagonal from (0, 0) to (2π, 2π) into some number m ≥ 1 of segments. Then
we choose t1 = (2π

m , 2π
m ) as the first generator of the lattice. The second parameter n ≥ 1

is the number of lattice lines parallel to the principal diagonal that run between (0, 0)
and (2π, 0), including the last one through (2π, 0). In the figure, we have m = 2 and
n = 5. On each such line, the points are equidistant with distance 2π

m ·
√

2. The first
parallel lattice line thus contains a unique point t2 = (π

n , −π
n) + (x, x) with 0 ≤ x < 2π

m ,
and we choose x as the third parameter. The range from which t2 can be chosen is
indicated by a double arrow in the figure.

We still have to take into account the ambiguity from the choice of the coordinate
system (Section 4.3.3). The choice of origin is no problem, since a translation does not
depend on the origin. Also, the “flip” ambiguity from · is no problem at all: Rotating
the coordinate system by 180◦ maps the lattice to itself. The “swap” ambiguity from ,
however, is more serious, as it exchanges the coordinate axes: α1 ↔ α2. (From , we get
no extra ambiguity, since = · · .)

To eliminate this ambiguity, we look at the vectors t1 − t2 and t2. They form also a
lattice basis, and they span a parallelogram whose diagonal t1 lies on the α1 = α2 axis.
The alternate choice of the basis will reflect the parallelogram at this diagonal. Thus, the
choices x and 2π

m −x will lead to the same group. We can achieve a unique representative
by stipulating that t2 is not longer than t1−t2. This means that we restrict t2 to the lower
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4.5. The torus translation groups, type

half of the range, including the midpoint, which is marked in the figure: 0 ≤ x ≤ π
m .15

Finally, we look at the point nt2, which lies on the 45◦ line through (2π, 0). We have to
ensure that it is one of the existing lattice points on this line because additional points
would contradict the choice of m. Thus

nt2 = (π, −π) + (nx, nx) = (2π, 0) + s(2π
m , 2π

m )

for some integer s, or in other words

x = π

n
+ s · 2π

mn

Combining this with the constraint 0 ≤ x ≤ π
m , we get

−m

2 ≤ s ≤ −m

2 + n

2 (4.5)

This range contains ⌈n
2 ⌉ integers if m is odd and ⌈n+1

2 ⌉ integers if m is even. In particular,
there is always at least one possible value s.

Proposition 4.5.1. The point groups that contain only torus translations can be clas-
sified as follows:

For any integers m, n ≥ 1 and any integer s in the range (4.5), there is one such
group, the torus translation group (s)

m,n, of order mn. It is generated by R 2π
m

, 2π
m

and
R 2π

n
+ 2sπ

mn
, 2sπ

mn
.

In terms of quaternions, these generators are [exp(−2π
m i), 1] and [exp(− (m+2s)π

mn i), exp πi
n ].

We emphasize that the two parameters m and n play different roles in this parameteriza-
tion, and there is no straightforward way to read off the parameters of the mirror group
from the original parameters m, n, s. (See for example the entries 11/01 and 11/02 in
Table D.1.)

We have observed above that x and x′ = 2π
m − x lead to the same group, and the same

is true for x′ = 2π
m + x. In terms of s this means that the parameters s′ = −m − s and

s′ = s + n lead to the same group as s. In Section 4.11, when we discuss duplications, it
will be convenient to allow values s outside the range (4.5). In particular, it is good to
remember that s = 0 corresponds to a generating point on the α1-axis.

4.5.1. Dependence on the starting point

Proposition 4.5.2. Any two full-dimensional orbits of a toroidal translation group are
linearly equivalent.

Proof. Let G be a toroidal translation group. We will show that any full-dimensional
G-orbit can be obtained from the G-orbit of the point ( 1√

2 , 0, 1√
2 , 0) by applying an

invertible linear transformation.
Let v ∈ R4 be a point whose G-orbit is full-dimensional. This is equivalent to requiring

that the projections of v to the x1, y1-plane and to the x2, y2-plane are not zero. We can
map v to a point v′ of the form (r1, 0, r2, 0), with r1 ̸= 0 and r2 ̸= 0, by applying a

15 This easy way of dealing with the duplications caused by is the reason for preferring the oblique
axes of Figure 4.4 for measuring the parameters m and n over the more natural α1, α2-axes. This
oblique system is also aligned with the specification of the group by its left and right group (of left
translations and right translations) that underlies the classic classification, see Appendix G. Curiously,
these duplications caused by were overlooked by Conway and Smith [14], although they had escaped
none of the previous classifications [30, p. 62, groupe I], [67, p. 20, item §1, formula (2)], [23, p. 55,
first paragraph].
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4. The toroidal groups

rotation of the form
Rα1,α2 =

(
Rα1 0

0 Rα2

)
. (4.6)

The new point v′ can be mapped to the point ( 1√
2 , 0, 1√

2 , 0) by applying a matrix of the
form

diag(λ1, λ1, λ2, λ2) =


λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 . (4.7)

Since torus translations commute with the linear transformations (4.6) and (4.7), we are
done.

Frieder and Ladisch [26, Proposition 6.3 and Corollary 8.4] proved that the same
conclusion holds for any abelian group: All full-dimensional orbits are linearly equivalent
to each other in this case.

4.6. The torus flip groups, type ·
These groups are generated by torus translations together with a single torus flip. Adding
the flip operation is completely harmless. Conjugation with a flip changes Rα1,α2 to
R−α1,−α2 , and therefore does not change the translation lattice at all. The order of the
group doubles.

If we choose the origin at the center of a 2-fold rotation induced by a torus flip, then
· (s)

m,n is generated by

[exp(−2πi
m ), 1], [exp(− (m+2s)πi

mn ), exp πi
n ], [j, j].

4.7. Groups that contain only one type of reflection
These are the torus reflection groups and −, as well as the torus swap groups and

. The groups of type and − are geometrically the same, because (or ) exchanges
vertical mirrors with horizontal mirrors. Thus, Table 4.3 contains no entries for −. The
groups and are mirrors, and their treatment is similar.

If the directional part of a transformation is a reflection (in the plane), the transfor-
mation itself can be either a reflection or a glide reflection. In both cases there is an
invariant line. We will classify the groups by placing a letter F on the invariant line and
looking at its orbit.

We need a small lemma that is familiar from the classification of the wallpaper groups:

Lemma 4.7.1. If a two-dimensional lattice has an axis of symmetry, then the lattice is
either

(1) a rectangular lattice that is aligned with the axis, or

(2) a rhombic lattice, which contains in addition the midpoints of the rectangles.

In case (1), the symmetry axis goes through a lattice line or half-way between two lattice
lines. In case (2), the symmetry axis goes through a lattice line.

For an example, see the upper half of Figure 4.6, where the mirror lines are drawn as
solid lines.
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4.7. Groups that contain only one type of reflection

Proof. Assume without loss of generality that the symmetry axis is the y-axis. (We
may have to translate the lattice so that it no longer contains the origin.) With every
lattice point (x, y), the lattice contains also the mirror point (−x, y), and thus (2x, 0)
is a horizontal lattice vector. It follows that there must be a lattice point (x0, y0) with
smallest positive x-coordinate, since otherwise there would be arbitrarily short lattice
vectors.

(x0, y0) (x0, y0)

H H
L

(a) (b)

(i),(ii)

(i),(ii)

(ii)

(i)
L′



(0, y0) (−x0, y0)

Figure 4.5.: Different possibilities for the lattice line L′. The gray area is forbidden.

Consider the horizontal lattice line L through (x0, y0). There are two cases, see Fig-
ure 4.5. (a) (0, y0) is also a lattice point, and (H, 0) = (x0, 0) is a lattice basis vector.
(b) (0, y0) is not a lattice point, and (H, 0) = (2x0, 0) is a lattice basis vector. Now look
at the next-higher horizontal lattice line L′ above L, and choose a lattice point (x′, y′)
on L′. L′ contains the points (x′ + kH, y′) for k ∈ Z, and therefore a point (x, y′) in
the interval −H/2 ≤ x ≤ H/2. The value of x cannot be in the range −x0 < x < 0 or
0 < x < x0 because this would contradict the choice of (x0, y0). Thus, either (i) x = 0
or (ii) both points (±x0, y′) are in the lattice. In case (a), both possibilities (i) and (ii)
hold simultaneously, and this leads to a rectangular lattice with the axis through lattice
points. If (b) and (ii) holds, we have a rectangular lattice with the axis between lattice
lines. If (b) and (i) holds, we have a rhombic lattice.

4.7.1. The torus reflection groups, type

We distinguish two major cases.
M) The group contains a mirror reflection.
G) The group contains only glide reflections.

In both cases, every orientation-reversing transformation has a vertical invariant line.
(Actually, since the translation φ1 7→ φ1 + 2π is always an element of the group, by
Theorem 4.3.1, the invariant lines come in pairs φ1 = β and φ1 = β + π.)

As announced, we observe the orbit of the letter F. We put the bottom endpoint of
the F on an invariant line ℓ. First we look at the orbit under those transformations that
leave ℓ invariant, see the left side of Figure 4.6. In case G, the images with and without
reflection alternate along ℓ. In case M, they are mirror images of each other.

In case M, we have a mirror symmetry, and by Lemma 4.3.3, the translational subgroup
must be closed under the mirror symmetry. Lemma 4.7.1 gives the two possibilities of a
rectangular or a rhombic translational subgroup. Combining these translations with the
mirror operations leads to the two cases in the top row of Figure 4.6.

In case G, we cannot apply Lemma 4.7.1 right away. Let H be the vertical distance
between consecutive points on the axis. If we combine each glide reflection with a verti-
cal translation by −H, we get mirror reflections, as in case M. To this modified group,
we can apply Lemma 4.7.1, and we conclude that the translational group must either
form a rectangular or a rhombic pattern. Adding back the translation by H to the
orientation-reversing transformations leads to the results in the lower row of Figure 4.6.
In the rhombic case in the lower right picture we see that, when we try to combine glide
reflections with a rhombic translational subgroup, we generate mirror symmetries, and
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4. The toroidal groups

glide/rhombic

mirror/rhombic = cmmirror/rectangular = pm

glide/rectangular = pg

Case M: mirror reflections

Case G: glide reflections

= mirror/rhombic = cm

Figure 4.6.: Torus reflection groups, type . Combinations of a vertical mirror/glide
reflection axis with either a rectangular or a rhombic grid. Invariant lines are shown as
solid lines if they act as mirrors, otherwise dashed. The dotted lines indicate the lattice
of translations, and the shaded area is a fundamental domain.

thus, this case really belongs to case M. The picture looks different from the correspond-
ing picture in the upper row because there are two alternating types of invariant lines:
mirror lines, and lines with a glide reflection. Depending on where we put the F, we get
different pictures.

We are thus left with three cases, which we denote by superscripts that are chosen in
accordance with the International Notation for these wallpaper groups:

• mirror/rectangular: pm,
• mirror/rhombic: cm, and
• glide/rectangular: pg.
The groups are parameterized by two parameters m ≥ 1 and n ≥ 1, the dimensions

of the rectangular grid of translations in the φ1 and φ2 directions, see the left part of
Figure 4.7.

Since the invariant lines give a distinguished direction, we need not worry about du-
plications when exchanging m and n. The order of each group G is twice the order of
the translational subgroup G□.

4.7.2. The torus swap groups

For the groups of type , we have to turn the picture by 45◦. We have the same three
cases, pm, cm, and pg, but we must adapt the definition of m and n, see the right
part of Figure 4.7. We divide the principal diagonal from (0, 0) to (2π, 2π) into m parts
and the secondary diagonal from (0, 0) to (2π, −2π) into n parts. We cannot choose m
and n freely because the midpoint (2π, 0) of the square spanned by these two diagonal
directions, which represents the identity mapping, is always part of the lattice. Therefore,
for the rectangular lattice cases pm and pg, m and n must be even, and the number
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4.7. Groups that contain only one type of reflection

α1

α2

(0, 0)

(2π, 2π)

n = 5

m
=

3

α1

α2

(0, 0)

(2π, 2π)

m
=
3

n
=
5

(4π, 0)

(0, 2π)

(2π, 0)

(2π,−2π)

Figure 4.7.: Left: Parameters for the translational subgroup of the groups with vertical
invariant lines, type . We divide the vertical axis into m equal parts and the horizontal
axis into n equal parts. In the rectangular case, the grid consists only of the mn black
points. In the rhombic case, the white points are also present, for 2mn translations in
total.
Right: For the groups of type , the axes are tilted clockwise by 45◦ and longer by the
factor

√
2.

of lattice points on the torus is mn/2. (We loose a factor of 2 compared to , because
the tilted square in the figure covers the torus twice.) For the rhombic lattice case cm,
m and n must have the same parity, and the number of lattice points on the torus is
mn.

We mention that the parameter m in this case coincides with the parameter m for the
translations-only case of Figure 4.4. The parameter n coincides in the rhombic case;
in the rectangular case, it is twice as big.

As mentioned, the groups of type are mirrors of the groups of type , and we need
not discuss them separately.

Generators for , and . Whenever a mirror line exists (cm and pm), we
choose the origin of the coordinate system on such a line; otherwise (pg), we place it on
an axis of glide reflection. With these conventions, the groups can be generated by the
generators listed in Table 4.4.

group generators
pm
m,n [e πi

m , e
πi
m ], [e πi

n , e− πi
n ], ∗[i, i]

pg
m,n [e πi

m , e
πi
m ], [e πi

n , e− πi
n ], ∗[i, i][e πi

2m , e
πi
2m ]

cm
m,n [e πi

m , e
πi
m ], [e πi

n , e− πi
n ], [e πi

2m + πi
2n , e

πi
2m − πi

2n ], ∗[i, i]
pm
2m,2n [e πi

m , 1], [1, e
πi
n ], [−k, i]

pg
2m,2n [e πi

m , 1], [1, e
πi
n ], [1, e

πi
2n ][−k, i]

cm
m,n [e i2π

m , 1], [1, e
i2π

n ], [e πi
n , e

πi
m ], [−k, i]

pm
2m,2n [e πi

m , 1], [1, e
πi
n ], [i, k]

pg
2m,2n [e πi

m , 1], [1, e
πi
n ], [e πi

2m , 1][i, k]
cm
m,n [e i2π

m , 1], [1, e
i2π

n ], [e πi
n , e

πi
m ], [i, k]

Table 4.4.: Generators for torus reflection groups and torus swap groups
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α1

α2

2π

2π

0

a =
6 b

=
3

Figure 4.8.: Left: Parameterizing a square grid. Right: The wallpaper group p4 corre-
sponding to the groups ⟲ . The centers of 4-fold rotations are marked by diamonds, the
centers of 2-fold rotations are marked by “digons” in the form of a lense. The dotted
light-blue square indicates the square lattice of the subgroup of translations, arbitrarily
anchored at an upright F.

4.8. The torus swapturn groups, type ⟲

By Lemma 4.3.3, the lattice of translations must be a square grid. The left part of
Figure 4.8 shows how we parameterize a square grid on the torus. We take the sides
a ≥ 0 and b ≥ 0 of the grid rectangle spanned by the two points (0, 0) and (2π, 0),
measured in grid units. Since (0, b) leads to the same grid rectangle as (b, 0), we require
a ≥ 1.

Conjugation by reflects the grid at the principal diagonal. Since the grid is symmetric
under 90◦ rotations, this has the same effect as reflection at a vertical axis, and it is easy
to see that such a reflection swaps the parameters a and b. Thus, (a, b) and (b, a) describe
the same group, and we can assume a ≥ b without loss of generality.

The number of grid points, i.e., the size of the translational subgroup, is a2 + b2, and
the order is 4(a2 + b2). The right part of Figure 4.8 shows the various centers of 2-fold
and 4-fold rotations, and a typical orbit. This corresponds to the wallpaper group p4.

The grid is generated by the two orthogonal vectors (α1, α2) = 2π( a
a2+b2 , b

a2+b2 ) and
(α1, α2) = 2π( b

a2+b2 , − −a
a2+b2 ), with c =

√
a2 + b2. If we choose the origin at the center of

a 4-fold rotation induced by a swapturn, then ⟲ a,b can be generated by

[exp (−a−b)πi
a2+b2 , exp (a−b)πi

a2+b2 ], [exp (a−b)π
a2+b2 , exp (a+b)πi

a2+b2 ], ∗[−j, 1].

4.9. Groups that contain two orthogonal reflections, type
+ and ×

As in the case of , we distinguish, for each axis separately, whether there are mirror
reflections or only glide reflections. We know that the glide reflection case is inconsistent
with the rhombic lattice (cf. Section 4.7.1). Hence, we have the following cases, see
Figure 4.9.

• The grid of translations is a rhombic grid. In this case, both axes directions must
be mirrors: c2mm.
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4.10. The full torus groups, type +×

• The grid of translations is a rectangular grid. In this case each axis direction can
be a mirror direction or a glide reflection

– p2mm. Two mirror directions
– p2mg. One mirror direction and one glide direction
– p2gg. Two glide directions

In p2mg, the two families of invariant lines are distinguishable: one family of parallel
lines consists of mirror lines, whereas the perpendicular family has only glide reflections.
Thus, there are two different types, where the two directions change roles.

However, for +, we need not distinguish two versions of +p2mg, because conjugation
with maps one to the other. For ×, on the other hand, the two versions are distinct.
They are mirror images. We distinguish ×p2mg, where the mirror lines are parallel to
the principal diagonal φ2 = +φ1, and ×p2gm, where the mirror lines are parallel to
the secondary diagonal direction φ2 = −φ1.16 The parameters m and n have the same
meaning as in the corresponding groups and .

These groups contain torus flips, as the product of two perpendicular reflections. We
choose the origin on the center of a 2-fold rotation induced by a torus flip. For the groups
c2mm, we place origin at the intersection of two mirror lines. Then the groups can be
generated by the generators given in Table 4.5.

p2mg

c2mm

p2mm

p2gg

Figure 4.9.: The four types of groups with two orthogonal families invariant lines. The
light-blue region indicates the lattice of translations. For better visibility, the letter F
is moved away from the mirror lines. Axes of mirror reflection are shown as solid lines,
and axes of glide reflection are dashed. As in Figure 4.8, lenses mark centers of 2-fold
rotations.

4.10. The full torus groups, type +×
Finally, we have the groups where all directional transformations are combined. The
conditions of + and × force the lattice to be a rectangular lattice both in the φ1, φ2

16 This is in accordance with previous editions of the International Tables of X-Ray Crystallography,
which explicitly provided variations of the symbols for different “settings” [35, Table 6.1.1, p. 542 in
the 1952/1969 edition]: short symbol pmg, full symbol p2mg, or p2gm for other setting.
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group generators
+ p2mm

m,n [e πi
m , e

πi
m ], [e πi

n , e− πi
n ], ∗[i, i], ∗[k, k]

+ p2mg
m,n [e πi

m , e
πi
m ], [e πi

n , e− πi
n ], ∗[i, i][e πi

2n , e− πi
2n ], ∗[k, k][e πi

2n , e− πi
2n ]

+ p2gg
m,n [e πi

m , e
πi
m ], [e πi

n , e− πi
n ], ∗[i, i][e πi

2m + πi
2n , e

πi
2m − πi

2n ], ∗[k, k][e πi
2m + πi

2n , e
πi
2m − πi

2n ]
+ c2mm

m,n [e πi
m , e

πi
m ], [e πi

n , e− πi
n ], [e πi

2m + πi
2n , e

πi
2m − πi

2n ], ∗[i, i], ∗[k, k]
× p2mm

2m,2n [e πi
m , 1], [1, e

πi
n ], [i, k], [−k, i]

× p2mg
2m,2n [e πi

m , 1], [1, e
πi
n ], [1, e

πi
2n ][i, k], [1, e

πi
2n ][−k, i]

× p2gm
2m,2n [e πi

m , 1], [1, e
πi
n ], [e πi

2m , 1][i, k], [e πi
2m , 1][−k, i]

× p2gg
2m,2n [e πi

m , 1], [1, e
πi
n ], [e πi

2m , e
πi
2n ][i, k], [e πi

2m , e
πi
2n ][−k, i]

× c2mm
m,n [e i2π

m , 1], [1, e
i2π

n ], [e πi
m , e

πi
n ], [i, k], [−k, i]

+× p4mmU
n [e πi

n , e
πi
n ], [e πi

n , e− πi
n ], [i, k], ∗[i, i]

+× p4gmU
n [e πi

n , e
πi
n ], [e πi

n , e− πi
n ], [i, k][e πi

n , 1], ∗[i, i][e πi
n , 1]

+× p4mmS
n [e πi

n , 1], [1, e
πi
n ], [i, k], ∗[i, i]

+× p4gmS
n [e πi

n , 1], [1, e
πi
n ], [i, k][e πi

2n , e
πi
2n ], ∗[i, i][e πi

2n , e
πi
2n ]

Table 4.5.: Generators for full torus reflection groups, full torus swap groups, and full
torus groups

(a) mirror reflections, upright grid (p4mmU) (b) glide reflections, slanted grid (p4gmS)

Figure 4.10.: Two of the four types of groups +×. Small squares denote centers of 4-fold
rotations. For each figure, there exists a rotated version by 45◦, where +×p4mmU becomes
+×p4mmS, and +×p4gmS becomes +×p4gmU.

axis direction and in the ±45◦ direction, possibly with added midpoints (rhombic case).
This means that the lattice is a square lattice. It appears as a rectangular lattice in one
pair of perpendicular directions and as a rhombic lattice in the other directions.

Thus, there are only two cases for the translation lattice: The square n×n lattice with
n2 translations (the upright grid “U”, Figure 4.10a), and its rhombic extension with 2n2

translations (the slanted grid “S”, Figure 4.10b).
Let us first consider the slanted case, see Figure 4.10b. The lattice appears as a rhombic

lattice for the + directions. From the point of view of the subgroups of type +, we
know that this means that the “glide reflection” case is excluded (cf. the discussion in
Section 4.7.1). There must be mirror reflections in the horizontal and vertical axes.

For the × directions, the lattice appears as a rectangular lattice. According to Sec-
tion 4.9 we can have the cases mirror/mirror, mirror/glide, glide/glide. But since 90◦

rotations are included, the mixed mirror/glide case is impossible. Two cases remain,
which we call +×p4mmS and +×p4gmS. The latter is shown in Figure 4.10b. When the
lattice appears as a square lattice for the + directions, the two pairs of directions + and
× change roles, and we have two more groups, +×p4mmU and +×p4gmU. The first one is
shown in Figure 4.10a. The groups +×p4mm have mirrors in all four directions, whereas
the groups +×p4gm have mirrors in two directions only.

To list the generators for the full torus groups, we choose the origin of the coordinate
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4.11. Duplications

system on the center of a 4-fold rotation induced by a swapturn, see Table 4.5.
This concludes the discussion of the toroidal groups. The reader who wishes to practice

the understanding of these classes might try to count, as an exercise, all groups of
order 100, see Appendix C.

4.11. Duplications
As we have seen, every subgroup of a group ±[D2m × D2n] has an invariant torus. So
far, we have analyzed the groups that leave a fixed torus invariant. We have already
mentioned that some subgroups have more than one invariant Clifford torus, and this
leads to duplications. Unfortunately, when it comes to weeding out duplications, all
classifications (including the classic classification) become messy.17

We analyze the situation as follows. Every orientation-preserving transformation is of
the form Rα1,α2 , with −π ≤ α1, α2 ≤ π. If α1 ̸= ±α2, there is a unique pair of absolutely
orthogonal invariant planes, and hence, there is a unique invariant Clifford torus on
which the transformation appears as a torus translation. We call this torus the primary
invariant torus.

Our strategy is to analyze the situation backwards. We look at all orientation-preserving
transformations that are not torus translations, we write them in the form Rα1,α2 and
determine the translation vector (α1, α2) by which they would appear on their primary
invariant torus. The result is summarized in the following proposition. The torus trans-
lations that lead to ambiguity are shown in Figure 4.11:

Proposition 4.11.1. The orientation-preserving transformations that have more than
one invariant torus are the following:

(a) Simple half-turns of the form diag(−1, −1, 1, 1).
On their primary torus, they appear as torus translation by (π, 0) or (0, π). There
is an infinite family of alternate tori for which they are interpreted as torus flips or
torus swaps.

(b) Double rotations Rα,π±α.
On an alternate torus, they appear as reflections or glide reflections associated to
torus swaps or .

(c) Left and right rotations Rα,±α, including id and −id. (For α = ±π/2, these fall also
under case (b).)
A left rotation Rα,α with α ̸= ±π/2 appears as a torus translation by (α, α) or by
(−α, −α) on every invariant torus.
Similarly, a right rotation Rα,−α with α ̸= ±π/2 appears as a torus translation by
(α, −α) or by (−α, α) on every invariant torus.

Proof. The orientation-preserving transformations that are not torus translations are ·
(torus flips) and and (reflections and glide reflections associated to torus swaps).

Every torus flip is a half-turn, and these are covered in case (a).
Let us look at reflections and glide reflections associated to the torus swaps . The

torus swap at the principal diagonal is the transformation [i, k]. Both i and k are pure
quaternions, in accordance with the fact that is a half-turn. The general torus swap of
type is obtained by combining [i, k] with an arbitrary torus translation [exp βli, exp βri]:

[i exp βli, k exp βri] = [exp( π
2 i) exp βli, k(cos βr + i sin βr)] = [exp(( π

2 + βl)i), k cos βr + j sin βr]
17 The difficulty caused by these ambiguous transformations, in particular in connection with achiral
groups, was already acknowledged by Hurley [37, p. 656–7].
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left rotations

right rotations

−id

α1

α2

(0, 0)

(2π, 2π) ≡ (0, 0)

, , ·

(π, 0) (2π, 0)

(0, 2π)

(0, π)

Figure 4.11.: The torus translations on the tilted square are ambiguous: they can appear
as rotations of different types, as indicated. Left and right rotations (on the diagonal)
also have no unique invariant torus, but they appear as left and right rotations on any
invariant torus.

The right component k cos βr+j sin βr is still a unit quaternion (rotation angle π/2), and
hence the right rotation [1, exp βri] has no effect on the type of the transformation. This
is in accordance with the fact that, on the φ1, φ2-torus, a right rotation is a translation
perpendicular to the reflection axis of , whose effect is just to move the reflection axis.
The left rotation, however, changes the rotation angle from π/2 to π/2+βl. The result is
a rotation of type Rπ+βl,βl

. As a torus translation Rα1,α2 , it lies on the line α1 = α2 + π
(and α1 = α2 − π, considering that angles are taken modulo 2π), see Figure 4.11.

The operations of type are the mirrors of , and hence they appear on the reflected
lines α1 = −(α2 ± π).

Left and right rotations have infinitely many invariant tori, but cause no confusion
for our classification, because a left rotation will appear as the same left rotation on any
invariant torus (possibly with an inverted angle), except when it falls under case (b).

We note the curious fact that the operations that don’t have a unique invariant torus
coincide with the operations whose squares are left or right rotations.

Corollary 4.11.2. A group may have more than one invariant torus only if the trans-
lational subgroup contains only elements on the diagonals and on the tilted square in
Figure 4.11.

This excludes from the search for duplications those groups for which the translational
subgroup is sufficiently rich, i.e., when both parameters m and n are large. Still it leaves
a large number of cases where one of the parameters is small. We present the list of
duplications below.

4.11.1. List of Duplications

As mentioned, we have imposed the stricter conditions on m and n (and a and b) in
Table 4.3 in order to exclude all duplications. As a rule, among equal groups, we have
chosen the group with the larger subgroup of torus translations (with the chosen invariant
torus) to stay in the table.

Table 4.6 lists every group G1 that is excluded from Table 4.3, together with a group
G2 to which it is conjugate, and a conjugation that converts the second group to the first
one. The conjugations depend on the specific parameterizations that we have chosen and
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that were given with each class of groups discussed above, in particular in Tables 4.4
and 4.5.

In this chapter, we use the notation G1
.= G2 for groups that are geometrically the

same, i.e., conjugate under an orientation-preserving transformation, and we reserve the
sign “=” for groups that are equal in our chosen coordinate system.

In some classes, the choice of the two parameters m and n is symmetric (e.g., +p2mm
m,n

.=
+p2mm

n,m ). In those cases, we have achieved uniqueness by requiring m ≥ n in Table 4.3.
Such symmetries between the parameters, and other general relations are listed first for
each type of group in Table 4.6. This is followed by a list of groups with small parameters
that are explicitly excluded in Table 4.3.

We have made some simplifications to keep the table compact. As mentioned previ-
ously, we sometimes refer to groups (s)

m,n or · (s)
m,n where the parameter s lies outside the

“legal” range (4.5), in order to avoid case distinctions. The parameter s can be brought
into that range by using the equalities (s)

m,n = (s±m)
m,n

.= (−n−s)
m,n , and similarly for · .

If the permissible range of parameters s contains only one integer, we omit the parameter
and denote the group simply by m,n or · m,n. In such a case, any choice of s will lead
to the same group.

We have a few cases with more than two equal groups:

cm
1,1

.= cm
1,1

.= · (0)
1,1

.= (0)
1,2 = ⟨diag(1, 1, −1, −1)⟩ (order 2)

pm
2,2

.= pm
2,2

.= · (−1)
2,1

.= (0)
2,2 = ⟨diag(1, 1, −1, −1), diag(−1, −1, 1, 1)⟩ ∼= D4 (order 4)

× p2gg
2,2

.= pm
4,2

.= pm
2,4

.= (−2)
4,2 = ⟨diag(Rπ/2, Rπ/2), diag(Rπ/2, R−π/2)⟩ (order 8)

× p2gm
2,2

.= cm
2,2

.= pm
2,4

.= · (−1)
2,2

.= ⟨−id, diag(1, −1, 1, −1), diag(Rπ/2, R−π/2)⟩ (order 8)

× p2mg
2,2

.= cm
2,2

.= pm
4,2

.= · (−2)
4,1

.= ⟨−id, diag(1, −1, 1, −1), diag(Rπ/2, Rπ/2)⟩ (order 8)

+× p4gmU
1

.= + p2gg
2,1

.= + p2gg
1,2

.= ⟨diag(−1, −1, 1, 1), diag(1, 1, −1, 1), diag(1, 1, 1, −1)⟩ (order 8)

× c2mm
2,2

.= × p2mm
4,2

.= × p2mm
2,4

.= · (−2)
4,2 (order 16)

To reduce case distinctions, some of these groups G1 point to groups G2 that are them-
selves excluded in Table 4.3, and which must be looked up again in Table 4.6.

The conjugations in Table 4.6 were found by computer search for particular values of
m. In many cases, the conjugate group or the conjugacy mapping depends on the parity
of some parameter. We tried to simplify the entries of the table by manually adjusting
them. All conjugations were checked by computer for m ≤ 100.

