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Abstract

The main objects of study of the thesis are two classes of special vector configu-

rations appeared in the geometry and the theory of integrable systems.

In the first part we consider a special class of vector configurations known as

the ∨-systems, which appeared in the theory of the generalised Witten-Dijkgraaf-

Verlinde-Verlinde (WDVV) equations. Several families of ∨-systems are known,

but their classification is an open problem. We derive the relations describing

the infinitesimal deformations of ∨-systems and use them to study the classifi-

cation problem for ∨-systems in dimension 3. In particular, we prove that the

isolated cases in Feigin-Veselov list admit only trivial deformations. We present

the catalogue of all known 3D ∨-systems including graphical representations of

the corresponding matroids and values of ν-functions.

In the second part we study the vector configurations, which form vertex sets for a

new class of polyhedra called affine B-regular. They are defined by a 3-dimensional

analogue of the Buffon procedure proposed by Veselov and Ward. The main result

is the proof of existence of star-shaped affine B-regular polyhedron with prescribed

combinatorial structure, under partial symmetry and simpliciality assumptions.

The proof is based on deep results from spectral graph theory due to Colin de

Verdière and Lovász.
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Chapter 1

Introduction

The five Platonic solids were object of fascination and study since the ancient

time. Hundreds of Neolithic stone models of them have been found in Scotland.

They play a special role of basic elements in Plato’s ideal world.

Figure 1.1: The 5 Platonic solids: tetrahedron, cube, octahedron,
dodecahedron, icosahedron.

Kepler and Poinsot are usually credited for the discovery of all 4 regular star

polyhedra. Schläfli (1814-1895) introduced the concept of regular polytopes in

higher dimensions. Coxeter (1907-2003), who is commonly considered as greatest

geometer of 20th century, continued this work and made major contributions far

beyond the theory of polytopes.

Figure 1.2: Kepler - Poinsot polyhedra: small stellated dodecahedron,
great stellated dodecahedron, great icosahedron, great dodecahedron.
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Introduction 7

The symmetries of regular polytopes are particular cases of the Coxeter groups,

which are finite groups generated by the hyperplane reflections. Such groups are

all classified and can be described by the corresponding Coxeter root systems,

which are the sets of the normals to the mirror hyperplanes. By definition such a

system R consists of non-zero vectors in Euclidean space such that for any α ∈ R
the reflection sα : x→ x− 2(α,x)

(α,α)
α leaves R invariant, i. e. sαR = R.

These systems play an important role in various areas of Mathematics. In par-

ticular, in the crystallographic case they coincide with the Weyl groups of simple

complex Lie algebras [3].

The geometric meaning of the root systems for basic classical Lie superalgebras

was clarified by V. Serganova [42], who introduced the notion of generalised root

systems in the presence of the isotropic roots. The problem is that for an isotropic

root one can not define the reflection. Serganova proposed the following replace-

ment of the invariance condition in this case: if α ∈ R is an isotropic root, then

for any β ∈ R such that (β, α) 6= 0 at least one of the vectors β + α or β − α

belongs to R. A generalised root system is called irreducible if it does not admit

a representation as a direct orthogonal sum of two non-empty generalised root

systems. A remarkable result obtained by Serganova states that the class of ir-

reducible root systems with isotropic roots includes all root systems of the basic

classical Lie superalgebras (with the exception of the superalgebra B(0, n) which

has no isotropic roots). Any generalised root system R has a partial symmetry

described by the finite group W0 generated by the reflections with respect to the

non-isotropic (real) roots of R.

The list of the irreducible generalised root systems consists of the classical se-

ries A(n,m), B(n,m), D(n,m), C(n,m), BC(n,m), and the exceptional cases

AB(1, 3) (also known as F (4)), G(1, 2) (also known as G(3)) and D(2, 1, λ) with

the parameters λ = (λ1, λ2, λ3) satisfying the relation λ1 + λ2 + λ3 = 0.

Based on the notion of the generalised root systems Sergeev and Veselov [43] intro-

duced the notion of the deformed root systems and studied the related generalised

quantum Calogero-Moser problems. The first family of the deformed Calogero-

Moser systems corresponding to the deformation An(m) of the root system An

was described in an earlier work by O. Chalykh, M. Feigin and A. P. Veselov in

1996 [4].
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A more general class of vector configurations appeared in relation with the Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equation.The WDVV equations play an im-

portant role in 2D topological field theory and N = 2 SUSY Yang-Mills theory

[9, 31]. The generalised WDVV equations have the form

FiF
−1
k Fj = FjF

−1
k Fi with i, j, k = 1, . . . , n

where Fm are n× n matrices constructed from the third partial derivatives of the

unknown function F = F (x1, . . . , xn):

(Fm)pq =
∂3F

∂xm∂xp∂xq
.

A geometric theory of the WDVV equation was developed by Dubrovin, who put

it in the foundation of the theory of Frobenius manifolds [9, 10].

A new important notion of ∨-system was introduced by Veselov [49], who consid-

ered a special class of solutions of WDVV equation by taking the ansatz

FA =
∑
α∈A

(α, x)2log(α, x)2,

where A denotes a finite set of collinear vectors α ∈ Rn corresponding to the

(positive part) of a root system. The systems must satisfy certain relations, called

the ∨-conditions, which turned out to hold not only for the root systems but also

for their deformations [49]. The formal definition is as follows.

Let V be a real vector space and A ⊂ V ∗ be a finite set of vectors in the dual

space V ∗ (covectors) spanning V ∗. To such a set one can associate the following

canonical form GA on V :

GA(x, y) =
∑
α∈A

α(x)α(y),

where x, y ∈ V , which establishes the isomorphism

ϕA : V → V ∗.

Denote the inverse ϕ−1
A (α) as α∨. The system A is called ∨-system if the following

relations (∨-conditions)
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∑
β∈Π∩A

β(α∨)β∨ = να∨

are satisfied for any α ∈ A and any two-dimensional plane Π ⊂ V ∗ containing α

and some ν, which may depend on Π and α.

Several families of ∨-systems are known including all 2-dimensional systems, Cox-

eter configurations and the deformed root systems, but their classification is an

open problem. The main results in this direction had been found in [5, 14, 15, 13,

26]. In particular, Feigin and Veselov proved an important result that the class of

∨-systems is closed under the restriction operation [15]. The most comprehensive

list of known ∨-systems together with their geometric properties can be found in

[14, 15].

In the first part of this thesis we present some arguments in favour of the complete-

ness of Feigin-Veselov list. In order to state precisely the classification problem

we use the language of the theory of matroids [36]. A matroidal approach in this

context was also used by Lechtenfeld et al [26].

For a fixed matroidal structure we derive the relations describing the infinitesi-

mal deformations of ∨-systems and use them to prove the local completeness of

Feigin-Veselov list of the 3-dimensional ∨-systems. We study the properties of the

corresponding matroids and the values of ν-functions on 2-flats. The conjecture

is that the matroid and ν-function on 2-flats determine the ∨-system uniquely.

We present a catalogue of all known 3D ∨-systems with these data and graphical

representation.

In the second part we study a special class of vector configurations, which form

vertex sets for a new class of polyhedra called affine B-regular. The story of

the considered problem goes back to Count Buffon, a French naturalist and the

translator into French of Newton’s Principia.

Start with an arbitrary polygon. Generate a second polygon by joining the centres

of consecutive edges. Repeat this construction (see Fig.1.3).
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Figure 1.3: Buffon procedure for polygons.

It is easy to see that the process converges to a point - the centroid of the original

vertices (and therefore the centroid of the vertices of any polygon in the sequence).

Buffon observed a remarkable regularisation effect of this procedure: the limiting

shape of the polygon is affine regular. Here a polygon is called affine regular if it

is affine equivalent to a regular polygon.

In fact a similar phenomenon was already observed since Roman times. When

creating mosaics Roman craftsmen achieved more regular pieces by breaking the

corner, so effectively using the same procedure [1]. The explanation is based on

simple arguments from linear algebra, see e.g. [2, 51] and Chapter 4.

Veselov and Ward [50] proposed a natural generalisation of the Buffon transfor-

mation for polyhedra. Let P be a simplicial polyhedron in R3, having all faces

triangular. Define its Buffon transformation B(P ) as the simplicial polyhedron

with vertices B(v), where for each vertex v of P the new vertex B(v) is defined as

the centroid of the centroids of all edges meeting at v. The question is what is the

limiting shape of Bn(P ) as n goes to infinity.

Unfortunately, the answer in general is disappointing: the limiting shape will be

one-dimensional. Indeed the same arguments from linear algebra show that this

shape is determined by the subdominant eigenspace of the corresponding operator

on the graph Γ(P ), which is the 1-skeleton of P (see the details below), and this

eigenspace generically has dimension 1. This means that in order to have a sensible

limiting shape we need to add some assumptions on the initial polyhedron P.

Let G be one of the symmetry groups G = T,O, I of the Platonic solids: tetrahe-

dron, octahedron/cube, icosahedron/dodecahedron respectively. Assume that the

combinatorial structure of the initial polyhedron P is G-invariant, which means

that G faithfully acts on the graph Γ(P ).

The main result of the second part of the thesis is the following theorem [40].

Theorem 1.1. Let P be a simplicial polyhedron in R3 with G-invariant combina-

torial structure. Then for a generic P the limiting shape obtained by repeatedly
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applying Buffon procedure to P is a star-shaped polyhedron PB. The vertices of PB

are explicitly determined by the subdominant eigenspace of the Buffon operator,

which in this case has dimension 3.

The explicit generation of PB is given by the eigenspace realisation procedure

applied to the subdominant eigenspace of the Buffon operator.

Recall that the polyhedron P is called star-shaped (not to be mixed with star

polyhedra like Kepler-Poinsot) if there is a point inside it from which one can see

the whole boundary of P , or equivalently, the central projection gives a homeo-

morphism of the boundary of P onto a sphere.

Let us call polyhedron P affine B-regular if B(P ) is affine equivalent to P. In

dimension 2 this is equivalent to affine regularity. Thus the Buffon procedure

produces affine B-regular version PB from a generic polyhedron P with the above

properties. As far as we know the notion of the affine regularity for polyhedra with

non-regular combinatorial structures was not discussed in the literature before.

For a generic polyhedron P with combinatorial structure of a Platonic solid the

explicit calculation of the subdominant eigenspace shows that the corresponding

polyhedron PB is affine regular, which means that it is affine equivalent to the

corresponding Platonic solid. For the Archimedean solids, however, this is no

longer true.

Note that there are plenty of polyhedra P with G-invariant combinatorial struc-

tures, which can be constructed from the Platonic solids using Conway operations

[7]. In particular, one will have a simplicial polyhedron by applying to any such P

the operation, which Conway called kis and denoted by k, consisting of building

the pyramids on all the faces. Many examples of the corresponding combinatorial

types can be found in chemistry and physics literature in relation with the famous

Thomson problem, see e.g. [11].

The proof of the existence of star-shaped affine B-regular version of P is based on

deep results from the spectral theory on graphs due to Colin de Verdière [6] and

Lovász et al [47, 27, 29]. Both assumptions of the theorem, namely simpliciality

and Platonic symmetry, are essential. For non-simplicial polyhedra the Buffon

transformation usually breaks the faces.

The Platonic symmetry keeps the limiting shape 3-dimensional, preventing col-

lapse to lower dimension. The dihedral symmetry is not enough: one can check
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that a polyhedron with prismatic combinatorial structure will collapse to the cor-

responding affine regular polygon.

The star-shape property of the limiting shape is the strongest we can claim since

a convex version may not exist as the following example of the triakis tetrahedron

(with pyramids built on each face of the tetrahedron) shows (see Fig. 1.4).

Figure 1.4: Triakis tetrahedron and its affine B-regular realisation (right).

The structure of the Thesis is the following.

We start with the general notions of the ∨-systems, their geometric properties and

construction methods based mainly on results from [49, 48, 14]. In the second

part of Chapter 2 we give a brief overview of the basic concepts from the theory of

matroids [36], which provides a natural framework for the problem of classification

of ∨-systems. This allows us to formalise the problem of classification by fixing

first the corresponding matroidal type, and sets the tone for the rest of this part

of the thesis.

In Chapter 3 we consider the problem of deformation and classification of ∨-

systems. For small ∨-systems of the Coxeter matroidal type of A3, B3 we show

that they are completely classified by the formulae found in [5]. Figure 1.5 shows

projective representations of these systems together with the ∨-system D3.

Figure 1.5: Projective configurations corresponding to the ∨-systems of the
Coxeter type A3 and B3 and to the ∨-systems of type D3.
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In order to analyse larger ∨-systems of a given matroidal type, we derive the

∨-conditions on the infinitesimal deformations. We then show that the isolated

∨-systems listed in [14] are indeed isolated.

This is followed by investigation of some characteristic properties of the functions

ν defined by the ∨-conditions. We formulate the uniqueness conjecture, saying

that the matroid and function ν on its flats uniquely determine the corresponding

∨-system.

The last section of the first part is an attempt to characterise the class of matroids

giving rise to ∨-systems. We will refer to such matroids as ∨-realisable matroids.

We list several properties of the ∨-systems based on the results of their defor-

mations, some facts from projective geometry and observations derived from the

graphical representations of the known ∨-systems.

Chapter 4 starts with a discussion of the solution of the Buffon puzzle for polygons.

We explain the main ideas and relation to linear algebra. Then, in the second part

of the chapter, we define the Buffon transformation for polyhedra and review

the classical Steinitz theorem, which gives graph-theoretical characterisation of

1-skeletons of convex polyhedra.

In Chapter 5 we introduce the main tools from spectral graph theory: the Colin

de Verdière invariant and null space realisation for polyhedral graphs studied by

Lovász et al [47, 27, 29]. We then use these results and representation theory of

finite groups to prove our main result.

In Chapter 6 we present the character tables for the polyhedral groups and the

corresponding decomposition of the space of functions on the vertices of Platonic

solids into irreducible components, and analyse their relation to the spectra of the

Buffon operators for some combinatorial types. We also present the corresponding

shapes of affine B-regular polyhedra.

In the Appendix A we give the catalogue of all known ∨-systems in dimension

3 together with the corresponding matroids and the values of ν-functions. In

the Appendix B we describe the Mathematica implementation of the linearised

∨-conditions.

The main results of the Thesis are published in the arXiv [39],[40].



Part I
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Chapter 2

∨-systems and matroids

2.1 ∨-systems: definition and constructions

We study the special finite sets of covectors called ∨-systems introduced in [49, 48].

The motivation came from the study of certain special solutions of the generalized

Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations, playing an important role

in 2D topological field theory and N = 2 SUSY Yang-Mills theory [9, 31].

Let V be a real vector space and A ⊂ V ∗ be a finite set of vectors in the dual

space V ∗ (covectors) spanning V ∗. To such a set one can naturally associate the

following positive definite canonical form GA on V :

GA(x, y) =
∑
α∈A

α(x)α(y), (2.1)

where x, y ∈ V , which establishes the isomorphism

ϕA : V → V ∗.

The inverse ϕ−1
A (α) we denote as α∨. The system A is called ∨-system if the

following relations ∑
β∈Π∩A

β(α∨)β∨ = να∨ (2.2)

(called ∨-conditions) are satisfied for any α ∈ A and any two-dimensional plane

Π ⊂ V ∗ containing α and some ν, which may depend on Π and α. Depending on

15
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the number of covectors contained in a given plane Π the above condition 3.6 has

the following interpretation:

1. If the plane Π contains no more than one covector from A, the ∨−condition

is trivial.

2. If Π contains only two covectors from A, say α and β, then we must have

GA(α∨, β∨) = 0.

3. If Π contains more than 2 covectors then ν does not depend on α and the

corresponding two forms GA and

GΠ
A(x, y) :=

∑
α∈Π∩A

α(x)α(y)

are proportional on the plane Π∨ ⊂ V (see [49, 48]).

Alternatively, one can use the form G to introduce the Euclidean structure on V

and to give definition of ∨-systems in more geometric terms as follows. We say

that a finite subset A of the Euclidean vector space V is well-distributed, if

GA(x, y) =
∑
α∈A

〈α, x〉〈α, y〉,

is proportional to the Euclidean structure 〈 , 〉 on V . Then a finite subset A of V

is called a Euclidean ∨-system if A is well-distributed, and any of its 2-dimensional

subsystems is either reducible or well-distributed in the corresponding plane.