When the groups are translated to the Conway-Smith classification using Table 4.3,
the duplications have easy algebraic justifications: For example, C2 and D2 are obviously
the same group. Also, D̄4 can be replaced by D4, see Appendix G.1 for more information.

4.11.2. A duplication example

By way of example, we treat one duplication in detail:

×c2mm
1,n

.= · ( n−1
2 )

1,2n , for odd n. (4.8)

Figure 4.12 shows the action of these groups on the torus for n = 5. We can confirm
that, in accordance with Corollary 4.11.2, the 10 torus translations of · (2)

1,10 lie only on
a diagonal and on the line α1 + α2 = ±π. The latter 5 translations become reflections
and glide reflections in ×c2mm

1,5 . More precisely, in accordance with Figure 4.11, they
are the reflections at the diagonal (4 glide reflections and one reflection). The picture
shows actually more glide reflection and reflection axes than the order of the group would
allow. The reason is that every glide reflection in this group can also be interpreted as a
reflection, at a different axis.
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G1 G2 [l̂, r̂] G1 G2 [l̂, r̂]
chiral groups

(s)
m,n

(s+n)
m,n [1, 1] (equal) · (s)

m,n · (s+n)
m,n [1, 1] (equal)

(s)
m,n

(−m−s)
m,n [i, k] = · (s)

m,n · (−m−s)
m,n [i, k] =

· 1,1 1,2 [i + j, 1 + k]
· 2,1

(0)
2,2 [i + j, i + j]

pm
4m−2,2 · 4m−2,1 [j + k, i + j] pm

2,4m−2 · (−1)
2,2m−1 [i + j, j + k]

pm
4m,2 · 4m,1 [1, i + j] pm

2,4m · (−1)
2,2m [i + j, 1]

pm
2,4m−2

(2m−2)
2,4m−2 [i + k, 1] pm

2m,2
(0)
2m,2 [1, i + k]

pm
2,4m

(−2)
4,2m [i + k, 1]

pg
2,4m−2

(−2)
4,2m−1 [i + k, 1] pg

2m,2
(1)
2m,2 [1, i + k]

pg
2,4m

(2m−1)
2,4m [i + k, 1]

cm
2m+1,1 · 2m+1,1 [j + k, 1 − k] cm

1,2m+1 · (m)
1,2m+1 [i + j, j + k]

cm
1,4m−3

(2m−2)
1,8m−6 [i + k, 1] cm

4m−3,1 4m−3,2 [1, 1 − j]
cm
1,4m−1

(2m−1)
1,8m−2 [1 − j, 1] cm

4m−1,1 4m−1,2 [1, i + k]
cm
2,4m−2

pm
4,4m−2 [i + j, 1] cm

4m−2,2
pm
4m−2,4 [1, i + j]

cm
2,4m

pg
4,4m [i + k, 1] cm

4m,2
pg
4m,4 [1, i + k]

× p2mm
2m,2 · (0)

2m,2 [1, i + k] × p2mm
2,4m−2 · (2m−2)

2,4m−2 [i + k, 1]
× p2mm

2,4m · (−2)
4,2m [i + k, 1]

× p2gm
2m,2 · (1)

2m,2 [1, i + k] × p2mg
2,4m−2 · (−2)

4,2m−1 [i + k, 1]
× p2mg

2,4m · (2m−1)
2,4m [i + k, 1]

× p2gm
2,4m−2

cm
2,4m−2 [i + j, j + k] × p2mg

4m−2,2
cm
4m−2,2 [j + k, i + j]

× p2gm
2,4m

pm
4,4m [i + j, 1] × p2mg

4m,2
pm
4m,4 [1, i + j]

× p2gg
4m−2,2

pm
4m−2,4 [j + k, i + j] × p2gg

4m,2
cm
4m,2 [1, i + j]

× p2gg
2,4m−2

pm
4,4m−2 [i + j, j + k] × p2gg

2,4m
cm
2,4m [i + j, 1]

× c2mm
4m−3,1 · 4m−3,2 [1, 1 − j] × c2mm

4m−2,2 × p2mm
4m−2,4 [j + k, i + j]

× c2mm
4m−1,1 · 4m−1,2 [1, 1 + j] × c2mm

4m,2 × p2gm
4m,4 [1, i + k]

× c2mm
1,4m−3 · (2m−2)

1,8m−6 [1 + j, 1] × c2mm
2,4m−2 × p2mm

4,4m−2 [i + j, j + k]
× c2mm

1,4m−1 · (2m−1)
1,8m−2 [1 − j, 1] × c2mm

2,4m × p2mg
4,4m [i + k, 1]

achiral groups
+ p2mm

m,n + p2mm
n,m [i, k] = ⟲ a,b ⟲ b,a [i, k] =

+ p2gg
m,n + p2gg

n,m [i, k] = ⟲ 1,0
pg
2,1 [1 + k, 1 − i + j + k]

+ c2mm
m,n + c2mm

n,m [i, k] = ⟲ 1,1
pg
2,2 [1 + k, 1 + i − j + k]

+ p2mm
1,1

pm
1,2 [1 + k, 1 − k] ⟲ 2,0 + p2gg

2,2 [1 + k, 1 + k]
+ p2mg

1,1
pm
2,1 [1 + k, i − j]

+ p2gg
1,1

pg
1,2 [1 + k, 1 − k]

+ c2mm
1,1

pm
2,2 [1 + k, 1 − k]

+× p4mmU
1 + p2mg

1,2 [1 + k, 1 − i − j − k] +× p4gmU
1 + p2gg

2,1 [1 + k, 1 + i − j + k]
+× p4mmU

2 + c2mm
2,2 [1 + k, 1 + k] +× p4gmU

2 ⟲ 2,2 [1 + j, 1 + j]
+× p4mmS

1 + p2mg
2,2 [1 + k, 1 + i + j − k] +× p4gmS

1
cm
2,2 [1 + k, 1 + k]

Table 4.6.: Duplications. The range of the parameter m is m ≥ 1 in all cases. The group
G1 is obtained from G2 by conjugation with h := [ l̂

∥l̂∥
, r̂

∥r̂∥ ]. That is, G1 = h−1G2h.
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0 2π0 2π

2π2π

ϕ1 ϕ1

ϕ2ϕ2

· (2)
1,10 ×c2mm

1,5

Figure 4.12.: Duplication example, · (2)
1,10

.= ×c2mm
1,5

We now prove the conjugacy formally. Since these groups have the same order 4n,
it is enough to show that G2 = · ( n−1

2 )
1,2n is contained in G1 = ×c2mm

1,n . We do this by
checking that the generators of G2, under conjugation by the element h from Table 4.6,
are elements of G1. Here are the generators we gave for these groups:

G1 = ×c2mm
1,n = ⟨[1, 1], [1, e

i2π
n ], [−1, e

πi
n ], [i, k], [−k, i]⟩ (see Table 4.5)

G2 = · ( n−1
2 )

1,2n = ⟨[e−2πi, 1], [−i, e
πi
2n ], [j, j]⟩ = ⟨[−i, e

πi
2n ], [j, j]⟩ (see Section 4.6)

We have to choose different conjugations depending on the value of n modulo 4.

• For ×c2mm
1,4m−1

.= · (2m−1)
1,8m−2, we do conjugation by h1 = [1 − j, 1]:

[1+j
2 , 1][−i, e

πi
8m−2 ][1 − j, 1] = [k, e

πi
8m−2 ] = [k, e

i(14m−3)π
8m−2 ] = [k, −i][1, e

i2π
4m−1 ]m ∈ G1

[1+j
2 , 1][j, j][1 − j, 1] = [j, j] = [i, k][−k, i] ∈ G1

• For ×c2mm
1,4m−3

.= · (2m−2)
1,8m−6, we do conjugation by h2 = [1 + j, 1]:

[1−j
2 , 1][−i, e

πi
8m−6 ][1 + j, 1] = [−k, e

πi
8m−6 ] = [j, j][1, e

i2π
4m−3 ]m−1[i, k] ∈ G1

[1−j
2 , 1][j, j][1 + j, 1] = [j, j] = [i, k][−k, i] ∈ G1

We can also study this transformation geometrically: What happens to the torus under
this coordinate transformation? On which other torus do the glide reflections of ×c2mm

1,n

appear as torus translations? Indeed, there is another simple equation for a Clifford torus
that is commonly used. We can transform our equation for the torus T as follows:

x2
1 + x2

2 = x2
3 + x2

4

x2
2 − x2

4 = x2
3 − x2

1

(x2 − x4)(x2 + x4) = (x3 + x1)(x3 − x1) (4.9)
x̃2x̃4 = x̃1x̃3, (4.10)

with transformed coordinates (x̃1, x̃2, x̃3, x̃4). This is, for example, how the torus is intro-
duced in Coxeter [18, Eq. (4.41)], who has a separate section on “the spherical torus” [18,
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§4.4, p. 35–37].
Now, the coordinate change from (4.9) to (4.10) is precisely what the transformation

h1 = [1 − j, 1] in our example achieves: [1 − j, 1] maps the quaternion units (1, i, j, k) ≡
(x1, x2, x3, x4) to (1 + j, i − k, −1 + j, i + k) ≡ (x1 + x3, x2 − x4, −x1 + x3, x2 + x4) =
(x̃1, x̃2, x̃3, x̃4). Many conjugations in Table 4.6 are of this form.

The reason why we have chosen the example (4.8) for manual confirmation is that it
corresponds to one of two duplications in the Conway-Smith classification that are not
literally mentioned there:

+1
4 [D4 × D̄4n] .= +1

4 [D4 × D
(1)
4n ] for odd n.

±1
4 [D4 × D̄4n] .= ±1

4 [D4 × D
(1)
4n ]

The second equality appears in Table 4.6 as ×p2mm
2,2m for odd m and ×p2gm

2,2m for even m.
The reason behind these duplications is discussed in Section G.1.

4.12. Comparison with the classification of Conway and
Smith

Looking at the right column of Table 4.3, we see that our classification and the classifi-
cation of Conway and Smith [14] have some similarity in the rough categorization. For
example the “mixed” groups of type [C × D] are the torus swap groups (type ). In
the finer details, however, the two classifications are often quite at odds with each other.
Groups that come from one geometric family correspond to different classes in the CS
classification from the algebraic viewpoint, depending on parity conditions. On the other
hand, some groups that belong together algebraically appear in different categories of
our classification.

While we acquired some understanding of the classic classification of the toroidal
groups according to Conway and Smith [14], in particular, of the simplest case of the
torus translation groups (type , corresponding to [C×C], see Appendix G), most entries
in the right column of Table 4.3 were filled with the help of a computer, by generating the
groups from the specified generators and comparing them by the fingerprints described
in Section 7.2, and recognizing patterns.

One reason for the difficulty is the distinction between haploid and diploid groups, a
term borrowed from biology by Conway and Smith [14]. A group is diploid if it contains
the central reflection −id; otherwise, it is haploid.18 In the classic classification, the
diploid groups arise easily, but the haploid groups must be specially constructed as
index-2 subgroups of diploid groups. Thus, the presence or absence of −id appears at
the very beginning of the classic classification by quaternions. In the notation of [14],
diploid and haploid groups are distinguished by the prefix ± and +.

For our geometric construction of the toroidal groups, this distinction is ephemeral.
The central reflection −id is the torus translation Rπ,π in the center of the parameter
square. It depends on some parity conditions of the translation parameters whether this
element belongs to G□. (For example, one can easily work out from Figure 4.7 that the
groups pm and pg are diploid if m and n are even. The groups cm are diploid if
m and n have the same parity.)

In elliptic geometry, where opposite points of S3 are identified, the distinction between
haploid and the corresponding diploid groups disappears, or in other words, only diploid
groups play a role in elliptic space.

18 Threlfall and Seifert [67, § 5] used the terms zweistufig and einstufig for these groups.
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5The polyhedral groups

We will now explain the polyhedral groups, which are related to the regular 4-dimensional
polytopes. The regular 4-dimensional polytopes have a rich and beautiful structure. They
and their symmetry groups have been amply discussed in the literature, see for example
[16, Chapters VIII and XIII], [23, §26, §27], and therefore we will be brief, except that
we study in some more detail the groups that come in enantiomorphic pairs. Table 5.1
gives an overview,19 and Table A.1 in Appendix A lists these groups with generators
and cross references to other classifications.

We mention that pictures of the cube, the 120-cell, the 24-cell, and the bitruncated
24-cell (also known as the 48-cell, defined in Section 5.6.1) arise among the illustrations
for the tubical groups, see Section 3.12.

5.1. The Coxeter notation for groups
For the geometric description of the groups, we will use the notations of Coxeter, with
adaptations by Conway and Smith [14, §4.4].

In the basic Coxeter group notation, a sequence of n − 1 numbers [p, q, . . . , r, s] stands
for the symmetry group of a certain n-dimensional regular polytope (if it exists), which is
denoted by {p, q, . . . , r, s}. (See the headings of Table 5.1 for the 4-dimensional regular
polytopes.) This group is generated by n reflections R1, . . . , Rn. Each reflection is its
own mirror: (Ri)2 = 1, and any two adjacent reflections generate a rotation whose order
is specified in the sequence: (R1R2)p = (R2R3)q = · · · = (Rn−1Rn)s = 1. Nonadjacent
mirrors are perpendicular: RiRj = RjRi for |i − j| ≥ 2.

G+ denotes the chiral part of the group G, which contains products of an even number
of reflections. When just one of the numbers p, q, . . . , r, s is even, say that between
Rk and Rk+1, there are three further subgroups. The two subgroups [+p, q, . . . , r, s]
and [p, q, . . . , r, s+] consist of words that use respectively R1, . . . , Rk and Rk+1, . . . , Rn

an even number of times. Their intersection is the index-4 subgroup [+p, q, . . . , r, s+].
Coxeter’s original notation for [+p, q, . . .] is [p+, q, . . .].

A second pair of brackets, like in [[3, 3, 3]], indicates a swap between a polytope and
its polar, following [17]. Some further extensions of the notation will be needed for the
axial groups in Chapter 6, see Table 6.3. In some cases, we have extended the Coxeter
notations in an ad-hoc manner, allowing us to avoid other ad-hoc extensions of [14].

5.2. Strongly inscribed polytopes
We say that a polytope P is strongly inscribed in a polytope Q if every vertex of P is
a vertex of Q, and every facet of Q contains a facet of P . Figure 5.1 shows two three-
dimensional examples. This relation between P and Q is reversed under polarity: With

19 In Du Val’s enumeration of the achiral groups [23, p. 61], the descriptions of the orientation-
reversing elements of the groups #41 (T/V ; T/V )∗ and #42 (T/V ; T/V )∗

− are swapped by mistake.
We follow Goursat and Hurley and go with the convention that the group with the more natural choice
of elements should be associated to the name without a distinguishing subscript. Du Val himself, in
the detailed discussion of these groups [23, p. 73], follows the same (correct) interpretation.
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CS name Du Val # and name Coxeter name order method
symmetries of the 120-cell Q120 = {5, 3, 3} / the 600-cell P600 = {3, 3, 5}
±[I × I] · 2 50. (I/I; I/I)∗ [3, 3, 5] 14400
±[I × I] 30. (I/I; I/I) [3, 3, 5]+ 7200 chiral part
±[I × O] 29. (I/I; O/O) [[3, 3, 5]+1

5 L
] 2880 inscribed polar & swap

±[O × I] 29. (O/O; I/I) [[3, 3, 5]+1
5 R

] 2880 inscribed polar & swap
±[I × T ] 24. (I/I; T/T ) [3, 3, 5]+1

5 L
1440 inscribed polar

±[T × I] 24. (T/T ; I/I) [3, 3, 5]+1
5 R

1440 inscribed polar

symmetries of the 24-cell PT = {3, 4, 3} and its polar 24-cell PT1

±[O × O] · 2 48. (O/O; O/O)∗ [[3, 4, 3]] 2304
±[O × O] 25. (O/O; O/O) [[3, 4, 3]]+ 1152 chiral part
± 1

2 [O × O] · 2 45. (O/T ; O/T )∗ [3, 4, 3] 1152 nonswapping
± 1

2 [O × O] · 2̄ 46. (O/T ; O/T )∗
− [[3, 4, 3]+] 1152 swap with mirror

± 1
2 [O × O] 28. (O/T ; O/T ) [3, 4, 3]+ 576 chiral & nonswapping

±[T × T ] · 2 43. (T/T ; T/T )∗ [3, 4, 3+] 576 edge orientation
±[O × T ] 23. (O/O; T/T ) [[+3, 4, 3+]]L 576 diagonal marking
±[T × O] 23. (T/T ; O/O) [[+3, 4, 3+]]R 576 diagonal marking
±[T × T ] 20. (T/T ; T/T ) [+3, 4, 3+] 288 2 dual edge orientations
symmetries of the hypercube {4, 3, 3} / the cross-polytope {3, 3, 4}
± 1

6 [O × O] · 2 47. (O/V ; O/V )∗ [3, 3, 4] 384
± 1

6 [O × O] 27. (O/V ; O/V ) [3, 3, 4]+ 192 chiral part
± 1

3 [T × T ] · 2 41. (T/V ; T/V )∗ [+3, 3, 4] 192 even permutations
± 1

3 [T × T ] · 2 42. (T/V ; T/V )∗
− [3, 3, 4+] 192 2-coloring

± 1
3 [T × T ] 22. (T/V ; T/V ) [+3, 3, 4+] 96 2-coloring & chiral

symmetries of the simplex {3, 3, 3} and its polar
± 1

60 [I × I] · 2 51. (I†/C2; I/C2)†∗ [[3, 3, 3]] 240
± 1

60 [I × I] 32. (I†/C2; I/C2)† [[3, 3, 3]]+ 120 chiral part
+ 1

60 [I × I] · 21 51′. (I†/C1; I/C1)†∗ [3, 3, 3] 120 nonswapping
+ 1

60 [I × I] · 23 51′. (I†/C1; I/C1)†∗
− [[3, 3, 3]+] 120 swap with mirror

+ 1
60 [I × I] 32′. (I†/C1; I/C1)† [3, 3, 3]+ 60 chiral & nonswapping

Table 5.1.: The polyhedral groups

respect to an origin that lies inside P , the polar polytope Q∆ will be strongly inscribed
in P ∆.

In four dimensions, we will show two instances of this phenomenon where a rotated
copy of the polar polytope P ∆ of a polytope P can be strongly inscribed into P . Among
the regular polytopes in three dimensions, there are just some degenerate cases, where
every facet of Q contains only an edge of P : In a cube Q, a regular tetrahedron P can
be inscribed, with the six edges of P on the six square sides of Q. In a dodecahedron
Q, a cube P can be inscribed, with its twelve edges on the twelve pentagons of Q. The
tetrahedron inscribed in a dodecahedron does not fall in this category, since its edges go
through the interior of the dodecahedron.

5.3. Symmetries of the simplex
The full symmetry group of the 4-simplex is [3, 3, 3]. The group [[3, 3, 3]] additionally
swaps (by negation) the simplex with its polar. The chiral versions are [3, 3, 3]+ and
[[3, 3, 3]]+. The group [[3, 3, 3]+] allows the flip to the polar only in connection with a
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5.4. Symmetries of the hypercube (and its polar, the cross-polytope)

Figure 5.1.: A cube with a strongly inscribed (non-regular) octahedron (left). A dodec-
ahedron with a strongly inscribed (non-regular) icosahedron (right).

reversal of orientation.

5.4. Symmetries of the hypercube (and its polar, the
cross-polytope)

The full symmetry group of the hypercube is [3, 3, 4]. It is isomorphic to the semidirect
product of coordinate permutations with sign flips {(±1, ±1, ±1, ±1)} ⋊ S4. This group
has four subgroups.

The cube has a natural 2-coloring of the vertices that gives alternating colors to adja-
cent vertices. One can check that the vertices of each color form a cross-polytope. This
cross-polytope is strongly inscribed in the cube: Each facet of the hypercube contains
exactly one (tetrahedral) facet of that cross-polytope. The subgroup [3, 3, 4+] contains
those elements that preserve the 2-coloring. Equivalently, these are the elements that
have an even number of sign changes.

The subgroup [+3, 3, 4] contains those elements that have an even permutation of
coordinates. It is isomorphic to {(±1, ±1, ±1, ±1)}⋊A4. The subgroup [+3, 3, 4+] is their
intersection. The subgroup [3, 3, 4]+ contains the orientation-preserving transformations.
These are the transformations where the parity of the sign changes matches the parity
of the permutation.

It is interesting to note that the 3-dimensional group [3, 4] closely mirrors the picture
for [3, 3, 4], see Table 5.2. Both in three and four dimensions, the “half-cube” is itself a
regular polytope: in 3 dimensions, it is the regular tetrahedron, while in 4 dimensions,
it is the cross-polytope. The subgroup [3, 4+] = TO preserves the 2-coloring of the
vertices, i.e. it contains all symmetries of the tetrahedron. Its subgroup [+3, 4+] = +T
contains the orientation-preserving symmetries of the tetrahedron. The group [+3, 4] =
±T contains the orientation-preserving symmetries of the tetrahedron together with its
central reflection. It is also characterized as those symmetries that subject the three
space axes to an even permutation. The group [3, 4]+ contains all orientation-preserving
transformations in [3, 4]. For the groups +T and TO we have used alternate Coxeter
names, which are equivalent to the standard ones, in order to highlight the analogy with
4 dimensions, cf. [12, p. 390].

4 dimensions order 3 dimensions order description
[3, 3, 4] 384 [3, 4] = ±O 48 the full symmetry group
[3, 3, 4]+ 192 [3, 4]+ = +O 24 chiral part (preserves orientation)
[+3, 3, 4] 192 [+3, 4] = ±T 24 even permutation of coordinates
[3, 3, 4+] 192 [3, 4+] = [3, 3] = TO 24 preserves the 2-coloring
[+3, 3, 4+] 96 [+3, 4+] = [3, 3]+ = +T 12 all three constraints above

Table 5.2.: Analogy between symmetries of the 4-dimensional and 3-dimensional cube
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5. The polyhedral groups
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Figure 5.2.: A sequence of inscribed tetrahedra in three successive dodecahedra of the
120-cell Q120. The red vertices form a 600-cell P ′

600. This is an orthogonal projection to
the tangent space in the center of the middle cell, and this is why the adjacent cells are
foreshortened.

5.5. Symmetries of the 600-cell (and its polar, the 120-cell)
The 120 quaternions 2I form the vertices of a 600-cell P600 = {3, 3, 5}. These quaternions
are the centers of the 120 dodecahedra of the polar 120-cell Q120 = {5, 3, 3}, which has
600 vertices. The full symmetry group of P600 (or Q120) is [3, 3, 5]. Its chiral version is
[3, 3, 5]+.

The group has four interesting subgroups, which come in enantiomorphic versions.
Under the left rotations by elements of 2I, or in other words, under the group ±[I ×
C1], the 600 vertices of Q120 decompose into five orbits, as shown by the five labels
A, B, C, D, E for the cell F0 in Figure 5.2a, cf. [23, Figure 22, p. 84]. We can regard
this as a 5-coloring of the vertices. (The points of each color are labeled X, X ′, X ′′, X ′′′

according to the horizontal levels in this picture, but this grouping has otherwise no
significance.) One can indeed check that the mapping from a pentagonal face to the
opposite face with a left screw by π/5, as effected by the elements of ±[I ×C1], preserves
the coloring.

The vertices of one color form a regular tetrahedron inscribed in a regular dodec-
ahedron, and there are thus five ways inscribe such a “left” tetrahedron in a regular
dodecahedron. There is an analogous “right” 5-coloring by the orbits under ±[C1 × I],
and correspondingly, there are five ways of inscribing a “right” tetrahedron in a regular
dodecahedron. One such tetrahedron is shown in Figure 5.2b.20 The left and right tetra-
hedra are mirrors of each other, and they can be distinguished by looking at the paths of
length 3 on the dodecahedron between vertices of a tetrahedron: These paths are either
S-shaped zigzag paths (for left tetrahedra) or they have the shape of an inverted S (for
right tetrahedra).

Every color class consists of the points 2I · p0 for some starting point p0, and hence

20 The unions of these five or ten tetrahedra inside a dodecahedron form nice nonconvex star-like poly-
hedral compounds, see [23, Figures 14 and 15a–b]. See also https://blogs.ams.org/visualinsight/
2015/05/15/dodecahedron-with-5-tetrahedra/ from the AMS blog “Visual Insight”.
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5.5. Symmetries of the 600-cell (and its polar, the 120-cell)

it forms a rotated copy P ′
600 of the 600-cell P600. This polytope is strongly inscribed

in Q120: For each dodecahedron of Q120, there is a unique left rotation in ±[I × C1]
mapping F0 to this dodecahedron, and in this way we get 120 images of the starting
tetrahedron. Figure 5.2a shows these tetrahedra in three adjacent dodecahedra. (As a
sanity check, one can perform a small calculation: A vertex is shared by four tetrahedra—
one tetrahedron in each of the four dodecahedra meeting in the vertex—, and this gives
a consistent vertex count, since every tetrahedron has four vertices and 120 · 4/4 = 120.)

The red points in Figure 5.2b form part of an analogous 600-cell P ′R
600 spanned by

right inscribed tetrahedra. Some additional edges of this P ′R
600, which don’t lie in the

three dodecahedra that are shown, are drawn in brown.
The group ±[I × T ] consists of those symmetries of that simultaneously preserve the

120-cell Q120 and its strongly inscribed “left” 600-cell P ′
600. To see this, consider the

dodecahedral cell F0 that is centered at the quaternion 1. As mentioned, each left multi-
plication by an element 2I maps F0, together with its inscribed tetrahedron AA′A′′A′′′ to
a unique dodecahedral cell of Q120 with the corresponding tetrahedron. To understand
the full group, we have to consider those group elements that keep F0 fixed. ±[I × T ]
consists of the elements [l, r] with (l, r) ∈ 2I × 2T . The transformation [l, r] keeps F0
fixed iff it maps 1 to 1, and this is the case iff l = r. These elements are the elements
[r, r] = [r] with r ∈ 2T , in other words, they form the tetrahedral group ±T . And indeed,
the symmetries of F0 that keep the tetrahedron AA′A′′A′′′ invariant form a tetrahedral
group.

We chose [3, 3, 5]+1
5 L

as an ad-hoc extension of Coxeter’s notation for the group ±[I×T ],
to indicate a 1/5 fraction of the group [3, 3, 5]+.

Now, there is also the original 600-cell P600, the polar of the Q120, having one vertex in
the center of each dodecahedron. This gives rise to a larger group [[3, 3, 5]+1

5 L
] = ±[I ×O]

where the two 600-cells P600 and P ′
600 (properly scaled) are swapped. This group is not

a subgroup of any other 4-dimensional point group.
When the starting point s is chosen in the center of the dodecahedral cell of Q120,

the polar orbit polytope of this group has 240 cells. Figure 5.3 shows such a cell C.
The points of the orbit closest to s are four vertices of the dodecahedron (say, those
of color A, the red points in Figure 5.2a). They form a tetrahedral cell of P ′

600, and
they are responsible for the rough tetrahedral shape of C. The centers of the twelve
neighboring dodecahedra in Q120 give rise to the twelve small triangular faces, which are
the remainders of the twelve pentagons of the original dodecahedral cell, when the polar
is not present. In addition, there are four neighboring cells that are adjacent through
hexagonal faces, opposite the large 12-gons. They are centered at vertices of P ′

600. Two
of these are shown as red points in Figure 5.2a, the point adjacent to C in the lower cell
F9, and the point adjacent to D′′′ in the upper cell F1. The cell has chiral tetrahedral
symmetry +T . In particular, it is not mirror-symmetric. In [24, Figure 9], this cell is
shown together with a fundamental domain inside it. Incidentally, this cell (and the orbit
polytope) coincides with that of the tubical group ±[I × C4] when the starting point is
chosen on a two-fold rotation center (Figure B.2).

Figure 5.3.: A cell C of the polar orbit polytope of the group ±[I × O]
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5. The polyhedral groups

If we use the “right” 5-coloring we get the corresponding groups [3, 3, 5]+1
5 R

= ±[T × I]
and [[3, 3, 5]+1

5 R
] = ±[O ×I]. See Figure 5.2b. These four groups come in two enantiomor-

phic pairs. The two corresponding groups are mirrors of each other. (They are therefore
metachiral groups in the terminology of Conway and Smith [14, §4.6].)

5.6. Symmetries of the 24-cell
The set of 24 quaternions of 2T form the vertices of a regular 24-cell PT . The complete
symmetry group of PT is [3, 4, 3], and its chiral version is [3, 4, 3]+.

The points of PT can be 3-colored: There are 8 vertices of PT whose coordinates are
the permutations of (±1, 0, 0, 0). They form a cross-polytope. The 16 remaining vertices
are of the form (±1/2, ±1/2, ±1/2, ±1/2). They are the vertices of a 4-cube, and they
can be naturally divided into two color groups of 8, as mentioned in Section 5.4. In total,
we have three groups of 8 vertices, which we interpret as a 3-coloring of the vertices by
the colors a, b, c, see Figure 5.4a. Every triangular face contains vertices from all three
colors. Thus, every symmetry of PT induces a permutation of the colors.

We can look at those symmetries for which the permutations of the colors is even. In
other words, besides the identity, we allow only cyclic shifts. These form the subgroup
[3, 4, 3+]. Another way to express this is to establish an orientation of the edges according
to some cyclic ordering of the colors a → b → c → a (a coherent orientation [16, §8.3]).
The subgroup [3, 4, 3+] consists of those elements that preserve this edge orientation.
(This is analogous to the pyritohedral group ±T in three dimensions, which can also
be described as preserving the orientation of the edges of the octahedron shown in
Figure 5.4a.)

The 24-cell is a self-dual polytope. In fact, the vertices of the polar polytope PT1

(properly scaled) are the quaternions in the coset of 2T in 2O. If we add to [3, 4, 3] the
symmetries that swap PT and PT1 , we get the group [[3, 4, 3]], the symmetry group of
the joint configuration PO = PT ∪ PT1 . Its chiral version is [[3, 4, 3]]+. The subgroup
[[3, 4, 3]+] contains the symmetries that exchange PT and PT1 only in combination with
a reversal of orientation. This group is interesting, because it is achiral, but it contains
no reflections.

The polar polytope also has a three-coloring of its vertices. (One can give the partition
explicitly in terms of the coordinates, as for PT : The vertices of PT1 are the centers of the
facets of PT , properly scaled, and their coordinates (x1, x2, x3, x4) are all permutations
of the coordinates (±1, ±1, 0, 0)/

√
2. The three color classes are characterized by the

condition |x1| = |x2|, |x1| = |x3|, and |x1| = |x4|, respectively.) We can interpret this
3-coloring as a 3-coloring of the cells of PT , which we denote by A, B, C. The group
[+3, 4, 3] contains those symmetries of PT for which the permutation of the colors of the
cells is even. This group is of course geometrically the same as [3, 4, 3+], but we can also
have both conditions: [+3, 4, 3+].