Finally, all ∨-conditions are equivalent to the flatness of the corresponding Knizhnik–

Zamolodchikov-type connection (or Dubrovin’s connection)

∇a = ∂a +m
∑
α∈A

〈α, a〉
〈α, x〉

α∨ ⊗ α.

The examples of ∨-systems include all 2-dimensional systems, all Coxeter root

systems as well as their deformed versions appeared in the theory of quantum

Calogero-Moser systems [49, 48].

Some of the remarkable geometric properties of the ∨-system are [15]:
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• A subsystem of a given ∨-system (see definition below) is also a ∨-system.

• The restriction of a ∨-system A to a subspace defined by a subset B ⊂ A is

also a ∨-system.

• The definition of the ∨-systems can be extended to complex vector spaces.

We give a brief overview of these classes of ∨−systems as well as of their geometric

properties and methods of construction. For more details we refer to [15], [14].

2.1.1 Subsystems and restrictions of ∨-systems

∨-systems obtained from restrictions of Coxeter systems appeared in [13, 14].

Let A be a given ∨-system in a real vector space V∗ and W⊂V∗ a vector subspace

spanned by a subset B ⊂ A. B is called a subsystem of A if B =A ∩W.

Consider the linear subspace W∨ ⊂ V, which corresponds to W under the iden-

tification through the form 2.1.

Theorem 2.1. [13] The subsystem B ⊂ A as a set of covectors on W∨ ⊂ V is a

∨-system.

The subspace LB in V defined as

LB = {v ∈ V | β(v) = 0,∀β ∈ B}

gives rise to the following statement.

Theorem 2.2. [14] The restriction of a ∨-system A to the subspace LB is a ∨-

system.

As pointed out in [13], subsystems of the Coxeter systems do not give new ∨-

systems. Restrictions of the Coxeter root systems An and Bn were discussed in [14].

Restrictions of the exceptional Coxeter systems lead to a number of interesting

three-dimensional ∨-systems.

The list of all ∨-systems coming from restrictions of exceptional Coxeter root

systems was given in [14]. It consists of 42 different vector configurations. 19
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of these systems span a three-dimensional space. They are labeled by a pair

(G,H), denoting by G the original Coxeter group and by H its parabolic subgroup

generated by the set of reflections {sβ : β ∈ B} .

Here we consider the ∨-systems of F4-type. We follow the treatment provided in

[14].

Consider the configuration

F4 =


ei ± ej, 1 ≤ i < j ≤ 4,

2Λei, 1 ≤ i ≤ 4,

Λ(e1 ± e2 ± e3 ± e4).

(2.3)

The parameter Λ ∈ R appears due to an additional orbit on the root system F4.

The set B = {2Λe1} is a one-dimensional subsystem of the ∨-system F4. The

restriction of F4 to the corresponding subspace

LB =
{
x ∈ R4 : 2Λe1(x) = 0

}
gives the ∨-system F3 (Λ) consisting of 13 covectors:

F3 (Λ) =


ei ± ej, 1 ≤ i < j ≤ 3,
√

4Λ2 + 2ei, 1 ≤ i ≤ 3,

Λ
√

2(e1 ± e2 ± e3).

(2.4)

Another possible choice for the one-dimensional subsystem is

B̃ = {e1 − e2} .

This leads to a ∨-system which is equivalent to 2.4 up to a linear transformation

[14]. Fig.2.1 shows a graphical representation of the 3-dimensional ∨-system of

type F3 as projective configuration.
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Figure 2.1: Graphical realisation of the ∨-system F3

in the projective plane.

2.1.2 Generalised root systems and their deformations

V. Serganova introduced [42] generalised root systems in the presence of the isotropic

roots. For isotropic roots reflections are not defined. Serganova proposed the fol-

lowing notion.

Let V be a vector space with a non-degenerate bilinear form <,>.

The finite vector setR in V \{0} is called a generalised root system if the following

conditions are satisfied:

1. R spans V and R =−R;

2. if α, β ∈ R and < α, α >6= 0 then 2<α,β>
<α,α>

∈ Z and sα(β) = β− 2<α,β>
<α,α>

α ∈ R;

3. if α ∈ R and < α, α >= 0 then for any β ∈ R such that < α, β > 6= 0 at

least one of the vectors β + α or β − α belongs to R.

A generalised root system R is called irreducible if it can not be presented as

a direct sum of two non-empty generalised root systems. The set of reflections

corresponding to the non-isotropic roots generates a finite group W0 that describes

the partial symmetry of R.

Serganova classified all irreducible generalised root systems. The list consists of

classical series A(n,m) and BC(n,m) and three exceptional casesG(1, 2), AB(1, 3)
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and D(2, 1, λ), which essentially coincides with the list of basic classical Lie super-

algebras.

Sergeev and Veselov [43] introduced a class of admissible deformations of gener-

alised root systems, when the bilinear form <,> is deformed and the roots α ∈ R
acquire some multiplicities mα. They satisfy the following 3 conditions:

1) the deformed form B and the multiplicities are W0-invariant;

2) all isotropic roots have multiplicity 1;

3) the function ψ0 =
∏

α∈R+
sin−mα(α, x) is a (formal) eigenfunction of the Schrödinger

operator

L = −∆ +
∑
α∈R+

mα(mα + 2m2α + 1)(α, α)

sin2(α, x)
, (2.5)

where the brackets ( , ) and the Laplacian ∆ correspond to the deformed bilinear

form B, which is assumed to be non-degenerate.

All admissible deformations of the generalised root systems were described explic-

itly in [43].

The connection between the class of admissible deformations of generalised root

systems and the theory of ∨-systems becomes clear from the following theorem.

Theorem 2.3. [15] For any admissible deformation (R, B,m) of a generalised

root system R the set A =
{√

mαα, α ∈ R
}

is a ∨-system whenever the canonical

form

GA(u, v) =
∑
α∈R

mαα(u)α(v)

is non-degenerate.

The exceptional generalised root systems give rise to the following 3-dimensional

∨-systems [15]:

• The admissible deformation of the exceptional generalised root systemAB(1, 3)

leads to the family of ∨-systems AB4(t), which has exactly two different

three-dimensional restrictions:
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(AB4(t), A1)1 =


√

2(2t2 + 1)e1,
√

2(2t2 + 1)e2, t
√

2(2t2−1)
t2+1

e3,
√

2(e1 ± e2), t
√

2(e1 ± e3), t(e1 ± 2e2 ± e3)

and

(AB4(t), A1)2=



(ei + ej), 1 ≤ i < j ≤ 3
√

2ei, 1 ≤ i ≤ 3

1√
4t2+1

(ei − ej), 1 ≤ i < j ≤ 3

t
√

2√
t2+1

(e1 + e2 + e3)

.

• The admissible deformed exceptional generalised root system G(1, 2) gives

for t /∈
{

0,−1
2

}
the following ∨-system:

G3(t) =


√

2t+ 1e1,
√

2t+ 1e2,
√

3
t
e3,

√
2t+ 1(e1 + e2),

√
2t−1

3
(e1 − e2),

√
2t−1

3
(2e1 + e2),

√
2t−1

3
(e1 + 2e2),

e1 ± e3,e2 ± e3, e1 ± e3,e1 + e2 ± e3.

The cases t = 1, 3
4
, 1

2
correspond to the restrictions (E7, A

2
2), (E8, A5) and (E6, A

3
1),

respectively. All the other ∨-systems of this family can not be obtained through

deformation and restriction of the Coxeter root systems [14].

• The family of the exceptional generalised root systems D(2, 1, λ) gives rise

to the two-parameter family D3(t, s) of ∨-systems consisting of the following

covectors:

e1 ± e2 ± e3,
√

2(s−t+1)
t

e2,
√

2(s−t+1)
t

e3,
√

2(−1 + t+ s)e1.

The one-parameter sub-families D3(t, t−1), D3(t,−t+1), D3(t, t+1) are equivalent

to the family A3(s, s, 1, 1) of the restricted Coxeter root system of type A3.

All known examples of 3D ∨-systems are summarised in Fig. A.1 below.
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2.2 Vector configurations and matroids

The combinatorial structure of the vector configurations can be described using

the notion of matroids. The theory of matroids was introduced by Whitney in

1935, who was looking for an abstract notion generalising the linear dependence

in the vector space.

We review some standard notions from this theory following mainly Oxley [36].

A matroid M is a pair (X, I), where X is a finite set and I is a collection of

subsets S of X (called the independent sets of M) such that:

• I is non-empty

• For any S∈ I, any S
′ ⊂ S one has S

′ ∈ I.

• If A,B ∈ I, | A |=| B | +1 then ∃x ∈ A \B such that B ∪ {x} ∈ I.

The last property is sometimes also referred to as the Steinitz exchange axiom [37].

The rank of the subset S ⊂ X is defined as r (S) = maxI∈I{| I |: I ⊆ S}. A direct

sum of matroids M1 = (X1, I1) and M2 = (X2, I2) is defined as

M1 ⊕M2 = (X1 ∪X2, {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}).

A matroid is called connected if it can not be represented as a direct sum.

Matroids can be obtained using several (equivalent) models. The name ”matroid”

suggests that this structure is related to a matrix. Indeed, every matrix gives rise

to a matroid. Let A be a real r × n matrix. Let X = {1, 2, . . . , n} be the set of

column labels of A, and let I be the collection of subsets S of X for which the

multiset of columns labelled by S is linearly independent over R. Then (X,I) is a

matroid. A matroid obtained from the matrix A is called a vector matroid and is

denoted by M [A].

The following operations on matrix A do not affect the corresponding vector ma-

troid M [A] :

1. Elementary operations with the rows



∨-systems and matroids 23

(a) Interchange two rows

(b) Multiply a row by a non-zero scalar

(c) Replace a row by the sum of that row and another

(d) Delete a zero row (unless it is the only row)

(e) Interchange two columns

2. Multiplication of a column by a non-zero number.

Two matrices A and A
′
representing the same matroid M are said to be projectively

equivalent representations of M if A
′
can be obtained from A by a sequence of these

operations. Equivalently, one can say that A′ = CAD, where C is an invertible

r × r matrix, and D is a diagonal n× n matrix with non-zero diagonal entries.

Alternatively, one can define the linear dependence matroid on the setX as a family

IC of minimal dependent subsets C of X (called circuits) through the following

axioms:

• The empty set is not a circuit.

• No curcuit is contained in another circuit.

• If C1, C2 ∈ IC are two circuits sharing an element e ∈ X, then (C1 ∪ C2) \ e
is a circuit or contains a circuit.

The rank of a circuit is defined as the dimension of the vector space spanned by

its vectors. Circuits spanning the same d-dimensional subspace can be united in

so-called d-flats. A set F ⊆ X is a flat of the matroid M if

r(F ∪ {x}) = r(F ) + 1

for all x ∈ X \ F. The matroid can be labelled by listing all d-flats.

As an example consider the positive roots of the B3-type system. The correspond-

ing matrix (with the first row giving the labelling) is

A =


1 2 3 4 5 6 7 8 9

1 1 0 0 1 1 1 0 0

1 −1 1 1 0 0 0 1 0

0 0 −1 1 1 −1 0 0 1

 .
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Here matroid M is defined on the set X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, with

L3 = {(4, 1, 6), (6, 2, 3), (4, 5, 2), (1, 5, 3)} ,

L4 = {(3, 4, 8, 9), (1, 2, 7, 8), (5, 6, 7, 9)}

corresponding to 2-flats with 3 and 4 elements respectively. Together with the

3-flat L9 = X this gives the complete list of flats.

Graphically on the projective plane we have

2

6

3 8 4 9

5
7

1

Figure 2.2: Graphical representation of B3-matroid: lines correspond to rank-
2 flats

A matroid is called simple if it does not contain one- or two-element circuits. For

vector matroids this means that no two vectors are proportional.

Number of matroids up to isomorphism grows very rapidly with n = |X|. The

following table summarises the results for rank 3-matroids for small n [32].

n 3 4 5 6 7 8 9 10 11 12

all matroids 1 4 13 38 108 325 1275 10037 298491 31899134

simple matroids 1 2 4 9 23 68 383 5249 232928 28872972

The class of matroids we are interested in is the class of connected simple vector

matroids of rank 3.
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Vector matroids build the class of realisable matroids. The problem of finding a

criterion for realisability is known to be NP -hard [37].

Let M be a vector matroid. We say that matroid M is projectively rigid if the

space of all its vector realisations

R(M) = {A : M = M [A]}/ ∼

modulo projective equivalence is discrete and strongly projectively rigid if it consists

of only one point (which means that up to projective equivalence M has a unique

vector realisation).

Let G be a finite Coxeter group, which is a finite group generated by hyperplane

reflections in a Euclidean space. We say that matroid M is of Coxeter type if it

describes the vector configuration of the normals to the corresponding reflection

hyperplanes for such a group (chosen one for each hyperplane).

Theorem 2.4. The rank-3 matroids of Coxeter root systems of types A3, B3 are

strongly projectively rigid. The rank-3 matroid of type H3 is projectively rigid with

precisely two projectively non-equivalent vector realisations.

Proof. Let us prove this first for B3 case. Since the images a1, a2, a3, a4 of the

elements 1,2,3 and 4 in the projective plane form a projective basis it is enough to

prove that the remaining a5, a6, a7, a8, a9 can be constructed uniquely. From the

matroid structure we can see that a5 must be an intersection point of the lines

(2-flats) (a1a3) and (a2a4). We denote this as

a5 = (a1a3) ∧ (a2a4)

using the general lattice theory notation. Similarly we have

a6 = (a2a3) ∧ (a1a4), a7 = (a1a2) ∧ (a5a6),

a8 = (a1a2) ∧ (a3a4), a9 = (a3a4) ∧ (a5a6).

Similarly one can prove the rigidity in A3 case. In both these cases the space of

realisations modulo projective equivalence consists of only one point.
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1

4

2

3
5

6

Figure 2.3: Graphical representation of A3-matroid

The H3 case is more interesting. Fig. 2.4 shows the graphic representation of the

system H3 in the real projective plane RP 2.

Recall that on the projective line RP 1 any three points can be mapped into

any other three via the action of the group PGL(2,R). For four distinct points

p1, p2, p3, p4 on the projective line RP 1 with homogeneous coordinates [xi, yi] there

is a projective invariant, namely cross-ratio defined as

(p1, p2; p3, p4) =
(x1y3 − x3y1)

(x2y4 − x4y2)

(x1y4 − x4y1)

(x2y3 − x3y2)
.

If none of the yi is zero the cross-ratio can be expressed in terms of the ratios

zi = xi
yi

as follows:

(z1, z2; z3, z4) =
(z1 − z3)

(z2 − z4)

(z1 − z4)

(z2 − z3)
.

Since any projection from a point in the projective plane preserves the cross-ratio

of four points we have the equalities

(a6, a5; a9, a3) = (a4, a7; a10, a3) = (a5, a6; a8, a3),

(a6, a5; a9, a3) = (a7, a11; a10, a3) = (a5, a8; a9, a3).
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One can check that they imply that x = (a6, a5; a9, a3) satisfies the equation

x2 − x− 1 = 0

with two solutions x1 = 1+
√

5
2

and x2 = 1−
√

5
2

.

If we fix the positions of the four points a4, a5, a6, a7 forming a projective basis in

RP 2 the knowledge of x = (a6, a5; a9, a3) allows us to reconstruct a9.

After this all the remaining points ai can be reconstructed as

a1 = (a5a4) ∧ (a6a7), a3 = (a5a6) ∧ (a7a4),

a2 = (a5a7) ∧ (a6a4), a14 = (a2a9) ∧ (a5a4),

a12 = (a7a6) ∧ (a2a9), a10 = (a2a9) ∧ (a3a4),

a13 = (a9a4) ∧ (a6a7), a8 = (a2a13) ∧ (a3a6),

a15 = (a2a13) ∧ (a5a4), a11 = (a2a8) ∧ (a3a4).

Thus we have shown that modulo projective group we have only two different

vector realisations of matroid H3.

6

8

9

5

3

7

1014 12

13 15 11

4

21

Figure 2.4: Graphical representation of H3-matroid
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Remark. The existence of two projectively non-equivalent realisations is related

to the existence of a symmetry of matroid M(H3), which can not be realised

geometrically, see [12]. These two realisations are related by re-ordering of the

vectors and thus give rise to equivalent ∨-systems.



Chapter 3

Deformations and classification

3.1 Classification of ∨-systems of A3 and B3 types

For any ∨-system A ⊂ V ∗ one can consider the corresponding matroid M(A),

which encodes a combinatorial structure of A. Conversely, having a matroid M

one can look for ∨-system realisations A of M with given combinatorial structure

M(A) = M.

Let R∨(M) be the set of all such realisations modulo group G = GL(V ∗) of linear

automorphisms of V ∗.

If vector matroid M = M(A) is strongly projectively rigid then all its vector

realisations modulo G have the form A′ = AD, or in terms of the columns ai, i =

1, . . . , n of A,

a′i = xiai, i = 1, . . . , n

with arbitrary non-zero parameters xi. The ∨-conditions form an overdetermined

system of nonlinear algebraic relations on the parameters xi ∈ R \ 0 and define

R∨(M) as an open set of a real algebraic variety.

For a generic vector matroid this set is actually empty. For example, for n vectors

ai in R3 in general position the ∨-conditions imply that these vectors must be

pairwise orthogonal, which is impossible if n > 3.

In the case when the space R∨(M) is known to be non-empty (for example, for all

vector matroids M of Coxeter type) we have the question of how to describe this

space effectively.

29
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For the case of matroid of Coxeter type A3 the answer is known [5]. The positive

roots of A3 system are ei − ej, 1 ≤ i < j ≤ 4, where ei, i = 1, . . . , 4 is an

orthonormal basis in R4.

Theorem 3.1. [5] The system

A = {µij (ei − ej) , 1 ≤ i < j ≤ 4} (3.1)

satisfies the ∨-conditions if and only if the parameters satisfy the relations

µ12µ34 = µ13µ24 = µ14µ23.

All the corresponding ∨-systems can be parametrized as

A3(c) =
{√

cicj(ei − ej), 1 ≤ i < j ≤ 4
}
,

with arbitrary positive real c1, . . . , c4.

Without loss of generality, we may choose c4 = 1 and consider the restriction of

the system onto the hyperplane x4 = 0. This gives the following parametrisation

of the space R∨(M(A3)) by positive real c1, c2, c3 as

A3(c) =


√
cicj(ei − ej), 1 ≤ i < j ≤ 3
√
ciei, i = 1, 2, 3.

Consider now the case B3, corresponding to the following configuration of vectors

in R3

B3 =

ei ± ej, 1 ≤ i < j ≤ 3,

ei i = 1, . . . , 3.

The following the 4-parametric family of ∨-systems of B3-type was found in [5]:

B (γ, c) =


√
cicj (ei ± ej) , 1 ≤ j < i ≤ 3√
2ci(ci + γ)ei, 1 ≤ i ≤ 3

(3.2)

with arbitrary positive c1, c2, c3 and γ such that ci + γ > 0 for all i = 1, 2, 3.

Theorem 3.2. Formula (3.2) gives all ∨-systems realisations of matroid type B3.
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Proof. Since B3 matroid is strongly projectively rigid, we can assume that the

corresponding ∨-system realisation has the form

B (α, α̃, β) =


αij (ei + ej) , 1 ≤ i < j ≤ 3

α̃ij (ei − ej) , 1 ≤ j < i ≤ 3

βiei, 1 ≤ i ≤ 3.

where all the parameters can be assumed without loss of generality to be positive.

To write down all ∨-conditions consider all two-dimensional planes containing at

least two vectors v1, v2 ∈ B (α, α̃, β) .

There are 3 different types of such planes Π:

1. < e1, e2 ± e3 >,< e2, e1 ± e3 >,< e3, e1 ± e2 >,

2. < e1, e2, e1 ± e2 >,< e1, e3, e1 ± e3 >,< e2, e3, e2 ± e3 >,

3. < e1 − e2, e2 − e3, e1 − e3 >, < e1 − e2, e2 + e3, e1 + e3 >,

< e2 − e3, e1 + e3, e1 + e2 >,< e1 − e3, e2 + e3, e1 + e2 > .

The corresponding form G has the matrix

G =


α2

13 + α2
12 + α̃2

13 + α̃2
12 + β2

1 α2
12 − α̃2

12 α2
13 − α̃2

13

α2
12 − α̃2

12 α2
23 + α2

12 + α̃2
23 + α̃2

12 + β2
2 α2

23 − α̃2
23

α2
13 − α̃2

13 α2
23 − α̃2

23 α2
23 + α2

13 + α̃2
23 + α̃2

13 + β2
3



In case (1) the ∨-conditions are just the orthogonality conditions

G(α∨, β∨) = 0

for the corresponding two covectors α and β in the plane Π. We obtain the system

2(α̃2
23α̃

2
13 + α̃2

23α̃
2
12 + α̃2

13α̃
2
12 − α2

13α
2
12 − α2

13α̃
2
23 − α2

12α̃
2
23)− α2

13β
2
2 + α̃2

13β
2
2 − α2

12β
2
3 + α̃2

12β
2
3 = 0

2(α̃2
23α̃

2
13 + α̃2

23α̃
2
12 + α̃2

13α̃
2
12 − α2

23α
2
12 − α2

23α̃
2
13 − α2

12α̃
2
13)− α2

23β
2
1 + α̃2

23β
2
1 − α2

12β
2
3 + α̃2

12β
2
3 = 0

2(α̃2
23α̃

2
13 − α2

23α
2
13 − α2

23α̃
2
12 − α2

13α̃
2
12 + α̃2

23α̃
2
12 + α̃2

13α̃
2
12)− α2

23β
2
1 + α̃2

23β
2
1 − α2

13β
2
2 + α̃2

13β
2
2 = 0

2(α2
23α

2
12 + α2

23α̃
2
13 + α2

12α̃
2
13 − α2

23α
2
13 − α2

23α̃
2
12 − α2

13α̃
2
12)− α2

13β
2
2 + α̃2

13β
2
2 + α2

12β
2
3 − α̃2

12β
2
3 = 0

2(α2
13α

2
12 + α2

13α̃
2
23 + α2

12α̃
2
23 − α2

23α̃
2
12 − α2

13α̃
2
12 − α2

23α
2
13)− α2

23β
2
1 + α̃2

23β
2
1 + α2

12β
2
3 − α̃2

12β
2
3 = 0

2(α2
13α

2
12 + α2

13α̃
2
23 + α2

12α̃
2
23 − α2

23α̃
2
13 − α2

12α̃
2
13 − α2

23α
2
12)− α2

23β
2
1 + α̃2

23β
2
1 + α2

13β
2
2 − α̃2

13β
2
2 = 0,
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which can be reduced to
(−α2

12 + α̃2
12)(α2

23 + α2
13 + α̃2

23 + α̃2
13 + β2

3 −
(α2

13−α̃2
13)2

(α2
13+α2

12+α̃2
13+α̃2

12+β2
1)

) = 0

(−α2
13 + α̃2

13)(α2
23 + α2

12 + α̃2
23 + α̃2

12 + β2
2 −

(α2
12−α̃2

12)2

(α2
13+α2

12+α̃2
13+α̃2

12+β2
1)

) = 0

(−α2
23 + α̃2

23)(α2
12 + α2

13 + α̃2
12 + α̃2

13 + β2
1 −

(α2
13−α̃2

13)2

(α2
13+α2

23+α̃2
13+α̃2

23+β2
3)

) = 0.

Note that the second factors in all equations are ratios of principal minors of

matrix G and thus must be positive, since the form G is positive definite. This

implies that αij = α̃ij, which reduces the matrix G to

G =


2(α2

13 + α2
12) + β2

1 0 0

0 2(α2
23 + α2

12) + β2
2 0

0 0 2(α2
23 + α2

13) + β2
3

 .

In cases (2) and (3) we fix for each plane Π a basis v1, v2 ∈ A ∩ Π. The corre-

sponding dual plane Π∨ is spanned by v∨1 and v∨2 and the ∨-condition implies the

proportionality of the restrictions of the forms G and GΠ onto Π∨. In our case this

proportionality turns out to be equivalent to the following system of equations:


2α2

12

2(α2
23+α2

12)+β2
2
− 2α2

13

2(α2
23+α2

13)+β2
3

= 0

2α2
12

2(α2
13+α2

12)+β2
1
− 2α2

23

2(α2
23+α2

13)+β2
3

= 0

2α2
13

2(α2
13+α2

12)+β2
1
− 2α2

23

2(α2
23+α2

12)+β2
2

= 0

Introducing new parameters ci, i = 1, 2, 3 and γ by

ci :=
αijαik
αjk

, γ :=
β2

3 − 2c2
3

2c3

.

we can see that these relations imply

α2
ij = cicj, β2

i = 2ci(ci + γ),

which leads to the parametrisation (3.2).

For larger matroids (like Coxeter one of type H3 with 15 elements) the direct

analysis of the ∨-conditions is very difficult, so we consider a simpler problem

about infinitesimal deformations of ∨-systems.
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3.2 Deformations of ∨-systems

Let A = {α} ⊂ V ∗ be a ∨-system realisation of matroid M. Consider its smooth

scaling deformation A(t) of the form

A(t) = {αt}, αt = µα(t)α, µα(0) = 1. (3.3)

For projectively rigid matroids M one can always reduce any deformation to such

a form.

Let ξα = ẋα(0). We are going to derive the conditions on ξα, which can be

considered as linearised ∨-conditions for such deformations.

Let

Gt(x, y) := GA(t)(x, y) =
∑
α∈A

αt(x)αt(y)

with G0 = G = GA(t) and consider its derivative

Ġt(x, y) =
∑
α∈A

α̇t(x)αt(y) +
∑
α∈A

αt(x)α̇t(y),

which at t = 0 gives Ġ0(x, y) = 2X, where

X =
∑
α∈A

ξαα(x)α(y).

Consider now the ∨-conditions.

For any two-dimensional plane containing only 2 covectors we have

Gt(α
∨
t , β

∨
t ) = 0.

Differentiating it in t we have

Ġt(α
∨
t , β

∨
t ) +G(α̇∨t , β

∨
t ) +G(α∨, β̇∨t ) = 0, (3.4)

where here and below by α̇∨t we mean d
dt

(α∨t ).
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To find G(α̇∨t , β
∨
t ) note that by definition of α∨t Gt(α

∨
t , v) = αt(v) for any fixed

vector v ∈ V. Differentiating this with respect to t we have

Ġt(α
∨
t , v) +Gt(α̇

∨
t , v) = α̇(v)

which for t = 0 gives

2X(α∨t , v) +G(α̇∨t , v) = ξαα(v).

Thus we have

G(α̇∨0 , v) = ξαα(v)− 2X(α∨, v).

and thus

G(α̇∨0 , β
∨) = ξαα(β∨)− 2X(α∨, β∨) = −2X(α∨, β∨)

since α(β∨) = G(α∨, β∨) = 0 by the ∨-conditions.

Substituting this into (3.4) we have the first linearised ∨-condition: for α, β be

the only two covectors in a plane Π we have

X(α∨, β∨) = 0. (3.5)

Let now Π be a two-dimensional plane containing more than two covectors from

A (and hence from At). Then from the ∨-conditions there exists ν = ν(Π) ∈ R
such that for any α ∈ Π ∩ A, v ∈ V we have

GΠ(α∨, v) = νG(α∨, v), (3.6)

where GΠ(x, y) = GΠ
A(x, y) =

∑
α∈Π∩A α(x)α(y) (see [15]). Now assuming that A

depends on t as above and differentiating with respect to t at t = 0 we have as

before

ĠΠ(α∨, β∨) +GΠ(α̇∨, β∨) +GΠ(α∨, β̇∨) = ν̇G(α∨, β∨)

+νĠ(α∨, β∨) + νG(α̇∨, β∨) + νG(α∨, β̇∨).

But from ∨-conditions we have
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GΠ(α̇∨, β∨) = νG(α̇∨, β∨)

and

GΠ(α∨, β̇∨) = νG(α∨, β̇∨).

Since ĠΠ = 2XΠ, where

XΠ(x, y) =
∑

α∈Π∩A

ξαα(x)α(y),

we have

2XΠ(α∨, β∨) = ν̇G(α∨, β∨) + 2νX(α∨, β∨),

or, eventually

2(XΠ − νX)(α∨, β∨) = ν̇G(α∨, β∨). (3.7)

Since this is true for all α, β ∈ Π ∩ A we have the second linearised ∨-condition:

for any plane Π containing more than 2 covectors from A we have

XΠ − νX ∼ G |Π∨ , (3.8)

where the sign ∼ means proportionality.

Thus we have proved

Theorem 3.3. The deformations of ∨-systems of the form (3.3) are described by

the linear ∨-conditions (3.5), (3.8).

Case by case check of the ∨-systems from the Appendix leads to the following

Theorem 3.4. All rank 3 vector matroids corresponding to known irreducible 3D

∨-systems are projectively rigid. The H3 matroid is the only one, which is not

strongly projectively rigid.

A direct computation shows that in case of the classical systems A3 and B3 the

linear system (3.4),(3.7) has corank 4 in agreement with the results of the previous

section.

The analysis of the linearised ∨-conditions for the families D3(t, s), F3(t), G3(t)

and (AB4(t), A1)1,2 shows that these families of ∨-systems can not be extended.
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Consider, for example, the family of ∨-systems D3(t, s) from [15] with

A =


1 1 1 1 0 0

√
2
√
s+ t− 1

1 −1 −1 1
√

2
√

s−t+1
t

0 0

1 −1 1 −1 0
√

2
√
−s+t+1

s
0


with real parameters s, t such that |s− t| < 1, s+ t > 1. Matrices G and X have

the form

G =


2(s+ t+ 1) 0 0

0 2(s+t+1)
t

0

0 0 2(s+t+1)
s



X =


ξ1 + ξ2 + ξ3 + ξ4 + 2ξ7(s+ t− 1) ξ1 − ξ2 − ξ3 + ξ4 ξ1 − ξ2 + ξ3 − ξ4

ξ1 − ξ2 − ξ3 + ξ4 ξ1 + ξ2 + ξ3 + ξ4 + 2(s+1)
t

ξ5 − 2ξ5 ξ1 + ξ2 − ξ3 − ξ4

ξ1 − ξ2 + ξ3 − ξ4 ξ1 + ξ2 − ξ3 − ξ4 ξ1 + ξ2 + ξ3 + ξ4 + 2(−s+t+1)
s

ξ6



For the three covectors α5, α6, α7 the first linearised ∨-conditions

∨-conditions X(α∨i , α
∨
j ) = 0, i, j = 5, 6, 7

are equivalent to

ξ1 + ξ2 − ξ3 − ξ4 = 0,

ξ1 − ξ2 − ξ3 + ξ4 = 0,

ξ1 − ξ2 + ξ3 − ξ4 = 0,

which imply that ξ1 = ξ2 = ξ3 = ξ4.