5.6.1. A pair of enantiomorphic groups

Finally, we have two more groups, which are mirrors of each other. To understand these
groups, let us look at the polar orbit polytope of PO = PT ∪ PT1 : The octahedral cells
of the 24-cell shrink to truncated cubes with 6 regular octagons and 8 triangles as faces,
see Figure 5.4b. This polytope is sometimes called the bitruncated 24-cell, or truncated-
cubical tetracontaoctachoron. We will simply refer to it as the 48-cell. The small triangles
are remainders from the triangular faces of the original octahedral cells of the 24-cell,
which are centered at the points PT .

Figure 5.4b shows a cell of color A. The triangles lead to adjacent cells, colored B or
C, and we have labeled the triangles accordingly. The octagons lead to cells centered at
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Figure 5.4.: (a) An octahedral cell of the 24-cell with a consistent edge orientation. (b)
The 48-cell consists of 48 truncated cubes.
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Figure 5.6.: The 6 orbits of the vertices
under ±[O×C1] (left multiplication with
2O)

points of PT , and we have labeled them with the corresponding color a, b, or c.
Figure 5.4c shows an adjacent “dual” cell of the 48-cell, centered at a point of color c.

Note that these two cells are not attached in a straight way, but by a screw of 45◦. We
can enforce the screw to be a left screw by decorating each of the six octagonal faces
with a diagonal, as shown in Figure 5.5. The group ±[O × C1] will map one selected cell
to each cell by a unique left multiplication with an element of 2O and hence will carry
the diagonal pattern to every truncated cube of the 48-cell. The diagonals on adjacent
cells match: A left rotation that maps a cell to the adjacent cell performs a left screw
by 45◦, and one can check in Figure 5.5 that the screw that maps an octagon to the
opposite octagon while maintaining the diagonal is a left screw.

The group ±[O × T ] is the group that preserves the set of diagonals (ignoring the
colors). This can be confirmed as in the case ±[I × T ] in Section 5.5: The group that
fixes a cell should be the tetrahedral group +T , and indeed, the diagonal pattern of
Figure 5.5 has tetrahedral symmetry: The diagonals connect only the B-triangles, and
the B-triangles form a tetrahedral pattern. We have chosen the ad-hoc extension of
Coxeter’s notation [[+3, 4, 3+]]L for the group ±[O × T ] to indicate that it extends the
operations [+3, 4, 3+] by a swap between PT and the polar polytope PT1 , and this swap
is effected by left rotations.

Of course, there is a mirror pattern of Figure 5.5, which leads to the mirror group
±[T × O] = [[+3, 4, 3+]]R, and these two groups are enantiomorphic.
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Figure 5.7.: Facets inscribed in the truncated cube

Analogies with three dimensions. As pointed out by Du Val [23, p. 71], there is a
strong analogy between the symmetries of the different self-dual polytopes in three and
in four dimensions, as shown in Table 5.3. The simplex is a self-dual regular polytope,
both in 4 dimensions (Section 5.3) and in 3 dimensions. In 3 dimensions, moreover, the
simplex and its polar form the cube, and thus we have used alternate Coxeter notations
to highlight the analogy (opposite ones from Table 5.2, where the analogy with the cube
is emphasized). Only five of the symmetries of the 24-cell and its polar are used.

From the viewpoint of the cross-polytope, one could also match the group ±[T ×T ]·2 =
[3, 4, 3+] = [+3, 4, 3] of order 576 with the pyritohedral group ±T = [+3, 4] of order 24,
because they are both based on consistent edge orientations.

4-simplex order 24-cell order 3-simplex order description
[[3, 3, 3]] 240 [[3, 4, 3]] 2304 [[3, 3]] = [3, 4] = ±O 48 all symmetries
[[3, 3, 3]]+ 120 [[3, 4, 3]]+ 1152 [[3, 3]]+ = [3, 4]+ = +O 24 chiral part
[3, 3, 3] 120 [3, 4, 3] 1152 [3, 3] = TO 24 nonswapping
[[3, 3, 3]+] 120 [[3, 4, 3]+] 1152 [[3, 3]+] = [+3, 4] = ±T 24 swap with mirror
[3, 3, 3]+ 60 [3, 4, 3]+ 576 [3, 3]+ = +T 12 chiral & nonswapping

Table 5.3.: Analogies between symmetries of self-dual polytopes

A strongly inscribed polar polytope. The convex hull of the points PO = PT ∪PT1

is a polytope with 288 equal tetrahedral facets, which we call the 288-cell. It is polar
to the 48-cell. We perform the same procedure as in Section 5.5 and split the vertices
of the 48-cell into orbits under the action of ±[O × C1]. We will see that this leads to
another instance of a polytope with a strongly inscribed copy of its polar. However, we
won’t get any new groups.

The 48-cell has 288 vertices, and they are partitioned into 6 orbits of size 48, as shown
in Figure 5.6, cf. Du Val [23, Figure 24, p. 85]: There is a natural partition of the colors
into three pairs R1, R2; G1, G2; and B1, B2, according to the opposite octagons to which
the colors belong. (The partition of each pair into R1 and R2, etc., is arbitrary.) Indeed,
one can check that the transition from an octagon to the opposite octagon with a left
screw of 45◦ preserves the six colors (indicated for the red colors by two corresponding
crosses.) Likewise, the transition from a triangle to the opposite triangle with a left screw
of 60◦ preserves the colors.

Now, as in Section 5.5, the points of one color form a right coset of 2O, and hence
they form a rotated and scaled copy P ′

O of the 288-cell PO. This polytope is strongly
inscribed in the 48-cell: Each truncated cube of the 48-cell contains one tetrahedron of
P ′

O. Figure 5.7a shows one such tetrahedron, spanned by the vertices of color R1.
The geometry of this tetrahedron becomes clearer after rotating it by 45◦ around the
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5.6. Symmetries of the 24-cell

midpoints of the front and back octagons, as in Figure 5.7b. We see that the tetrahedron
has four equal sides, whose length is the diagonal of the octagons, and two opposite sides
of larger length, equal to the diagonal of a circumscribed square. The 2-faces are therefore
congruent isosceles triangles. Such a tetrahedron is called a tetragonal disphenoid.21

The symmetry group of the 48-cell together with its strongly inscribed 288-cell P ′
O

is the tubical group ±[O × D4], because the symmetry group of the disphenoid inside
the truncated cube is only the vierergruppe D4, consisting of half-turns through edge
midpoints.

We can try to start with the rotated tetrahedra of Figure 5.7b, spanned by two opposite
diagonals used for the decoration in Figure 5.6, hoping to recover the group ±[O × T ].
However, this tetrahedron contains vertices of two colors B1 and B2, and its orbit will
thus contain the union of the orbits B1 and B2. Inside each truncated cube, the convex
hull forms a quadratic antiprism, as shown Figure 5.7c. (The convex hull contains 48
such antiprisms plus 192 tetrahedral cells, for a total of 240 facets.)

21 The side length of the “untruncated” cube is
√

8 − 2 ≈ 0.8, which equals the edge length of a
circumscribed 8-gon around a unit circle. Hence the two long edges of the tetrahedra, highlighted in
bold, have length

√
2(

√
8−2) = 4−

√
8 ≈ 1.17. The four short edges have length

√
8(10 −

√
98) ≈ 0.9,

and the edge length of the 48-cell is 6 −
√

32 ≈ 0.34.
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6The axial groups

These are the finite subgroups of the direct product O(3) × O(1). The subgroup O(1)
operates on the 4-th coordinate x4, and we denote its elements by O(1) = {+x4, −x4}.
Here +x4 is the identity, and −x4 denotes the reflection of the 4-th coordinate.

Let G be such an axial group. Let G3 ∈ O(3) be the “projection” of G on O(3). That
is,

G3 := { g ∈ O(3) | (g, +x4) ∈ G or (g, −x4) ∈ G }.

If G3 itself is a 3-dimensional axial group, i.e. G ⩽ O(2) × O(1), then we may call G
a doubly axial group. In this case, we prefer to regard G as a toroidal group in O(2) ×
O(1) × O(1) ⩽ O(2) × O(2) and classify it as such. (These groups are the subgroups of
+p2mm

m,2 .) Hence from now on, we assume that G3 is not an axial 3-dimensional group,
i.e., we assume that G3 ⩽ O(3) is one of the seven polyhedral 3-dimensional groups.
These are well-understood, and thus the axial groups are quite easy to classify. There
are 21 axial groups (excluding the doubly axial groups), and their full list is given below
in Table 6.3, with references to other classifications from the literature. Together with
the polyhedral groups in Table 5.1, these groups exhaust all entries in [14, Tables 4.2
and 4.3] except the toroidal groups. Table A.1 in Appendix A lists them with generators
and cross references to other classifications.

Note that the product O(3)×O(1) used here is different from the product ±[L×R] on
which the classic classification is based. Both are direct products in the group-theoretic
sense, but O(3) × O(1) is a direct sum, a “Cartesian” product in a straightforward geo-
metric sense, consisting of pairs of independent transformations in orthogonal subspaces,
whereas the product ±[L × R], which is specific to SO(4), refers to the representation
[l, r] by pairs of quaternions, which have by themselves a significance as operations [l]
and [r] in SO(3).

We will now derive the axial groups systematically. Let G+x4
3 ⩽ O(3) be the subgroup

of G3 of those elements that don’t negate the 4-th coordinate. That is,

G+x4
3 := { g ∈ O(3) | (g, +x4) ∈ G }.

The subgroup G+x4
3 is either equal to G3, or it is an index-2 subgroup of G3.

If G+x4
3 = G3, there are two cases, which are both easy: we can form the “pyramidal”

group G3 ×{+x4}, which does not move the 4-th dimension at all, or the full “prismatic”
group G3×{+x4, −x4}. This gives two axial groups for each three-dimensional polyhedral
group G3 ⩽ SO(3), and they are listed in Table 6.1, together with their “CS names”
following Conway and Smith [14], and their “Coxeter names”, which are explained in
Table 6.3.

The prismatic groups are never chiral. The pyramidal group G3 × {+x4} is chiral iff
G3 is: These are the groups +I, +O, and +T .

We are left with the case that G+x4
3 is an index-2 subgroup H of G3. In this case, the

group G is uniquely determined by H and G3: It consists of the elements (g, +x4) for
g ∈ H and (g, −x4) for g ∈ G3 − H. We denote this group as “H in G3”. As an abstract
group, it is isomorphic to G3. There are seven index-2 containments among the three-
dimensional polyhedral groups. (See [14, Figures 3.9 and 3.10] for an overview about
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6. The axial groups

G3 pyramidal groups G3 × {+x4} prismatic groups G3 × {+x4, −x4}
name orbitope I.T. CS name Cox. order CS name Cox. name order
±I ∗532 53m + 1

60 [I × I] · 23 [3, 5] 120 ± 1
60 [I × I] · 2 2.[3, 5] 240

+I 532 532 + 1
60 [I × I] [3, 5]+ 60 + 1

60 [I × I] · 21 [3, 5]◦ 120
±O ∗432 m3m + 1

24 [O × O] · 23 [3, 4] 48 ± 1
24 [O × O] · 2 2.[3, 4] 96

+O 432 432 + 1
24 [O × O] [3, 4]+ 24 + 1

24 [O × O] · 21 [3, 4]◦ 48
TO ∗332 4̄3m + 1

12 [T × T ] · 21 [3, 3] 24 + 1
24 [O × O] · 21 [2, 3, 3] 48

±T 3∗2 m3 + 1
12 [T × T ] · 23 [+3, 4] 24 ± 1

12 [T × T ] · 2 2.[+3, 4] 48
+T 332 23 + 1

12 [T × T ] [3, 3]+ 12 + 1
12 [T × T ] · 21 [+3, 4]◦ 24

Table 6.1.: Pyramidal and prismatic axial groups (except doubly axial groups)

hybrid axial groups
G+x4

3 in G3 CS name Coxeter name order methods
+I in ±I ± 1

60 [I × I] 2.[3, 5]+ 120 center, chirality
±T in ±O + 1

24 [O × O] · 23 [2, 3, 3]◦ 48 edge orientation
+O in ±O ± 1

24 [O × O] 2.[3, 4]+ 48 center, chirality
TO in ±O ± 1

12 [T × T ] · 2 2.[3, 3] 48 center, alternation
+T in ±T ± 1

12 [T × T ] 2.[3, 3]+ 24 center, chirality
+T in +O + 1

12 [T × T ] · 23 [3, 3]◦ 24 alternation
+T in TO + 1

24 [O × O] [2, 3, 3]+ 24 chirality

Table 6.2.: Hybrid axial groups (except doubly axial groups)

all index-2 containments in O(3).) They lead to seven “hybrid axial groups”, which are
listed in Table 6.2.

There are several methods by which such an index-2 containment can be constructed,
and we indicate in the table which methods are applicable:

1. Chirality: G+x4
3 is the chiral part of an achiral group G3. In this case, the resulting

group will be chiral, because the orientation-reversing elements of G3 are composed
with the reflection of the axis. In other words, G is the chiral part (G3×{x4, −x4})+

of the prismatic group G3 × {x4, −x4}.

2. Center: G+x4
3 does not contain the central reflection. In this case, an index-2 exten-

sion G3 of G+x4
3 can always be obtained by adjoining the central reflection (in R3).

The resulting group “G+x4
3 in G3” is equivalently thought of as simply adjoining

the central reflection (in R4) to G+x4
3 . These groups can be recognized as having

their Coxeter names prefixed with “2.”. G is achiral iff G+x4
3 is achiral, and in this

case, the construction is simultaneously a case of the chirality method.

3. Alternation: This applies to the octahedral groups, which are symmetries of the
cube. The vertices of the cube can be two-colored. The subgroup consists of those
transformations that preserve the coloring.

4. Edge orientation: There is only one case where this applies, namely the pyritohe-
dral group ±T as a subgroup of the full octahedral group ±O. The edges of the
octahedron can be coherently oriented in such a way that the boundary of every
face is a directed cycle. The subgroup consists of those transformations that pre-
serve this orientation (cf. the use of the edge orientation for the 24-cell and its
polar, Section 5.6).

Often, the same result can be obtained by two methods. For example, TO in ±O
results both from alternation and from center.
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The 21 axial groups
pyramidal groups G3 × {+x4}

G3 CS name Du Val # and name Cox. BBNZW order
±I + 1

60 [I × I] · 23 49′. (I/C1; I/C1)∗ [3, 5] n.cryst. 120
+I + 1

60 [I × I] 31′. (I/C1; I/C1) [3, 5]+ n.cryst. 60
±O + 1

24 [O × O] · 23 44′. (O/C1; O/C1)∗′ [3, 4] 25/10 48
+O + 1

24 [O × O] 26′. (O/C1; O/C1)′ [3, 4]+ 25/03 24
TO + 1

12 [T × T ] · 21 40′. (T/C1; T/C1)∗ [3, 3] 24/04 24
±T + 1

12 [T × T ] · 23 39′. (T/C1; T/C1)∗
c [+3, 4] 25/02 24

+T + 1
12 [T × T ] 21′. (T/C1; T/C1) [3, 3]+ 24/01 12

prismatic groups G3 × {+x4, −x4}
G3 CS name Du Val # and name Cox. BBNZW order
±I ± 1

60 [I × I] · 2 49. (I/C2; I/C2)∗ 2.[3, 5] n.cryst. 240
+I + 1

60 [I × I] · 21 49′. (I/C1; I/C1)∗
− [3, 5]◦ n.cryst. 120

±O ± 1
24 [O × O] · 2 44. (O/C2; O/C2)∗ 2.[3, 4] 25/11 96

+O + 1
24 [O × O] · 21 44′. (O/C1; O/C1)∗′

− [3, 4]◦ 25/07 48
TO + 1

24 [O × O] · 21 44′′. (O/C1; O/C1)∗′′
− [2, 3, 3] 25/08 48

±T ± 1
12 [T × T ] · 2 39. (T/C2; T/C2)∗

c 2.[+3, 4] 25/05 48
+T + 1

12 [T × T ] · 21 39′. (T/C1; T/C1)∗
c− [+3, 4]◦ 25/01 24

hybrid axial groups G+x4
3 in G3

G+x4
3 in G3 CS name Du Val # and name Cox. BBNZW order

+I in ±I ± 1
60 [I × I] 31. (I/C2; I/C2) 2.[3, 5]+ n.cryst. 120

±T in ±O + 1
24 [O × O] · 23 44′′. (O/C1; O/C1)∗′′ [2, 3, 3]◦ 25/09 48

+O in ±O ± 1
24 [O × O] 26. (O/C2; O/C2) 2.[3, 4]+ 25/06 48

TO in ±O ± 1
12 [T × T ] · 2 40. (T/C2; T/C2)∗ 2.[3, 3] 24/05 48

+T in ±T ± 1
12 [T × T ] 21. (T/C2; T/C2) 2.[3, 3]+ 24/02 24

+T in +O + 1
12 [T × T ] · 23 40′. (T/C1; T/C1)∗

− [3, 3]◦ 24/03 24
+T in TO + 1

24 [O × O] 26′′. (O/C1; O/C1)′′ [2, 3, 3]+ 25/04 24

Table 6.3.: Summary of the 21 axial groups (except doubly axial groups). We have in-
cluded references to the list of crystallographic 4-dimensional groups by Brown, Bülow,
Neubüser, Wondratschek, Zassenhaus (BBNWZ) [10], and the names of Du Val [23],
together with his numbering which extends the numbering of Goursat.
We use two further adaptations of Coxeter’s notation, following [14]: G◦ is obtained
by replacing the orientation-reversing elements g of G by −g. An initial “2.” indicates
doubling the group by adjoining negatives. The 2 in [2, 3, 3] indicates the presence of an
extra “perpendicular” mirror R1 that commutes with the other reflections.
In Du Val’s notation, achiral groups can be recognized by the ∗ superscript. Haploid
groups (those whose CS name begins with a +) were not considered by Goursat, and
Du Val denotes them by adding primes to the numbers of the corresponding diploid
groups, such as 44′ and 44′′. Variations are indicated by various subscript and super-
script decorations of the group names. In some cases, a unique notation is only achieved
by considering the number and the name together. Thus, we are deviating from Du Val’s
notation by attaching the primes also to the names. For example, Du Val distinguishes
two groups 26′ and 26′′ with the same name (O/C1; O/C1). Accordingly, although this
is overlooked in Du Val [23, p. 61], one must also make a distinction between the cor-
responding achiral groups 44′ and 44′′. Each of these two achiral extensions comes in
two variations: (O/C1; O/C1)∗ and (O/C1; O/C1)∗

−. This omission in Du Val’s list was
already noted by Dunbar [24, p. 141, last paragraph].
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6. The axial groups

The group “G+x4
3 in G3” is chiral if and only if G+x4

3 is chiral and G3 is achiral, because
the elements of G3 \G+x4

3 are flipped by the x4-reflection. These are the case of the form
“+G in ±G” in the table, plus the group “+T in TO”.

The situation is very much analogous to the construction of the achiral groups in O(3)
from the chiral groups in SO(3) and their index-2 subgroups in [14, §3.8], except that
Conway and Smith prefer to extend by the algebraically simpler central inversion −id
instead of the geometrically more natural reflection of the axial coordinate.

The maximal axial groups are ± 1
60 [I × I] · 2 = 2.[3, 5] and ± 1

24 [O × O] · 2 = 2.[3, 4].
Hence, the axial groups can be characterized as the symmetries of a 4-dimensional prism
over an icosahedron or over an octahedron, and the subgroups of these. (This includes,
however, the doubly axial groups, which we have classified under the toroidal groups.)

We mention that, among the 3 × 7 = 21 axial groups, there are 7 chiral ones and 14
achiral ones. Among the polyhedral groups, there are 14 chiral ones. In addition, there
are 14 types of three-dimensional point groups, which split into 7 polyhedral groups and
7 infinite axial families (which correspond to the 7 frieze groups). We have no explanation
for the frequent appearance of the magic number 7 and its multiples.
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7Computer calculations

We used the help of computers for investigating the groups and checking the results,
as well as for the preparation of the figures and tables. We used SageMath [66] and its
interface to the GAP [29] software for group-theoretic calculations. The computer code
is available in https://github.com/LaisRast/point-groups.

7.1. Representation of transformations and groups
We represent the orthogonal transformations [l, r] and ∗[l, r] by the quaternion pair
(l, r) and a bit for indicating orientation reversal. In a group, each transformation is
represented twice, by the equivalent pairs (l, r) and (−l, −r).

We used two different representations for quaternions: For the elements of 2I, 2O, and
2T , the quaternions x1 + x2i + x3j + x4 are represented in the natural way with precise
algebraic coefficients, using SageMath’s support for algebraic extension fields. For the
elements of 2D2n, we used a tailored representation: These elements are of the form es

n

or es
nj, and we represent and manipulate them using the fraction s/n, and a bit that

indicates whether the factor j is present. (An exact algebraic representation would have
required extension fields of arbitrarily high degree.)

The left group and the right group don’t have to use the same representation: For
elements of tubical groups, like [l, r] ∈ ±[I ×Cn], each of l and r uses its own appropriate
representation.

7.2. Fingerprinting
For preparing a catalog of groups, it is useful to have some easily computable invariants.
We used the number of elements of each geometric type as a fingerprint. This technique
was initiated by Hurley [37] in his classification of the 4-dimensional crystallographic
groups.

We first discuss the classification of the individual 4-dimensional orthogonal transfor-
mations, as introduced in Section 1.5. Every orientation-preserving orthogonal transfor-
mation can be written as a block diagonal matrix Rα1,α2 of two rotation matrices (1.1).
We must be aware of other angle parameters Rα′

1,α′
2

that describe geometrically the same
operation, in other words, that are conjugate by an orientation-preserving transformation
(see Section 4.3.3). If we swap the two invariant coordinate planes (x1, x2) ↔ (x3, x4),
this is an orientation-preserving transformation, and it turns Rα1,α2 into Rα2,α1 . A simul-
taneous reflection in both coordinate planes (x1 ↔ x2 and x3 ↔ x4) is also orientation-
preserving, and it turns Rα1,α2 into R−α1,−α2 .

Thus, Rα1,α2
.= Rα2,α1

.= R−α1,−α2
.= R−α2,−α1 . On the other hand, Rα1,α2 and

Rα1,−α2 are distinct unless one of the angles is 0 or ±π. They are mirrors of each other.
The orientation-reversing transformations R̄α of (1.2) are characterized by a single

angle α. Since the simultaneous negation of x1 and x4 turns R̄α into R̄−α, the parameter
α can be normalized to the range 0 ≤ α ≤ π/2.

Since the angles are rational multiples of π, it is possible to encode the data about
the operation into a short code. By collecting the codes of the elements in a group
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7. Computer calculations

into a string, we obtained a “fingerprint” of the group, which we used as a key for our
catalog.22 Experimentally, in all cases that we encountered, this method was sufficient to
distinguish groups up to conjugacy. (As reported below, we considered, from the infinite
families of groups, at least all groups of order up to 100.)

The classification of the elements by Hurley [37] is almost equivalent, except that it
disregards the orientation: He classified a transformation by the triplet of coefficients
(c3, c2, c0) of its characteristic equation λ4 − c3λ3 + c2λ2 − c1λ + c0 = 0: the trace c3, the
second invariant c2, and the determinant c0. Since all eigenvalues have absolute value
1, the linear coefficient c1 is determined by the others through the formula c1 = −c0c3.
The Hurley triplet determines the eigenvalues and thus the geometric conjugacy type
and the rotation angles α1, α2, but only up to orientation. Rα1,α2 and Rα1,−α2 have the
same spectrum and the same Hurley symbol.

The Hurley symbol. Hurley was interested in the crystallographic groups, and the
operations in these groups must have integer coefficients in their characteristic polyno-
mial. This restricts the operations to a finite set. Hurley denoted them by 24 letters (the
Hurley symbols).

They were also used in the monumental classification of the four-dimensional crys-
tallographic space groups by Brown, Bülow, Neubüser, Wondratschek, Zassenhaus [10].
Brown et al. refined the classification by splitting the groups into conjugacy classes under
the group operations, resulting in the Hurley pattern. It may happen that several oper-
ations are geometrically the same but not conjugate to each other by a transformation
of the group that is under consideration.23

Brown et al. [10, p. 9] report that their classification, which is more refined than ours
but in another respect coarser, since it does not distinguish enantiomorphic groups, was
also found to be sufficient to characterize the crystallographic point groups uniquely (up
to mirror congruence).

We could use the data in the Tables of [10] to match them with our classification. The
results are tabulated in Tables D.1–D.2 in Appendix D.

22 Here are some details: We actually use the quaternion pair [l, r] for computing the code for a rotation:
If [l, 1] and [1, r] are rotations by aπ and bπ, respectively, we use the pair of rational numbers (a, b)
with 0 ≤ a, b ≤ 1. The pair [−l, −r], which represents the same rotation, gives the pair (1 − a, 1 − b),
and hence we normalize by requiring that a < b or a = b ≤ 1/2.

For example, the group pg
2,4 has the fingerprint 0|0:2 0|1:2 1|1/4:4 1|3/4:4 1|1/2:4 *1/2:16.

We tried to make the code concise while keeping it readable. The term /4 in 1|3/4:4 is a common
denominator for both components, and hence 1|3/4 stands for the pair (a, b) = ( 1

4 , 3
4 ), denoting a

rotation of the form [exp π
4 , exp 3π

4 ] .= R−π/2,π. The number :4 after the colon denotes the multiplicity.
Since our group representation contains both pairs [l, r] and [−l, −r] for each rotation, the multiplicity
is always overcounted by a factor of 2. The group actually contains only two operations R−π/2,π. (The
reader may wish to identify them as particular torus translations of this group, see Figure 4.7.) The
symbol 0|0 denotes the identity. The orientation-reversing transformations are written with a star.
The sign *a with a fraction a denotes R̄(1−a)π. In our example, *1/2:16 denotes eight operations of
the form R̄π/2. The sum of the written multiplicities is 32, in accordance with the fact that the group
has order 32/2 = 16.
23 For example, the group 21/03 in [10] of order 12 has the Hurley pattern 1*1I, 1*1E, 2*3E,
1*2S’, 1*2B; in our classification, it corresponds to two enantiomorphic groups, × c2mm

1,3 and × c2mm
3,1 .

The fingerprints of these groups are 0|0:2 0|2/3:4 1|1/2:14 3|5/6:4 and 0|0:2 1|3/6:4 1|3/3:4
1|1/2:14. Both groups contain 7 half-turns (code 1|1/2, Hurley symbol E). The second group, for
example, is actually also a torus flip group: × c2mm

3,1
.= · 3,2. In this representation, it has 6 flip

operations, which are half-turns. In addition, it contains the torus translation Rπ,0, which is another
half-turn. This half-turn is not conjugate to the other half-turns by operations of the group. It forms a
conjugacy class of its own, as indicated by the code 1*1E in the Hurley pattern. The 6 flip operations
split into two conjugacy classes of size 3, as indicated by the code 2*3E.
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7.3. Computer checks

7.3. Computer checks
As mentioned, the classic approach to the classification following Goursat’s method yields
the chiral groups, and with the exception of the toroidal groups, they are obtained quite
painlessly. However, the achiral groups must be found and classified as index-2 extensions
of the chiral groups.

This task has been carried out by Du Val [23] and Conway and Smith [14], but they
only gave the results. Du Val [23, p. 61] explicitly lists the orientation-reversing elements
of each achiral group. Conway and Smith [14, Tables 4.1–4.3] provide generating elements
for each group.

A detailed derivation is not presented in the literature. The considerations about the
extension from chiral groups to achiral ones are only briefly sketched by Conway and
Smith [14, p. 51–52], see Figures G.4–G.5. Since we found this situation unsatisfactory,
we ran a brute-force computer check. We generated all subgroups of the groups ±[I ×I],
±[O × O] and ±[T × T ] and their achiral extensions. No missing groups were discovered.
More details are given below.

For the achiral extension of the subgroups of ±[Cn × Cn], and ±[D2n × D2n], we have
supplanted the classic classification by our classification as toroidal groups. Nevertheless,
we ran some computer checks also for these groups, see Section 7.5.

7.4. Checking the achiral polyhedral and axial groups
For each group ±[I × I], ±[O × O] and ±[T × T ] in turn, we generated all subgroups.
We kept only those subgroups for which the left and right subgroup is the full group 2I,
2O, or 2T respectively. (For an achiral group, we must extend a group whose left group
is equal to its right group.)

For each obtained subgroup, we identified the possible extending elements, using the
considerations of Section 1.9. Each achiral group was classified by its fingerprint (the
conjugacy types of its elements), and for each class, we managed to find geometric
conjugations to show that all groups with the same fingerprint are geometrically the
same.

We mention some details for the largest group [I × I]. The group ±[I × I] was rep-
resented by its double-cover 2I × 2I, and converted to a permutation group, in order
to let GAP generate the subgroups. There are 19,987 subgroups in total, and they were
found in about 5 minutes. 14,896 subgroups of them contain the pair (−1, −1), which
is necessary to have a double cover of a rotation group in ±[I × I], and only 241 of
these groups have the left and right subgroups equal to 2I. These represented the group
±[I × I] itself, and 60 different copies of each group ± 1

60 [I × I], ± 1
60 [I × Ī], + 1

60 [I × I],
+ 1

60 [I × Ī].
For each of the 241 groups, we tried to extend it by an element ∗[1, c] in all possible

ways, following Proposition 1.9.1. Actually, it is easy to see that elements c and c′ = cx
that are related by an element x in the kernel lead to the same extension, and thus they
need not be tried separately.

This leads to 361 distinct groups. Again there are 60 representatives of each of the six
achiral groups with fraction 1

60 , plus one for the group ±[I × I] · 2 itself.
Since we searched for conjugacies in a systematic but somewhat ad-hoc manner, it

took about half a week for the computer to show that all 60 groups in each class are
geometrically the same. With hindsight, the multiplicity 60 is not surprising, since there
are 60 conjugacies that map the elements of 2I to themselves.
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7. Computer calculations

7.5. Checking the toroidal groups
The toroidal groups form an infinite family, and hence we can only generate them up to
some limit. We set the goal of checking all chiral toroidal groups up to order 200 and all
achiral groups up to order 400. For this purpose, we generated all groups ±[Dn × Dn] · 2
(for even n) and ±[Cn×Cn]·2 in the range 100 < n ≤ 200, together with their subgroups.