For the planes with more than two covectors we have the linear system

(s+t)(ξ1(s+t+1)+ξ2(s+t−3)+t(ξ3(2s+3)+ξ4(2s−1)−2(s(ξ5 +ξ6)+ξ5 +ξ7))

+ t2(−(ξ3 + ξ4 − 2ξ5))− s(s(ξ3 + ξ4 − 2ξ6) + ξ3 − 3ξ4 + 2(ξ6 + ξ7)) + 2ξ7) = 0,

(s+ t)((s− 1)(ξ2 − ξ7 + s(ξ6 − ξ4)) + t(ξ2 + ξ3 − ξ5 − ξ7 + s(ξ3 + ξ4 − ξ5 − ξ6))

+ t2(−ξ3 + ξ5)) = 0,
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(s+ 1)t(s(ξ1− ξ2 + ξ3 + 3ξ4−2(ξ5 + ξ6)) + ξ1 + 3ξ2 + ξ3− ξ4−2(ξ5 + ξ7)) + (s+ 1)

t2(ξ1 − 3ξ3 + 2ξ5) + (s2 − 1)(−ξ2(s− 1)− ξ4(s− 1) + 2ξ6s− 2ξ7) = 0,

(s+ 1)t(ξ2 + s(ξ3 + ξ4 − ξ5 − ξ6) + ξ3 − ξ5 − ξ7) + (s2 − 1)(ξ2 + s(ξ6 − ξ4)− ξ7)

+ (s+ 1)t2(−(ξ3 − ξ5)) = 0,

(t+ 1)(−t(s(ξ1 + ξ4− 2(ξ5 + ξ6)) + ξ3(3s+ 2)− 2(ξ5 + ξ7)) + s(−s(ξ1 + 2ξ6) + ξ3

+ξ4(3s−1)+2(ξ6 +ξ7))−ξ1s+ξ2s(t−3)+(t−1)2)+ t2(ξ3−2ξ5)+ξ3−2ξ7 = 0,

(t+ 1)(t(ξ2 + s(ξ3 + ξ4 − ξ5 − ξ6) + ξ3 − ξ5 − ξ7) + (s− 1)(ξ2 + s(ξ6 − ξ4)

− ξ7) + t2(ξ5 − ξ3) = 0,

(t+ 1)(ξ1(s(t− 3) + (t− 1)2)− t(s(ξ2 + ξ3− 2(ξ5 + ξ6)) + ξ4(3s+ 2)− 2(ξ5 + ξ7))

− s(s(ξ2 − 3ξ3 + 2ξ6) + ξ2 + ξ3 − ξ4 − 2(ξ6 + ξ7)) + t2(ξ4 − 2ξ5) + ξ4 − 2ξ7) = 0,

(t+ 1)(t(ξ1 + s(ξ3 + ξ4 − ξ5 − ξ6) + ξ4 − ξ5 − ξ7) + (s− 1)(ξ1 + s(ξ6 − ξ3)

− ξ7) + t2(ξ5 − ξ4)) = 0,

(s+ 1)t(ξ1(s− 3)− s(ξ2 + 3ξ3 + ξ4 − 2(ξ5 + ξ6))− ξ2 + ξ3 − ξ4 + 2(ξ5 + ξ7))

+
(
s2 − 1

)
(ξ1(s− 1) + ξ3(s− 1)− 2ξ6s+ 2ξ7) + (s+ 1)t2(−(ξ2− 3ξ4 + 2ξ5)) = 0,

(s+ 1)t(ξ1 + s(ξ3 + ξ4 − ξ5 − ξ6) + ξ4 − ξ5 − ξ7) + (s2 − 1)(ξ1 + s(ξ6 − ξ3)

− ξ7) + (s+ 1)t2(−(ξ4 − ξ5)) = 0,

(s+ t)(t(ξ1(2s+3)+ ξ2(2s−1)+ ξ4−2(s(ξ5 + ξ6)+ ξ5 + ξ7))+s(−s(ξ1 + ξ2−2ξ6)

+ξ4−2(ξ6 +ξ7))+ t2(−(ξ1 +ξ2−2ξ5))−ξ1s+3ξ2s+ξ3(s+ t+1)−3ξ4 +2ξ7) = 0,
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(s+ t)(t(s(ξ1 + ξ2− ξ5− ξ6) + ξ1 + ξ4− ξ5− ξ7) + t2(ξ5− ξ1) + (s− 1)(s(ξ6− ξ2)

+ ξ4 − ξ7)) = 0.

A check with Mathematica shows that the co-rank of the total system is 3 for

every admissible values of s and t. The free parameters correspond to the two

deformation parameters s and t and the uniform scaling of the system.

This approach with the use of Mathematica allows us to prove that the isolated

examples of ∨-systems from the list [15] are indeed isolated.

Theorem 3.5. [39] There are no non-trivial deformations of the ∨-systems (E7, A
2
1×

A2), (E8, A2 × A3), (E8, A
2
2 × A1), (E8, A

3
1 × A2), (E8, A

2
1 × A3), (E8, A1 × A4),

(H4, A1) and H3.

3.3 ν-function, uniqueness and rigidity conjec-

tures

Let M be a matroid and A be its ∨-system realisation. Such realisation defines

the ν-function on the 2-flats of M , where ν is the coefficient in the ∨-conditions

(3.6) corresponding to the plane Π representing the flat.

Conjecture 3.6. (Uniqueness Conjecture) An irreducible ∨-system A is uniquely

determined by its matroid M and the corresponding ν-function on its flats modulo

linear group GL(V ∗).

A weaker version of the conjecture is

Conjecture 3.7. (Rigidity Conjecture) An irreducible ∨-system A is locally

uniquely determined by its matroid M and the corresponding ν-function on its

flats.

If the function ν is fixed under deformation then ν̇ = 0 and the corresponding

∨-conditions are

X(α∨, β∨) = 0 (3.9)

for α, β be the only two covectors in the plane, and

XΠ − νX = 0 |Π∨ (3.10)
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for any plane Π containing more than 2 covectors from A.

Conjecturally this should imply that X = cG corresponding to the global scaling

of the system.

Case by case check from the list in the Appendix leads to the following

Theorem 3.8. Both conjectures are true for all known ∨-systems in dimension

3.

Now we present some results about ν-functions for ∨-systems.

First we give the following, more direct geometric way to compute ν(Π). The form

GA on V defines the scalar product on V ∗ and thus the norm |α|, α ∈ V ∗.

Theorem 3.9. For every plane Π ⊂ V ∗ containing more than two covectors α

from a ∨-system A
ν(Π) =

1

2

∑
α∈Π∩A

|α|2. (3.11)

Proof. From the ∨-conditions (1) we have

∑
α∈Π∩A

α∨ ⊗ α |Π∨= ν(Π)I |Π∨ .

Taking the trace of both sides gives (3.11).

Let A ⊂ V ∗ be a ∨-system generating V ∗ and consider the set FA of 2-flats in the

corresponding matroid, which the same as the set of 2D planes Π ⊂ V ∗ containing

more than 2 covectors from A.

We say that the set of weights xΠ, Π ∈ FA is admissible if for each α ∈ A

∑
Π∈FA:α∈Π

xΠ = 1. (3.12)

Theorem 3.10. For every admissible set of weights we have

∑
Π∈FA

xΠν(Π) =
n

2
, (3.13)

where n is the dimension of V.
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Proof. We have

∑
β∈A

β∨ ⊗ β =
∑
β∈A

(
∑

Π∈FA:β∈Π

xΠ)β∨ ⊗ β =
∑

Π∈FA

xΠ

∑
β∈Π∩A

β∨ ⊗ β.

From the ∨-condition ∑
β∈Π∩A

β∨ ⊗ β = ν(Π)PΠ,

where PΠ is the orthogonal projector onto Π∨. Taking trace and using the fact

that
∑

β∈A β
∨ ⊗ β = Id we obtain (3.13).

We call (3.13) the universal relation for values of function ν.

For the ∨-system of type A3 the universal relation completely describes the set of

all possible functions ν. Indeed, one can easily see from Fig. 2 that xΠ = 1/2 is

the only admissible weight system, which leads to the universal relation

∑
Π∈FA

ν(Π) = 3.

This gives us 3 free parameters, which are exactly 3 parameters of deformation.

However, in general universal relations are not strong enough to describe possible

ν-functions. Moreover, a ∨-system A may not have admissible weights xΠ at all.

For instance, this is the case for the ∨-system of D3(t)-type (this is however the

only case among known 3D ∨-systems).

In the Appendix we give the list of all known 3D ∨-systems together with the

corresponding matroids and ν-functions.

3.4 Matroidal structure of ∨-systems

The main part of the classification problem is to characterise the corresponding

class of possible matroids. This question was addressed by Lechtenfeld et al in

[26]. One of the authors of [26] (K. Schwertfeger) had developed a Mathematica

program [41], which generates simple and connected matroids of a given size of the

ground setX. If a generated matroid has a vector representation they have checked

first if the orthogonality ∨-conditions are possible to satisfy before verification of

the ∨-conditions for the non-trivial planes (all 2-flats).
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For matroids with n < 10 elements the orthogonality conditions turned out to be

strong enough to identify all matroids corresponding to ∨-systems in dimensions

3. All the corresponding ∨-systems appeared in the Feigin-Veselov list [14].

However, for n = 10 the program generated a simple, connected matroid which is

realisable with respect to the orthogonality ∨-conditions, but does not give rise to

a ∨-system. This result shows that a more conceptual approach is needed. In this

section we collect some observations which could be useful in this context.

Figure 3.1: An example (given in [26]) of a 10-element matroid admitting a
covector representation with respect to the orthogonality ∨-conditions, which
is not ∨-realisable. The matroid has an (additional) orthogonality inside the

plane spanned by 4 covectors.

3.4.1 Extensions and degenerations of ∨-systems

Let A1,A2 ⊂ V∗ be two ∨-systems. If A2 ⊂ A1 we call A1 an extension of A2.

Let ∨-system A = A(t) depend on the parameter t. Assume that for some t = t0

one or a set of the covectors α ∈ At0 vanishes. In that case the system Ã = lim
t→t0
A(t)

is called a degeneration of A(t). A reverse process we will call a regeneration.

By the regeneration and extension we can get many ∨-systems starting from A3.

In the tables below we give the list of all degenerations and extensions for known 3-

dimensional ∨-systems. In the language of the theory of matroids both operations

generate a minor of a given matroid [36]. Many families of matroids have been

proved to be closed under taking minors. The purpose of the lists below is to

provide some information for further investigations in favour of related results for

the class of ∨-realisable matroids.
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∨-system Degeneration The vanishing covectors

(F3(t))1 lim
t→0

(F3(t))1 ∼ B3(
√

2) {11, 12, 13, 14}

(F3(t))2 lim
t→0

(F3(t))2 ∼ P {8, 9, 10, 11, 12, 13}

B3(c, c, c; γ) lim
γ→c

B3(c, c, c; γ) ∼ A3 {1, 2, 3}

(AB4(t), A1)2 lim
t→∞

(AB4(t), A1)2 ∼ P {5, 7, 9}

(AB4(t), A1)2 lim
t→0

(AB4(t), A1)2 ∼ B3(
√

2) {10}

(AB4(t), A1)1 lim
t→ 1√

2

(AB4(t), A1)1 ∼ (E6, A
3
1) {3}

1
t
(AB4(t), A1)1 lim

t→∞
(AB4(t), A1)1 ∼ B3(

√
2) {5, 6}

G3(t) lim
t→ 1

2

G3(t) ∼ (E6, A
3
1) {4, 5, 6}

D3(t, s) lim
t→ (s+1)

D3(t, s) ∼ A3 {5}

B3(c1, c2, c3, γ) lim
c1→ (−γ)

B3(c1, c2, c3, γ) ∼ (E6, A3) {1}

B3(c1, c2, c3, γ) lim
c1,c2→ (−γ)

B3(c1, c2, c3, γ) ∼ P {1, 2}

Table of degenerations of known 3D ∨-systems.

The case of the matroid of the ∨-system F3 is particularly interesting. Due to

the existence of two different realisations, the underlying matroid admits a de-

composition into two smaller matroids of D3 (or, equivalently, of P -type) and B3

type.

11

9
12

1

5
2

4

6 7

10
8 13

3

10 2 11

1

12

3
13

Figure 3.2: Decomposition of the matroid F3 into the B3 matroid (black) and
the matroid P (blue). The graphic on the right shows the matroid P contained

in F3 in a more symmetrical form.

Removing a suitable set of covectors leads to another ∨-system in the following

cases.
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∨-system Extension The added covectors

A3 (F3(t))1 {1, 2, 3, 10, 11, 12, 13}
A3 (AB4(t), A1)2 {1, 2, 3, 10}

(E6, A
3
1) (E8, A

3
1 × A2) {3, 4, 5, 6, 9, 14, 15, 16, 17}

G3(3
2
) (E8, A

3
1 × A2) {1, 2, 10, 11, 12, 13}

H3 (H4, A1) {4, 5, 6, 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Table of extensions of known 3D ∨-systems.

Analysis of the list of extensions of ∨-systems from the previous section leads to

the following

Conjecture 3.11. (Extension Conjecture) For any irreducible ∨-system and

its extension the values of the ν-functions on the corresponding flats are propor-

tional.

One can check that this is true for all known cases. For example, for the extension

H3 ⊂ (H4, A1) we have the set of values

{3/10, 1/2} = 3× {1/10, 1/6}.

3.4.2 ∨-systems and harmonic bundles with two orthogo-

nals

It is natural to study vector matroids using the corresponding cross-ratios of their

projective realisation. A partricular case of this approach is demonstrated in [54],

where projective types of a certain class of matroids were studied in relation to

a generalised version of the cross ratio defined for quadrituples of subspaces of a

given matroid. Here we consider the simplest case, namely the usual cross-ratio

for the 2-flats with precisely 4 covectors.

Recall that 4 points A,B,C,D on a projective line form a harmonic range if the

cross-ratio (A,B;C,D) = −1. The corresponding pencil of 4 lines on a plane

is called harmonic bundle. The B3 configuration provides a geometric way to

construct harmonic ranges: on Fig. 2.2 the points 3,4,9,8 always form a harmonic

range. Note that the covectors 8 and 9 are orthogonal and determine the bisectors

for the lines corresponding to covectors 3 and 4.
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To verify this we consider a set of collinear points {A,B,C,D} ⊂ R3 such that

the line bundle {OA,OB,OC,OD} is harmonic:

CA

CB
= −DA

DB
.

Let α denote the angle between the lines OB and OC, let α∗ be the angle between

the lines OA and OC, β - the angle between OD and OB and let β∗ be the angle

between OA and OD respectively (See Fig. 3.3).

O

C A DB

α
β

β*α*

Figure 3.3: A harmonic bundle of lines with two orthogonals.

The cross-ratio (A,B,C,D) is the ratio of the sines of the angles between the lines

as the following calculation shows.

DA

DB
:
CA

CB
=
DA

CA

CB

DB
=
DO · sin(β∗)

OC · sin(α∗)
· OC · sin(α)

DO · sin(β)
=

sin(α)

sin(α∗)
:
sin(β)

sin(β∗)
.

Assume that the lines DO and CO are orthogonal. Then we have

α + β = α∗ + β∗ =
π

2

It follows that sin(α) = cos(β) and also sin(α∗) = cos(β∗). Hence we obtain

sin(α)

sin(α∗)
:
sin(β)

sin(β∗)
=

cos(β)

cos(β∗)
:
sin(β)

sin(β∗)
.

But this means that

cot(β) = −cot(β∗).

Therefore, cos(β−β∗) = 0 and β = β̃. The lines DO and CO are indeed bisectors

of the lines AO and BO.
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Case by case check of the known 3D ∨-systems suggests that the same is true in

general.

Conjecture 3.12. Let A be a ∨-system and ΠA ⊂ V ∗ be two-dimensional plane

containing exactly four covectors αi ∈ A, i = 1, . . . , 4, then the corresponding lines

form a harmonic bundle with a pair of orthogonal covectors.

3.4.3 ∨-systems and matroid duality

An important and powerful concept in projective geometry is the duality princi-

ple. In particular, all theorems occur in dual pairs. The cases involving self-dual

configurations build an exception giving rise to identical statements. In this sub-

section we demonstrate that the duality between points and lines on the projective

plane can be used to produce new ∨-realisable matroids.

We start with the smallest configuration (6243) corresponding to the ∨-system

type A3. This is a complete quadrilateral. It consists of 4 lines, no 3 of which

pass through the same point and 6 points of intersection. Its projective dual is a

complete quadrangle (4362) consisting of 4 points, no three of which are collinear

and 6 lines connecting each pair of points (see Fig. 3.4). In the next step we extend

the dual configuration (4362) by adding the remaining three points of intersections

of lines (the points marked white in the graphic).

dual

Figure 3.4: The projective configuration (6243), its dual (4362) and the
extended configuration containing points of intersection of each pair of lines.

Recall that the configuration (6243) corresponds to a ∨-realisable matroid. For

any ∨-system A3 the three orthogonal pairs of vector correspond to the three

pairs of points in (6243), which are not connected by a line. In the dual picture

they correspond to the pairs of lines with no common point. Adding exactly those
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points is therefore equivalent to adding three lines connecting the three pairs of

”orthogonal” vectors (points) in the first picture (left).

The resulting matroid on 7 points and 6 lines is a ∨-realisable matroid of D3(t, s)-

type.

dual

Figure 3.5: Graphical representation of the D3 matroid, its projective
dual on 7 lines and 6 points and the extended configuration containing

all points of intersection of lines.

We proceed the construction by taking the dual of the new obtained configuration

and extending it by adding the missing points of intersections of lines. The result

is the configuration on 9 points and 7 lines realisable as B3 ∨-system (see Fig.

3.5).

The next step of the construction is demonstrated in Fig. 3.6. The dual configu-

ration was obtained from the configuration D3 by adding all missing lines passing

through any pair of points. Consider the red and the blue triangles. Taking the

point 1 as the center of prospectivity it follows from Desargue’s theorem that the

white marked points of the extended configuration are collinear. The obtained

configuration is realisable as the ∨-system (AB4(t), A1)2.
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1

Figure 3.6: Graphical representation of the B3-matroid and its projective dual
on 9 lines and 7 points. The extended configuration contains three additional
(white) points. Due to Desargue’s theorem of the projective geometry the three

white points are collinear.

The list [14] contains a second ∨-system consisting of 10 covectors, which we

don’t obtain from our construction method, namely the system (E6, A
3
1). As a

projective configuration (E6, A
3
1) is self-dual and contains a special case of the

Pappus configuration (93) (see Fig. 3.7).

Figure 3.7: Graphical representation of the self-dual configuration
corresponding to the ∨-system (E6, A

3
1).

We can conclude that projective duality can be used in order to generate suitable

candidates for ∨-realisable matroids. However, not all ∨-realisable matroids can

be build up by the described method starting from the matroid of type A3.
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Chapter 4

Buffon transformation

4.1 Buffon transformation for polygons.

The following construction, to which we will refer to as the Buffon procedure, was

previously studied, for example, in [50, 51, 52]. Consider an arbitrary n-gon P

with vertices described by the column vector

r = [r1, r2, . . . , rn] , ri ∈ R3

(and an integer n ≥ 3) and generate a second polygon P
′

by joining the centres of

the consecutive edges of P . The corresponding transformation acts on the vertices

of P as follows:

r
′

i =
1

2
(ri + ri+1).

In the matrix form this can be described as

r
′
= Br

where

B =


1
2

1
2

0 . . . 0

0 1
2

1
2

. . . 0
...

...
...

...
...

1
2

0 0 . . . 1
2
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After k transformations we obtain a polygon with the vertices

rk = Bkr.

Recall that a polygon is affine regular if it is affine equivalent to a regular poly-

gon. For example, all triangles are affine-regular. Parallelograms are the only

affine images of a square are. But not all 2N -sided polygons with pairwise equal

and parallel sides are affine regular. This follows from the fact that an affine

transformation in the plane (modulo translation) is defined by four parameters.

In forming such polygons, however, there are more degrees of freedom. On the

other hand, an 2N -sided affine-regular polygon has necessarily parallel and equal

opposite sides.

Following Buffon we claim that for generic initial polygons P the limiting shape

of the polygons P k as k increases becomes affine regular.

To prove this we will use the following result from from Linear Algebra (see e.g.

Theorems 5.1.1, 5.1.2 in [53]).

Theorem 4.1. (Subspace Iteration Theorem) Let A be a real n × n matrix

and let Spec(A) = {λ1, λ2, . . . , λn} be the set of its eigenvalues (in general, complex

and with multiplicities) ordered in such a way that

| λ1 |=| λ2 |= . . . =| λk |>| λk+1 |≥ . . . ≥| λn | .

Let W and W ′ be the dominant and complementary invariant subspaces associated

with λ1, . . . , λk and λk+1, . . . , λn respectively and m = dimW. Then for any m-

dimensional subspace U ⊂ Rn such that U ∩W ′ = {0} the image of U under the

iterations of A

An(U) →
n→∞

W

turns to the dominant subspace in the Grassmannian Gm(Rn).

To apply this to our case first note that

B =
1

2
(I + T ),
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where the n× n matrix

T =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

1 0 0 . . . 0


has the property T n = I and the eigenvalues being n-th roots of unity. The

spectrum of B is therefore

Spec(B) = {1

2
+

1

2
εj, εj = e

2πi
n
j, j = 0, 1, . . . n− 1}.

The eigenvalues of maximum modulus, other than λ0 = 1, are λ1 = 1
2

+ 1
2
e

2πi
n and

its complex conjugate λ2 = 1
2

+ 1
2
e−

2πi
n = λ1.

The dominant subspace W in this case corresponds to λ0 = 1 and is generated by

the corresponding eigenvector v0 = (1, 1, . . . , 1):

W = {(r, r, . . . , r)}.

The previous result can be interpreted that as n increases Bn(P ) converges to

a point. To see the limiting shape we should look at the subdominant invariant

subspace corresponding to λ1 and λ2.

Geometrically one can do this by assuming that the centroid of the vertices is at

the origin (centre of mass condition). This means that we restrict the action of B

on the invariant subspace

VC = {(r1, . . . , rn) : r1 + · · ·+ rn = 0.}

This eliminates the eigenvalue λ0 = 1 and the new dominant subspace W corre-

sponding to λ1 = 1
2

+ 1
2
ε, λ2 = λ1 is precisely the one describing the limiting shape.

One can easily check that

W =<



1

ε

ε2

.

.

εn−1


,



1

ε

ε2

.

.

εn−1


>= {a



1

cos2π
n

cos4π
n

.

.

.


+ b



0

sin2π
n

sin4π
n

.

.

.


}
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Choosing a and b to be orthogonal unit vectors we see that the corresponding

vertices form a regular polygon. In general, the dominant subspace W describe

all affine regular polygons. The other eigenspaces correspond to the affine regular

”polygrams”.

For example, when n = 5 we have the eigenvalues

λ1 =
1

2
+

1

2
e

2πi
n , λ2 = λ1, λ3 =

1

2
+

1

2
e

4πi
5 , λ4 = λ3

and the corresponding eigenspaces

W = {a



1

cos2π
5

cos4π
5

cos6π
5

cos8π
5


+ b



0

sin2π
5

sin4π
5

sin6π
5

sin8π
5


}, W

′
= {a



1

cos4π
5

cos8π
5

cos2π
5

cos6π
5


+ b



0

sin4π
5

sin8π
5

sin2π
5

sin6π
5


}

describing the affine regular pentagons and pentagrams respectively:

In the next section we will introduce the generalisation of the Buffon procedure

for polyhedra. It will be important for us to distinguish between a geometric

representation and the purely combinatorial structure of a given object. In case

of polygons this translates as follows [see e.g. [18] ]:

A combinatorial (or abstract) n-gon is a (simple) circuit C of n (distinct) vertices

and n edges.

A geometric n-gon (or polygon for short) is an image of an abstract n-gon in a

plane, such that the vertices of C are mapped onto points and edges of C onto

segments with appropriate points as endpoints.
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Our result can therefore be reformulated as follows:

Theorem 4.2. The Buffon procedure gives a unique affine regular representative

for each abstract n-gon.

Note that one can modify the described procedure by choosing the centroid of

centroids of the incident edges as the vertices of the new polygon, which will lead

to the same result.

4.2 Buffon transformation for polyhedra

Motivated by the regularisation effect of the Buffon procedure observed for poly-

gons we study its natural analogon for 3-dimensional polytopes and introduce

representatives of simplicial convex polyhedra of a given simplicial combinatorial

type. We will refer to these representatives as affine B-regular polyhedra.

A polytope can be defined as a subset P ⊆ Rd admitting a presentation as the

convex hull of a finite set X = {x1, . . . , xn} of points in Rd:

P = conv(X) := {
n∑
i=1

λix
i | λi ≥ 0,

n∑
i=1

λi = 1}.

Equivalently, P ⊆ Rd is a polytope if it is a bounded solution set of a finite system

of linear inequalities:

P = P (A, b) := {x ∈ Rd | aTi x ≤ bi for 1 ≤ i ≤ m},

where A ∈ Rm×d is a real matrix with rows aTi , and b ∈ Rm is a real vector with

entries bi. A solution is said to be bounded if there is a constant N such that

‖ x ‖≤ N holds for all x ∈ P [56].

The equivalence of both definitions is sometimes referred to as the Main Theorem

of Polytope Theory [56]. A d-polytope is a d-dimensional polytope, referring to

the dimension of its affine hull. 3-polytopes are also called polyhedra.

For our purpose it will be convenient to approach the theory of polyhedra from the

graph-theoretical point of view. In this section we will recall some basic notions

of graphs and their relation with polyhedra (for details, we refer to [8, 18]).
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A graph Γ = (V , E) consists of a finite set V (vertices), together with a subset

E ⊆ V×V (edges). A geometric realisation of Γ is the image of Γ under a mapping

in which the vertices are mapped to points in the Euclidean space, and the edges

are mapped to segments with appropriate endpoints. We will call a geometric

realisation P of Γ polyhedral if P is a realisation of Γ in Euclidean 3-space, and all

simple circuits (circuits with no repeated vertices) of Γ are mapped to polygons.

For every polyhedron P one can consider the 1-skeleton Γ(P ), which is the graph

formed by the vertices and edges of P. More general, the k-skeleton of a d-polytope

P is the polyhedral complex generated by all k-faces of P . The d-skeleton is just

P itself. This terminology is useful in order to distinguish between the combina-

torial structure of a polytope, and the geometric realisations of this combinatorial

structure.

In general, a graph realisation problem is concerned with determining positions

of the nodes of a given graph in Rd under consideration of some additional con-

strains. Combinatorial types of polytopes are defined as their equivalence classes

under combinatorial equivalence. Two polytopes P and P ′ are combinatorially

isomorphic if their sets of all faces (face lattices) are isomorphic as abstract (un-

labeled) partially ordered sets. The set of all realisations of a combinatorial

polyhedral type is formalised by the concept of the realisation space of a polytope.

The question of construction of geometric representations of graphs goes back to

Paul Erdös. For an extensive investigation on a variety of geometric realisations

of graphs, such as metric embeddings, unit distance graphs and orthogonal repre-

sentations, we refer to [8] and also [28].

We will assume that the graph Γ has no loops [i, i], i ∈ V and is undirected, which

means that for each edge [i, j] ∈ E we also have [j, i] ∈ E .

We say that the vertices i and j are adjacent and write i ∼ j if there is an edge

[i, j] ∈ E connecting them. The degree di of a vertex i is the number of the adjacent

vertices. A graph is called regular when every graph vertex has the same degree.

A graph is connected when there is a path between any two vertices. A graph is

called 3-connected if for every pair of vertices i and j there are at least three paths

from i to j, whose only vertices in common are i and j.

A graph is called planar if an isomorphic copy of the graph can be drawn in a

plane, such that the edges which join the vertices only meet (intersect) at vertices.
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Figure 4.1: the planar tetrahedral graph K4 and the non-planar Petersen
graph.

One of the oldest results in polytope theory is a remarkable theorem by Ernst

Steinitz. It is often referred to as the Steinitz’ fundamental theorem of convex types

and gives a completely combinatorial characterization of the graphs Γ, which can

be realised as 1-skeletons of 3-dimensional polytopes (see [18]).

Theorem 4.3. (Steinitz, 1922) A graph Γ is isomorphic to the 1-skeleton of a

3-dimensional convex polyhedron P if and only if Γ is planar and 3-connected.

Figure 4.2: The graph on the left is isomorphic to the 1-skeleton of the cube.
According to Steinitz’ Theorem there is a bijection between planar 3-connected

graphs and 3-polytopes.

For any 3-polytope one can consider the abstract graph whose nodes are the ver-

tices of the polytope, and whose arcs are given by the edges of the polytope. A

radial projection of the polytope boundary (and thus of the vertices and edges)

onto a sphere that contains the polytope, and a stereographic projection to the

plane produces a straight-edge drawing of this graph in the plane demonstrating

its planarity. From Mengers characterization of a d-connected graph as a graph

that cannot be disconnected by removing or blocking less than d of its vertices

follows that the graph of any 3-polytope is 3-connected [56].

The non-trivial part of Steinitz’ theorem is the problem of producing a convex

3-polytope with a prescribed 1-skeleton starting from combinatorial data of an

abstract planar graph.
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The proof given by Steinitz has an inductive character. It uses a combinatorial

local reduction technique. For instance, removing an edge [i, j] ∈ E from the graph

Γ, such that if an endpoint of [i, j] is 3-valent, the remaining two edges ”collapse”

into a single edge, reduces Γ into a simpler graph. That this reduction operation

is admissible follows from the following fact (see [18]).

Lemma 4.4. Every 3-connected planar graph Γ with more than six edges has an

edge [i, j] ∈ E such that if [i, j] is deleted from the graph, the resulting smaller

graph Γ
′

is still 3-connected (and planar).

Repeated reductions yield a sequence of transformations of Γ into simpler graphs

leading to the tetrahedral graph K4.

Reversing the order of these operations starting with the graph K4 (and its polyhe-

dral realisation as a simplex) and building up a sequence of polytopes one obtains

a polyhedral realisation of the original graph Γ. The reversed procedure is based

on the following result (see [18]).

Lemma 4.5. Given a 3-connected planar graph Γ and any edge [i, j] ∈ E(Γ), it

is possible to arrange the elements of the set which consists of all vertices and all

faces of Γ into such a list that the two vertices and two faces of Γ incident with

[i, j] are the first four elements, and that each element in the list is incident with

at most three elements that precede it in the list.

It follows from the lemma that starting with a polyhedral realisation P
′

of a

reduced graph Γ
′

an edge [i, j] ∈ E(Γ
′
) can be drawn as a chord on a face of

P
′
. Suitable choices for other vertices and faces will then allow to construct a

polyhedral realisation P of Γ in which [i, j] will become an edge of P .

There exist different proofs of Steinitz’ theorem. The so-called Koebe-Thurston

type proof leads to the famous Koebe-Andreev-Thurston circle packing theorem

and the existence result of geometric realisations of 3-polytopes with all edges

tangent to the sphere. Another interesting result motivated by Steinitz’ theorem

is Peter Mani’s theorem dealing with the relationship between the automorphism

groups of planar 3-connected graphs and the symmetry of their polyhedral reali-

sations [30].

Let P be a polyhedron in R3 with vertices r1, . . . , rn. There are two natural ways

to introduce the Buffon transformation B(P ). The first one is to define B(P ) as
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a new polyhedron with the vertices being the centroids of midpoints of all edges,

which meet at a vertex [50, 52]:

B(ri) =
∑
j∼i

1

2di
(ri + rj), (4.1)

where di is the degree of the vertex ri. For simplicial P the polyhedron B(P ) is

well-defined, even if P is not convex.

The linear Buffon operator B : F(V)→ F(V), where F(V) is the vector space of

functions on the vertices of the graph Γ = Γ(P ) is defined by the same formula:

B(f)(i) =
∑
j∼i

1

2di
(f(i) + f(j)), f ∈ F(V). (4.2)

Figure 4.3: The vertex a connects together da edges. Thus the
row Ba of the Buffon transformation matrix has the form [B]a =

[· · · , 1
2da

, 0, 0, · · · , 1
2 , 0, · · · ,

1
2da

, · · · ].

Alternatively, one can define the Buffon transformation by taking the centroids

of the centroids of all the faces meeting at a vertex [50],[52]. We denote this

transformation by BF .

Recall that the polyhedron P is called simplicial if it contains only triangular

faces. Via Steinitz’s theorem simplicial polyhedra correspond to maximal planar

graphs. A graph is called maximal planar if it is planar and if adding any edge

on the given vertex set destroys the planarity property. For simplicial polyhedra

P we have the following simple relation for the corresponding Buffon operators

BF =
4

3
B − 1

3
I,

which means that the result of the Buffon procedure will be the same.
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Figure 4.4: The geometry of polyhedra with triangular faces is the same using
faces or edges generated Buffon transformation.

In general, the operator B is not symmetric. It can, however, as we will see later,

be symmetrised.

We ask the same question as in case of polygons: What is the limiting shape of

Bn(P ) when n goes to infinity? Figure 4.5 shows the effect of applying the Buffon

transformation B to a polyhedron P whose vertex-edge-structure is isomorphic to

the 1-skeleton of a cube. As we can observe the Buffon transformation breaks the

faces of P already at the first step.

Figure 4.5: The effect of the Buffon transformation on a polyhedron with
combinatorial structure isomorphic to the cubical graph. B(P ) has non-planar

faces.

By the same arguments using the Subspace Iteration Theorem the limiting shape

of Bn(P ) is given by the subdominant eigenspace of the corresponding Buffon

operator B. In general it is one-dimensional, which means that the limiting shape

is one-dimensional. However, as we will see, under the additional assumption of

symmetry and simpliciality the limiting shape is three-dimensional. More precisely

we obtain the following result.