For generating the subgroups, we took a different approach than for the polyhedral
groups: We constructed a permutation group representation of the achiral group and
computed all its subgroups. We took all subgroups, regardless of whether the left and
right group is the full group Cn or Dn. For each chiral group up to order 200 and each
achiral group up to order 400 that was generated, we checked that it is conjugate to
one on the known groups according to our classification. We also checked whether all
known toroidal groups within these size bounds are found. This turned out to be the
case with a few exceptions. The exceptions were the chiral groups cm

m,n, cm
n,m

cm
m,n,

and cm
n,m, for 14 pairs (m, n) = (3, 17), (3, 19), (3, 23), . . . , (7, 13), (9, 11) of relatively

prime odd numbers m and n, of orders 2mn between 100 and 200. The reason that these
groups were missed is that they are of the form +1

2 [D2m × C2n] ⩽ +1
2 [D2m × D4n], and

the smallest group ±[Dn′ × Dn′ ] · 2 that contains them has n′ = 4 · lcm(m, n), which
exceeds 200.

This computation requires a workstation with large memory. The group with the
largest number of subgroups was ±[D192 × D192] · 2. It has 1,361,642 subgroups. For
1,249,563 of these groups, the order was within the limits. The whole computation took
about 10 days on a computer with 256 gigabytes of main memory.
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8Higher dimensions

In the classification of Theorem A, there are categories that we expect in any dimen-
sion: the polyhedral groups, which are related to the regular polytopes, the toroidal
groups, and the axial groups, which come from direct sums of lower-dimensional groups.
On the other hand, the tubical groups are more surprising. They rely on the cover-
ing SO(3) × SO(3) 2:1−→ SO(4), which provides a different product structure in terms of
lower-dimensional groups than the direct sum.

The scarcity of regular polytopes in high dimensions might be an indication that these
groups are not very exciting. On the other hand, the root systems E6, E7, and E8 in 6,
7, and 8 dimensions promise some richer structure in certain dimensions.

In five dimensions, the orientation-preserving case has been settled by Mecchia and
Zimmermann [49], see [75, Corollary 2]:

Theorem 8.0.1. The finite subgroups of the orthogonal group SO(5) are

(i) subgroups of O(4) × O(1) or O(3) × O(2) (the reducible case);

(ii) subgroups of the symmetry group (Z2)5 ⋊ S5 of the hypercube;

(iii) or isomorphic to A5, S5, A6 or S6. (This includes symmetries of the simplex and
its polar.)

The irreducible representations of the groups in (iii) can be looked up in the character
tables of the books on Representation Theory. It would be interesting to know what
the 5-dimensional representations are in geometric terms (besides the symmetries of the
simplex).

This theorem gives only the chiral groups, but in odd dimensions like 5, it is in principle
straightforward to derive the achiral groups from the chiral ones: All one needs to know
are the chiral groups and their index-2 subgroups. See [14, §3.8] for the three-dimensional
case. Briefly, one can say that nothing unexpected happens for the point groups in 5
dimensions.

Six dimensions. The richest part of the 4-dimensional groups were the toroidal
groups, which have an invariant Clifford torus. The sphere S5 contains an analogous
three-dimensional torus:

x2
1 + x2

2 = x2
3 + x2

4 = x2
5 + x2

6 = 1/3

A group that leaves this torus invariant behaves similarly to a three-dimensional space
group, involving translations, reflections, and rotations in terms of torus coordinates
φ1, φ2, φ3. Thus, the three-dimensional space groups will make their appearance in the
classification of 6-dimensional point groups.

The situation in 4 dimensions was similar: We have studied the toroidal groups in
analogy to the wallpaper groups (the two-dimensional space groups). In contrast to the
situation in the plane, a 6-fold rotation in 3-space is not inconsistent with the requirement
that the lattice of translations contains a cubical lattice. Thus, we may expect that all of
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8. Higher dimensions

the 230 three-dimensional space groups show up in the 6-dimensional point groups. (In
one dimension lower, we have another instance of this phenomenon: The frieze groups
appear as the 3-dimensional axial point groups.)

Thus, a classification of the point groups in 6 dimensions will be much more laborious
than in 5 dimensions. It has already been observed by Carl Hermann in 1952 [36, p. 33],
in connection with the crystallographic groups, that “going up from an odd dimension
to the next higher even one leads by far to more surprises than the opposite case”.
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Part II.

Realization Spaces of Polytopes





9On the Dimensions of the Realization
Spaces of Polytopes

9.1. History and Results
The study of geometric realizations of convex polytopes goes back to Legendre in 1794,
who asked the following question [44, p. 309]: How many variables are needed to deter-
mine a geometric realization of a given (combinatorial type of a) polytope? In modern
terms, Legendre asks for the dimension of the space of geometric realizations of a poly-
tope P , i.e. the space of all choices of coordinates for the vertices of P that lead to a
polytope with the same (isomorphic) face lattice.

The case of polygons is straightforward: The number of parameters is two times the
number of vertices, which we would now write as 2f0 = 2f1. The first major step is due
to Legendre himself [44, Note VIII] and Steinitz [65, Sec. 69], who settled the question in
dimension 3, where the number of variables turns out to be the number of edges plus 6.
So the Legendre–Steinitz Theorem says that the realization space of any 3-dimensional
polytope P is a manifold of dimension f1(P ) + 6.

It is natural to ask Legendre’s question for d-dimensional polytopes (d-polytopes, for
short). An answer was given by Robertson [59, Theorem, p. 18] in 1984: The realization
space of any d-polytope is a smooth submanifold of Rd(f0+fd−1) of dimension d(f0 +
fd−1)−µ, where f0 = f0(P ) is the number of vertices and fd−1 = fd−1(P ) is the number
of facets of P , and µ = µ(P ) = f0,d−1(P ) is the number of vertex-facet incidences. We
will give explicit examples showing that this answer is incorrect. For the proof of his
claim, Robertson represented the realization space as an open subset (defined by strict
quadratic inequalities) of the solution set of µ quadratic equations in Rd(f0+fd−1). In such
a setting, it is natural to expect that the solution set has the dimension given by the
number of variables minus the number of equations, and Robertson’s proof is then “built
round a simple application of the implicit function theorem” [59, p. 18].

With the Euler–Poincaré equation it is not hard to check that Robertson’s claim agrees
with what we know in dimensions d = 1, 2, 3. For simplicial and for simple polytopes,
the realization spaces can be seen as open subspaces of Rdf0 resp. Rdfd−1 (see below).
However, Mnëv’s Universality Theorem for polytopes from 1986/1988 (Mnëv [50], see
also Richter-Gebert [57], as well as the exposition in [58] and Mnëv’s web page http://
www.pdmi.ras.ru/~mnev/bhu.html) implies that the realization space is not in general
a manifold: For any semi-algebraic set M defined over the integers one can construct a
polytope whose realization space modulo affine transformations is equivalent to M up to
certain trivial fibrations. This implies that realization spaces can have very complicated
topology (locally, as well as globally), so realization spaces are not manifolds in general,
but it does not have immediate implications on the dimension of the realization space.

So it appears that Robertson’s claimed theorem is true for the polytopes that we see
occurring “in nature”, but it is false for very special examples that arise by complicated
constructions in the proofs of Mnëv, Richter-Gebert, et al.

We start from Robertson’s work. The model for the realization space suggested by
him, formalized as the centered realization space by Adiprasito & Ziegler [1, 74] (see
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Definition 9.2.1) is indeed very natural and convenient, as it is by definition a semi-
algebraic set (indeed, an open subset of a real-algebraic variety). Therefore, topology
and metric are clear and the dimension is well-defined. Moreover, the implicit function
theorem is directly applicable in the way that Robertson set it up. From this we get

• a natural and rather general sufficient criterion for the validity of Robertson’s claim
(see Section 9.3),

• a very simple and natural proof (see [8, Lemma 2.8]) for the Legendre–Steinitz
theorem for 3-dimensional polytopes (Corollary 9.4.10), as well as

• a natural tool for the analysis of other classes, with positive as well as negative
results.

Our next step is the search for counter-examples (Section 9.5), where we identify the
unique three smallest counter-examples to Robertson’s claim, for which the realization
space is still a smooth manifold, but its dimension is not given by the “natural guess”
of “number of variables minus number of equations.” One of these is particularly simple
and easy to describe: It is the bipyramid over a triangular prism (Section 9.5.1).

Finally, we go for an iconic object in polytope theory, the 24-cell. We know from
Paffenholz’ thesis [52] that the 24-cell is not projectively unique, but its realization
space (in our model) has dimension at least 28, which is the dimension of the group of
projective transformations on R4 plus 4. We construct new classes of realizations of the
24-cell, and from these we derive in Section 9.5 that

• the realization space (in our model) has dimension at least 48, which is the dimen-
sion of the group of projective transformations on R4 plus 24, and indeed this is
the “natural guess” dimension predicted by Robertson’s claim;

• indeed, there are points in the realization space where locally the realization space
is a manifold of dimension 48 (Corollary 9.5.9),

• but there are also points in the realization space (such as those given by realizations
as a regular polytope) where the realization space is not a smooth submanifold of
the ambient space Rd(f0+fd−1) = R192 (Theorem 9.5.10).

We doubt that the realization space of the 24-cell is a topological manifold, and indeed
we are not sure that it is pure (has the same local dimension everywhere), but this is
left open: The 24-cell keeps some of its mystery.

9.2. The centered realization space
For general facts about polytopes, refer to [71]. Let P ⊂ Rd be a d-dimensional polytope
(or d-polytope, for short). We write fi(P ) (or simply fi, if the polytope is clear from
the context) for the total number of faces of P that have dimension i. In particular,
f0(P ) is the number of vertices and fd−1(P ) is the number of facets. We write f0,d−1(P )
for the number of vertex-facet incidences. We call a polytope P ⊂ Rd centered if it
contains the origin 0 in its interior. We can represent every polytope as the convex hull
P = conv(V ) of its vertices, where V is a (d × f0)-matrix and conv(V ) is the convex hull
of the columns of V . By rescaling the facet-defining inequalities, we can represent every
centered polytope as the intersection of half-spaces

P = {x ∈ Rd | Atx ≤ 1},

where A is a (d × fd−1)-matrix. In these two representations, the matrices V and A
are unique up to column permutations. Hence, if we label the vertices by subscripts
1, . . . , f0, and label the facets by subscripts 1, · · · , fd−1, we make these matrices unique.
In this case, we say that P is labeled, and we call (V, A) the combined vertex and facet
description of P .

A labeled d-polytope Q ⊂ Rd is said to realize P if there exists an isomorphism between
the face lattices of P and Q that respects the labeling of their vertices and facets. If Q
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was centered, we say that Q is a centered realization of P .
We now define the centered realization space model.

Definition 9.2.1 ([1, 74]). Let P be a labeled d-polytope with n vertices and m facets.
The centered realization space of P is the set

R0(P ) :=
{

(V, A) ∈ Rd×(n+m) | conv(V ) = {x ∈ Rd | Atx ≤ 1} realizes P
}

.

That is, R0(P ) is the set of combined vertex and facet descriptions of centered realiza-
tions of P .

The next proposition shows that the centered realization space has a nice description
as a (basic) semi-algebraic set (over Z), that is, the solution set of a system of polynomial
equations and inequalities. In particular, its dimension is well-defined.

Proposition 9.2.2. Let P be a d-polytope with vertices v1, . . . , vn and facets F1, . . . , Fm.
The centered realization space R0(P ) of P is equal to the set{

(W, B) = (w1, . . . , wn, b1, . . . , bm) ∈ Rd×(n+m)
∣∣∣∣ wt

ibj

{ = 1 if vi ∈ Fj
< 1 if vi ̸∈ Fj

}
.

Proof. The equality conv(W ) = {x ∈ Rd | Btx ≤ 1} holds since the hyperplanes
{x ∈ Rd | xtbj = 1} are facet-defining hyperplanes for conv(W ). The polytope conv(W )
realizes P because it has the same vertex-facet incidence structure as P (this determines
the face lattice of the polytope, see [71, Exercise 2.7]) with the correct labels.

Our model of the realization space behaves nicely with respect to duality. Recall that
the polar polytope P ∆ of a labeled centered d-polytope P is the polytope

P ∆ := {y ∈ Rd | ytx ≤ 1 for all x ∈ P}.

There is an inclusion-reversing bijection between the face lattices of P and P ∆. This
bijection maps the vertices (resp. the facets) of P onto the facets (resp. the vertices) of
P ∆. We assume that the vertices (resp. the facets) of P ∆ are labeled with the labels of
the facets (resp. the vertices) of P induced from the bijection.

Proposition 9.2.3. For every labeled centered d-polytope P we have R0(P ) ∼= R0(P ∆),
where the isomorphism is given by the permutation (V, A) 7→ (A, V ). In particular,
dim R0(P ) = dim R0(P ∆).

9.3. The Jacobian and the degeneracy criteria
According to Proposition 9.2.2, the centered realization space R0(P ) is a semi-algebraic
set defined by quadratic equations and strict quadratic inequalities, so it may be seen
as an open subset (cut out by the strict inequalities) of a fiber of the characteristic map
defined by the equations. This interpretation of Robertson’s work on [59, p. 19] yields
the setup for applying the implicit function theorem in this context.

Definition 9.3.1. Let P be a d-polytope with vertices v1, . . . vn and facets F1, . . . , Fm.
Let µ := f0,d−1(P ) denote the number of vertex-facet incidences of P . The characteristic
map of P , denoted ΦP , is the map

ΦP : Rd×(n+m) → Rµ

(W, B) 7→
(
wt

ibj − 1
)

[i,j]:vi∈Fj

.
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We order the entries wt
ibj − 1 lexicographically into the vector ΦP (W, B). That is, the

indices of that vector are pairs of the form [i, j], and wt
ibj − 1 occupies the [i, j]th entry.

Clearly, this map sends (the vertex and facet description of) any centered realization
of P to 0 ∈ Rµ. Thus, R0(P ) is an open subset of the fiber Φ−1

P (0). The heuristic that the
solution set of a system of equations has dimension “number of variables minus number
of equations” suggests that dim R0(P ) is the number of variables df0(P ) + dfd−1(P )
minus the number of equations f0,d−1(P ). This is what we call the “natural guess” for
dim R0(P ) (formerly called the “naive guess” in [1, 74]).

Definition 9.3.2. Let P be a d-polytope. The natural guess for dim R0(P ), the dimen-
sion of the centered realization space of P , is

NG(P ) := d
(
f0(P ) + fd−1(P )

)
− f0,d−1(P ).

From an algebraic point of view, the equations wt
ibj = 1 do not necessarily generate

a nice ideal. It is certainly not prime in general, as we argue next.

Remark 9.3.3. For any d-polytope P with n vertices and m facets, the fiber Φ−1
P (0) of

the characteristic map contains certain subsets of “degenerate configurations.” Namely,
there is

• the set SV (P ) where all columns of V are identical (corresponding to identical
points) and the m affine hyperplanes contain that point, which has dimension

d + m(d − 1) = (m + 1)d − m = (m + 1)(d − 1) + 1,

• and the set SA(P ) where all columns of A are identical (corresponding to identi-
cal affine hyperplanes) and the n points lie on that affine hyperplane, which has
dimension

d + n(d − 1) = (n + 1)d − n = (n + 1)(d − 1) + 1.

These subsets are not contained in R0(P ) because all of the strict inequalities are vio-
lated. Yet the equations defining R0(P ) still hold.

Example 9.3.4. The 3-cube C3 ⊂ R3 has 8 vertices, 6 facets and 24 vertex-facet in-
cidences. We will later give a proof for the Legendre–Steinitz Theorem, which in this
special case gives that dim(R0(C3)) = NG(C3) = 18. However, the set of “degenerate
configurations” SA(C3) for the cube has dimension 19.

9.3.1. Examples

In the following proposition, we calculate the natural guess for special classes and com-
mon constructions of polytopes.

Proposition 9.3.5. Let P be a d-polytope.

(i) If P is simplicial, then NG(P ) = df0(P ).

(ii) If P is simple, then NG(P ) = dfd−1(P ).

(iii) If P is a 3-polytope, then NG(P ) = f1(P ) + 6.

(iv) If P = pyr(Q) is a pyramid over a (d − 1)-polytope Q, then NG(P ) = NG(Q) + 2d.

(v) If P = bipyr(Q) is a bipyramid over a (d−1)-polytope Q, then NG(P ) = 2NG(Q)+
(2 − d)f0(Q) + 2d.
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Proof. (i) Each facet has exactly d vertices. Therefore, f0,d−1(P ) = dfd−1.
(ii) This is the dual statement of (i).
(iii) Each edge of a P determines 4 vertex-facet incidences, while each vertex-facet inci-
dence corresponds to 2 edges. Therefore, 2f0,2(P ) = 4f1(P ). Using Euler’s formula for
3-polytopes, we get

NG(P ) = 3 (f0(P ) + f2(P )) − f0,2(P ) = f1(P ) + 6.

(iv) Here we have f0(P ) = f0(Q) + 1 and fd−1(P ) = fd−2(Q) + 1. Every vertex of
Q lies in the facet Q of P and in a facet of P that is the pyramid over a facet F of
Q if and only if it lies in F . This gives us f0(Q) + f0,d−2(Q) incidences. Additionally,
the new vertex of the pyramid (the apex) lies in fd−2(Q) many facets of P . Thus,
f0,d−1(P ) = f0(Q) + f0,d−2(Q) + fd−2(Q). Therefore, the natural guess is

NG(P ) = d (f0(Q) + 1 + fd−2(Q) + 1) − f0(Q) − f0,d−2(Q) − fd−2(Q)
= (d − 1) (f0(Q) + fd−2(Q)) − f0,d−2(Q) + 2d = NG(Q) + 2d.

(v) Here we have f0(P ) = f0(Q) + 2 and fd−1(P ) = 2fd−2(Q). Let F be a facet of
Q. Each vertex of Q lies in two facets of P (namely the two pyramids over a facet
F of Q) if and only if it lies in F . This gives us 2f0,d−2(Q) incidences. Finally, the
new two vertices of the bipyramid (the apexes) each lie in fd−2(Q) facets of P . Thus,
f0,d−1(P ) = 2f0,d−2(Q) + 2fd−2(Q). Therefore, the natural guess is

NG(P ) = d (f0(Q) + 2 + 2fd−2(Q)) − 2f0,d−2(Q) − 2fd−2(Q)
= 2(d − 1) (f0(Q) + fd−2(Q)) − 2f0,d−2(Q) + (2 − d)f0(Q) + 2d

= 2NG(Q) + (2 − d)f0(Q) + 2d.

As we will see later, for large, very common classes of polytopes the natural guess is
equal to the dimension of the realization space. However, this is not true in general. The
following examples show that the natural guess can be negative.

Example 9.3.6 (Adiprasito & Ziegler [74]). A d-polytope is called cubical if its facets are
combinatorially isomorphic to the standard (d − 1)-cube [−1, 1]d−1. A neighborly cubical
polytope is a cubical d-polytope whose (⌊d

2⌋ − 1)-skeleton is combinatorially equivalent
to that of an n-cube. Such polytopes NCPd(n) were constructed by Joswig and Ziegler
[39] for all n ≥ d. Their f -vectors are determined by n and d: The number of vertices of
NCPd(n) is 2n, and the number of its facets is given by

fd−1(NCPd(n)) = 2d + 4
n−d−1∑

p=0

((
⌊d

2⌋ + p + 1
p + 2

)
+
(

⌊d+1
2 ⌋ + p

p + 2

))
2p,

see [39, Corollary 18]. Each facet of NCPd(n) has 2d−1 vertices, and thus

f0,d−1(NCPd(n)) = 2d−1fd−1(NCPd(n)).

Now the natural guess of NCPd(n) is a function of d and n, and we can compute it.

• If d = 4, then f3(NCP4(n)) = (n − 2)2n−2, and thus

NG(NCP4(n)) = (6 − n)2n < 0 for n ≥ 7.

• If d ≥ 5, then NG(NCPd(n)) < 0 for n ≥ d + 1.

Example 9.3.7. Let Q := Cd−1(n)∆ be the polar of a (d − 1)-dimensional (centered)
cyclic polytope with n vertices. The number of facets of Q is n, and the number of
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vertices of Q is given by

f0(Q) =
(

n − ⌈d−1
2 ⌉

⌊d−1
2 ⌋

)
+
(

n − ⌊d−1
2 ⌋ − 1

⌈d−1
2 ⌉ − 1

)
,

see [34, 4.7.3]. Since Q is simple, we have NG(Q) = (d − 1)fd−2(Q). Finally, let P be a
bipyramid over Q. The natural guess of P is then given by

NG(P ) = 2NG(Q) + (2 − d)f0(Q) + 2d

= 2(d − 1)fd−2(Q) + (2 − d)f0(Q) + 2d.

We can easily compute NG(P ) as a function of n and d. We see, for instance, if d = 5,
then NG(P ) < 0 for n ≥ 10, and if d = 6, then NG(P ) < 0 for n ≥ 9.

Let us record some intuition about this example: consider the natural guess for a
bipyramid: As we saw in Proposition 9.3.5(v), for a bipyramid the number of vertices
enters with a negative sign to the natural guess. So for a bipyramid over a simple polytope
Q, the natural guess grows with the number of facets, but it decreases with the number
of vertices of Q. It is therefore natural to look at bipyramids over simple polytopes that
maximize the number of vertices given the number of facets, i.e., over dual-to-neighborly
polytopes.

We note that in these examples, R0(P ) may still be a manifold (for the bipyramids
over duals of cyclic polytopes this is indeed the case, see Proposition 9.5.6), but certainly
its dimension is not NG(P ).

9.3.2. The Jacobian criterion

Now we are ready to state our first main theorem, which is an application of the implicit
function theorem.

Theorem 9.3.8 (The Jacobian Criterion; cf. Robertson [59, p. 19]). Let P be a d-
polytope. If the Jacobian matrix JΦP

(V0, A0) of the characteristic map ΦP at some point
(V0, A0) ∈ R0(P ) has full row rank (that is, if it has rank f0,d−1(P )), then R0(P ) is,
in a neighborhood of (V0, A0), a smooth manifold of dimension NG(P ). In particular,
dim(V0,A0) R0(P ) = NG(P ) and dim R0(P ) ≥ NG(P ) ≥ 0.

Proof. By the implicit function theorem (see for example [43, Theorem 5.15]), Φ−1
P (0)

is, in a neighborhood of (V0, A0), a smooth manifold of dimension NG(P ). The result
follows since R0(P ) is an open subset of Φ−1

P (0).

Remark 9.3.9. More generally, even if the Jacobian matrix does not have full rank, its
corank still gives an upper bound for the local dimension:

dim(V0,A0) R0(P ) ≤ d(n + m) − rank JΦP
(V0, A0).

Indeed, if the rank is r, we select r rows of the Jacobian that form a submatrix of full
rank r, and then apply the Implicit Function Theorem to the corresponding map Φ(r)

P :
Rd×(n+m) → Rr. obtained by restricting the characteristic map to the corresponding r
components.

The previous theorem gives us the motivation to study the structure of the Jacobian
matrix of ΦP for a polytope P .

Notation 9.3.10. Let P be a d-polytope with n vertices, m facets and µ vertex-facet
incidences. The Jacobian matrix in compressed notation of ΦP at (V0, A0) ∈ Rd×(n+m),
denoted by Jc

ΦP
(V0, A0), is the matrix we get from the matrix JΦP

(V0, A0) by replacing

104



9.3. The Jacobian and the degeneracy criteria

the columns indexed by vi1 , . . . , vid
(resp. aj1 , . . . , ajd

) by one column indexed by vi

(resp. aj) whose entries are the corresponding row vectors. Note that
Jc

ΦP
(V0, A0) is a (µ × (n + m))-block-matrix whose entries are row vectors,

while
JΦP

(V0, A0) is a (µ × d(n + m))-matrix.
Lemma 9.3.11. Jc

ΦP
(V, A) has at

j in the [i, j]th row and the ith column, and it has vt
i

in the [i, j]th row and the (n + j)th column. All other entries are zero.
Proof. This follows since, for each k ∈ {1, . . . , d} we have

∂(vt
iaj − 1)
∂vi,k

= aj,k and ∂(vt
iaj − 1)
∂aj,k

= vi,k.

Example 9.3.12. Let P be the 3-polytope shown in Figure 9.1 together with a Schlegel
diagram of it through the facet F1 = {v1, v2, v3, v4}.

v3

v1

v2

v4

v5 v6

F2

F3

F4

F5

F6

F7

F1
v1 v2

v3v4

v5

v6

Figure 9.1.: A “tent” and a Schlegel diagram of it through the facet F1.

Then the matrix Jc
ΦP

(V, A) at a point (V, A) ∈ R3×(6+7) is



v1 v2 v3 v4 v5 v6 a1 a2 a3 a4 a5 a6 a7

[1,1] at
1 0 0 0 0 0 vt

1 0 0 0 0 0 0
[1,2] at

2 0 0 0 0 0 0 vt
1 0 0 0 0 0

[1,6] at
6 0 0 0 0 0 0 0 0 0 0 vt

1 0
[1,7] at

7 0 0 0 0 0 0 0 0 0 0 0 vt
1

[2,1] 0 at
1 0 0 0 0 vt

2 0 0 0 0 0 0
[2,2] 0 at

2 0 0 0 0 0 vt
2 0 0 0 0 0

[2,3] 0 at
3 0 0 0 0 0 0 vt

2 0 0 0 0
[3,1] 0 0 at

1 0 0 0 vt
3 0 0 0 0 0 0

[3,3] 0 0 at
3 0 0 0 0 0 vt

3 0 0 0 0
[3,4] 0 0 at

4 0 0 0 0 0 0 vt
3 0 0 0

[3,5] 0 0 at
5 0 0 0 0 0 0 0 vt

3 0 0
[4,1] 0 0 0 at

1 0 0 vt
4 0 0 0 0 0 0

[4,5] 0 0 0 at
5 0 0 0 0 0 0 vt

4 0 0
[4,6] 0 0 0 at

6 0 0 0 0 0 0 0 vt
4 0

[5,4] 0 0 0 0 at
4 0 0 0 0 vt

5 0 0 0
[5,5] 0 0 0 0 at

5 0 0 0 0 0 vt
5 0 0

[5,6] 0 0 0 0 at
6 0 0 0 0 0 0 vt

5 0
[5,7] 0 0 0 0 at

7 0 0 0 0 0 0 0 vt
5

[6,2] 0 0 0 0 0 at
2 0 vt

6 0 0 0 0 0
[6,3] 0 0 0 0 0 at

3 0 0 vt
6 0 0 0 0

[6,4] 0 0 0 0 0 at
4 0 0 0 vt

6 0 0 0
[6,7] 0 0 0 0 0 at

7 0 0 0 0 0 0 vt
6



.
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Notice that the columns are indexed by the vertices and the facets, while the rows are
indexed by the vertex-facet incidences.

9.3.3. The degeneracy criterion

Definition 9.3.13. The vertex-facet incidence graph of a polytope P is the undirected
graph ΓP = (V ∪ F , E), where V is the set of all vertices of P , F is the set of all facets
of P , and

E = {{v, F} ⊂ V ∪ F | v ∈ F} .

Since there are no edges among the nodes in V, nor among the nodes in F , the graph
ΓP is bipartite.

Definition 9.3.14. An undirected graph G is k-degenerate if there exists an ordering
of its nodes in which each node has at most k neighbors appearing after it in this
ordering. Such an ordering is called k-degenerate ordering. The degeneracy of a graph is
the smallest value of k for which it is k-degenerate

The degeneracy of a graph was defined by Lick & White in [45], where they established
some basic results about degenerate graphs. The following proposition extends one of
these results to bipartite graphs.

Proposition 9.3.15. An n-node k-degenerate bipartite graph G with n ≥ 2k has at most
kn − k2 edges.

Proof. We prove this statement by induction on n. Suppose that n = 2k. We will show
that G has at most kn−k2 = 2k2 −k2 = k2 edges. This follows since an n-node bipartite
graph can have at most n2

4 = 4k2

4 = k2 edges.
Now suppose that n ≥ 2k + 1. Since G is k-degenerate, it has a node of degree at

most k, say v. The graph G − v is bipartite and k-degenerate. By induction, it has at
most k(n − 1) − k2 = kn − k2 − k edges. Thus, G has at most kn − k2 − k + deg v ≤
kn − k2 − k + k = kn − k2 edges.

Remark 9.3.16. A bipartite graph G = (A ∪ B, E) of degeneracy k has at least 2k
nodes. To see this, suppose that all the nodes in A have degree at most ℓ < k, then we
get an ℓ-degenerate ordering by putting the nodes of A first and then the nodes of B.
This contradicts that the degeneracy of G is k. Thus, A has a node of degree at least k.
Similar argument shows that B has a node of degree at least k.

Applying the previous proposition and remark on the vertex-facet incidence graph of
a polytope, we immediately get the following corollary.

Corollary 9.3.17. Let P be a d-polytope and assume that its vertex-facet incidence
graph ΓP has degeneracy k. Then the inequality

f0,d−1(P ) ≤ k (f0(P ) + fd−1(P )) − k2

holds. In particular, if ΓP is d-degenerate, then NG(P ) ≥ d2.

In Appendix H we investigate the degeneracy of ΓP in more details. In particular, we
show that the degeneracy is unbounded for d-polytopes when d ≥ 5, giving a partial
answer to an open question by Barnette and Grünbaum. For 4-polytopes, we relate
the degeneracy with the “complexity” of that polytope, and finally we survey known
4-polytopes with high degeneracy.

The next theorem gives a lower bound for the dimension of the realization space of a
d-polytope if its vertex-facet incidence graph is d-degenerate.

The following theorem is inspired by the proof for Steinitz’s Theorem given by Borisov,
Dickinson & Hastings [8, Lemma 2.8]. We call it the degeneracy criterion.
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Theorem 9.3.18 (The Degeneracy Criterion). Let P be a d-polytope. If the vertex-facet
incidence graph ΓP has a d-degenerate ordering of its nodes such that the following two
conditions hold.

(i) For each facet in this ordering, the vertices appearing after it and incident to it are
linearly independent in any centered realization of P .

(ii) For each vertex in this ordering, the normal vectors of the facets appearing after it
and incident to it are linearly independent in any centered realization of P .

Then R0(P ) is a smooth manifold of dimension NG(P ).

Note that the requirement that ΓP is d-degenerate is redundant since it follows from
the conditions (i) and (ii).

Proof. Let v1, . . . , vn and F1, . . . , Fm denote the vertices and the facets of P respectively.
We will show that the Jacobian Criterion (Theorem 9.3.8) is satisfied at each point of
R0(P ) by block triangularizing the Jacobian matrix. Let Jc := Jc

ΦP
(V0, A0) denote the

Jacobian matrix in compressed notation of the characteristic map ΦP of P at some
centered realization (V0, A0) ∈ R0(P ). First reorder the columns of Jc in the way given
by the degeneracy. Then, process these columns one by one from left to right. If the
column is indexed by a vertex vi, move the rows indexed by

{[i, j] | vi ∈ Fj , Fj appears after vi in the ordering}

to the bottom of Jc. If the column is indexed by a normal vector aj , move the rows
indexed by

{[i, j] | vi ∈ Fj , vi appears after Fj in the ordering}

to the bottom of Jc. After doing this for all the columns, we get an upper block-
triangularized matrix. Now Jc has full rank if all of these blocks have full row rank,
which is guaranteed by conditions (i) and (ii). The statement follows using the Jacobian
Criterion at all centered realizations.

Remark 9.3.19. Let G be the graph obtained from ΓP by deleting some r edges such
that G is d-degenerate and satisfies the conditions (i) and (ii) from the previous theorem.
Then

dim R0(P ) ≤ NG(P ) + r.

This corresponds to finding a ((µ − r) × d(n + m))-submatrix of the Jacobian matrix
that has full rank at all centered realizations of P .

The Degeneracy Criterion is not purely combinatorial. The conditions (i) and (ii)
might be satisfied for some geometric centered realizations and fail for others. However,
in the next section, we will derive some purely combinatorial results from the Degeneracy
Criterion.

Before moving on to applications, we set up a (scaled) homogeneous version of the
results of this section, which turns out to be useful below. Let C ⊂ Rd+1 be a closed
and pointed polyhedral cone of dimension d + 1. Analogously to the centered realization
space, we define a primal-dual realization space model for C as follows

Rh(C) =
{

(W, B) ∈ R(d+1)×(n+m) | cone(W ) = {x ∈ Rd+1| Btx ≤ 0} realizes C,

∥wi∥2 = ∥bj∥2 = 1} ,

where n is the number of extreme rays and m is the number of facets of C. Analogously
to the centered realization space, this set can be described as a semi-algebraic set. Let
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v1, . . . , vn and F1, . . . , Fm denote the extreme rays and the facets of C respectively. Then
Rh(C) is equal to the set{

(W, B) ∈ R(d+1)×(n+m)
∣∣∣∣∣ wt

ibj

{ = 0 if vi ∈ Fj

< 0 if vi ̸∈ Fj
,

d+1∑
k=1

w2
ik =

d+1∑
k=1

b2
jk = 1

}
.

Theorem 9.3.20 (The Homogeneous Degeneracy Criterion). Let C be a closed and
pointed polyhedral cone of dimension d+1. Assume that its ray-facet incidence graph ΓC

has a d-degenerate ordering of its nodes such that the following conditions hold.

(i) For each facet in this ordering, the ray generators appearing after it and connected
to it by an edge are linearly independent in any realization of C.

(ii) For every ray in this ordering, the normal vectors of the facets appearing after it
and connected to it by an edge are linearly independent in any realization of C.

Then the realization space Rh(C) is a smooth manifold of dimension d(n+m)−µ, where
n is the number of extreme rays of C, m is the number of facets of C and µ is the number
of ray-facet incidences.

The proof of this theorem is analogous to the proof of Theorem 9.3.18. The rows which
correspond to the norm equations can be handled as follows. The row indexed by the
equation ∥vi∥2 = 1 (resp. ∥aj∥2 = 1) should be considered to move with the rows we
move when processing the column indexed by vi (resp. aj).

9.4. Applications
Definition 9.4.1 (Vertex set and facet set of a face). Let P be a d-polytope and let F
be a face of P . The vertex set of F is the set of all vertices of P contained in F . The
facet set of F is the set of all facets of P containing F .

The following proposition is easy. However, combining it with the Degeneracy Criterion
produces interesting combinatorial results.

Proposition 9.4.2. Let P ⊂ Rd be a centered d-polytope.

(i) Let S be a set of k ≤ d vertices that lie on a facet of P . If some k−1 vertices from S
are the vertex set of a (k − 2)-face, then the vertices in S are linearly independent.

(ii) Let S be a set of k ≤ d facets that share a vertex of P . If some k − 1 facets from
S are the facet set of a (d − k + 1)-face, then the normal vectors of the facets in S
are linearly independent.

Proof. The second statement (ii) is the dual of (i), so we will only prove (i). Let F be
the facet of P which the vertices of S lie on. Let v1, . . . , vk−1 ∈ S be the vertices of P
which form a (k − 2)-face, and vk be the last vertex in S. Since v1, . . . , vk−1 form a
(k − 2)-face (that is, a (k − 2)-simplex), they are affinely independent. By the definition
of a proper face, there is an affine hyperplane in Rd which contains all these vertices
and does not contain vk. The affine hull of v1, . . . , vk−1 is contained in this hyperplane,
and thus the affine hull of v1, . . . , vk−1 does not contain vk. Thus, v1, . . . , vk are affinely
independent. Since the hyperplane spanned by F does not contain 0, these vertices are
also linearly independent.

If the size of S is at most 3, some of the assumptions in the previous proposition can
be dropped.

Proposition 9.4.3. Let P ⊂ Rd be a polytope containing the origin in its interior.
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(i) Let S be a set of k ≤ 3 vertices that lie on a facet of P . Then the vertices in S are
linearly independent.

(ii) Let S be a set of k ≤ 3 facets that share a vertex of P . Then the normal vectors of
the facets in S are linearly independent.

Proof. This is true since any three vertices on a facet are affinely independent and the
affine span of any facet cannot contain the origin in a centered realization. Again, (ii) is
the dual statement of (i).

9.4.1. Almost 3-degenerate polytopes

Theorem 9.4.4. Let P be a d-polytope. Let Π be the graph obtained from the vertex-
facet incidence graph ΓP by removing the nodes of degree d. If Π is 3-degenerate, then
R0(P ) is a smooth manifold of dimension NG(P ).

Proof. We will use the Degeneracy Criterion (Theorem 9.3.18) to prove this statement.
The following ordering of the nodes of ΓP is d-degenerate. First put all the nodes of ΓP

of degree d. These correspond to the simple vertices and the simplex facets. Then put
the nodes of Π ordered by a 3-degenerate ordering. By Proposition 9.4.2, the conditions
(i) and (ii) of the Degeneracy Criterion are satisfied at the nodes of ΓP of degree d. By
Proposition 9.4.3, the conditions (i) and (ii) of the Degeneracy Criterion are satisfied at
the remaining nodes of ΓP , which are exactly those nodes that are connected to at most
3 later nodes in the d-degenerate ordering we constructed.

This is our main tool that we apply to special classes of polytopes to show that their
realization spaces are manifolds. Before we begin with these applications, we again record
a homogeneous version for later use.

Theorem 9.4.5. Let C be a closed and pointed polyhedral cone of dimension d + 1. Let
Π be the graph obtained from its ray-facet incidence graph ΓC by removing the nodes of
degree d. If Π is 3-degenerate, then Rh(C) is a smooth manifold of dimension d(m +
n) − µ.

The proof is the same as that of Theorem 9.4.4 with the only exception that we use
Theorem 9.3.20 instead of the non-homogeneous version Theorem 9.3.18.

Corollary 9.4.6. Let P be a d-polytope. If

(i) each vertex of P lies in at most 3 non-simplex facets, or

(ii) each facet of P contains at most 3 non-simple vertices,

then R0(P ) is a smooth manifold of dimension NG(P ).

This applies to simple and simplicial polytopes, of course. The corresponding natural
guess is computed in Proposition 9.3.5.

Corollary 9.4.7. Let P be a d-polytope.

(i) If P is simplicial, then R0(P ) is a smooth manifold of dimension df0(P ).

(ii) If P is simple, then R0(P ) is a smooth manifold of dimension dfd−1(P ).

Polygons are always simple and simplicial, so we get that their realization spaces are
always manifolds.

Corollary 9.4.8. Let P be a 2-polytope, then R0(P ) is a smooth manifold of dimension
2f0(P ) = 2f1(P ).
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To get the analogue for 3-polytopes, we use the following combinatorial well-known
observation for bipartite planar graphs. Planar for us means that we can draw the graph
in the plane without crossing edges, but we do not insist on the edges being line segments.

Proposition 9.4.9. Bipartite planar graphs are 3-degenerate.

Proof. Let G be a bipartite planar graph with v nodes and e edges. We first show that
e ≤ 2v − 4. Consider a planar drawing of G in the plane. Since the graph is bipartite,
every cycle in G has length at least 4 and therefore, every connected component of the
complement of G (called a face of the drawing) is bounded by at least 4 edges. On the
other hand, every edge is in 2 faces. Thus, 4f ≤ 2e, where f is the number of faces of the
drawing of G. Using Euler’s formula for planar graphs, we get e = v +f −2 ≤ v + 1

2e−2.
Thus, e ≤ 2v − 4.

If all nodes in G have degree ≥ 4, then by Handshaking lemma,

2e =
∑
v∈G

deg(v) ≥ 4v,

and thus 4v − 8 ≥ 4v. Thus, G has a node of degree ≤ 3. Now we get a 3-degenerate
ordering of G recursively by deletion of nodes degree ≤ 3.

Corollary 9.4.10 (see Borisov, Dickinson & Hastings [8, Lemma 2.8]). Let P be a
3-polytope. Then R0(P ) is a smooth manifold of dimension NG(P ) = f1(P ) + 6.

Proof. By Proposition 9.3.5 (iii) NG(P ) = f1(P ) + 6. The vertex-facet incidence graph
ΓP of P is planar since we can draw it in the plane without crossing edges as follows.
Draw one additional point on each facet of P , and connect it by edges to the vertices of
that facet. Then project the vertices of P , the new points and the new edges from an
interior point of P onto a sphere that contains P . Now apply a stereographic projection
to the plane to get a planar graph. By Proposition 9.4.9, ΓP is 3-degenerate. We are
done by Theorem 9.4.4.

9.4.2. Hypersimplices

The hypersimplices are key examples in polytope theory, which first appeared in the
work of Gabriélov, Gel’fand & Losik [28] on characteristic classes.

Definition 9.4.11 (see [21] or [73]). The standard hypersimplex ∆d(k) is the polytope
defined by

∆d(k) := conv
{

v ∈ {0, 1}d |
d∑

i=1
vi = k

}
,

where 1 ≤ k ≤ d − 1.

Note that ∆d(k) ⊂ Rd is a (d−1)-polytope since it lies in the affine hyperplane defined
by
∑d

i=1 xi = k. It has
(d

k

)
vertices (the number of ways to choose exactly k ones in a

zero-one vector in Rd.) Note also that ∆d(k) is affinely isomorphic to ∆d(d − k) under
the map x 7→ 1 − x. For k = 1 or k = d − 1, we get a (d − 1)-simplex ∆d−1. Thus, we
are particularly interested in the cases when k lies between 2 and d − 2.

We first collect information about the facets of hypersimplices. See Ziegler [73, Sect. 3],
De Loera, Rambau & Santos [21, Sect. 6.3.6] and Paffenholz & Ziegler [54, Sect. 3.3.1]
for more information.

Proposition 9.4.12. For 2 ≤ k ≤ d − 2, the following statements hold.

(i) ∆d(k) has 2d facets: d of them are combinatorially isomorphic to ∆d−1(k), and the
other d facets are combinatorially isomorphic to ∆d−1(k − 1).
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(ii) Each vertex of ∆d(k) lies on d facets: d−k of them are combinatorially isomorphic
to ∆d−1(k), and the other k facets are combinatorially isomorphic to ∆d−1(k − 1).

(iii) Each d − 3 facets of ∆d(2) of the form ∆d−1(2) is the facet set of a triangular
2-face, that is, the set of all facets that contain a triangle face.

Proof. Parts (i) and (ii) are also quite well-known, see for instance [21, Proposition 6.3.15]
and its proof.

(i) Facets are defined by two types of hyperplanes,

H
(0)
i = {x ∈ Rd | xi = 0} and

H
(1)
i = {x ∈ Rd | xi = 1},

for 1 ≤ i ≤ d. The first type H
(0)
i produces facets of the form ∆d−1(k), while the second

type H
(1)
i produces facets of the form ∆d−1(k − 1).

(ii) Each vertex has d − k zeros, and thus it lies on d − k facets of the form ∆d−1(k).
It also has k ones, and thus it lies on k facets of the form ∆d−1(k − 1).

(iii) Fix d−3 facets of the form ∆d−1(2). Without loss of generality, assume that these
d − 3 facets are defined by the first d − 3 hyperplanes

H
(0)
i = {x ∈ Rd | xi = 0}, for 1 ≤ i ≤ d − 3.

Thus, the face of ∆d(2) which they define has the following vertex set.

{v ∈ {0, 1}d | v1 = . . . = vd−3 = 0, vd−2 + vd−1 + vd = 2}
={(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)} ⊂ Rd,

which is a triangular 2-face. This face clearly does not lie on any of the following hyper-
planes.

H
(0)
i = {x ∈ Rd | xi = 0}, for d − 2 ≤ i ≤ d,

and

H
(1)
i = {x ∈ Rd | xi = 1}, for 1 ≤ i ≤ d.

Theorem 9.4.13. The realization space of ∆d(2) is a smooth manifold of dimension
NG(∆d(2)) = 3

2(d2 − d).

Proof. We will use the Degeneracy Criterion (Theorem 9.3.18) to prove this statement.
Each vertex of ∆d(2) lies in d facets, and we have

(d
2
)

vertices. Thus,

f0,d−2(∆d(2)) = d

(
d

2

)
.

In particular,

NG(∆d(2)) = (d − 1)
((

d

2

)
+ 2d

)
− d

(
d

2

)
= 3

2(d2 − d).

Let P ⊂ Rd−1 be a centered realization of ∆d(2). The following ordering of the nodes
of the vertex-facet incidence graph ΓP is (d − 1)-degenerate. First put all the facets
of the form ∆d−1(1) at the beginning. These are (d − 2)-simplices. Then put all the
vertices, and at the end put all the facets of the form ∆d−1(2). By Proposition 9.4.2
(i), condition (i) of the Degeneracy Criterion is satisfied at the simple nodes (these are
the (d − 2)-simplices). Thus, we only need to check the Degeneracy Criterion conditions
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at the nodes corresponding to the vertices. Let vi be a vertex of P . The corresponding
node is adjacent to exactly d − 2 later nodes Fi1 , . . . , Fid−2 . These nodes correspond to
facets of the form ∆d−1(2). By Proposition 9.4.12 (iii), any d − 3 of them are the facet
set of a 2-face. Thus, by Proposition 9.4.2 (ii), condition (ii) of the Degeneracy Criterion
is satisfied at the nodes corresponding to the vertices.

Indeed, Grande, Padrol & Sanyal [33] proved that the realization space of the hyper-
simplex ∆d(2) modulo projective transformations is topologically a ball.

9.5. Negative results
In this section, we discuss negative results of various flavors. The first set of negative
results shows that there are 4-polytopes with the property that their realization spaces
are smooth manifolds but the dimension is not the expected one, i.e. not equal to the
natural guess, providing explicit smooth counterexamples to the false claim in Robert-
son [59]. In the second part, we show that the realization space of the 24-cell is not a
smooth manifold, at least in its natural embeddings.

9.5.1. The smallest polytopes P with dim R0(P ) ̸= NG(P )
We tested24 the Degeneracy Criterion on the database of all 4-polytopes with at most 9
vertices [25]. The results are summarized in Table 9.1.

n |P4
n| |A4

n| |P4
n \ A4

n|
5 1 1 0
6 4 4 0
7 31 31 0
8 1294 1291 3
9 274148 274025 123

Table 9.1.: P4
n is the set of all 4-polytopes with n vertices. A4

n is the subset of P4
n of

those which satisfy the conditions of the Degeneracy Criterion.

In this section, we are going to look at the three 4-polytopes with 8 vertices which
do not satisfy the Degeneracy Criterion. We will call them P1, P2 and P3, and we will
determine the dimensions of their realization spaces, which turn out to be different from
the respective natural guess. Thus, we found the smallest examples (in terms of the
number of vertices) where the dimensions of their realization spaces are different from
their natural guesses. These three polytopes can be constructed from a pyramid over a
triangular prism pyr(prism(∆)) by adding a new point as follows:

(1) In P1, the new point should lie beyond the triangular prism facet, on the supporting
hyperplane of a simplex facet and beneath all the other facets. This polytope has 8
vertices, 9 facets and 43 vertex-facet incidences. A realization of P1 is given by the

24 In particular, for each of these polytopes, we use Matula & Beck algorithm [48] to find a 4-degenerate
ordering satisfying the Degeneracy Criterion. The algorithm in [48] finds a degenerate ordering by
repeatedly finding and deleting a node with the smallest degree. For those polytopes which do not
satisfy the Degeneracy Criterion, a certificate of a realization with a deficient Jacobian matrix is
already given in the database.
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following vertex description.


v0 v1 v2 v3 v4 v5 v6 v7

−1 −1 −1 1 1 1 1 1
1 −1 0 1 −1 0 0 0
1 1 −1 1 1 −1 0 0
0 0 0 0 0 0 −1 1

.

(2) In P2, the new point should lie beyond the triangular prism facet and beneath all
the other facets. In other words, P2 is a bipyramid over the triangular prism. This
polytope has 8 vertices, 10 facets and 46 vertex-facet incidences. A realization of P2
is given by the following vertex description.


v0 v1 v2 v3 v4 v5 v6 v7

−1 −1 −1 1 1 1 0 0
1 −1 0 1 −1 0 0 0
1 1 −1 1 1 −1 0 0
0 0 0 0 0 0 −1 1

.

(3) In P3, the new point should lie beyond the triangular prism facet, beyond a sim-
plex facet and beneath all the other facets. This polytope has 8 vertices, 11 facets
and 50 vertex-facet incidences. A realization of P3 is given by the following vertex
description.


v0 v1 v2 v3 v4 v5 v6 v7

−1 −1 −1 1 1 1 2 2
1 −1 0 1 −1 0 0 0
1 1 −1 1 1 −1 0 0
0 0 0 0 0 0 −1 1

.

To start, we introduce notation for a classical notion of realization spaces.

Definition 9.5.1. Let P be a labeled d-polytope with n vertices. The realization space
of P is the set

R(P ) = {V ∈ Rd×n | conv(V ) realizes P}.

Remark 9.5.2. Our various models of realization spaces that we considered so far fit
together nicely. Let P ⊂ Rd be a d-dimensional polytope and denote by P̂ ⊂ Rd+1 the
polyhedral cone generated by {(1, x) ∈ Rd+1| x ∈ P}. The centered realization space
R0(P ) is diffeomorphic to an open subset of R(P ) by the map (V, A) 7→ V . The set
R(P ) is diffeomorphic to an open subset of Rh(P̂ ) by the process of homogenization
(with appropriate choice of scaling for the ray and facet description of the resulting
cone, namely scaling the columns of these matrices to have norm 1). In particular, if
we can show that Rh(P̂ ) is a smooth manifold, then the spaces R(P ) and R0(P ) are
smooth manifolds of dimension dim Rh(P̂ ).

Richter-Gebert introduced the following notion in [57] for polytopes that we also use
in a cone version.

Definition 9.5.3. A d-polytope is necessarily flat if any polyhedral embedding of its
boundary complex in Rn, where n ≥ d, has affine dimension at most d. A (d + 1)-
dimensional closed and pointed polyhedral cone is necessarily flat if any polyhedral
embedding of its boundary fan in Rn, where n ≥ d + 1, has affine dimension at most
d + 1.
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Here a polyhedral embedding of a d-dimensional polyhedral complex C in Rn, where
n ≥ d, is a mapping of the vertices of C into Rn such that the image of every k-face of C
is a k-dimensional convex polyhedron combinatorially equivalent to that k-face, and for
no two faces the images intersect in their relative interiors.

In dimension 2, the only necessarily flat polytope is the triangle. In dimension 3,
Richter-Gebert in [57, Lemma 3.2.6] showed that pyramids, prisms and “tents” over
n-gons are necessarily flat. Using the same proof provided by Richter-Gebert, one can
show that the polyhedral cone that arises from a 3-dimensional prism is necessarily flat.
Another related result is by Schwartz [63, Lemma 2.6] who showed that every simple
d-polytope is necessarily flat, for d ≥ 3.

Proposition 9.5.4. The realization spaces of P1, P2 and P3 are smooth manifolds of
the following dimensions:

dim R0(P1) = 26 > 25 = NG(P1),
dim R0(P2) = 27 > 26 = NG(P2),
dim R0(P3) = 27 > 26 = NG(P3).

Proof. The boundary fan of each of the cones P̂1, P̂2 and P̂3 contains the boundary fan
of the cone over a triangular prism (with a missing simplex facet for P̂1), which we
call F . The fan F has dimension 4 in any realization of P̂1, P̂2 and P̂3 since the cone
of a triangular prism is necessarily flat. Due to convexity, we know that the span of
F has dimension 4 in any realization of P̂1, P̂2 and P̂3. Thus, every realization of P̂i is
obtained from a realization of C, where C is the cone of a pyramid over a triangular
prism. The apex ray x can be chosen in an open subset of a linear space that varies
differentiably with the realization of C. In P2 and P3, this open subset has dimension
5 − 1 since x should have norm 1 and the only other constraints are strict inequalities
which correspond to the conditions that x lies beneath or beyond a facet. In P1, this
open subset has dimension 5 − 2 since, in addition to the constraints mentioned in P2
and P3, x should lie on the supporting hyperplane of a simplicial facet of C. We are
done knowing that Rh(C) is a smooth manifold of dimension 23 by the Homogeneous
Degeneracy Criterion Theorem 9.3.20, and using Remark 9.5.2.

Theorem 9.5.5. Let P be a 4-polytope with at most 8 vertices. Then the realization
space R0(P ) is a smooth manifold. Its dimension is equal to NG(P ), except for the three
polytopes P1, P2, and P3, for which the dimension of the realization space is NG(Pi) + 1.

Proof. This is shown by Proposition 9.5.4, combined with the enumeration that we have
reported about at the beginning of Section 9.5.1.

The following proposition provides a class of examples of polytopes where the dimen-
sion of the realization space does not equal the natural guess.

Proposition 9.5.6. For d ≥ 3, let Q be a simple d-polytope that is not a simplex.
Then, the realization space of P := bipyr(Q), the bipyramid over Q, is a manifold but
of dimension strictly greater than NG(P ).

Proof. Using Proposition 9.3.5(v), we have

NG(P ) = 2 dim R0(Q) − (d − 1)f0(Q) + 2(d + 1).

By Schwartz [63, Lemma 2.6], Q is necessarily flat. Thus, any realization of P can be
obtained by embedding a realization of Q into a hyperplane H in Rd+1 and then adding
two points v and v′, each in a different open half space of H, such that the segment
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[v, v′] intersects the relative interior of Q. In particular,

dim R0(P ) = dim R0(Q) + 3(d + 1).

Thus,
dim R0(P ) − NG(P ) = (d + 1) + (d − 1)f0(Q) − dim R0(Q).

Since Q is simple,

dim R0(P ) − NG(P ) = (d + 1) + (d − 1)f0(Q) − dfd−1(Q).

We are done if we show that the right-hand-side is positive. For this we use the Lower
Bound Theorem by Barnette [4] [9], to derive

f0(Q) ≥ (d − 1)fd−1(Q) − (d + 1)(d − 2)
= d

d−1fd−1(Q) +
(
(d − 1) − d

d−1
)
fd−1(Q) − (d + 1)(d − 2)

> d
d−1fd−1(Q) +

(
(d − 1) − d

d−1
)
(d + 1) − (d + 1)(d − 2)

= d
d−1fd−1(Q) − d+1

d−1 ,

where the strict inequality comes from the fact that Q is not a simplex.

In particular, Proposition 9.5.6 implies that the realization space is is a manifold of
dimension greater than NG(P ) both for the bipyramid over a triangular prism P2 of
Theorem 9.5.5, as well as for the bipyramids over duals of cyclic polytopes of Exam-
ple 9.3.7.

9.5.2. The 24-cell

Arguably the 24-cell C
(24)
4 is one of the most interesting and unique examples in polytope

theory. It was discovered by Ludwig Schläfli around 1850, but his work was published
only in 1901 [62]. For a classical discussion see e.g. Coxeter [19]. Its symmetry group
is the Coxeter–Weyl group F4 of order 1152. The 24-cell is unique in many ways. For
example, it is the only centrally-symmetric self-dual regular polytope. It is also the only
regular polytope that is neither simple nor simplicial. Thus, in particular, by Corollary
9.4.7 for every regular polytope P — except for possibly the 24-cell — the realization
space is a smooth manifold of dimension NG(P ).

The 24-cell has 24 vertices (and 24 facets, whence the name) and 144 vertex-facet
incidences. Thus, the Jacobian Matrix has the format f0,3 × 4(f0 + f3) = 144 × 192. Full
rank would mean full row rank 144, and the natural guess is

NG(C(24)
4 ) = 192 − 144 = 48.

The 24 facets of the 24-cell are octahedra (which have 6 vertices each), and each vertex
of the 24-cell lies in exactly six of these octahedra. Thus, its vertex-facet incidence graph
is 6-regular. So it is not 4-degenerate, and thus the Degeneracy Criterion cannot be
applied. Instead, we will apply the Jacobian Criterion at specific realizations.

The following theorem gives bounds on the dimension of R0(C(24)
4 ).

Theorem 9.5.7. The dimension of the realization space of the 24-cell satisfies the esti-
mates

48 ≤ dim R0(C(24)
4 ) ≤ 52.

Proof. For the lower bound, we give a realization of the 24-cell where the Jacobian
matrix has full rank: See the third item of the following proposition, Proposition 9.5.8.
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For the upper bound, we find a (140 × 192)-submatrix of the Jacobian matrix, which
has full rank at all centered realizations. Then the bound follows from Remark 9.3.19.
For this, we construct an ordering of the nodes of the vertex-facet incidence graph of
C

(24)
4 . Start with four nodes v, u, F, G such that v, u ∈ F ∩ G. For two vertices in the

ordering which form an edge, add the facets which contain it and are not already in the
ordering. For two facets in the ordering which intersect in a ridge, add the vertices which
form the ridge and are not already in the ordering. Repeat this until all the vertices and
the facets are ordered. This process does not get stuck because the edge-ridge graph is
connected; see Sallee [61]. If we remove the four edges between the nodes {v, u, F, G},
we get a 4-degenerate ordering which satisfies the degeneracy criterion: A facet in this
ordering was added because an edge of it appeared before. So for each facet, there are
at most 4 of its vertices appearing after it, and these four vertices are always affinely
independent because they miss two vertices which form an edge of the octahedral facet.
Similar argument for the vertices. We are done by Remark 9.3.19.

The group of projective transformations on R4 has dimension 24. Thus, this establishes
that the dimension of the realization space of C

(24)
4 modulo projective transformations

satisfies
dim(R0(C(24)

4 )/PGL(R, 4)) ≥ 24,

where the best previous estimate, due to Paffenholz [52, 53], had been

dim(R0(C(24)
4 )/PGL(R, 4)) ≥ 4.

Proposition 9.5.8. The Jacobian matrix for the 24-cell C
(24)
4 has different ranks at

different realizations:

(1) For any realization of the 24-cell as a regular polytope, the Jacobian matrix has rank
140 (i.e., rank deficit 4).

(2) For the non-regular Paffenholz realizations of the 24-cell, the Jacobian matrix has
rank ≤ 142 (i.e., rank deficit ≥ 2).

(3) For eight 1-parameter families of non-regular realizations of the 24-cell with a sym-
metry group of order 24, the Jacobian has rank 144 (i.e., full rank).

Proof.

(1) A regular realization of C
(24)
4 is given by the following vertex description.

Vreg = conv
{

±ei ± ej ∈ R4 | 1 ≤ i ≤ j ≤ 4
}

.

At this realization, the Jacobian matrix has rank 140, which is not full.

(2) Paffenholz [52, Table 3.6] [53, Table 4.4] constructed a 4-parameter family of re-
alizations of the 24-cell. One way to describe his construction is to start with the
standard 4-cube [−1, 1]4, and choose a point (a, b, c, d) ∈ (−1, 1)4 in the interior of
that cube. Now reflect this point through the 8 supporting hyperplanes of the facets
of that cube to get 8 new points. The convex hull of the 16 vertices of the standard
cube and the 8 new points gives the 4-parameter family. The rows of the following
matrix describe the vertices of this 4-dimensional family of realizations.
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−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1

1 1 1 1
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1

1 1 1 −1
−1 −1 −1 1

1 1 −1 1
1 −1 1 1

−1 1 1 1
a b c −d − 2
a b −c + 2 d
a b c −d + 2
a b −c − 2 d
a −b + 2 c d

−a − 2 b c d
a −b − 2 c d

−a + 2 b c d



.

If all the parameters are zero, we get a (different) regular realization, and the Ja-
cobian matrix of the corresponding characteristic map at this realization has rank
140. Otherwise, using SageMath [66], we found two linear dependencies between
the rows of the (symbolic) Jacobian matrix.

(3) Finally, we give a new construction of eight 1-parameter families of realizations of
the 24-cell.
To get these families, start with the standard 4-cube C4 = [−1, 1]4. Let vi denote
a point beyond the facet of C4 defined by {x ∈ R4 | xi = 1} and beneath all
the other facets. Similarly, let ui denote a point beyond the facet of C4 defined by
{x ∈ R4 | xi = −1} and beneath all the other facets. Our goal is to construct a
24-cell whose vertex set is {−1, 1}4 ∪ {v1, . . . , v4, u1, . . . , u4} such that it has the
following symmetries:

ui = −vi ∀1 ≤ i ≤ 4.

vi 7→ vj 7→ ui 7→ uj 7→ vi ∀1 ≤ i ̸= j ≤ 4.

vi 7→ uj 7→ ui 7→ vj 7→ vi ∀1 ≤ i ̸= j ≤ 4.

Letting v1 = (a, b, c, d) and looking at the symmetries of C4 which map the points
as described above, we see that we have only two options for the coordinates of the
vi’s.
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v1 a b c d
v2 −b a −d c
v3 −c d a −b
v4 −d −c b a


and


v1 a b c d
v2 −b a d −c
v3 −c −d a b
v4 −d c −b a

.

The convex hull of {−1, 1}4 ∪ {v1, . . . , v4, u1, . . . , u4} is a 24-cell if and only if
each line segment between a pair (v, v′) of non-opposite points of {v1, . . . , v4} ∪
{u1, . . . , u4} intersects the (relative) interior of the 2-face of C4 defined by Fv ∩ Fv′ ,
where Fv (resp. Fv′) is the facet of C4 which v (resp. v′) lies beyond. Writing up
these conditions we see that they are equivalent to the following conditions.

b2, c2, d2 = −a2 + 2a, 1 < a ≤ 2.