Let G be one of the symmetry groups G = T,O, I of the Platonic solids: tetrahe-

dron, octahedron/cube, icosahedron/dodecahedron respectively. Assume that the

combinatorial structure of the initial polyhedron P is G-invariant, which means

that G faithfully acts on the graph Γ(P ). Then the following theorem holds.
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Theorem 4.6. Let P be a simplicial polyhedron in R3 with G-invariant combina-

torial structure. Then for a generic P the limiting shape obtained by repeatedly

applying Buffon procedure to P is a star-shaped polyhedron PB. The vertices of PB

are explicitly determined by the subdominant eigenspace of the Buffon operator,

which in this case has dimension 3.

Recall that the polyhedron P is called star-shaped (not to be mixed with star

polyhedra like Kepler-Poinsot) if there is a point inside it from which one can see

the whole boundary of P , or equivalently, the central projection gives a homeo-

morphism of the boundary of P onto a sphere.

Note that polyhedra can be considered as solids or as surfaces. For convex polyhe-

dra, there is a straightforward correspondence between these two interpretations.

This is not the case for nonconvex polyhedra. For example, if interpreted as solids,

the Kepler-Poinsot star polyhedra become star-shaped. However, this may change

the combinatorial structure of the polyhedron.

The proof of the existence of star-shaped affine B-regular version of P is based on

deep results from the spectral theory on graphs due to Colin de Verdière [6] and

Lovasz et al [47, 27, 29] which we will discuss in the next chapter.



Chapter 5

Spectral graph theory and proof

of theorem 4.6

5.1 Graphs and matrices

There are many ways to assign a matrix to a given graph. Connections between

the eigenvalues of a matrix representation of a graph, discrete operators and com-

binatorial properties are subject of study of spectral graph theory - a branch of

algebraic graph theory.

The purpose of this section is to investigate the connections between the Buffon

operator and some well studied linear operators on graphs.

The types of matrices most commonly associated with graphs are the adjacency

matrix, the graph Laplacian and the transition matrix of a random walk.

The adjacency matrix of Γ is the symmetric matrix A = (Aij) of order n, defined

as

Aij =

1, ij ∈ E

0, ij /∈ E.

For a regular graph Γ the adjacency matrix provides an understanding of a very

natural operator - the discrete transition operator defined as the n × n matrix

P = (Pij) where

Pij =
1

di
Aij.

60
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Here di denotes the degree of the vertex vi ∈ V . The diagonal matrix D in which

Dii = di is called the degree matrix of Γ. For a d-regular graph the transition

matrix

P = D−1A

is just a rescaling of the corresponding adjacency matrix. P describes the proba-

bility distribution of a random walk on a graph. A random walk is a process that

starts at some vertex, and moves to a neighbor vertex at each time step. Let the

vector pt ∈ Rn denote the distribution at the time step t. The initial probability

distribution, p0, is concentrated at one vertex and corresponds therefore to the

vector

p0(i) =

1, i = 1

0, i 6= 1.

After moving to a neighbor of the starting vertex, the distribution at time step 1

corresponds to p1 = Pp0. The procedure leads to a sequence of vertices. At the

time t the distribution can be expressed through the equation

pt = Ppt−1 = P tp0.

Another prominent operator on a graph is the discrete Laplacian operator. The

Laplacian of Γ is defined as the n× n matrix L = (Lij) in which

Lij =

di, i = j

−Aij, i 6= j.

It follows

L = D − A.

Note that there are various definitions of the discrete Laplacian. They differ by sign

and a scale factor. The graph Laplacian can be thought of as discrete analogue

of the Laplace-Beltrami operator on Riemannian manifolds. Let φ ∈ RV be a

function on the set of vertices of Γ. The Laplacian quadratic form is

φTLφ =
∑
vi∼vj

(φ(vi)− φ(vj))
2



Spectral graph theory and proof of theorem 4.6 62

The Laplacian matrix representation of a graph has the following properties:

• L is symmetric positive semi-definite.

• All eigenvalues of L are non-negative.

• The smallest eigenvalue is equal to 0.

• If Γ a connected graph, then the multiplicity of the eigenvalue 0 is 1.

The last property is a consequence of the Perron-Frobenius theorem for nonnega-

tive matrices applied to (cI − L) with a large c ∈ R.

Theorem 5.1. (Perron-Frobenius, 1912) If a real matrix has non-negative

entries then it has a nonnegative real eigenvalue λ which has maximum absolute

value among all eigenvalues. This eigenvalue λ has a nonnegative real eigenvec-

tor. If the matrix is irreducible, then λ has multiplicity 1 and the corresponding

eigenvector can be chosen to be positive.

In general case, the multiplicity of the eigenvalue 0 of the Laplacian matrix is equal

to the number of connected components. An equivalent statement is not true for

the adjacency matrix of Γ. The multiplicity of the largest eigenvalue of the matrix

A remains 1 even when Γ has more than one connected component with different

largest eigenvalues.

Another interesting spectral parameter is the gap between the smallest and the

second smallest eigenvalues of the Laplacian (or, equivalently, the gap between the

largest and the second largest eigenvalues of the adjacency matrix A of Γ) which

is also related to some connectivity properties of Γ.

According to [25] the study of the connection between Laplacian spectra (partic-

ularly with respect to the smallest non-trivial eigenvalue) and properties of the

associated graphs dates back to Fiedler’s work in the 1970’s. A graph Γ is edge-

weightened if a real, non-zero weight wij is associated with each edge (i,j) ∈ E(Γ).

Fiedler extended the notion of the Laplacian [16] to graphs with positive edge

weights defining a matrix representation as follows: the i-th diagonal entry lii is

the sum of the weights of the edges incident to the vertex i. For i 6= j, i ∼ j

set lij = −wij and lij = 0 otherwise. Fiedler refered to this representation as

the generalised Laplacian. Choosing each edge weight equal to one, the weighted

Laplacian is the Laplacian of an unweighted graph.
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Fiedler also used the eigenvectors of the weighted Laplacian as coordinate vectors

for graph embeddings. The resulting embeddings, however, do not have very

appealing geometric properties. In particular, the faces of such embeddings may

overlap.

Buffon transformation matrix B and the described matrix representations are

related in the following way. The matrix of the Buffon transformation in a natural

basis in F(V) has the form

B =
1

2
(I +D−1A) =

1

2
(I + P ), (5.1)

where A is the adjacency matrix, D the diagonal matrix with the degrees of vertices

di on the diagonal, and P is the matrix of transition probabilities of the Markov

chain describing the random walk on graph Γ.

Note that unless Γ is a regular graph, matrix B is not symmetric. In order to

bring it to a symmetric form we introduce the normalised adjacency matrix

N = D−
1
2AD−

1
2 (5.2)

with matrix elements Nij = 1/
√
didj if i is adjacent to j and 0 otherwise. It is

easy to see that

B =
1

2
(I +D−

1
2ND

1
2 ) =

1

2
D−

1
2 (I +N)D

1
2 ,

so B is conjugated to the symmetric matrix B̃ = 1/2(I +N).

In particular, this means that all the eigenvalues of B are real. The maximal

eigenvalue is λ1 = 1 and the corresponding eigenvector is (1, . . . , 1)T .

5.2 Colin de Verdière number and null space

representation

In this section we discuss the geometrical realisation of graphs following [46], [27],

[24].

Let Γ (V , E) be a finite, connected, undirected graph with no self-loops or multiple

edges (i.e. simple), and M a matrix whose rows and columns are indexed by the
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vertex set V of Γ. Let σ (M) be the spectrum and λ ∈ σ (M) an eigenvalue of M

with multiplicity k. A matrix with rows forming a basis of the eigenspace of M

corresponding to λ has columns that serve as coordinate vectors of the vertices of a

geometric realisation of Γ. The obtained system of vectors is called an eigenspace

realisation of Γ.

The resulting geometric realisation is not unique. Moreover, as we know from

the Subspace Iteration Theorem, different vertices do not necessarily correspond

to distinct points and different edges are not necessarily non-degenerate line seg-

ments. We are interested in non-degenerate realisations, that is when the segments

do not collapse.

A spectral representation Φ : V → Rn is faithful if Φ is injective. A particularly

strong faithfulness result for 3-connected planar graphs was obtained in [29]. It

is connected with the graph parameter known as the Colin de Verdière number

which we will introduce in this section.

In 1990 Yves Colin de Verdière [6] introduced a new spectral graph invariant

µ(Γ). Roughly speaking, µ(Γ) is the maximal multiplicity of the second largest

eigenvalue of the matrices C with the property Cij = Cji > 0 for adjacent i and j,

Cij = 0 for non-adjacent i and j and arbitrary diagonal elements Cii. The precise

definition is as follows.

Let Γ be a connected undirected graph with the vertex set {1, . . . , n}. Let MΓ

denote the set of symmetric matrices M = (Mij) ∈ RV×V associated with Γ

satisfying

1. Mij

< 0, ij ∈ E

= 0, ij /∈ E
;

2. M has exactly one (simple) negative eigenvalue.

M is said to satisfy the Strong Arnold Property if the relation MX = 0 with a

symmetric n × n matrix X such that Xij = 0 for any adjacent i and j and for

i = j implies that X = 0. This property is a restriction, which excludes some

degenerate choices of the edge weights and the diagonal entries.

The Colin de Verdière invariant µ (Γ) is the largest corank of matrices from the

set MΓ satisfying the Strong Arnold Property. A matrix M ∈ MΓ with corank

µ (Γ) is called a Colin de Verdière matrix of Γ.
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After the change of sign and shift by a scalar matrix C = cI −M the corank,

which is the dimension of the null space of M becomes the multiplicity of the

second largest eigenvalue of C.

Colin de Verdière characterised all the graphs with parameter µ (Γ) ≤ 3.

A graph is called outerplanar if it can be drawn in the plane without crossings in

such a way that all of the vertices belong to the unbounded face of the drawing.

Theorem 5.2. (Colin de Verdière, 1990)

• µ (Γ) ≤ 1 if and only if Γ is a path;

• µ (Γ) ≤ 2 if and only if Γ is outerplanar;

• µ (Γ) ≤ 3 if and only if Γ is planar.

A graph is linkless embeddable if it can be embedded in R3 so that any two disjoint

circuits in Γ form unlinked closed curves in R3. Graphs satisfying µ (Γ) ≤ 4 are

exactly the linkless embeddable graphs [28].

Colin de Verdière’s planarity characterisation of graphs is a remarkable result,

which will be important for us. The ”only if” part is relatively simple and follows

from Kuratowski’s characterisation of the planar graphs [19]. The original proof

of the ”if” part was quite involved. Van der Holst [46] substantially simplified it

and showed that for 3-connected planar graphs the Strong Arnold property does

not play any role.

Theorem 5.3. (Van der Holst, 1995 [46] ) For any matrix M from MΓ the

corank of M can not be larger than 3.

Before we come to the proof we recall some necessary definitions and concepts.

A subgraph H is a minor of a graph Γ (denoted by H ≤ Γ) if H can be obtained

by removing and contracting edges from Γ.

Y. Colin de Verdiere showed that the graph parameter µ(Γ) is minor-monotone.

In fact, it is the minor-monotonicity that makes these parameters very useful. A

good overview of the results on different graph-theoretic properties of µ(Γ) can be

found in [47].
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A graph Γ is said to be bipartite if its vertices can be partitioned into two subsets

such that each edge of Γ connects a vertex from one subset with a vertex from the

second subset. Γ is complete bipartite if each vertex from one subset is adjacent to

each vertex of the second subset. The common notation for such type of graphs

is Km,n where m and n are the number of vertices in the two subsets.

A graph Γ is said to be complete if every pair of distinct vertices of Γ is connected

by a unique edge.

Let from now on Γ be a (3-connected) planar graph and MCdV ∈ MΓ a corre-

sponding Colin de Verdière matrix. Note that Γ remains planar after removing an

edge from it. It also remains planar if we contract an edge (i, j) ∈ E(Γ) to one

vertex. It follows that every minor of a planar graph is again planar. A charac-

terisation of the class of planar graphs in terms of excluded minors was given by

Kuratowski.

Theorem 5.4. (Kuratowski) A graph Γ is embeddable in the plane if and only

if it does not contain a subgraph homeomorphic to the complete graph K5 or the

complete bipartite graph K3,3.

For any vector x ∈ Rn the set supp(x) = {i ∈ V | xi 6= 0} is called the support of x.

The subsets supp+(x) = {i ∈ V | xi > 0} and supp−(x) = {i ∈ V | xi < 0} are the

so-called positive and the negative support of x, respectively. Consider a matrix

M ∈ MΓ and a null space vector x ∈ ker(M). Up to scaling, the eigenvector π

belonging to the negative eigenvalue of M is positive and orthogonal to x. This

implies that both subsets supp+(x) and supp−(x) are non-empty.

Let x ∈ ker(M) , x 6= 0 be a null space vector such that for each y ∈ ker(M),

y 6= 0 with supp(y) ⊆ supp(x) the equality supp(y) = supp(x) holds. Then x is

said to have minimal support.

Let further for any subset U ⊆ V the subset of all vertices i ∈ V \ U adjacent

to at least one of the vertices i ∈ U be denoted by N(U). Then each node in

N(supp(x)) belongs to both, the negative and the positive support of x.

We are now ready to present the lemma used by Van der Holst in his proof of the

planarity characterisation [46].

Lemma 5.5. (Van der Holst) [46] Let Γ be connected, let M ∈MΓ and let x ∈
ker(M) have minimal support. Then both supp+(x) and supp−(x) are nonempty

and induce connected subgraphs of Γ.
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The following is the reproduced version of the proof of Colin de Verdière’s planarity

characterisation given by Van der Holst.

The parameter µ(Γ) does not increase after deleting edges from Γ. Therefore, we

may assume that Γ is maximally planar. Then Γ has at least one triangular face

f . Let a, b and c denote the vertices of f . Assume that the corank of a matrix

MCdV ∈ MΓ is greater than or equal to 4. Let v ∈ Ker(MCdV ) be a nonzero null

space vector with minimal support such that va = vb = vc. Then Γ |supp+ (v) and

Γ |supp− (v) are nonempty and connected.

Let d be any vertex for which vd > 0. From the three-connectivity of Γ follows

that it contains three vertex-disjoint paths from d to each of the vertices a, b, and

c. Now, as vd > 0 and va = 0, there is a vertex a
′

on the path from d to a for

which va′ = 0. Moreover a
′

has a neighbor a+ for which va+ > 0 is true. a
′

also

has a neighbor a− for which va− < 0 holds. Similar vertices exist for b and c.

supp+(v) supp-(v)

a'
b'

c'

b

a c

f

P1
P2

P3

a c

b

b'
a'

c'

x+
x-

a c

b

g

Figure 5.1: Holst planarity

A subgraph of Γ can be constructed through contraction of every edge on the path

from a to a
′
, as well as on the path from b to b

′
and on the path from c to c

′
.

Moreover, all the vertices for which v is positive and all the vertices for which v

is negative can be contracted. This is possible due to the fact that both sets are

connected. Contract then every edge in the face f not involving vertices a, b, or

c. In this way the graph we obtain has a triangular face (a, b, c) such that each of

the vertices a, b, and c have an edge to one positive and one negative vertex.

The graph obtained in such way is not planar. To see this, add one vertex g inside

the face and connect it to each of a, b, and c. This does not effect planarity. But
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the obtained graph contains K3,3 as subgraph. Hence Γ cannot be planar and we

have a contradiction. The corank of MCdV is therefore 3. This proves Theorem

5.3.

The ”only if” part of Colin de Verdière’s planarity characterisation follows from

the fact that µ(K5) = µ(K3,3) = 4 and from minor monotonicity of µ.

In [27] Lovász found an explicit way of constructing Colin de Verdière matrix for

any 3-connected planar graph Γ using the Steinitz’ realisation of Γ as 1-skeleton

of a convex polyhedron P. This result will be crucial for us, so we will sketch here

the main steps of his construction following [27].

Recall first the notion of polarity for polyhedra in R3, see e.g. [56]. Let P be any

convex polytope in R3, containing the origin in its interior. The polar polyhedron

P ∗ is defined as

P ∗ = {y ∈ R3 : (y, x) ≤ 1 for all x ∈ P},

where (, ) denote the scalar product in R3. It is known that P ∗ is also a convex

polyhedron and the 1-skeleton of P ∗ is the planar dual graph Γ∗ = (V∗, E∗) with

vertices corresponding to the faces of P and edges corresponding to edges of P

[56].

Now let P ⊂ R3 be Steinitz’ realisation of graph Γ, so that Γ is isomorphic to 1-

skeleton Γ(P ). We can always assume that P contains the origin inside it. Consider

its polar polyhedron P ∗.

Let ui and uj be two adjacent vertices of P , and wf and wg be the endpoints of

the corresponding edge of P ∗. Then by the definition of polarity we have

(wf , ui) = (wg, ui) = 1.

This implies that wf − wg is perpendicular to ui, and similarly to uj. Hence the

vectors wf − wg and the cross-product ui × uj are parallel and we can find the

coefficients Mij such that

wf − wg = Mij(ui × uj).

We can always choose the labelling of wf and wg in such a way that Mij < 0.
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This defines Mij for adjacent i 6= j. For non-adjacent i and j we define Mij to be

zero. To define Mii consider the vector

u
′

i =
∑
j∼i

Mijuj.

Then

ui × u
′

i =
∑
j∼i

Mijui × uj =
∑

(wf − wg),

where the last sum is taken over all edges fg of the face of P ∗ corresponding to i,

oriented counterclockwise. Since this sum is zero we have

ui × u
′

i = 0,

which means that ui and u
′
i are parallel. Therefore we can define Mii by the

relation

u
′

i = −Miiui.

Theorem 5.6. (Lovász, 2000) The matrix M described above is a Colin de

Verdière matrix for the graph Γ.

Proof. Indeed by construction M has the right pattern of zeros and negative ele-

ments. The condition u
′
i = −Miiui can be written in the following form

∑
j

Mijuj = 0.

This means that each coordinate of the ui defines a vector in the kernel of M and

hence M has corank at least 3. But by 5.3 it can not be larger than 3, so the

corank is 3 and thus maximal.

To prove that M has exactly one negative eigenvalue one can use the classical

Perron-Frobenius theorem: Choosing sufficiently large c > 0 we have the matrix

cI − M, which has non-negative entries and and irreducible, so we can apply

the Perron-Frobenius Theorem to conclude that the smallest eigenvalue of M has

multiplicity 1. It must be negative since we know that 0 has multiplicity at least

3. The fact that there are no more negative multiplicities require a bit of work

using the connectivity of the space of Steinitz’ realisations, see [27].
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Conversely, having a Colin de Verdière matrix M ∈ MΓ one can consider the

following null space representation ν : V = {1, 2, . . . , n} → R3 (see [29]).

Choose a basis a1, a2, a3 in the kernel of M and consider 3×n matrix X with rows

being the coordinates of a1, a2, a3. Then the columns ui, i = 1, . . . , n of this matrix

give the set of 3-vectors, defining the map ν. The problem is that in general they

will not be vertices of a convex polyhedron, but Lovász [27] showed that after some

scaling ui → µiui this is the case (such a scaling he called proper). At the level

of the Colin de Verdière matrices this corresponds to the change M → DMD,

where D = diag (µ1, . . . , µn) is a non-degenerate diagonal matrix, which obviously

preserves the properties of MΓ.

Theorem 5.7. (Lovász, 2000) For a 3-connected planar graph Γ any Colin de

Verdière matrix M ∈MΓ can be properly scaled, so that null space representation

gives a convex polyhedron with 1-skeleton isomorphic to Γ.

Note that the change of basis in the kernel of M corresponds to a linear trans-

formation of R3, so the corresponding polyhedron is defined only modulo affine

transformation.

The eigenspace realisation offers an interesting interpretation of an eigenvalue

problem as a graph realisation problem. Realisations derived from the spectrum

of the generalised Laplacian M are closely related to the structural properties

of the graph. The multiplicities of the eigenvalues of a matrix representation of

a graph usually correspond to graph’s symmetries. An interesting result in this

direction was obtained by Mowshowitz [35], who showed that if all eigenvalues of

the adjacency matrix A of a graph are different, then every automorphism of A

has order 1 or 2. In general, higher multiplicities serve as indication for degree of

symmetry in the underlying graph.

Note that there are plenty of polyhedra P with G-invariant combinatorial struc-

tures, which can be constructed from the Platonic solids using Conway operations

[7]. In particular, one will have a simplicial polyhedron by applying to any such

P the operation, which Conway called kis and denoted k, consisting of building

the pyramids on all the faces.

Now we are ready to prove our main result.
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5.3 Proof of Theorem 4.6

Let G be a Platonic group and Γ a G-invariant planar 3-connected graph.

We know after Steinitz that Γ can be realised by a 3-dimensional convex polyhe-

dron P . There exist several modifications of Steinitz’s original proof differing in the

used reduction methods. One of those modifications has been used to show that

a graph Γ with certain automorphisms has a geometric realisation P in Steinitz’s

sense which admits isometric symmetries that correspond to the automorphisms

of Γ. For the full group of automorphisms of Γ this is the following result by Mani

[30].

Theorem 5.8. (Mani, 1971) There exists a convex polyhedron PG ⊂ R3 with

the group of isometries isomorphic to G and with 1-skeleton isomorphic to Γ.

Since Γ is planar and 3-connected, its Colin de Verdière invariant µ(Γ) must be 3.

Let M be the Colin de Verdière matrix given by Lovasz construction applied to

Mani’s version of Steinitz realisation PG.

Let N be the normalised adjacency matrix (5.2). We know that the matrix of the

Buffon transformation B is related to N by

B =
1

2
D−

1
2 (I +N)D

1
2

and that its largest eigenvalue is λ0 = 1. Let λ1 be the second largest eigenvalue

of B. We would like to show that it has multiplicity 3.

To do this consider the symmetric matrix

B̂ = −1

2
N + (λ1 −

1

2
)I.

It is easy to see that B̂ ∈MΓ and that the corank of B̂ is precisely the multiplicity

of λ1.

Define a parameter family of matrices

Mt = (1− t)M − tB̂, t ∈ [0, 1] (5.3)

where M is the Colin de Verdière matrix defined above.
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Since Mt is G-invariant, the group G acts on the kernel of Mt. When t = 0 we

know that the kernel of M(0) = M has dimension 3 and by Lovasz result [27] the

corresponding representation of G is standard geometric by the isometries of PG.

Since this representation is irreducible and the set of 3-dimensional representations

of G is discrete, by continuity arguments the kernel will remain 3-dimensional

geometric representation for all t ∈ [0, 1], in particular for t = 1.

These arguments will not work only if 0 collides with another eigenvalue. But

this could not happen with the negative eigenvalue because of Perron-Frobenius

theorem. In particular, all matrices Mt belong to MΓ. If this happens with a

positive eigenvalue we will have the corank of the corresponding Mt to be at least

4, which contradicts the Colin de Verdière result.

Thus we have proved that the kernel of M1 = −B̂ is 3-dimensional, and hence the

same is true for the subdominant eigenspace of the Buffon operator B. The limiting

shape is given essentially by the null space representation construction, but the

proper scaling may not hold. However, the very existence of a proper scaling

[27, 29] and the assumption of simplicity imply that the corresponding vectors ui

are the vertices of a certain star-shaped polyhedron with 1-skeleton isomorphic

to Γ. The triakis example on Fig.1 shows that the proper scaling is indeed not

automatic, so the convexity property is not necessary holds. This completes the

proof of Theorem 4.6.

5.4 On the symmetry assumption

In [50] the effect of the Buffon procedure applied to prisms and anti-prisms was

studied. Taking a general prism with upper and lower faces having n nodes the

analysis the spectrum of the corresponding Buffon matrix B gives following results.

The eigenvalues of B split into two groups:

λr − 1
6

λr + 1
6

r = 1, 2, . . . , n

Writing these in order of magnitude (with multiplicities) gives for the λr − 1
6
:

[4
6

(1)
, (λ1 − 1

6
)(2), . . . , (λ(n−1)/2 − 1

6
)(2)] n odd

[4
6

(1)
, (λ1 − 1

6
)(2), . . . , (λ(n/2−1) − 1

6
)(2), 0(1)] n even
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And for the λr + 1
6

set follows:

[1(1), (λ1 + 1
6
)(2), . . . , (λ(n−1)/2 + 1

6
)(2)] n odd

[1(1), (λ1 + 1
6
)(2), . . . , (λ(n/2−1) + 1

6
)(2), 1

6

(1)
] n even

If an eigenvalue has multiplicity 3 it may occur in both sets. An eigenvalue of

multiplicity 3 with maximum modulus (other than 1) will only occur if the first

eigenvalue from the first set matches with the second eigenvalue of the second set.

This gives

cos
2π

n
= 0 implying n = 4

This corresponds to the cube which is one of the regular polyhedra.

For an eigenvalue of less than maximum modulus a match will occur if

cos
2πk

n
= 0 k = 2, 3, . . . , n implying n = 4, 8, 12, . . .

This again corresponds to the cube (obtained by coalescing nodes). [50] conclude

from this that apart from the cube, a prism is not naturally interpreted by the

Buffon matrix as a three dimensional object.

The same approach was used for anti-prisms. The eigenvalues of the Buffon matrix

B are of the form

1

2
+

1

4
(cos

πr

n
+ cos

2πr

n
) r = 1, 2, . . . , 2n

The eigenvalues r = k and r = 2n−k for k = 1, 2, . . . n−1 have the same magnitude

giving multiplicity 2. However the eigenvalue r = n may have magnitude equal to

one of these pairs. In this case the multiplicity will be 3. This will occur if

cos
πr

n
+ cos

2πr

n
= 0

If c = cos πr
n

then we require
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2c2 + c− 1 = 0 giving c =
1

2

This implies n is divisible by 3. The remaining eigenvalue r = 2n has value 1.

The authors conclude that of all the anti-prisms only those for which n is divisible

by 3 gives rise to a three-dimensional object. This is the octahedron.

The eigenvalues of largest magnitude, other than 1, are

λ1 = λ2n−1 = 1
2

+ 1
4
(cos π

n
+ cos 2π

n
)

The corresponding eigenvectors are complex conjugate. As the number of Buffon

transformations increases the shape of the iterated figure tends to an affine regular

2nth order polygon.

We conclude that the dihedral symmetry is not enough. The assumption of Pla-

tonic symmetry is essential.



Chapter 6

Representation theory and affine

B-regular polyhedra

An interesting question is about the decomposition of F(V) into the irreducible

G-modules with respect to the Buffon spectrum. We saw that the geometric

representation always appears at the subdominant level, but we do not know

much about higher level.

6.1 The symmetry groups of Platonic solids and

their characters

The symmetry group of a regular tetrahedron is S4 and is isomorphic to the per-

mutation group of the vertices.

The full symmetry group of the octahedron is the same as for the cube: G =

S4 × Z2. S4 is the rotation subgroup, which is isomorphic to the permutation

group of the 4 long diagonals, and Z2 corresponds to the central symmetry of

cube.

For the icosahedron and dodecahedron the full symmetry group is known to be

A5×Z2, where A5 ⊂ S5 is the alternating subgroup of S5 describing the rotational

symmetry and Z2 is again the central symmetry of the solids.

75
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24 1 6 8 6 3
S4 1 (12) (123) (1234) (12)(34)
U 1 1 1 1 1
U ′ 1 -1 1 -1 1
V 3 1 0 -1 -1
V ′ 3 -1 0 1 -1
W 2 0 -1 0 2

Table 6.1: The character table of S4.

60 1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)
U 1 1 1 1 1
V 4 1 0 -1 -1
W 5 -1 1 0 0

Y 3 0 -1 1+
√

5
2

1−
√

5
2

Z 3 0 -1 1−
√

5
2

1+
√

5
2

Table 6.2: The character table of A5.

The irreducible representations of the group G = H×Z2 have the the form V1⊗V2,

where V1 and V2 are irreducible representations of H and Z2 respectively. Note that

V2 is either trivial or sign representation of Z2, which we will denote respectively

by 1 and ε. Thus we need only the character tables of the groups S4 and A5, which

in the notations of Fulton and Harris [17] are given below in Tables 6.1 and 6.2.

With these notations the geometric representations are: V for tetrahedral group

G = S4, εV
′ = V ′⊗ ε for cube/octahedral group G = S4×Z2 and εY = Y ⊗ ε for

icosahedral/dodecahedral group G = A5 × Z2.

The corresponding decompositions of the space of functions on the vertices into

irreducible G-modules are

F(T ) = U ⊕ V (6.1)

for tetrahedron,

F(O) = U ⊕ εV ′ ⊕W (6.2)

for octahedron,

F(C) = U ⊕ εV ′ ⊕ V ⊕ εU ′ (6.3)

for cube,

F(I) = U ⊕ εY ⊕W ⊕ εZ (6.4)
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for icosahedron,

F(D) = U ⊕ εY ⊕W ⊕ εV ⊕ V ⊕ εZ (6.5)

for dodecahedron.

We have ordered them according to the appearance in the spectrum of the Buffon

operator. It turns out that in all these cases the spectral decomposition coincides

with G-decomposition (see the examples below). Note that the first two are always

trivial and geometric representations in agreement with our result.

6.2 Examples of Buffon realizations of polyhedra

For the polyhedra P with combinatorial structure of Platonic solids the Buffon

procedure leads to the polyhedron PB, which is affine equivalent to the regular

realisation of P.

Since in the regular case the Buffon matrix B can be replaced by the adjacency

matrix A the calculations are essentially the same as in [33], where one can find

also the corresponding shapes. The calculation of spectra of regular polytopes can

be found in [38].

We have used Mathematica to do all the calculations and pictures.

Platonic Solids

In this case we consider also the higher dimensional embeddings corresponding to

other multiplicities to show the relation with G-decomposition.

The Tetrahedron
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1 2

3

4

Figure 6.1: The tetrahedron and the corresponding 1-skeleton graph.

The corresponding Buffon eigenvalues denoted with multiplicities are:

{
1(1),

1

9

(3)
}

in agreement with the decomposition (6.1).

The eigenspace corresponding to 1
9

is

X =


−α− β − γ

γ

β

α



This corresponds to geometric representation V describing a general tetrahedron.

The Octahedron

1 2

3

4

5 6

Figure 6.2: The octahedron and the corresponding 1-skeleton graph.



Representation theory and affine B-regular polyhedra 79

The Buffon spectrum denoted with multiplicities is:

{
1(1),

1

2

(3)

,
1

4

(2)
}

in agreement with the decomposition (6.2).

The eigenspace corresponding to the second highest eigenvalue is

X =



−α
−β
−γ
γ

β

α



Geometrically this describes an affine regular octahedron.

The Cube

1

2

3

4

5

6

7

8

Figure 6.3: The cube and the corresponding 1-skeleton graph.

The corresponding Buffon eigenvalues denoted with multiplicities are:{
1(1),

2

3

(3)

,
1

3

(3)

, 0(1)

}
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in agreement with the decomposition (6.3).

The eigenspaces corresponding to λ2 = 2
3

and λ3 = 1
3

are:

X2 =



−α
−β
−γ

α− β − γ
−α + β + γ

γ

β

α


X3 =



α

β

γ

−α− β − γ
−α− β − γ

γ

β

α



They correspond to geometric εV ′ and V representations respectively. Geometri-

cally, X2 describes an affine regular cube while in X3 the opposite vertices coalesce

together giving an affine tetrahedron. Note that in the second case the faces of

cube are ”broken”, but in the first case they are not, which is a kind of miracle

since the Buffon transformation breaks them generically already at the first step.

The Icosahedron

1

2

3

4

56

78

910

1112

Figure 6.4: The icosahedron and the corresponding 1-skeleton graph.

The corresponding Buffon spectrum is:{
1(1),

1

10

(
5 +
√

5
)(3)

,
2

5

(5)

,
1

10

(
5−
√

5
)(3)
}

in agreement with (6.4).
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The eigenspaces corresponding to the second highest eigenvalue and its conjugate

eigenvalue 1
10

(
5−
√

5
)

are:

X2 =



a(α + γ)− β
β − a(α + γ)

a(β − γ)− α
a(γ − β) + α

−γ
a(β − α)− γ
a(α− β) + γ

γ

−α
−β
β

α



X4 =



b(α + γ)− β
β − b(α + γ)

b(β − γ)− α
α + b(γ − β)

−γ
b(β − α)− γ
b(α− β) + γ

γ

−α
−β
β

α



,

where a = 1
2
(1−

√
5) and b = 1

2
(1 +

√
5).