The above equations can be rationally parameterized; Putting a = 2
(x2+1) gives

b, c, d = ± 2x

(x2 + 1) , 0 ≤ x < 1.

The plus-minus signs are independent, so this corresponds to 23 = 8 families. The
following matrix describes the vertex description of these families, where s1, s2, s3 ∈
{−1, 1}3 and 0 ≤ x < 1.
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−1 −1 −1 −1
−1 −1 −1 1
−1 −1 1 −1
−1 −1 1 1
−1 1 −1 −1
−1 1 −1 1
−1 1 1 −1
−1 1 1 1

1 −1 −1 −1
1 −1 −1 1
1 −1 1 −1
1 −1 1 1
1 1 −1 −1
1 1 −1 1
1 1 1 −1
1 1 1 1

− 2
x2+1 − 2 s1x

x2+1 − 2 s2x
x2+1 − 2 s3x

x2+1
2

x2+1
2 s1x
x2+1

2 s2x
x2+1

2 s3x
x2+1

2 s1x
x2+1 − 2

x2+1
2 s3x
x2+1 − 2 s2x

x2+1
− 2 s1x

x2+1
2

x2+1 − 2 s3x
x2+1

2 s2x
x2+1

2 s2x
x2+1 − 2 s3x

x2+1 − 2
x2+1

2 s1x
x2+1

− 2 s2x
x2+1

2 s3x
x2+1

2
x2+1 − 2 s1x

x2+1
2 s3x
x2+1

2 s2x
x2+1 − 2 s1x

x2+1 − 2
x2+1

− 2 s3x
x2+1 − 2 s2x

x2+1
2 s1x
x2+1

2
x2+1


If x = 0, we get a regular realization, and the Jacobian matrix of the corresponding
characteristic map at this realization has rank 140. Otherwise, when 0 < x < 1,
we get a non-regular realization. Using SageMath, we were able to show that the
Jacobian matrices at the open interval 0 < x < 1 have full rank. We did that by
finding (144 × 144)-submatrices which have non-vanishing determinants on 0 < x <
1.

Corollary 9.5.9. There is an open subset of the realization space R0(C(24)
4 ) that is a

smooth manifold of dimension 48.

Proof. This holds in the neighborhood of the new realizations of Proposition 9.5.8 (3),
where the Jacobian has full rank.

However, in contrast to the local situation announced by Corollary 9.5.9, there are
other points (e.g. at the regular realization) where the Jacobian property fails. The
following theorem shows that R0(C(24)

4 ) contains points at which it is not smooth.

Theorem 9.5.10. The realization space R0(C(24)
4 ) ⊂ R192 is not smooth at any point

that corresponds to a realization of the 24-cell as a regular polytope.

Proof. For each of the 8 families we constructed in Proposition 9.5.8 (3) above, we con-
struct the corresponding Jacobian matrix Js1,s2,s3 as a function of x. These Jacobian
matrices have full rank in the interval 0 < x < 1. Thus, their kernels define (48-
dimensional) tangent spaces along these families. We computed the limits of these 8
(symbolic) tangent spaces at x = 0, and we noticed that these limits give four different
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48-dimensional subspaces. Thus, the regular realization, given by x = 0, is not a smooth
point in R0(C(24)

4 ).
These computations were done using SageMath [66]. To be able to compute the

limits, we did the following. We computed the bases for the kernels in an echelon form,
and then we orthogonalized (but not normalized!) the rows of these bases using Gram-
Schmidt process. The entries of this echelon form are now rational functions in x. This
produced rows with entries that go to infinity as x goes to 0. Those rows, we multiplied
by x, after which the entries all became convergent.

Remark 9.5.11. Bates, Hauenstein, Peterson & Sommese [6] and Wampler, Hauenstein
& Sommese [69] introduced a local dimension numerical test based on the growth rate of
the corank of the Macaulay matrix of the given variety after adding to it some number
of random linear equations passing through the point at which we want to compute the
local dimension. We used this test and we got the following numerical results.

• the local dimension of the realization space of the 24-cell at the regular realization
is at most 50, and

• the local dimension of the realization space of the 24-cell at a Paffenholz realization
is at most 49.

9.6. Comparison to other models
In what follows, we discuss various other models for realization spaces of polytopes and
how they compare to the centered realization space. In particular, we argue that the
results from Section 9.5.2 translate to these other models.

The simplest and most obvious model is to record the vertex coordinates of the real-
ization; this leads to the set R(P ) = {V ∈ Rd×f0(P ) : conv(V ) realizes P}, see Definition
9.5.1. This was, for example, used in Mnëv’s original statement of the Universality The-
orem for polytopes [50]. The centered realization space is diffeomorphic to an open
subset of the naive model. Thus, the naive model is essentially the same as the centered
realization space model. One might want to factor out the action of the affine group
(which acts transitively on the naive model) or related transformation group actions.
Several different ways to do this have been proposed in the literature, and they lead to
slightly different models for the realization space of a polytope; see Gouveia, Macchia &
Wiebe [32].

9.6.1. Realization spaces modulo transformation group actions

We begin with the model favored by Richter-Gebert in his work on the universality theo-
rem for 4-polytopes [57, 58]. Here, we factor out affine transformations by fixing vertices,
which by the combinatorial structure of the polytope have to be affinely independent in
every realization, to be the origin and the standard basis vectors. The following propo-
sition tells us how we can identify this model explicitly with a subset of the centered
realization space (of lower dimension).

Proposition 9.6.1. Let P be a d-dimensional polytope. Let RG(P ) be the realization
space of P in Richter-Gebert’s model, which fixes vertices v0, v1, . . . , vd of P to be e0 = 0,
e1, . . . , ed. Let x0, x1, . . . , xd be affinely independent vectors in Rd. Richter-Gebert’s
model is diffeomorphic to the space of realizations of P with vi = xi.

Proof. Let A be the linear map that maps ei to xi − x0. This linear transformation
has full rank. Therefore, the affine transformation x 7→ Ax + x0 that maps ei to xi is
invertible. This map induces a diffeomorphism of the described realization spaces.
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A recent way to encode realizations of a polytope is the slack realization space intro-
duced by Gouveia, Macchia, Thomas & Wiebe [31]. Essentially, the authors show that
realizations of a polytope correspond to f0 ×fd−1 matrices of rank d+1 (whose rows are
indexed by vertices and columns by facets) with nonnegative entries, where zero entries
appear only at the positions that correspond to vertex-facet incidences. In this model it
is particularly easy to interpret and analyze the quotients modulo transformation groups.
The connection of the slack model to Richter-Gebert’s model discussed above as well
as to the point of view of chirotopes (or oriented matroids with the same face lattice
as the polytope) are explored in Gouveia, Macchia & Wiebe [32]. All different models
modulo transformation groups are at least birational, which is to say isomorphic on an
open subset (as subsets of algebraic varieties, so in particular also locally diffeomorphic
wherever the map is defined).

For instance, if P ⊂ Rd is a d-dimensional polytope whose first d+1 vertices are affinely
independent in any realization of P , Richter-Gebert’s model fixes the first d + 1 vertices
of the polytope to be 0, e1, . . . , ed. In the Grassmannian model of the realization space,
a realization V of P = conv(V ) is mapped to the column space of V̂ . By the choice of the
first d + 1 columns of V , the Plücker vector of such a realization always ends up in the
same canonical affine chart of the Grassmannian given by the first (d+1)× (d+1) block
of V̂ having full rank (so that the corresponding entry in the Plücker vector is non-zero,
more precisely 1). So Richter-Gebert’s model is naturally a subset of the Grassmannian
model of realizations of P̂ . The slack realization space is birational to the Grassmannian
model by [32, Theorem 4.7].

We discuss how to translate smoothness results from the centered realization space
model to these quotient models exemplarily for the 24-cell in the following section.

9.6.2. The 24-cell in other models for the realization space

Proposition 9.6.2. There is an open neighborhood of the regular realization of the 24-
cell in RG(C(24)

4 ) that is diffeomorphic to a transversal affine section of R0(C(24)
4 ). In

particular, the regular realization is also a singular point in RG(C(24)
4 ).

Proof. Choose the vectors x0 = (−1, 1, 1, 1), x1 = (1, 1, 1, 1), x2 = (0, 2, 0, 0), x3 =
(0, 0, 2, 0), x4 = (0, 0, 0, 2). These are affinely independent so that Proposition 9.6.1
implies that RG(C(24)

4 ) is diffeomorphic to all realizations of the 24-cell such that 5
vertices have the above coordinates, which we call RG′(C(24)

4 ). These are chosen as
they are vertices of a regular realization. There is an open neighborhood of this regular
realization in RG′(C(24)

4 ) that lies in R0(C(24)
4 ). This neighborhood is an affine section

R0(C(24)
4 ) ∩ L of the centered realization space determined by the affine conditions that

the 5 vertices v7, v15, v19, v21, v23 are equal to x0, . . . , x4 respectively. We can now show
that claim by a computation. We consider the same four curves as in Theorem 9.5.10
in R0(C(24)

4 ) that approach the regular realization. We transform them into curves in
RG′(C(24)

4 ) by the affine transformation moving the five chosen vertices to the fixed
xi. Sufficiently close to the regular realization (given by the parameter value 0), these
transformed curves in RG′(C(24)

4 ) pass through smooth points in RG′(C(24)
4 ) by generic

smoothness of the quotient map. The tangent space to RG′(C(24)
4 ) is a 28-dimensional

linear space depending on a parameter x. The limit for x = 0 can be computed by
intersecting the limits of the tangent spaces of the original curves inside R0(C(24)

4 ) with
the linear space lin(L) corresponding to the affine subspace L, which we compute to
be a 28-dimensional subspace. In fact, as in the proof of Theorem 9.5.10, we obtain
four different 28-dimensional subspaces, which shows that RG′(C(24)

4 ), and therefore
RG(C(24)

4 ), is not smooth at the regular realization.
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The fact that the realization space of the 24-cell is not a smooth manifold in Richter-
Gebert’s model locally around a regular realization also shows that it is not a smooth
manifold in the Grassmannian model and therefore neither in the slack model (see [32]),
as the transition maps between the models are defined locally around the regular real-
izations.
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Appendix





AGenerators for the polyhedral and axial
groups

Table A.1 gives a complete summary of the polyhedral (Table 5.1) and axial groups
(Table 6.3), following the numbering by Goursat [30], as extended to the haploid groups
by Du Val [23], together with a set of generators for each group. The axial groups can
be recognized as having only two numbers different from 2 in their Coxeter name. Our
adaptations of Du Val’s names was explained in Table 6.3 and footnote 19 on p. 77. The
top part contains the chiral groups (#20–#32) and the bottom part the achiral ones
(#39–#51).25

Where appropriate, we include a reference to the numbering of crystallographic point
groups according to Brown, Bülow, Neubüser, Wondratschek, Zassenhaus (BBNWZ)
[10], see also Appendix D.

In addition to the quaternions defined in (1.6) in Section 1.11, the following elements
are used for generating the groups:

ω̄ = 1
2(−1 − i − j − k) (order 3)

i†
I = 1

2
(
i + −

√
5−1
2 j + −

√
5+1
2 k

)
(order 4) (A.1)

i′
I = 1

2
(
−

√
5−1
2 i −

√
5+1
2 j + k

)
(order 4) (A.2)

ω̄ is simply the conjugate quaternion of ω. We tried to reduce the number of generators
by trial and error, confirming by computer whether the generated groups did not change.

For a few groups, the groups given by Conway and Smith are not identical to the
groups of Du Val, and our table lists both possibilities.

Conway and Smith [14, Tables 4.2–4.3] specified the five groups of type [I × Ī] (#32,
#32′ and #51–#51′′) by the generating set “[ω, ω], [iI , ±i′

I ]”, possibly extended by ∗ or
−∗ for the achiral groups, but they did not define what i′

I is.26 We tried all 120 elements
of 2I, and it turned out that (A.2) is the only value that works in this way. We don’t see
how we could have predicted precisely this element, and we have no explanation for it.

Du Val [23], on the other hand, specifies generators for these five groups in terms of
the quaternion i†

I defined in (A.1), which is obtained by flipping the sign of
√

5 in the
expression for iI = 1

2(i +
√

5−1
2 j +

√
5+1
2 k). This alternative choice generates a group 2I†

that is different from 2I. With this setup, it is not possible to use the simple extending
elements ∗ and −∗ for the three achiral extensions #51–#51′′: For example, the square
of the element ∗[i†

I , iI ] is [iIi†
I , i†

IiI ] with iIi†
I = 1

4 +
√

5
4 (i + j − k), and this element is in

25 A similar table, containing some four-dimensional reflection groups and their subgroups, appears
in Coxeter [17, p. 571], with correspondences between Coxeter’s own notation and Du Val’s names.
The very first entry in that table, [3, 3, 2]+, mistakenly refers to Du Val’s group #21 (T/C2; T/C2) =
± 1

12 [T × T ], while it is actually #26′′ (O/C1; O/C1)′′ = + 1
24 [O × O]. The fifth entry, [3, 3, 2], refers to

Du Val’s group (O/C1; O/C1)∗, while it should actually be (O/C1; O/C1)∗
−, or more precisely #44′′

(O/C1; O/C1)∗′′
− = + 1

24 [O × O] · 21. The confusing ambiguity of Du Val’s names for the groups 44′ and
44′′ mentioned in the caption of Table 6.3 was apparently not realized by Coxeter.
26 Five years later, the tables were almost literally reproduced in another book [12, Chapter 26], still
without a definition of i′

I .
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A. Generators for the polyhedral and axial groups

Du Val # & name CS name generators Cox. name order BBNWZ
20. (T/T ; T/T ) ±[T × T ] [i, ω], [ω, i] [+3, 4, 3+] 288 33/13
21. (T/C2; T/C2) ± 1

12 [T × T ] [ω, −ω], [i, i] 2.[3, 3]+ 24 24/02
21′. (T/C1; T/C1) + 1

12 [T × T ] [ω, ω], [i, i] [3, 3]+ 12 24/01
22. (T/V ; T/V ) ± 1

3 [T × T ] [i, 1], [1, i], [ω, ω] [+3, 3, 4+] 96 32/16
23. (O/O; T/T ) ±[O × T ] [iO, ω], [ω, i] [[+3, 4, 3+]]L 576 not cryst.
23. (T/T ; O/O) ±[T × O] [i, ω], [ω, iO] [[+3, 4, 3+]]R 576 not cryst.
24. (I/I; T/T ) ±[I × T ] [iI , ω], [ω, i] [3, 3, 5]+1

5 L
1440 not cryst.

24. (T/T ; I/I) ±[T × I] [i, ω], [ω, iI ] [3, 3, 5]+1
5 R

1440 not cryst.
25. (O/O; O/O) ±[O × O] [iO, ω], [ω, iO] [[3, 4, 3]]+ 1152 not cryst.
26. (O/C2; O/C2) ± 1

24 [O × O] [ω, −ω], [iO, iO] 2.[3, 4]+ 48 25/06
26′. (O/C1; O/C1)′ + 1

24 [O × O] [ω, ω], [iO, iO] [3, 4]+ 24 25/03
26′′. (O/C1; O/C1)′′ + 1

24 [O × O] [ω, ω], [iO, −iO] [2, 3, 3]+ 24 25/04
27. (O/V ; O/V ) ± 1

6 [O × O] [i, j], [ω, ω], [iO, iO] [3, 3, 4]+ 192 32/20
28. (O/T ; O/T ) ± 1

2 [O × O] [ω, 1], [1, ω], [iO, iO] [3, 4, 3]+ 576 33/15
29. (I/I; O/O) ±[I × O] [iI , ω], [ω, iO] [[3, 3, 5]+1

5 L
] 2880 not cryst.

29. (O/O; I/I) ±[O × I] [iO, ω], [ω, iI ] [[3, 3, 5]+1
5 R

] 2880 not cryst.
30. (I/I; I/I) ±[I × I] [iI , ω], [ω, iI ] [3, 3, 5]+ 7200 not cryst.
31. (I/C2; I/C2) ± 1

60 [I × I] [ω, ω], [iI , −iI ] 2.[3, 5]+ 120 not cryst.
31′. (I/C1; I/C1) + 1

60 [I × I] [ω, ω], [iI , iI ] [3, 5]+ 60 not cryst.
32. (I†/C2; I/C2)† [ω, ω], [iI , −i†

I ]
}

[[3, 3, 3]]+ 120 31/06± 1
60 [I × I] [ω, ω], [iI , −i′

I ]
32′. (I†/C1; I/C1)† [ω, ω], [iI , i†

I ]
}

[3, 3, 3]+ 60 31/03+ 1
60 [I × I] [ω, ω], [iI , i′

I ]
39. (T/C2; T/C2)∗

c ± 1
12 [T × T ] · 2 [ω, −ω], ∗[i, −i] 2.[+3, 4] 48 25/05

39′. (T/C1; T/C1)∗
c + 1

12 [T × T ] · 23 [ω, ω], ∗[i, i] [+3, 4] 24 25/02
39′. (T/C1; T/C1)∗

c− + 1
12 [T × T ] · 21 [ω, ω], ∗[i, −i] [+3, 4]◦ 24 25/01

40. (T/C2; T/C2)∗ [ω, −ω], ∗[iO, −iO]
}

2.[3, 3] 48 24/05± 1
12 [T × T ] · 2 [ω, −ω], ∗[i, −i]

40′. (T/C1; T/C1)∗ [ω, ω], ∗[iO, iO]
}

[3, 3] 24 24/04+ 1
12 [T × T ] · 21 [ω, ω], ∗[i, i]

40′. (T/C1; T/C1)∗
− [ω, ω], ∗[iO, −iO]

}
[3, 3]◦ 24 24/03+ 1

12 [T × T ] · 23 [ω, ω], ∗[i, −i]
41. (T/V ; T/V )∗ ± 1

3 [T × T ] · 2 ∗[i, 1], [ω, ω] [+3, 3, 4] 192 32/18
42. (T/V ; T/V )∗

− ± 1
3 [T × T ] · 2 ∗[i, 1], [ω, ω] [3, 3, 4+] 192 32/19

43. (T/T ; T/T )∗ ±[T × T ] · 2 [i, ω], ∗[ω, i] [3, 4, 3+] 576 33/14
44. (O/C2; O/C2)∗ ± 1

24 [O × O] · 2 [ω, −ω], [iO, iO], −∗ 2.[3, 4] 96 25/11
44′. (O/C1; O/C1)∗′ + 1

24 [O × O] · 23 [ω, ω], [iO, iO], ∗ [3, 4] 48 25/10
44′. (O/C1; O/C1)∗′

− + 1
24 [O × O] · 21 [ω, ω], [iO, iO], −∗ [3, 4]◦ 48 25/07

44′′. (O/C1; O/C1)∗′′ + 1
24 [O × O] · 23 [ω, ω], [iO, −iO], ∗ [2, 3, 3]◦ 48 25/09

44′′. (O/C1; O/C1)∗′′
− + 1

24 [O × O] · 21 [ω, ω], [iO, −iO], −∗ [2, 3, 3] 48 25/08
45. (O/T ; O/T )∗ ± 1

2 [O × O] · 2 ∗[ω, 1], [iO, iO] [3, 4, 3] 1152 33/16
46. (O/T ; O/T )∗

− ± 1
2 [O × O] · 2̄ [ω, 1], ∗[1, iO] [[3, 4, 3]+] 1152 not cryst.

47. (O/V ; O/V )∗ ± 1
6 [O × O] · 2 ∗[iω, ω], [iO, iO] [3, 3, 4] 384 32/21

48. (O/O; O/O)∗ ±[O × O] · 2 ∗[1, ω], [ω, iO] [[3, 4, 3]] 2304 not cryst.
49. (I/C2; I/C2)∗ ± 1

60 [I × I] · 2 [ω, −ω], ∗[iI , −iI ] 2.[3, 5] 240 not cryst.
49′. (I/C1; I/C1)∗ + 1

60 [I × I] · 23 [ω, ω], ∗[iI , iI ] [3, 5] 120 not cryst.
49′. (I/C1; I/C1)∗

− + 1
60 [I × I] · 21 [ω, ω], ∗[iI , −iI ] [3, 5]◦ 120 not cryst.

50. (I/I; I/I)∗ ±[I × I] · 2 [iI , ω], [ω, iI ], ∗ [3, 3, 5] 14400 not cryst.
51. (I†/C2; I/C2)†∗ [ω, −ω], ∗[iI iOi, i†

I iOi]
}

[[3, 3, 3]] 240 31/07± 1
60 [I × I] · 2 [ω, −ω], ∗[iI , i′

I ]
51′. (I†/C1; I/C1)†∗ [ω, ω], ∗[iI iOi, i†

I iOi]
}

[3, 3, 3] 120 31/05+ 1
60 [I × I] · 21 [ω, ω], [iI , i′

I ], −∗
51′. (I†/C1; I/C1)†∗

− [ω, ω], ∗[iI iOi, −i†
I iOi]

}
[[3, 3, 3]+] 120 31/04+ 1

60 [I × I] · 23 [ω, ω], ∗[iI , i′
I ]

Table A.1.: Polyhedral and axial groups with generators
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A. Generators for the polyhedral and axial groups

neither of the groups 2I or 2I†. Du Val [23, p. 55–56] gives a thorough and transparent
exposition of these groups and explains why they represent the symmetries of the 4-
simplex.

For the axial groups of type 1
12 [T × T̄ ] (#40 and #40′), the natural generators from

an algebraic viewpoint involve the quaternion ω̄, and these were chosen by Conway and
Smith. However, the axis that is kept invariant by the groups is then spanned by the
quaternion j − k. With ∗[iO, ±iO] as the orientation-reversing generator, the invariant
axis becomes the real axis, and only in this representation, the groups are subgroups of
the larger axial group ± 1

24 [O × O] (#44).
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BOrbit polytopes for tubical groups with
special starting points

We show polar orbit polytopes for the tubical groups of cyclic type with all choices of
special starting points.

Each subsection considers a left tubical group G together with a representative f -fold
rotation center p of Gh, corresponding to an entry in Table 3.2. The particular data
are given in the caption. In addition, we indicate the subgroup H of G of elements that
preserve Kp. An alternate group refers to an index-2 dihedral-type supergroup of G that,
for an appropriate starting point on Kp, produces the same orbit as G.

Two of these groups were already illustrated in the main text (Figures 3.7 and 3.8),
and we follow the same conventions as in these figures: On the top left, we show the
Gh-orbit polytope of p, and on the top right the spherical Voronoi diagram of that orbit.
Then we show the cells of the polar G-orbit polytopes of a starting point on Kp, for
different values of n, in increasing order of the size of the orbit. For each cell, we indicate
the values of n, and in addition, the counterclockwise angle (as seen from the top) by
which the group rotates the cell as it proceeds to the next cell above. A blue vertical line
indicates the cell axis, the direction towards the next cell along Kp. For small values of
n, this axis sometimes exits through a vertex or an edge of the cell, but for large enough
n it goes through the top face where the next cell is attached.

When the same orbit arises for several values of n, then the specified rotation angle
is the unique valid angle only for the smallest value n0 that is given. For a larger value
n = n0f , this can be combined with arbitrary multiples of an f -fold rotation. For
example, in Figure B.1, we have the same cell for n = 5 and n = 15. The specified
rotation angle (1

3 + 1
30) · 2π is the unique valid angle between consecutive cells in the

group ±[I ×C5], but in the larger group ±[I ×C15], it can be combined with all multiples
of 2

3π. That is, all three rotation angles 1
15π, (2

3 + 1
15)π, and (4

3 + 1
15)π are valid. In some

cases, such as n = 18, the angle is never unique, and this is indicated by a free parameter
k in the angle specification, which can take any integer value.

By observing the rotation angles for the successive cells in the figures, one can recognize
the pattern that they follow.
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B. Orbit polytopes for tubical groups with special starting points

B.1. ±[I × Cn]
B.1.1. ±[I × Cn], 3-fold rotation center

n = 1, 3
( 2

3 + 1
6 ) · 2π

n = 2, 6
( 1

3 + 1
12 ) · 2π

n = 9
( k

3 + 1
18 ) · 2π

n = 4, 12
( 2

3 + 1
24 ) · 2π

n = 5, 15
( 1

3 + 1
30 ) · 2π

n = 18
( k

3 + 1
36 ) · 2π

n = 7, 21
( 2

3 + 1
42 ) · 2π

n = 8, 24
( 1

3 + 1
48 ) · 2π

n = 27
( k

3 + 1
54 ) · 2π

n = 10, 30
( 2

3 + 1
60 ) · 2π

n = 11, 33
( 1

3 + 1
66 ) · 2π

n = 36
( k

3 + 1
72 ) · 2π

n = 13, 39
( 2

3 + 1
78 ) · 2π

n = 14, 42
( 1

3 + 1
84 ) · 2π

n = 45
( k

3 + 1
90 ) · 2π

Figure B.1.: G = ±[I × Cn], Gh = +I, 3-fold rotation center p = 1√
3(−1, −1, −1).

H = ⟨[−ω, 1], [1, en]⟩. 20 tubes, each with lcm(2n, 6) cells. Alternate group: ±[I × D2n].
When n = 1 or n = 3, the cells of a tube are disconnected from each other.
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B. Orbit polytopes for tubical groups with special starting points

B.1.2. ±[I × Cn], 2-fold rotation center

n = 1, 2
( 1

2 + 1
4 ) · 2π

n = 4
( k

2 + 1
8 ) · 2π

n = 3, 6
( 1

2 + 1
12 ) · 2π

n = 8
( k

2 + 1
16 ) · 2π

n = 5, 10
( 1

2 + 1
20 ) · 2π

n = 12
( k

2 + 1
24 ) · 2π

n = 7, 14
( 1

2 + 1
28 ) · 2π

n = 16
( k

2 + 1
32 ) · 2π

n = 9, 18
( 1

2 + 1
36 ) · 2π

n = 20
( k

2 + 1
40 ) · 2π

n = 11, 22
( 1

2 + 1
44 ) · 2π

n = 24
( k

2 + 1
48 ) · 2π

n = 13, 26
( 1

2 + 1
52 ) · 2π

n = 28
( k

2 + 1
56 ) · 2π

n = 15, 30
( 1

2 + 1
60 ) · 2π

Figure B.2.: G = ±[I × Cn], Gh = +I, 2-fold rotation center p = 1
2(1, 1

φ , φ), where φ =
1+

√
5

2 . The Gh-orbit polytope is an icosidodecahedron. The corresponding Voronoi dia-
gram on the 2-sphere has the structure of a rhombic triacontahedron. H = ⟨[iI , 1], [1, en]⟩.
30 tubes, each with lcm(2n, 4) cells. Alternate group: ±[I × D2n]. When n = 1, 2, or 4,
the cells of a tube are disconnected from each other.
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B. Orbit polytopes for tubical groups with special starting points

B.2. ±[O × Cn]
B.2.1. ±[O × Cn], 4-fold rotation center
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Figure B.3.: G = ±[O × Cn], Gh = +O, 4-fold rotation center p = (0, 1, 0). H =
⟨[−ωiO, 1], [1, en]⟩. 6 tubes, each with lcm(2n, 8) cells. Alternate group: ±[O × D2n].
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B. Orbit polytopes for tubical groups with special starting points

B.2.2. ±[O × Cn], 3-fold rotation center
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Figure B.4.: G = ±[O × Cn], Gh = +O, 3-fold rotation center p = 1√
3(−1, −1, −1).

H = ⟨[−ω, 1], [1, en]⟩. 8 tubes, each with lcm(2n, 4) cells. Alternate group: ±[O × D2n].
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B. Orbit polytopes for tubical groups with special starting points

B.2.3. ±[O × Cn], 2-fold rotation center
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Figure B.5.: G = ±[O × Cn], Gh = +O, 2-fold rotation center p = 1√
2(0, 1, 1). H =

⟨[iO, 1], [1, en]⟩. 12 tubes, each with lcm(2n, 4) cells. Alternate group: ±[O × D2n]. When
n = 1 or n = 2, the cells of a tube are disconnected from each other. For n = 4, we have
drawn squares in the planes around the top and bottom face, to indicate that these faces
are horizontal and parallel.
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B. Orbit polytopes for tubical groups with special starting points

B.3. ±1
2 [O × C2n]

B.3.1. ±1
2 [O × C2n], 3-fold rotation center
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Figure B.6.: G = ±1
2 [O × C2n], Gh = +O, 3-fold rotation center p = 1√

3(−1, −1, −1).
H = ⟨[−ω, 1], [1, en]⟩. 8 tubes, each with lcm(2n, 6) cells. Alternate group: ±1

2 [O × D4n].
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B. Orbit polytopes for tubical groups with special starting points

B.3.2. ±1
2 [O × C2n], 2-fold rotation center
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Figure B.7.: G = ±1
2 [O × C2n], Gh = +O, 2-fold rotation center p = 1√

2(0, 1, 1). The
Gh-orbit polytope is a cuboctahedron. The corresponding Voronoi diagram on the 2-
sphere has the structure of a rhombic dodecahedron. H = ⟨[iO, e2n], [1, en]⟩. 12 tubes,
each with 4n

gcd(n−1,2) cells. Alternate group: ±1
2 [O ×D4n]. When n = 1, the cells of a tube

are disconnected from each other. For n = 2 and n = 3, we have drawn squares in the
planes around the top and bottom face, to indicate that these faces are horizontal and
parallel.
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B. Orbit polytopes for tubical groups with special starting points

B.4. ±[T × Cn]
B.4.1. ±[T × Cn], 3-fold rotation center
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Figure B.8.: G = ±[T × Cn], Gh = +T , 3-fold (type I) rotation center p =
1√
3(−1, −1, −1). H = ⟨[−ω, 1], [1, en]⟩. 4 tubes, each with lcm(2n, 6) cells. Alternate

group: ±1
2 [O × D2n].
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B. Orbit polytopes for tubical groups with special starting points

B.4.2. ±[T × Cn], 2-fold rotation center
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Figure B.9.: G = ±[T × Cn], Gh = +T , 2-fold rotation center p = (1, 0, 0). H =
⟨[i, 1], [1, en]⟩. 6 tubes, each with lcm(2n, 4) cells. Alternate groups: ±[T × D2n] and
±1

2 [O×D2n] (also their common supergroup ±[O×D2n]) if n ≡ 0 mod 4, else ±[T ×D2n]
(and its supergroup ±1

2 [O × D4n]). When n = 1 or n = 2, consecutive cells of a tube
touch only via vertices.
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B. Orbit polytopes for tubical groups with special starting points

B.5. ±1
3 [T × C3n]

B.5.1. ±1
3 [T × C3n], 3-fold (type I) rotation center
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n = 22
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Figure B.10.: G = ±1
3 [T × C3n], Gh = +T , 3-fold (type I) rotation center p =

1√
3(−1, −1, −1). H = ⟨[−ω, e3n], [1, en]⟩. 4 tubes, each with 6n

gcd(n−1,3) cells. Alternate
groups: ±1

6 [O × D6n] (and its supergroup ±1
2 [O × D6n] if n ̸≡ 1 mod 3). When n = 1,

the cells of a tube are disconnected from each other.
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B. Orbit polytopes for tubical groups with special starting points

B.5.2. ±1
3 [T × C3n], 3-fold (type II) rotation center
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Figure B.11.: G = ±1
3 [T ×C3n], Gh = +T , 3-fold (type II) rotation center p = 1√

3(1, 1, 1).
H = ⟨[−ω2, e2

3n], [1, en]⟩. 4 tubes, each with 6n
gcd(n−2,3) cells. Alternate groups: ±1

6 [O ×
D6n] (and its supergroup ±1

2 [O × D6n] if n ̸≡ 2 mod 3).
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B. Orbit polytopes for tubical groups with special starting points

B.5.3. ±1
3 [T × C3n], 2-fold rotation center
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Figure B.12.: G = ±1
3 [T × C3n], Gh = +T , 2-fold rotation center p = (1, 0, 0). H =

⟨[i, 1], [1, en]⟩. 6 tubes, each with lcm(2n, 4) cells. Alternate group: ±1
6 [O × D6n]. For

n = 1 and n = 2, we have drawn squares in the planes around the top and bottom face,
to indicate that these faces are horizontal and parallel.
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CThe number of groups of given order

We will see that the number of groups of order N is always at least N/2, and less than
O(N2). If N is an odd prime, there are exactly (N + 3)/2 groups, namely the torus
translation groups (s)

1,N for 0 ≤ s ≤ (N − 1)/2 and ((1−N)/2)
N,1 .

The richest class of groups are the toroidal groups, and among them, the most nu-
merous groups are the torus translation groups, of type : For each divisor m of N ,
there are ∼ n/2 groups (s)

m,n, where n = N/m. Thus, the number of groups is about
1/2 times the sum σ(N) of divisors of N , which is bounded by N

1+ 1+O(1/ log log n)
log2 ln N ≤ N2

[51]. The upper bound of O(N2) is very weak; the actual bound is slightly superlinear.
The number of groups of type · is of similar magnitude, provided that N is even.

For all the other types, there is at most one group for every divisor of N , except for the
swapturn groups, whose number is related to the number of integer points on the circle
a2 + b2 = N/4, and this number is at most N .

From all the remaining classes of groups (tubical, polyhedral, or axial), there can be
only a constant number of groups of a given order.

The number of groups of order 100. As an exercise, let us compute the number
of point groups of order N = 100.

We proceed through the toroidal classes of groups in Table 4.3 one by one. For the
pure translation groups of type , we can write 100 = mn = 1 · 100 = 2 · 50 = 4 · 25 =
5 ·20 = 10 ·10 = 20 ·5 = 25 ·4 = 50 ·2 = 100 ·1 with accordingly 50+26+13+10+6+3+
2 + 2 + 1 = 113 choices of s, see the remark after (4.5) in Section 4.5. For the flip groups
of type · of order 100 = 2mn, we have to factor 50 instead of 100. The possibilities are
50 = 1 · 50 = 2 · 25 = 5 · 10 = 10 · 5 = 25 · 2 = 50 · 1 with 25 + 13 + 5 + 3 + 1 + 1 = 48
choices of s.

For the swap groups pm
m,n of order 4mn, we have to split 25 = mn into two factors

mn larger than 1. There is one possibility: 25 = 5 × 5. For the groups pg
m,n, only the

first factor m must be larger than 1. This gives 2 choices. For cm
m,n of order 2mn,

mn = 50 must be split into two factors of the same parity. This is impossible since
mn ≡ 2 (mod 4). Thus, in total we have 3 swap groups of type . Clearly, there is the
same number of 3 swap groups of type .

Finally, for the full torus swap groups, almost all types have order 8mn, which cannot
equal 100. We only need to consider the groups of type ×c2mm

m,n , of order 4mn, We have
to split 100/4 = 25 into two factors ≥ 3 of the same parity. There is one possibility:
25 = 5 × 5.

In total, we get 113 + 48 + 3 + 3 + 1 = 168 chiral toroidal groups of order 100.
Let us turn to the achiral groups: For the reflection groups , we have to consider

all factorizations 100 = 2mn (types pm and pg) or 100 = 4mn (type cm). This gives
2 × σ0(50) + σ0(25) = 2 × 6 + 3 = 15 groups, where σ0 denotes the number of divisors
of a number.

For the full reflection groups +, we have to consider all factorizations 100 = 4mn
or 100 = 8mn, respectively, where in one case (p2mg), we distinguish the order of the
factors. We get 2 + 3 + 2 + 0 = 7 possibilities. For general N , there are 2⌈σ0(N

4 )/2⌉ +
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C. The number of groups of given order

σ0(N
4 ) + ⌈σ0(N

8 )/2⌉ full reflection groups of order N , where σ0(x) = 0 if x is not an
integer.

For ⟲ , we must have 100 = 4(a2 + b2) with a ≥ b ≥ 0. There are two possibilities:
(a, b) = (5, 0) or (4, 3).

For the full torus groups +×, the order would have to be a multiple of 8; so there are
no such groups of order 100.

In total, we get 15 + 7 + 2 = 24 achiral toroidal groups of order 100, and 192 toroidal
groups altogether.

N = 100 does not occur as the order of any of the other types of groups. So 192 is the
total number of 4-dimensional point groups of order 100.

Enantiomorphic pairs. As an advanced exercise, we can ask, how many of the 168
chiral groups or order 100 are their own mirror image?

For the groups of type , we are looking for a lattice of translations of size 100 that
has an orientation-reversing symmetry. If it is symmetric with respect to a horizontal
axis, then, according to Lemma 4.7.1, the possibilities are an m × n rectangular grid
of mn points or a rhombic grid of 2mn points. In this case, it is also symmetric with
respect to a vertical axis.

Thus, we have to split 100 = mn and 50 = mn into two factors m and n. The
order of the factors plays no role, because the reflection swaps the factors. We have 5
possibilities for 100 = 1 · 100 = 2 · 50 = 4 · 25 = 5 · 20 = 10 · 10 and 3 possibilities for
50 = 1 · 50 = 2 · 25 = 5 · 10, which gives 5 + 3 = 8 possibilities in total. (Alternatively,
adding a vertical and horizontal mirror to such a translational subgroup will produce
a group of type +p2mm or +c2mm. So we can equivalently count the groups of these
types of order 4N = 400.)

There is also the possibility that the lattice is symmetric with respect to a swapturn
operation ⟲. The number of these groups equals the number of groups of type ⟲ of
order 4N = 400. It can be computed as the number of integer points (a, b) on the circle
100 = a2 + b2 with a ≥ b ≥ 0. There are two possibilities: (10, 0) and (8, 6).

We have overcounted the lattices that are symmetric with respect to both + and ⟲,
in other words, the upright or slanted square lattices. There is one lattice of this type:
the 10 × 10 upright lattice.

In total, 8 + 2 − 1 = 9 groups among the 113 groups of type are equal to their own
mirror.

For the groups of type · , we can repeat the same game, except that we are looking
for a translation lattice of half the size, 50. For the lattices with + symmetry, we have
3 possibilities for 50 = 1 · 50 = 2 · 25 = 5 · 10, and 2 possibilities for 25 = 1 · 25 = 5 · 5,
giving 3 + 2 = 5 possibilities in total. There are two possibilities for 50 = a2 + b2 with
a ≥ b ≥ 0: (7, 1) and (5, 5). We have to subtract 1 for the slanted 5 × 5 grid, for a total
of 5 + 2 − 1 = 6 groups among the 48 flip groups.

The mirrors of the groups of type are the groups of type , and hence none of
them is its own mirror. The groups of type × are easy to handle: The two parameters
m and n must be equal. We have one such group, ×c2mm

5,5 . In total, 9 + 6 + 1 = 16 chiral
groups are their own mirror images. The remaining 168 − 16 = 152 chiral groups consist
of enantiomorphic pairs.

The number of groups of order 7200. To look at a more interesting example,
let us count the groups of order 7200. The count of toroidal groups follows the same
calculation as above, and it amounts to 19,319 chiral and 216 achiral groups. In addition,
we have 22 tubical groups: ±[I × C60], ±[I × D60], ±[O × C150], ±[O × D150], ±[T ×
C300], ±[T ×D300], ±1

2 [O×D300], ±1
2 [O×D300], ±1

2 [O×C300], ±1
6 [O×D900], ±1

3 [T ×C900],
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C. The number of groups of given order

and their mirrors. Finally, there is one polyhedral group ±[I × I]. In total, we have
19,319 + 22 + 1 = 19,342 chiral groups and 216 achiral ones.

The number of groups of order at most M . While the number of groups of a
given order N fluctuates between a linear lower bound and a slightly superlinear upper
bound, the “average number” can be estimated quite precisely: We have seen that the
number of groups of order N is of order Θ(σ(N)), where σ(N) is the sum of divisors
of N . If we look at all groups of order at most M , we can sum over all potential divisors
d and get

M∑
N=1

σ(N) =
M∑

d=1
d⌊M/d⌋ = Θ(M2).

Thus, the number of four-dimensional groups of order at most M is Θ(M2). The majority
of these groups is chiral, but the achiral ones alone are already of the order Θ(M2): There
is essentially one swapturn group for each integer point (a, b) in the disk a2 + b2 ≤ M/4,
with roughly a factor 8 of overcounting of symmetric points, and this gives Θ(M2) chiral
groups.
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DThe crystallographic point groups

Brown, Bülow, Neubüser, Wondratschek, Zassenhaus classified the four-dimensional crys-
tallographic space groups in 1978 [10]. They grouped them by the underlying point
groups (geometric crystal classes, or Q-classes), and assigned numbers to these groups.
The crystallographic point groups are characterized as having some lattice that they
leave invariant.

There are 227 crystallographic points groups, sorted into 33 crystal systems according
to the holohedry, i.e., the symmetry group of the underlying lattice. Tables D.1–D.2 give
a reference from the 227 groups in the list of [10, Table 1C, pp. 79–260] to our notation
(for the toroidal groups) or Conway and Smith’s notation (for the remaining groups).
When appropriate, we list two enantiomorphic groups.

The first classification of the four-dimensional crystallographic point groups was ob-
tained by Hurley in 1951 [37], see Section 7.2. A few mistakes were later corrected [38].

All these groups are subgroups of only four maximal groups:

• 31/07 = ± 1
60 [I × Ī] · 2 = [[3, 3, 3]] (the simplex and its polar, order 240)

• 33/16 = ±1
2 [O ×O] ·2 = [3, 4, 3] (the 24-cell, order 1152). Taking the permutations

of (±1, ±1, 0, 0) as the vertices of a 24-cell, this set generates a lattice, and this lat-
tice is invariant under the group. The symmetries of the hypercube/cross-polytope,
32/21 = ±1

6 [O × O] · 2 = [3, 3, 4], are contained in this group as a subgroup.

• 30/13 = +×p4mmU
6 = ±1

2 [D̄12 × D̄12] · 2, order 288. The invariant lattice is the
Cartesian product of two hexagonal plane lattices.

• 20/22 = +p2mm
6,4 = ± 1

24 [D24 × D
(5)
24 ] · 2(0,0), order 96. The invariant lattice is the

Cartesian product of a hexagonal lattice and a square lattice.

The last three items in Table D.2 are the “pseudo crystal groups” of Hurley [38]: Each
such group consists of transformations that can individually occur in crystallographic
groups, but as a whole, it is not a crystallographic group. All its proper subgroups are
crystallographic groups.
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order
01/01 1,1 1
01/02 2,1 2
02/01 pg

1,1 2
02/02 pm

1,1 2
02/03 cm

1,1 4
03/01 cm

1,1 2
03/02 pm

2,2 4
04/01 + p2gg

1,1 4
04/02 + p2mg

1,1 4
04/03 + p2mm

1,1 4
04/04 + c2mm

1,1 8
05/01 × c2mm

1,1 4
05/02 × p2mm

2,2 8
06/01 + p2mg

2,1 8
06/02 + p2mm

2,1 8
06/03 + p2mm

2,2 16
07/01 (1)

1,4 4
07/02 (0)

1,4 4
07/03 (0)

2,4 8
07/04 cm

1,2 8
07/05 pm

1,4 8
07/06 pg

1,4 8
07/07 pm

2,4 16
08/01 (0)

1,3 3
08/02 (0)

2,3 6
08/03 pg

1,3 6
08/04 pm

1,3 6
08/05 cm

1,3 12
09/01 (0)

1,6 6
09/02 (2)

1,6 6
09/03 (0)

2,6 12
09/04 pg

1,6 12
09/05 pm

1,6 12
09/06 pm

2,3 12
09/07 pm

2,6 24
10/01 pg

2,2
∣∣ pg

2,2 4
11/01 (1)

1,3
∣∣ 3,1 3

11/02 (−1)
2,3

∣∣ 6,1 6
12/01 ⟲ 1,0 4
12/02 ⟲ 1,1 8
12/03 +× p4gmU

1 8
12/04 +× p4mmU

1 8
12/05 +× p4mmS

1 16

order
13/01 pm

4,1 8
13/02 cm

2,1 8
13/03 · (1)

1,4 8
13/04 · (0)

1,4 8
13/05 pm

4,2 16
13/06 + p2mg

4,1 16
13/07 + c2mm

2,1 16
13/08 + p2mm

4,1 16
13/09 · (0)

2,4 16
13/10 + p2mm

4,2 32
14/01 pm

3,1 6
14/02 pg

3,1 6
14/03 · (0)

1,3 6
14/04 cm

3,1 12
14/05 · (0)

2,3 12
14/06 + p2mg

3,1 12
14/07 + p2mm

3,1 12
14/08 + p2gg

3,1 12
14/09 + p2mg

1,3 12
14/10 + c2mm

3,1 24
15/01 pm

6,1 12
15/02 pg

3,2 12
15/03 pm

3,2 12
15/04 · (0)

1,6 12
15/05 · (2)

1,6 12
15/06 + p2mg

6,1 24
15/07 + p2mg

2,3 24
15/08 pm

6,2 24
15/09 + p2mm

6,1 24
15/10 + p2mm

3,2 24
15/11 · (0)

2,6 24
15/12 + p2mm

6,2 48
16/01 × p2gm

2,2
∣∣ × p2mg

2,2 8
17/01 cm

1,3
∣∣ cm

3,1 6
17/02 pm

2,6
∣∣ pm

6,2 12
18/01 × p2gg

2,2 8
18/02 +× p4gmS

1 16
18/03 ⟲ 2,0 16
18/04 × c2mm

2,2 16
18/05 +× p4mmU

2 32
19/01 pg

2,4 16
19/02 (0)

4,4 16
19/03 pm

4,4 32
19/04 + p2mg

4,2 32
19/05 · (0)

4,4 32
19/06 + p2mm

4,4 64

order
20/01 (3)

1,12 12
20/02 (2)

1,12 12
20/03 pg

2,3 12
20/04 pm

4,3 24
20/05 (4)

2,12 24
20/06 pm

3,4 24
20/07 · (3)

1,12 24
20/08 pg

3,4 24
20/09 cm

2,3 24
20/10 cm

3,2 24
20/11 · (2)

1,12 24
20/12 + p2gg

3,2 24
20/13 + p2mg

3,2 24
20/14 pg

2,6 24
20/15 pm

4,6 48
20/16 + p2mm

4,3 48
20/17 + p2mg

4,3 48
20/18 pm

6,4 48
20/19 · (4)

2,12 48
20/20 + c2mm

3,2 48
20/21 + p2mg

6,2 48
20/22 + p2mm

6,4 96
21/01 cm

1,3
∣∣ cm

3,1 6
21/02 pm

2,6
∣∣ pm

6,2 12
21/03 × c2mm

1,3
∣∣ × c2mm

3,1 12
21/04 × p2mm

2,6
∣∣ × p2mm

6,2 24
22/01 (0)

3,3 9
22/02 (−3)

6,3 18
22/03 pg

3,3 18
22/04 pm

3,3 18
22/05 · (0)

3,3 18
22/06 cm

3,3 36
22/07 · (−3)

6,3 36
22/08 + p2gg

3,3 36
22/09 + p2mg

3,3 36
22/10 + p2mm

3,3 36
22/11 + c2mm

3,3 72
23/01 (0)

3,6 18
23/02 (0)

6,6 36
23/03 pm

3,6 36
23/04 pg

3,6 36
23/05 · (0)

3,6 36
23/06 pm

6,3 36
23/07 pm

6,6 72
23/08 · (0)

6,6 72
23/09 + p2mm

6,3 72
23/10 + p2mg

6,3 72
23/11 + p2mm

6,6 144

Table D.1.: The 227 crystallographic point groups in four dimensions, part 1
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order
24/01 + 1

12 [T × T ] 12
24/02 ± 1

12 [T × T ] 24
24/03 + 1

12 [T × T̄ ] · 23 24
24/04 + 1

12 [T × T̄ ] · 21 24
24/05 ± 1

12 [T × T̄ ] · 2 48
25/01 + 1

12 [T × T ] · 21 24
25/02 + 1

12 [T × T ] · 23 24
25/03 + 1

24 [O × O] 24
25/04 + 1

24 [O × Ō] 24
25/05 ± 1

12 [T × T ] · 2 48
25/06 ± 1

24 [O × O] 48
25/07 + 1

24 [O × O] · 21 48
25/08 + 1

24 [O × Ō] · 21 48
25/09 + 1

24 [O × Ō] · 23 48
25/10 + 1

24 [O × O] · 23 48
25/11 ± 1

24 [O × O] · 2 96
26/01 pg

2,4
∣∣ pg

4,2 8
26/02 × p2mg

2,4
∣∣ × p2gm

4,2 16
27/01 (1)

1,5 5
27/02 (1)

2,5 10
27/03 · (1)

1,5 10
27/04 · (1)

2,5 20
28/01 pg

2,6
∣∣ pg

6,2 12
28/02 × p2mg

2,6
∣∣ × p2gm

6,2 24
29/01 cm

3,3
∣∣ cm

3,3 18
29/02 pm

6,6
∣∣ pm

6,6 36
29/03 × c2mm

3,3 36
29/04 ⟲ 3,0 36
29/05 × p2mm

6,6 72
29/06 ⟲ 3,3 72
29/07 +× p4gmU

3 72
29/08 +× p4mmU

3 72
29/09 +× p4mmS

3 144
30/01 pg

2,6
∣∣ pg

6,2 12
30/02 × p2gg

2,6
∣∣ × p2gg

6,2 24
30/03 cm

2,6
∣∣ cm

6,2 24
30/04 × p2gm

2,6
∣∣ × p2mg

6,2 24
30/05 pg

6,6
∣∣ pg

6,6 36
30/06 × c2mm

2,6
∣∣ × c2mm

6,2 48
30/07 cm

6,6
∣∣ cm

6,6 72
30/08 × p2mg

6,6
∣∣ × p2gm

6,6 72
30/09 × p2gg

6,6 72
30/10 × c2mm

6,6 144
30/11 ⟲ 6,0 144
30/12 +× p4gmS

3 144
30/13 +× p4mmU

6 288

order
31/01 ⟲ 2,1 20
31/02 ⟲ 3,1 40
31/03 + 1

60 [I × Ī] 60
31/04 + 1

60 [I × Ī] · 23 120
31/05 + 1

60 [I × Ī] · 21 120
31/06 ± 1

60 [I × Ī] 120
31/07 ± 1

60 [I × Ī] · 2 240
32/01 pg

2,4
∣∣ pg

4,2 8
32/02 cm

2,4
∣∣ cm

4,2 16
32/03 × p2gg

2,4
∣∣ × p2gg

4,2 16
32/04 × p2mg

4,2
∣∣ × p2gm

2,4 16
32/05 ± 1

3 [T × C3]
∣∣ ± 1

3 [C3 × T ] 24
32/06 × c2mm

2,4
∣∣ × c2mm

4,2 32
32/07 × p2gg

4,4 32
32/08 cm

4,4
∣∣ cm

4,4 32
32/09 +× p4gmU

2 32
32/10 × p2mm

4,4 32
32/11 ± 1

6 [O × D6]
∣∣ ± 1

6 [D6 × O] 48
32/12 × c2mm

4,4 64
32/13 +× p4gmS

2 64
32/14 +× p4mmS

2 64
32/15 ⟲ 4,0 64
32/16 ± 1

3 [T × T ] 96
32/17 +× p4mmU

4 128
32/18 ± 1

3 [T × T ] · 2 192
32/19 ± 1

3 [T × T̄ ] · 2 192
32/20 ± 1

6 [O × O] 192
32/21 ± 1

6 [O × O] · 2 384
33/01 pg

4,6
∣∣ pg

6,4 24
33/02 pg

4,6
∣∣ pg

6,4 24
33/03 ±[C1 × T ]

∣∣ ±[T × C1] 24
33/04 × p2gg

4,6
∣∣ × p2gg

6,4 48
33/05 ±[C2 × T ]

∣∣ ±[T × C2] 48
33/06 ± 1

2 [O × C2]
∣∣ ± 1

2 [C2 × O] 48
33/07 ±[C3 × T ]

∣∣ ±[T × C3] 72
33/08 ±[D4 × T ]

∣∣ ±[T × D4] 96
33/09 ± 1

2 [O × D4]
∣∣ ± 1

2 [D4 × O] 96
33/10 ± 1

2 [O × C4]
∣∣ ± 1

2 [C4 × O] 96
33/11 ± 1

2 [O × D6]
∣∣ ± 1

2 [D6 × O] 144
33/12 ± 1

2 [O × D̄8]
∣∣ ± 1

2 [D̄8 × O] 192
33/13 ±[T × T ] 288
33/14 ±[T × T ] · 2 576
33/15 ± 1

2 [O × O] 576
33/16 ± 1

2 [O × O] · 2 1152
— × p2gm

4,6
∣∣ × p2mg

6,4 48
— × p2mg

4,6
∣∣ × p2gm

6,4 48
— ±[D6 × T ]

∣∣ ±[T × D6] 144

Table D.2.: The 227 crystallographic point groups, part 2, and 3 pseudo-crystal groups
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EGeometric interpretation of oriented
great circles

Section 2.1.2 introduced the notation K⃗q
p to denote oriented great circles on S3. Here

we give a geometric interpretation of the orientation. In fact, we will give two equivalent
geometric interpretations. However, at the boundary cases p = q and q = −p, one or the
other of the interpretations loses its meaning, and only by combining both interpretations
we get a consistent definition that covers all cases.

N

p

q

B(p, q)

α

2π−α

π

π

near

far

Figure E.1.: The centers of the rotations mapping p to q lie on the bisecting circle B(p, q).

We start from the definition (2.1) of Kq
p as the set of rotations [x] that map p to q

in S2. The centers r of these rotations lie on the bisecting circle B(p, q) between p and
q. In Figure E.1, we have drawn p and q on the equator, with p east of q. If we observe
the clockwise rotation angle φ as r moves along B(p, q), we see that φ has two extrema:
If the angular distance between p and q is α, the minimum clockwise angle φ = α is
achieved when r is at the North Pole. The maximum 2π−α is achieved at the South Pole.
The poles bisect B(p, q) into two semicircles, the near semicircle and the far semicircle,
according to the distance from p and q.

To define an orientation, we let r move continuously on B(p, q), see Figure E.2 for an
illustration on a small patch of S2. We make the movement in such a way that

(i) the rotation center r moves in counterclockwise direction around p;
(ii) simultaneously, the clockwise rotation angle φ increases when r is on the near

semicircle and decreases when r is on the far semicircle.
In Figure E.2, as r moves from r1 to r2 along the thick arrow, the angle φ increases from
φ1 to φ2. These rules define an orientation of B(p, q).

When we want to transfer this orientation to Kq
p , we must be aware of the 2 : 1

relation between quaternions x = cos φ
2 + r · sin φ

2 and rotations [x] of S2. The angle φ
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E. Geometric interpretation of oriented great circles

p

q

r1

r2

ϕ1

ϕ2

B(p, q)

Figure E.2.: Orienting the great circle Kq
p

is defined only up to multiples of 2π, and hence a rotation corresponds to two opposite
quaternions x and −x. Thus, there are two ways of defining a continuous dependence
from r via φ to x. Both possibilities lead to the same orientation of Kq

p , but we can
select one of them by restricting φ to the interval 0 ≤ φ < 2π. Once this mapping is
chosen, two opposite points r and −r on B(p, q), which define the same rotation [r] of
S2, correspond to opposite quaternions x and −x on Kq

p . (The easiest way to check this
is for the midpoint of p and q in Figure E.1 and the opposite point. Both have the same
rotation angle φ = π. Generally, the transition from φ to 2π − φ changes the sign of
cos φ

2 and leaves sin φ
2 unchanged.) Thus, as r traverses B(p, q), x traverses Kq

p once, and
this traversal defines the orientation K⃗q

p .
The rules break down in the degenerate situations when q = ±p. Luckily, in each

situation, there is one rule that works.

• When p = q, the only rotations centers are r = p and r = −p. In this case,
we can maintain rule (ii): We consider increasing rotation angles around r = p (or
decreasing rotation angles around r = −p, which corresponds to the far semicircle).

• When p = −q, the rotation angle φ = 180◦ is constant, but we can stick to rule
(i): The rotation centers r lie on the circle B(p, −p) that has p and −p as poles,
and we let them move counterclockwise around p.

Considering the definition (2.1) of Kq
p , it is actually surprising that Kq

p makes a smooth
transition when q approaches p: The locus B(p, q) of rotation centers changes discontin-
uously from a circle to a set of opposite points.

When p and q are exchanged with −p and −q, the circle Kq
p of rotations remains the

same, but everything changes its direction: A counterclockwise movement of r around p
becomes a clockwise movement when seen from −p, and r is on the near semicircle of p
and q if it is on the far semicircle of −p and −q. Thus, K⃗−q

−p has the opposite orientation.
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FSubgroup relations between tubical
groups

Figure F.1 shows the subgroup structure between different tubical groups. Some types
are included multiple times with different parameters to indicate common supergroups.
However, all the types appear at least once with the parameter “n”. (Those are the ones
in red.)

order

±[T × Cn] ± 1
3 [T × C3n] 24n

±[T ×D2n] ± 1
2 [O × C2n] ±[O × Cn] ± 1

2 [O ×D2n] ± 1
6 [O ×D6n] 48n

±[T × C3n] 72n

± 1
2 [O × D̄4n] ±[O × C2n] ±[O ×D2n] 96n

±[I × Cn] 120n

± 1
2 [O ×D6n] 144n

±[O ×D4n] 192n

±[I ×D2n] 240n

±[O ×D6n] 288n

±[O ×D12n] 576n

[iO, e2n]

[iO, 1]

[1, j]

[1, j]

[iO, 1]

[iO, 1]

[1, e2n] [1, j]

[1, e2n]

[1, j]

[1, j]

5, [iI , 1]

[iO, j]

[iO, 1]

[iO, j]

3, [w, 1]

3, [1, e3n]

3, [1, e3n]

[1, e2n]

3, [1, e3n]

5, [iI , 1]

[iO, e2n]

[iO, 1]

3, [ω, 1]

[iO, j]

[1, j]

3, [1, e3n]

Figure F.1.: Small-index containments between left tubical groups. Each arrow is marked
with an extending element. Single arrows indicate index-2 containments. Double arrows
denote index-3 or index-5 containments, as specified with the extending element. The red
groups have the “natural” parameter n (as in Table 3.1). Groups at the same horizontal
level have the same order, which is given in the rightmost column.
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GConway and Smith’s classification of the
toroidal groups

α1
(0, 0)

( πm ,
π
m )

(πn ,−
π
n )

α2

(− sπ
m ,−

sπ
m )

(πn − sπ
m ,−

π
n − sπ

m )

(0, 2π) ≡ (0, 0)

−id −id

α2 = α1

α2 = −α1

(2π, 0) ≡ (0, 0)

L

R

Figure G.1.: Parameterization of the translation groups in Conway and Smith. The black
and gray points together form the diploid group ±1

5 [C(4)
15 ×C5] = (−2)

6,5 of order 30. The
black points alone form the haploid group +1

5 [C(9)
15 × C5] = (−1)

3,5 of order 15.

We describe the parameterization of the lattice translations for the Conway–Smith
classification of the groups of types ±[C ×C] and +[C ×C] in geometric terms and relate
them to our torus translations groups (type ). This might be interesting for readers
who want to study the classic classification for the toroidal groups and understand the
connections.

As before, we describe the groups in terms of the lattice of torus translations in the
(α1, α2) coordinate system, see Figure G.1. We put the origin at the top right corner
(2π, 2π) because the left rotations [em, 1] is a shift by π/m along the negative α1 = α2
axis. This is the axis for the left rotations, and we call it the L-axis. The right rotations
move on the α2 = −α1 axis in the southeast direction, and we call this the R-axis.

We first describe the diploid groups ± 1
f [C(s)

m ×Cn], and we related them to our groups
(s′)
m′,n. The left and right groups are determined by the grid formed by drawing ±45◦

lines through all points. If 2m grid lines cross the L-axis between (0, 0) and (2π, 2π),
then the left group is Cm. Similarly, if there are 2n grid intervals on the R-axis between
(2π, 2π) and (4π, 0), (or equivalently, on the −45◦ diagonal of the square), the right group
is Cn. The translation vectors on these diagonals form the left kernel Cm/f and the right
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G. Conway and Smith’s classification of the toroidal groups

kernel Cn/f . The factor f is determined by the number of grid steps along the diagonal
from one point to the next. In the picture, these are f = 5 steps. The parameter m′ for
our parameterization is hence 2m/f . The kernels span a slanted rectangular grid; one
rectangular box of this grid is shaded in the picture. In terms of grid lines, the diagonal
is an f × f square, and it contains exactly one point per grid line of either direction, for
a total of f points (counting the four corners only once). In geometric terms, Conway
and Smith parameterize the lattice by looking at the first grid line below the L-axis, as
in our parameterization. They measure s as the number of grid steps to the first lattice
point, starting from the R-axis in southwest direction. The number s must be relatively
prime to f , because otherwise, additional points on the R-axis would be generated.

By contrast, the parameter s′ in our setup (Figure 4.4) is effectively measured in the
same units along the same diagonal line, but starting from the intersection with the
α1-axis, in the northeast direction. Our parameterization is simpler because we don’t
specify in advance the number of points on the R-axis. This allows us to freely choose
s′ within some range.

The group ± 1
f [C(s)

m × Cn] is therefore generated by the translation vectors [ef
m, 1]

along the L-axis, [1, ef
n] along the R-axis, and the additional vector [es

m, en]. (The second
generator [1, ef

n] is actually redundant because [es
m, en]f [ef

m, 1]−s = [1, ef
n].)

For our group (s′)
m′,n, the parameter n is the same, and m′ = 2m/f . The parameter s′

can be computed as follows. Choose generators for ± 1
f [C(s)

m ×Cn] as in Figure 4.4. These
generators are then t1 = (fπ

m , fπ
m ) and t2 = (π

n − sπ
m + fπ

m , −π
n − sπ

m + fπ
m ). Comparing

them with the generators in Proposition 4.5.1, we get s′ = −m+(f−s)n
f .

As mentioned in footnote 14 on p. 60, we have swapped the roles of the left and right
groups with respect to Conway and Smith’s convention, to get a closer correspondence.
In the original convention of Conway and Smith, the group ± 1

f [Cm ×C
(s)
n ] is considered,

whose third generator is [em, es
n]. This group is the mirror of the group ± 1

f [C(s)
n × Cm].

A haploid group + 1
f [C(s)

m × Cn] exists if both m/f and n/f are odd. We modify the
first generator to [e2f

m , 1]. This omits every other point on the L-axis (and on every line
parallel to it) and thus avoids the point (π, π) = −id. In addition to being relatively prime
to f , s must be odd, because otherwise, since [es

m, en]n[e2f
m , 1]−n/f ·s/2 = [1, en

n] = [1, −1],
we would nevertheless generate the point (π, π) = −id.

Reflection in the L-axis gives the same group. Hence ±1
5 [C(4)

15 ×C5] .= ±1
5 [C(1)

15 ×C5] =
(1)
6,5, and +1

5 [C(9)
15 × C5] .= +1

5 [C(1)
15 × C5] = (2)

3,5. This reflection changes the parameter
s to f − s for the diploid groups and to 2f − s for the haploid groups. To eliminate these
duplications, the parameter s should be constrained to the interval 0 ≤ s ≤ f/2 for the
diploid groups and 0 ≤ s ≤ f for the haploid groups. As mentioned in footnote 15 on
p. 63, these constraints are not stated in Conway and Smith. This concerns the last four
entries of [14, Table 4.2], see Figure G.3.

With the help of the geometric picture of Figure G.1 for the parameterization of
Conway and Smith, one can give a geometric interpretation to the conditions s = fg ± 1
of [14, pp. 52–53] for the last 4 lines of Table 4.3: The condition s = fg −1 expresses the
fact that a square lattice is generated, as is necessary for the torus swapturn groups ⟲

(type [D×D]·2̄). The condition s = fg+1 characterizes a rectangular lattice, as required
for the groups of type and +. (Accordingly, for the two types of groups ±[C ×C] ·2(γ)

and +[C × C] · 2(γ) in the upper half of [14, pp. 53], the condition s = fg − 1 must be
corrected to s = fg + 1, see Figure G.6.)
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G.1. Index-4 subgroups of D4m

There is one ambiguity that is notorious for causing oversights and omissions. It arises
when the group Cm is used as an index-4 subgroup of D4m.

D4m is the chiral symmetry group of a regular 2m-gon P2m in space. In Figure G.2
we show such a 2m-gon with an alternating 2-coloring of its vertices. Cm is the normal
subgroup of rotations around the principal axis, perpendicular to the polygon, by multi-
ples of 2π/m (those that respect the coloring). Cm has three cosets in D4m: The “cyclic
coset” C ′

m of rotations by odd multiples of π/m (those that swap the coloring), and two
“half-turn cosets” C0

m and C1
m. One of these contains the half-turns through the vertices

of P2m (the dashed axes, keeping the colors), and the other the half-turns through the
edge midpoints of P2m (the dotted axes, swapping colors). However, when we rotate
P2m by π/(2m), the involved groups and subgroups don’t change, and hence we see that
C0

m and C1
m are geometrically the same, whereas C ′

m is clearly distinguishable (unless
m = 1).

Figure G.2.: The operations of D20 on a regular 10-gon P10

The case of the index-4 subgroups Cm and Cn of D4m and D4n is denoted in Con-
way and Smith [14] by the notation 1

4 [D4m × D4n], possibly with some decoration to
distinguish different cases.

The actual group is determined by an isomorphism between the cosets of D4m/Cm

and D4n/Cn. For this there are two possibilities.

(a) The cyclic coset C ′
m is matched with the cyclic coset C ′

n.

(b) The cyclic coset C ′
m and the cyclic coset C ′

n are not matched to each other.

Goursat’s omission. In the earliest enumeration by Goursat from 1889, the less nat-
ural possibility (b) has been overlooked. This was noted by Threlfall and Seifert in 1931,
[67, footnote 9 on p. 14]27 and by Hurley in 1951 [37, bottom of p. 652],28 who con-
sequently extended the classification by adding an additional class XIII′ of groups to
Goursat’s list. Du Val [23] followed Goursat and omitted case (b) again.

A missed duplication in Conway and Smith. Conway and Smith [14] denote case
(b) by adding a bar to the second factor as follows:

±1
4 [D4m × D̄4n] or + 1

4 [D4m × D̄4n]

27 Referring to Goursat’s work: “Gruppen dieser Substitutionen – mit unseren Paargruppen 1-isomorph
– sind mit einer Ausnahme (§ 4 S. 18 Fußnote und § 4 S. 22) vollständig angegeben.” (Groups of these
substitutions – which are 1-isomorphic to our pair groups – are completely specified with one exception,
see § 4 p. 18 footnote 13 and § 4 p. 22.) In fact, in footnote 13 on p. 18, they use two such groups as
an example of groups with equal normal subgroups L0 and R0 that are different already as abstract
groups. It is curious that Threlfall and Seifert, in the same paper, when they came to the actual
classification, overlooked this class of groups again. They noted the gap themselves and filled it in
part II [68, pp. 585–586, Appendix II, Note 5].
28 “In the course of this calculation we find that Goursat has omitted one family of groups. This
omission appears to have passed unnoticed by subsequent writers.”

163
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When n = 1, the distinction between case (a) and (b) disappears. D4 is the Vierergruppe,
whose nontrivial operations are half-turns around three perpendicular axes, and these
elements are geometrically indistinguishable.

Conway and Smith express this succinctly in the concluding sentence of their classifi-
cation (see Figure G.6): “In the last eight lines, it is always permissible to replace D2 by
C2 and D̄4 by D4.” However, this formulation in connection with the choice of notation
might lead an unwary reader into a trap:29 The choice (b) of an alternative mapping
between the index-4 cosets in 1

4 [D4m × D4n] is not a property associated to D4n and
its chosen normal subgroup, and it would more appropriate to add the bar to the ×
operator or the whole expression. The distinction disappears when at least one of D4m

and D4n is D4, and hence, the bar can also be removed in a case like [D4 ×D̄4n] when the
first factor is D4. This duplication example has been treated in detail in Section 4.11.2.

Conway and Smith use the bar notation D̄4n also for something different, namely in
the index-2 case, for example in ±1

2 [O × D̄4n], see Table 3.1. It indicates that, as the
kernel R0 (or L0) of D4n, the normal subgroup D2n is used, as opposed to C2n. Also
in this case, the distinction disappears for n = 1, but this time, it is a property of the
group D4n and its normal subgroup, and hence the notation of attaching the bar to D4n

causes no confusion.

Another duplication in Conway and Smith. Our computer check unveiled another
duplication in Conway and Smith’s classification. It concerns the groups +p2mg

m,n for
m = n:

+p2mg
n,n

.= ±1
4 [D2n × D

(1)
2n ] · 2(1,0) .= ±1

4 [D2n × D
(1)
2n ] · 2(1,1) for even n

+p2mg
n,n

.= +1
2 [D2n × D

(1)
2n ] · 2(0,0) .= +1

2 [D2n × D
(1)
2n ] · 2(0,2) for odd n

Neither of these duplications is warranted according to the equalities listed in [14, pp. 52–
53]. For example, for ±1

4 [D2n × D
(s)
2n ] · 2(α,β) in the first line, we need a transition from

(α, β) = (1, 0) to (α, β) = (1, 1). In this example, f = 2 and g = 0. The only rule
according to [14, bottom of p. 52] that allows this change is the transition from ⟨s, α, β⟩
to ⟨s + f, α, β − α⟩ (see Figure G.5), but it comes with a simultaneous change of s from
s = 1 to s + f = 3. The parameter s is regarded modulo 2f = 4.

We did not investigate the reason for this duplication. Since f = 2 in both cases, it
may have to do with “. . . the easy cases when f ≤ 2, which we exclude” [14, p. 52, line
2], see Figure G.5.

The book of Conway and Smith [14] is otherwise a very nice book on topics related to
quaternions and octonions, but it suffers from a concentration of mistakes near the end
of Chapter 4, in particular, concerning the achiral groups. As an “erratum” to [14, §4],
we attach in Figures G.3–G.6 the Tables 4.1–4.2 and the last three pages of Chapter 4 of
[14] with our additional explanations and corrections, as far as we could ascertain them,
but we certainly did not fix all problems.

29 Besides, the rule should also apply to entries that are not in the last eight lines of the tables.
Accordingly, the constraint n ≥ 2, which is stated for five of the eleven tubical groups in Table 3.1,
should also be applied to the corresponding groups in [14, Table 4.1]. For the group + 1

2 [D2m × C2n]
in the penultimate line of Table 4.1, the obvious condition that m and n should be odd was forgotten.
This omission has already been noted by Medeiros and Figueroa-O’Farrill [22, p. 1405].
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Group Generators

±[I ×O] [iI , 1], [ω, 1], [1, iO], [1,ω];

±[I ×T ] [iI , 1], [ω, 1], [1, i], [1,ω];

±[I ×D2n] [iI , 1], [ω, 1], [1, en], [1, j];

±[I ×Cn] [iI , 1], [ω, 1], [1, en];

±[O×T ] [iO, 1], [ω, 1], [1, i], [1,ω];

±[O×D2n] [iO, 1], [ω, 1], [1, en], [1, j];

± 1
2 [O ×D2n] [i, 1], [ω, 1], [1, en];[iO, j]

± 1
2 [O ×D4n] [i, 1], [ω, 1], [1, en], [1, j];[iO, e2n]

± 1
6 [O ×D6n] [i, 1], [j, 1], [1, en];[iO, j], [ω, e3n]

±[O×Cn] [iO, 1], [ω, 1], [1, en];

± 1
2 [O ×C2n] [i, 1], [ω, 1], [1, en];[iO, e2n]

±[T ×D2n] [i, 1], [ω, 1], [1, en], [1, j];

±[T ×Cn] [i, 1], [ω, 1], [1, en];

± 1
3 [T ×C3n] [i, 1], [1, en];[ω, e3n]

± 1
2 [D2m ×D4n] [em, 1], [1, en], [1, j];[j, e2n]

±[D2m ×Cn] [em, 1], [j, 1], [1, en];

± 1
2 [D2m ×C2n] [em, 1], [1, en];[j, e2n]

+ 1
2 [D2m ×C2n] − , − ; +

± 1
2 [D4m ×C2n] [em, 1], [j, 1], [1, en];[e2m, e2n]

Table 4.1. Chiral groups, I. These are most of the “metachiral” groups—see section
4.6—some others appear in the last few lines of Table 4.2.

Group Generators Coxeter Name

±[I ×I ] [iI , 1], [ω, 1], [1, iI ], [1,ω]; [3, 3, 5]+

± 1
60

[I ×I ] ;[ω,ω], [iI , iI ] 2.[3, 5]+

+ 1
60

[I ×I ] ; + , + [3, 5]+

± 1
60

[I ×I] ;[ω,ω], [iI , i�I ] 2.[3, 3, 3]+

+ 1
60

[I ×I] ; + , + [3, 3, 3]+

±[O×O] [iO , 1], [ω, 1], [1, iO], [1,ω]; [3, 4, 3]+ : 2

± 1
2
[O×O] [i, 1], [ω, 1], [1, i], [1,ω];[iO, iO] [3, 4, 3]+

± 1
6
[O×O] [i, 1], [j, 1], [1, i], [1, j];[ω,ω], [iO, iO] [3, 3, 4]+

± 1
24

[O×O] ;[ω,ω], [iO , iO ] 2.[3, 4]+

+ 1
24

[O×O] ; + , + [3, 4]+

+ 1
24

[O×O] ; + , − [2, 3, 3]+

±[T ×T ] [i, 1], [ω, 1], [1, i], [1,ω]; [+3, 4, 3+]

± 1
3
[T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω,ω] [+3, 3, 4+]

∼= ± 1
3
[T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω,ω] ”

± 1
12

[T ×T ] ;[ω,ω], [i, i] 2.[3, 3]+

∼= ± 1
12

[T ×T ] ;[ω,ω], [i,−i] ”

+ 1
12

[T ×T ] ; + , + [3, 3]+

∼= + 1
12

[T ×T ] ; + , + ”

±[D2m ×D2n] [em, 1], [j, 1], [1, en], [1, j];

± 1
2
[D4m ×D4n] [em, 1], [j, 1], [1, en], [1, j];[e2m, e2n]

± 1
4
[D4m ×D4n] [em, 1], [1, en];[e2m, j], [j, e2n] Conditions

+ 1
4
[D4m ×D4n] − , − ; + , + m, n odd

± 1
2f

[D2mf ×D
(s)
2nf ] [em, 1], [1, en];[emf , es

nf ], [j, j] (s, f) = 1

+ 1
2f

[D2mf ×D
(s)
2nf ] − , − ; + , + m,n odd, (s, 2f) = 1

± 1
f
[Cmf ×C

(s)
nf ] [em, 1], [1, en];[emf , es

nf ] (s, f) = 1

+ 1
f
[Cmf ×C

(s)
nf ] − , − ; + m,n odd, (s, 2f) = 1

Table 4.2. Chiral groups, II. These groups are mostly “orthochiral,” with a few
“parachiral” groups in the last few lines. The generators should be taken with both
signs except in the haploid cases, for which we just indicate the proper choice of
sign. The “Coxeter names” are explained in Section 4.4.

Figure G.3.: Corrections and remarks for [14, Tables 4.1 and 4.2, p. 44 and 46].
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Appendix: Completeness of the Tables 51

The Completeness of Table 4.3

Here we obtain G from the “half-group” H corresponding to some isomor-
phism L/L0

∼= R/R0 by adjoining an extending element ∗[a, b], which must
normalize H . We shall show that (at some cost) the extending element may
be reduced to the form ∗[1, c], and also that (at no cost) c can be multiplied
by any element of R0, or altered by any inner automorphism of R, while
finally c must be in the part of R that is fixed (mod R0) by the isomorphism
(since (∗[1, c])2 = [c, c] must be in H).

For, conjugation by [1, a] replaces ∗[a, b] by

(∗[a, b])[1,a] = [1, a] ∗ [a, b][1, a] = ∗[aa, ba] = ∗[1, c], say,

at the cost of replacing [l, r] by [l, ara], which changes the isomorphism
to a geometrically equivalent one. If r0 ∈ R0, ∗[1, cr0] defines the same
group as does ∗[l1, cr1] for any [l1, r1] ∈ H , and this reduces to ∗[1, cr1l1]
on conjugation by [1, l1], which replaces the r in [l, r] by l1rl1, its image
under an arbitrary inner automorphism of R.

These considerations almost always suffice to restrict the extending el-
ement to

∗[1, ±1] = ∗ or − ∗,

notated respectively by ·23 or ·21 (the subscript being the dimension of the
negated space). The exceptions are the “D × D” and “C × C” cases, for
which Table 4.3 lists every c, and just two more cases, denoted

±1

2
[O × O] · 2 and ± 1

4
[D4n × D4n] · 2

in which we can take c = iO and e2n, respectively.
As we remarked, the reduction to the form ∗[1, c] comes at the cost of

replacing the isomorphism by a geometrically equivalent one, and in the
“T ×T ” case, this sometimes replaces the identity isomorphism by the one
we indicate by T , namely

ω → ω and i → i = −i.

The Last Eight Lines of Table 4.3

For ±[D × D] · 2, we start from the fact that the extending element ∗[a, b]
may be reduced (mod H) and must normalize H , and therefore also E, the

Figure G.4.: Corrections for [14, p. 51].
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4 4 Quaternions and 4-Dimensional Groups

subgroup of elements of the form [eγ , eδ], in H , since E is a characteristic
subgroup of H (except in the easy cases when f ≤ 2, which we exclude).
This puts a and b in eR(1 or j), and so (since [j, j] ∈ H) we can take
∗[a, b] = ∗[eλ, eμ] (leading to ±[D×D]·2(α,β)) or ∗[a, b] = ∗[eλ, eμj] (leading
to ±[D × D] · 2—see footnote 4.) In the first case, we must have

[j, j]∗[e
λ,eμ] = [j, j][e

λ,eμ] = [je2λ, je2μ] ∈ H,

which forces λ = α
2 and μ = αs+βf

s , where α,β ∈ Z. The fact that the
square of this is in H imposes the condition αg + βf ≡ 0 (mod 2).

G is unaltered when we increase α or β by 2 since [e, es], [1, ef ] ∈ H .
For a similar reason, s is initially only defined (mod f), but the equation

∗[eα
2 , e

αs+βf
2 ] = ∗[eα

2 , e
α(s+f)+(β−α)f

2 ]

shows that

�s,α, β� ≈ �s + f,α,β − α�,

so from now on it is better to regard s as defined mod 2f . Since [es, s] =

[e, es]∗[a,b] and [e, es2

] are both in H , we must have s2 = fg + 1 for some
integer g ∈ Z.

To discuss equalities, we must consider all possibilities for an element
that transforms this group �s,α, β� to a similar one �s�,α�,β��. The trans-
forming element can also be reduced mod H and after taking account of ∗
and [1, j] (which takes �s,α, β� to itself or �−s,α,−β�), can be supposed

to normalize H and therefore have the form [e
a
2 , e

as+bf
2 ], with a, b ∈ Z. We

find that transforming by this adds some multiple (which can be odd) of
(f, g) to (α,β), so the only further relation is �s,α, β� ≈ �s,α + f,β + g�.

To summarize, we have for this group

Variables Conditions Equalities

α (mod 2) s2 = fg + 1 �s,α, β�
β (mod 2) αg + βf ≡ 0 (mod 2) ≈ �−s,α,−β�
s (mod 2f) ≈ �s + f,α,β − α�

≈ �s,α + f,β + g�,

4 In the second case we can choose new generators to simplify the group; namely,
conjugation by [1, eλ] fixes E and replaces ∗[eλ, eμj] by ∗[1, eμ−λj] = ∗[1, J ], and then
J can replace j, since (∗[1, J ])2 = [J, J ] must be in H.

Figure G.5.: Corrections and remarks for [14, p. 52].
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while for ±[D × D(s)] · 2 we have

Variables Conditions Equalities

s (mod f) s2 = fg − 1 �s� ≈ �−s�.

Equalities in the other cases are summarized as:

Group Variables Conditions Equalities

+[D × D(s)] · 2(α,β) α (mod 2) s2 = fg + 1 �s,α,β�
β (mod 4) αg ≡ 0 (mod 4) ≈ �−s,α,−β�
s (mod 4f) n odd, g even ≈ �s + 2f,α, β − 2α�

≈ �s,α, β + 2h�

+[D × D] · 2 s (mod 2f) s2 = fg − 1, g = 2h even �s� ≈ �−s�

±[C × C] · 2(γ) s (mod f) s2 = fg − 1 �s, γ�
γ (mod 2) (g, s − 1)γ ≡ 0 (mod 2) ≈ �s,−γ�

∗[1, e
γ(f,s+1)

2 ] (f, s + 1)γ ≡ 0 (mod 2)
g even

+[C × C] · 2(γ) s (mod 2f) s2 = fg − 1 �s, γ�
γ (mod 2d) (g, s − 1)γ ≡ 0 (mod 4) ≈ �s,−γ�

∗[1, e
γ(f,s+1)

2 ] (f, s + 1)γ ≡ 0 (mod 2)

d = (2f,s+1)
(f,s+1)

n odd, g = 2h even

Table 4.4 summarizes the different achiral groups among the last four
lines of Table 4.3. In the last eight lines, it is always permissible to replace
D2 by C2 and D4 by D4.

f, g even : ·2(0,0), ·2(0,1), ·2(1,0), ·2(1,1) and · 2
else ·2 and · 2

f, h even : ·2(0,0), ·2(0,2), ·2(1,0), ·2(1,2) and · 2
else ·2 and · 2

g even : ·2(0), ·2(1) and · 2
else ·2 and · 2

h even : ·2(0), ·2(d) and · 2 d = (2f,s+1)
(f,s+1)

else ·2 and · 2

Table 4.4. Different achiral groups.

Figure G.6.: Corrections and remarks for [14, p. 53].

168



HDegeneracy of a polytope

We define the degeneracy of a polytope P as the degeneracy of its vertex-facet incidence
graph ΓP (see Definitions 9.3.13 and 9.3.14), and we denote it by degen(P ). Barnette
and Grünbaum in [5], asked the following question about the degeneracy (with slight
change of notation):

“ Is it always possible to order the vertices of ΓP in a sequence in such a
fashion that each is joined by an edge to at most c(d) vertices preceding
it, where c(d) depends on the dimension d of P but not on the particular
d-polytope P . Lemma 2 may be interpreted as saying that n(3) = 3. It may
be conjectured that c(d) < ∞ for all d, though the question is open already
for d = 4. ”

In particular, they showed that degen(P ) = 3 if P is a 3-polytope (see Proposition 9.4.9),
and they conjectured that for all d, there is a constant c(d), which depends on d, such
that every d-polytope P has degen(P ) ≤ c(d). However, the following example shows
that the conjecture does not hold for d ≥ 5.

Example H.0.1. The join30 of two n-gons is a self-dual 5-polyope. Each facet of P (and
its dual) is a 2-fold pyramid over one of the two base n-gons. In particular, the graph
ΓP is (n + 2)-regular, and thus it has degeneracy n + 2.

Moreover, building pyramids over a polytope cannot decrease its degeneracy. Thus,
this example shows that degen(P ) is not bounded for d ≥ 5.

This leaves only one case open d = 4. So the natural question to ask:

Question H.0.2. Does there exist a constant c such that every 4-polytope P has de-
generacy at most c.

This question remains open. Next we will show that the degeneracy of a 4-polytope is
bounded from below by its complexity. The complexity, see Ziegler [72], of a 4-polytope
P is defined as

C(P ) = f0,3 − 20
f0 + f3 − 10 .

It is an open question to decide if C(P ) is bounded from above.
The following proposition is a stronger version of Proposition 9.3.15.

Proposition H.0.3. Let G = (A ∪ B, E) be k-degenerate bipartite graph with |A|, |B| ≥
k + 1 and k ≥ 3. If G is K3,k−1-free31, then G has ≤ k(|A| + |B|) − k2 − k edges.

Proof. We prove this by induction on the number of nodes in G.
Suppose that G has 2k + 2 nodes. Thus, |A| = |B| = k + 1. Suppose that G has

≥ k(2k + 2) − k2 − k + 1 = k(k + 1) + 1 edges. We will find three nodes in A which

30 The join P ⋆ P ′, of the d-polytope P ⊂ Rd and the d′-polytope P ′ ⊂ Rd′
, is the convex hull of P

and P ′ after embeddings them in Rd+d′+1 where their affine hulls are skew.
31 We say that the graph G is H-free if G does not contain a subgraph isomorphic to the graph H.
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form a K3,k−1 with their neighbors in B. If all nodes in A have degree ≤ k, then G has
≤ k(k + 1) edges, which is less than k(k + 1) + 1. Thus, A has a node v of degree k + 1.
Now G − {v} has ≥ k(k + 1) + 1 − deg(v) = k2 + k + 1 − k − 1 = k2 edges. If all nodes
in A − {v} have degree ≤ k − 1, then G − {v} has ≤ k(k − 1) edges, which is less than
k2. Thus, A has a node u of degree ≥ k. Since |B| = k + 1, we have two options.

• If degree of u is k, then G − {v, u} has ≥ k(k + 1) + 1 − deg v − deg(u) = k(k +
1) + 1 − k − 1 − k = k2 − k edges. If all nodes in A − {v, u} have degree ≤ k − 1,
then G − {v, u} has ≤ (k − 1)(k − 1) = k2 − 2k + 1 edges, which is less than k2 − k
for k ≥ 3. Thus, A has a node w of degree ≥ k.

• If degree of u is k + 1, then G − {v, u} has ≥ k(k + 1) + 1 − deg v − deg(u) =
k(k + 1) + 1 − k − 1 − k − 1 = k2 − k − 1 edges. If all nodes in A − {v, u} have
degree ≤ k − 1, then G − {v, u} has ≤ (k − 1)(k − 1) = k2 − 2k + 1 edges, which is
less than k2 − k − 1 for k ≥ 3. Thus, A has a node w of degree ≥ k.

The vertices v, u, w with their neighbors in B form a K3,k−1 subgraph. This concludes
the base case.

Now suppose that G has ≥ 2k + 2 nodes, say |A| ≥ k + 2 and |B| ≥ k + 1. Removing
a node of degree ≤ k from G will result in a bipartite k-degenerate graph which is K3,3-
free. Thus, to apply the induction hypothesis, we only need to check that the size of the
new partitions is ≥ k + 1. Since G is k-degenerate, it has a node v of degree ≤ k. If
v ∈ A, we are done. So suppose that v ∈ B. If |B| > k + 1, we are done. So suppose that
|B| = k + 1. Since |A| ≥ k + 2 and the degree of v is ≤ k, there is a vertex v′ in A which
is not adjacent to v, and thus its degree is ≤ k. Replace the labels of v and v′ (that is,
we will remove v′ from G instead of v.)

Now G−{v} satisfies the conditions in the statement. Thus, it has ≤ k(|A|+ |B|−1)−
k2−k edges. Thus, G has ≤ k(|A|+|B|−1)−k2−k+deg v ≤ k(|A|+|B|−1)−k2−k+k =
k(|A| + |B|) − k2 − k.

Theorem H.0.4. For a 4-polytope P , we have C(P ) ≤ degen(P ).

Proof. In a 4-polytope P , a 2-face is defined by exactly two facets. Thus, three facets
can share at most two vertices (an edge), and three vertices can share at most two
facets. Thus, ΓP is K3,3-free. In particular, it is K3,k−1-free for k ≥ 4. Thus, if ΓP is
k-degenerate, then by the Proposition H.0.3, f0,3 ≤ k(f0 + f3) − k2 − k. In particular,

f0,3 − 20 ≤ k(f0 + f3) − k2 − k − 20
f0,3 − 20 ≤ k(f0 + f3 − 10) − k2 + 9k − 20

We have −k2 + 9k − 20 ≤ 0 on the integers k ≥ 4. Thus,

f0,3 − 20 ≤ k(f0 + f3 − 10)
f0,3 − 20

f0 + f3 − 10 ≤ k(f0 + f3 − 10)
f0 + f3 − 10

C(P ) ≤ k.

Various construction were made to produce polytopes with high complexity. Ziegler
in [70] lists these polytopes in a table. We take some entries from that table and add to
them the complexity we get from Theorem H.0.4. See Table H.1. We also include some
polytopes with high degeneracy.
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4-polytope degeneracy complexity reference
24-cell 6 3.26 Schläfli [62]
orbit

(
(0, 1, 1, 1), ±[O × O]

)
8 4.05347 See Example H.0.5

neighborly cubical 4-polytopes ≥ 8 − ϵ 8 − ϵ Joswig and Ziegler [39]
projected products of polygons ≥ 16 − ϵ 16 − ϵ Ziegler [70]

Table H.1.: Polytopes with highly degenerate vertex-facet incidence graphs.

Example H.0.5. The orbit polytope P of ±[O×O] (See Section 5.1) with (0, 1, 1, 1) as a
starting point has C(P ) ≈ 4.05347 and degen(P ) = 8. Its f -vector is (192, 864, 864, 192).
It is not self-dual. Its facets are 48 cubes and 144 twisted cubes. The facets of the polar
polytopes are 192 stacked triangular prisms (that is, a triangular prism with two new
points stacked on the triangular faces).
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Zusammenfassung

Diese Dissertation befasst sich mit zwei verschiedenen Themen, von denen jedes seinen
eigenen Teil hat.

Der erste Teil befasst sich mit 4-dimensionalen Punktgruppen. Wir schlagen eine neue
Klassifizierung für diese Gruppen vor (siehe Theorem A), die im Gegensatz zu früheren
Klassifizierungen eine geometrische Sichtweise betont und versucht, die Aktionen dieser
Gruppen zu visualisieren und zu verstehen.

Im Folgenden werden diese Gruppen kurz beschrieben. Die polyedrischen Gruppen
(Kapitel 5) sind mit den regelmäßigen Polytopen verwandt. Die axialen Gruppen (Kapi-
tel 6) sind diejenigen, die eine Achse festhalten. Die schlauchartigen Gruppen (Kapitel 3)
werden als solche charakterisiert, die genau eine invariantes Hopf-Bündel haben. Sie
entstehen bei einer Zerlegung der 3-Sphäre in schlauchartige Strukturen (diskrete Hopf-
Faserungen). Die toroidalen Gruppen (Kapitel 4) sind dadurch gekennzeichnet, dass sie
einen invarianten Torus haben. Wir schlagen eine neue, geometrische Klassifizierung
dieser Gruppen vor. Im Wesentlichen läuft sie darauf hinaus, die Isometriegruppen des
zweidimensionalen quadratischen flachen Torus zu klassifizieren.

Nebenbei geben wir eine in sich geschlossene Darstellung der Hopf-Faserungen (Kapi-
tel 2). Als Hilfsmittel für die Arbeit mit ihnen führen wir eine Parametrisierung für
Großkreise in S3 ein, die an anderer Stelle nützlich sein könnte.

Der zweite Teil befasst sich mit Realisierungsräumen von Polytopen. Wir bauen auf
Robertsons Modell und Ansatz [59] auf, um die Realisierungsräume von Polytopen zu
untersuchen.

Wir stellen kombinatorische Kriterien auf (Abschnitte 9.3.3 und 9.4.1), um zu entschei-
den, ob der Realisierungsraum des betrachteten Polytops eine glatte Mannigfaltigkeit der
durch die “natürliche Vermutung” gegebenen Dimension ist. Als weitere Anwendung, un-
tersuchen wir die Realisierungsräume der zweiten Hypersimplices (Abschnitt 9.4.2).

Nebenbei identifizieren wir die kleinsten Beispiele von 4-Polytopen, für die dieser
Ansatz versagt (Abschnitt 9.5).

Schließlich untersuchen wir den Realisierungsraum der 24-Zelle (Abschnitt 9.5.2). Wir
zeigen, dass es Punkte gibt, an denen sie keine glatte Mannigfaltigkeit ist. Zuletzt zeigen
wir, dass seine Dimension mindestens 48 und höchstens 52 beträgt.
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