Geometrically, X2 describes an affine regular icosahedron, while X4 corresponds

to an affine great icosahedron, which is one of four Kepler-Poinsot regular star

polyhedra.

Figure 6.5: Affine B-regular icosahedron and great icosahedron.
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The eigenspace X3

X3 =



−α− β − γ − δ − ρ
−α− β − γ − δ − ρ

ρ

ρ

γ

δ

δ

γ

α

β

β

α


describes the 5-dimensional realisation of an icosahedron as a 5-simplex: 6 pairs

of opposite vertices identified with 6 vertices of the simplex.

The Dodecahedron

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15
16

17

18

19

20

Figure 6.6: The dodecahedron and the dodecahedral 1-skeleton graph.

The corresponding Buffon spectrum is{
1(1),

1

6

(
3 +
√

5
)(3)

,
2

3

(5)

,
1

2

(4)

,
1

6

(4)

,
1

6

(
3−
√

5
)(3)
}

in agreement with (6.5).

The eigenspaces corresponding to the second highest eigenvalue λ2 = 1
6

(
3 +
√

5
)

and to its conjugate λ6 = 1
6

(
3−
√

5
)

are:
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X2 =



−aγ − 2α− bβ
aγ + 2α + bβ

−α
−β

b(α + β)− γ
√

5α + β − γ
−γ

a(β − α)− γ
aβ − 2α + bγ

b(γ − α)− β
b(α− γ) + β

−aβ + 2α− bγ
β − a(α + γ)

−
√

5α− β + γ

γ − b(α + β)

a(α + γ)− β
a(α− β) + γ

γ

β

α



X6 =



−aβ − 2α− bγ
aβ + 2α + bγ

−α
−β

a(α + β)− γ
−
√

5α + β − γ
−γ

b(β − α)− γ
aγ − 2α + bβ

a(γ − α)− β
a(α− γ) + β

−aγ + 2α− bβ
β − b(α + γ)
√

5α− β + γ

γ − a(α + β)

b(α + γ)− β
b(α− β) + γ

γ

β

α



,

where a = 1
2
(1−

√
5) and b = 1

2
(1 +

√
5).

Geometrically, X2 describes an affine regular dodecahedron, while X6 corresponds

to an affine version of the great stellated dodecahedron, which is another Kepler-

Poinsot polyhedron (see Fig. 7).

It is interesting that the remaining two Kepler-Poinsot polyhedra (small stellated

dodecahedron and great dodecahedron) do not appear in this way.
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Figure 6.7: Affine great stellated dodecahedron.

The eigenspace X3 corresponds to the 5-dimensional embedding of dodecahedron

with ”broken faces” given by

X3 =



−γ − δ + ρ

−γ − δ + ρ

α

β

−α + β − δ
α− β − γ

γ

δ

−β + δ − ρ
−α + γ − ρ
−α + γ − ρ
−β + δ − ρ

ρ

α− β − γ
−α + β − δ

ρ

δ

γ

β

α



.

The 4-dimensional eigenspaces X4 and X5 are respectively:
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X4 =



γ + δ

−γ − δ
−α
−β
α− δ
β − γ
−γ
−δ

α− γ − δ
β − γ − δ
−β + γ + δ

−α + γ + δ

−α− β + γ + δ

γ − β
δ − α

α + β − γ − δ
δ

γ

β

α



, X5 =



2α + 2β + γ + δ

2α + 2β + γ + δ

α

β

−α− 2β − δ
−2α− β − γ

γ

δ

α + γ − δ
β − γ + δ

β − γ + δ

α + γ − δ
−α− β − γ − δ
−2α− β − γ
−α− 2β − δ
−α− β − γ − δ

δ

γ

β

α



.

Since in the second case the opposite vertices are identified it corresponds to the

representation V in agreement with (6.5).

Archimedean Solids

The Archimedean solids, also referred to as the semi-regular polyhedra, are the

convex polyhedra which have a similar arrangement of nonintersecting regular con-

vex polygons of two or more different types arranged in the same way about each

vertex with all sides the same length. Solids with a dihedral group of symmetries

(e.g., regular prisms and antiprisms) are not considered to be Archimedean solids.

With this restriction there are 13 solids classified as Archimedean solids.

For Archimedean solids the affine B-regular version is in general different from the

affine regular one as the following example shows.

The Truncated Cube
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Figure 6.8: The truncated cube and the corresponding 1-skeleton graph.

The corresponding Buffon spectrum is:{
1(1),

1

12

(
7 +
√

17
)(3)

,
5

6

(3)

,
2

3

(1)

,
1

2

(5)

,
1

3

(3)

,
1

12

(
7−
√

17
)(3)

,
1

6

(5)
}
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The eigenspace corresponding to the second highest eigenvalue is:

X2 =



1
8

((√
17− 1

)
(α + 2γ) +

(√
17− 9

)
β
)

1
8

((√
17− 1

)
(3β + 2γ)−

(
7 +
√

17
)
α
)

1
8

((
7 +
√

17
)
α +

(√
17− 9

)
β + 2

(√
17− 5

)
γ
)

1
8

(
−
√

17α + α + 3
(√

17− 1
)
β + 2

(√
17− 5

)
γ
)

1
8

((√
17− 1

)
α− 3

(√
17− 1

)
β − 2

(√
17− 5

)
γ
)

1
8

(
−
(
7 +
√

17
)
α−

(√
17− 9

)
β − 2

(√
17− 5

)
γ
)

1
8

((
7 +
√

17
)
α−

(√
17− 1

)
(3β + 2γ)

)
1
8

(
(1−

√
17)α−

(√
17− 9

)
β − 2

(√
17− 1

)
γ
)

1
8

((√
17− 1

)
(3α− 2γ)−

(
7 +
√

17
)
β
)

1
8

((√
17− 9

)
α +

(√
17− 1

)
(β − 2γ)

)
1
8

(
−
(√

17− 9
)
α−

(
7 +
√

17
)
β + 2

(√
17− 5

)
γ
)

1
8

((√
17− 1

)
(−3α + β) + 2

(√
17− 5

)
γ
)

−α
−β
−γ

α− β − γ
1
8

(
3
(√

17− 1
)
α + (1−

√
17)β − 2

(√
17− 5

)
γ
)

1
8

((√
17− 9

)
α +

(
7 +
√

17
)
β − 2

(√
17− 5

)
γ
)

1
8

(
−
(√

17− 9
)
α−

(√
17− 1

)
(β − 2γ)

)
1
8

((√
17− 1

)
(−3α + 2γ) +

(
7 +
√

17
)
β
)

−α + β + γ

γ

β

α



,

The facing octagons of the geometric realisation of X2 are not affine regular: one

can check that (x22 − x14) = 3+
√

17
4

(x1 − x5) while for the regular octagon (x22 −
x14) = (1 +

√
2)(x1 − x5). Thus the affine B-regular truncated cube obtained by

the Buffon procedure is not an affine version of the regular truncated cube.
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Figure 6.9: The affine B-regular truncated cube

The Icosidodecahedron
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Figure 6.10: The icosidodecahedron and the corresponding 1-skeleton graph.

LetA denote the adjacency matrix of the 1-skeleton graph and I30 the n-dimensional

identity matrix. Then the Buffon transformation matrix for the icosidodecahedron

has the form:

B =
1

8
A+

1

2
I30

The corresponding eigenvalues are:{
1(1),

1

8

(
5 +
√

5
)(3)

,
3

4

(5)

,
5

8

(4)

,
3

8

(4)

,
1

8

(
5−
√

5
)(3)

,
1

4

(10)
}
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The eigenspace corresponding to the second highest eigenvalue is

X2 =



β − α
α− β
−α
−β
−γ

a(α− β)− γ
−aγ + α− β
a(α− β − γ)

−a(β + γ)

a(−β − γ) + α− β
a(−α + β + γ) + β + γ

a(−α + β + γ)

aγ − α + β

a(α− β − γ)− β − γ
−aγ − β

a(α− β − γ)− β
−aβ − γ

a(−α + β + γ) + β

aγ + β

a(−α + 2β + γ) + γ

a(β + γ)− α + β + γ

a(−β − γ) + α− β − γ
a(α− 2β − γ)− γ

aβ + γ

a(β + γ)− α + β

a(β + γ)

a(β − α) + γ

γ

β

α



,

where a = 1
2
(1 +

√
5).

A direct computation shows that in this case the B-affine version coincides with

the usual affine regular icosidodecahedron.
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Catalan Solids

The 13 duals of the Archimedean solids are called the Catalan solids after the

Belgian mathematician E. Catalan who described them first in 1865. The dual

polyhedra is defined through polar reciprocation. The dual of an Archimedean

solid can, for example, be obtained by connecting the points of the vertex figure,

and constructing the polygon tangent to the circumcircle of the vertex figure. The

Catalan solids are convex polyhedra with the following characteristics. The faces

of a Catalan solid are not regular, but each vertex figure has only one type of

face. The vertex figures are regular but not congruent. Each Catalan solid has

one dihedral angle, but not the same number of edges meeting at each vertex.

For Catalan solids the affine B-regular versions may not be convex or, in non-

simplicial case, may even not exist, as the following two examples show.

Triakis Tetrahedron

1

2
3

4

5

6

7

8

The corresponding Buffon eigenvalues are:{
1(1),

7

12

(3)

,
1

3

(3)

,
1

4

(1)
}

The eigenspaces corresponding to the eigenvalues λ2 = 7
12

and to λ3 = 1
3

are:
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X2 =



α
2
− β − γ

−α + 2β + 2γ

−α
2

−2β

−2γ

γ

β

α


X3 =



−α− β − γ
−α− β − γ

α

β

γ

γ

β

α


A particular geometric realisation derived from X2 looks as follows:

Figure 6.11: The affine B-regular version of the triakis tetrahedron is star-
shaped but not convex.

As X3 shows the vertices coalesce together pairwise. The corresponding geomet-

rical realisation gives a general tetrahedron.

The Rhombic Dodecahedron
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Figure 6.12: The rhombic dodecahedron and the corresponding 1-skeleton
graph.

The corresponding eigenvalues are:{
1(1),

1

6

(
3 +
√

3
)(3)

,
1

2

(6)

,
1

6

(
3−
√

3
)(3)

, 0(1)

}
The 3-dimensional eigenspaces corresponding to the eigenvalues λ2 = 1

6

(
3 +
√

3
)

and λ4 = 1
6

(
3−
√

3
)

are:

X2 =



−α
−β
−γ

α−
√

3β
2
−
√

3γ
2

γ − 2α√
3

β − 2α√
3√

3γ
2
−
√

3β
2√

3β
2
−
√

3γ
2

2α√
3
− β

2α√
3
− γ

−α +
√

3β
2

+
√

3γ
2

γ

β

α



X4 =



−α
−β
−γ

α +
√

3β
2

+
√

3γ
2

2α√
3

+ γ
2α√

3
+ β

√
3β
2
−
√

3γ
2√

3γ
2
−
√

3β
2

− 2α√
3
− β

− 2α√
3
− γ

−α−
√

3β
2
−
√

3γ
2

γ

β

α


Both eigenspaces, X2 and X4, fail to correspond to a polyhedron with the com-

binatorial structure of the 1-skeleton of the rhombic dodecahedron. A particular

graph realisation obtained from the eigenspace X2 looks as follows:
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Figure 6.13: Eigenspace realisation of the rhombic dodecahedral graph derived
from the eigenspace X2. All ”faces” are non-planar.

The Triakis Octahedron
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Figure 6.14: The triakis octahedron and the corresponding 1-skeleton graph.

The corresponding Buffon eigenvalues are:{
1(1),

1

12

(
6 +
√

6
)(3)

,
1

2

(4)

,
3

8

(2)

,
1

12

(
6−
√

6
)(3)

,
1

4

(1)
}
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The 3-dimensional eigenspaces corresponding to the eigenvalues λ2 and λ5 are:

X2 =



−β
−γ

γ − 2
√

2
3
α

β − 2
√

2
3
α

1
2

√
3
2
(γ − β)

1
2

√
3
2
(β − γ)

α− 1
2

√
3
2
(β + γ)

1
4

(√
6(β + γ)− 4α

)
2
√

2
3
α− β

2
√

2
3
α− γ

γ

β

−α
α



X5 =



−β
−γ

2
√

2
3
α + γ

2
√

2
3
α + β

1
2

√
3
2
(β − γ)

1
2

√
3
2
(γ − β)

α + 1
2

√
3
2
(β + γ)

1
4

(
−4α−

√
6(β + γ)

)
−2
√

2
3
α− β

−2
√

2
3
α− γ

γ

β

−α
α



Geometrically, X2 corresponds to a non-convex star shaped polyhedron. The

geometric realisation derived from the eigenspace X5 is self-intersecting:

Figure 6.15: Affine B-regular triakis octahedron and the geometric realisation
derived from the eigenspace X5.

Further examples

Small Rhombicuboctahedron
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Figure 6.16: The small rhombicuboctahedron and the corresponding 1-
skeleton graph.

The eigenvalues of the Buffon matrix (denoted with their multiplicities) are:

{
1(1),

7

8

(3)

,
1

16

(
7 +
√

17
)(3)

,
5

8

(2)

,
1

2

(4)

,
1

2

(3)

,
3

8

(6)

,
1

16

(
7−
√

17
)(3)

,
1

8

(2)
}

The eigenspace X2 corresponding to the second highest eigenvalue is:
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X2 =



−3α
2

+ 3β
4

+ γ
4

α
2
− 5β

4
+ γ

4

−α
2

+ 3β
4
− 3γ

4
3α
2
− 5β

4
− 3γ

4

−3α
2

+ β
4

+ 3γ
4

−α
2
− 3β

4
+ 3γ

4
α
2

+ β
4
− 5γ

4
3α
2
− 3β

4
− 5γ

4

−3α
2

+ 5β
4

+ 3γ
4

α
2
− 3β

4
+ 3γ

4

−α
2

+ 5β
4
− γ

4
3α
2
− 3β

4
− γ

4

−3α
2

+ 3β
4

+ 5γ
4

−α
2
− β

4
+ 5γ

4
α
2

+ 3β
4
− 3γ

4
3α
2
− β

4
− 3γ

4

−α
−β
−γ

α− β − γ
−α + β + γ

γ

β

α


The affineB-regular small rhombicuboctahedron obtained by the Buffon procedure

is not an affine version of the small rhombicuboctahedron.

Fig. 6.17 shows one particular realisation.
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Figure 6.17: The affine B-regular small rhombicuboctahedron

The Cuboctahedron
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Figure 6.18: The cuboctahedron and the corresponding 1-skeleton graph.

The eigenvalues of the Buffon matrix (denoted with their multiplicities) are:

{
1(1),

3

4

(3)

,
1

2

(3)

,
1

4

(5)
}

The eigenspace corresponding to the second highest eigenvalue is
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X2 =



−α
−β
−γ
γ − α
β − α

α− β − γ
−α + β + γ

α− β
α− γ
γ

β

α


A direct computation shows that geometrically, this corresponds to an affine cuboc-

tahedron.

The TruncatedTetrahedron
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Figure 6.19: The truncated tetrahedron and the corresponding 1-skeleton
graph.

The eigenvalues of the Buffon matrix (denoted with their multiplicities) are:{
1(1),

5

6

(3)

,
1

2

(2)

,
1

3

(3)

,
1

6

(3)
}

The eigenspaces corresponding to the eigenvalues second highest eigenvalue is
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X2 =



−2α + 7β
3

+ 2γ
3

α− 2β
3

+ 2γ
3

−2α + 5β
3

+ γ
3

α− 4β
3

+ γ
3

−β − γ
α− 2β − γ
α− 5β

3
− 4γ

3

α− β
3
− 2γ

3

−2α + 2β + γ

γ

β

α


A particular geometric realisation derived from X2 looks as follows:

Figure 6.20: The affine B-regular version of the truncated tetrahedron. It is
not affine regular.

The Truncated Octahedron
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Figure 6.21: The truncated octahedron and the corresponding 1-skeleton
graph.

The eigenvalues of the Buffon matrix (denoted with their multiplicities) are:

{
1(1), 1

6

(
4 +
√

2
)(3)

, 1
6

(
3 +
√

3
)(2)

, 2
3

(3)
, 1

6

(
2 +
√

2
)(3)

, 1
6

(
4−
√

2
)(3)

, 1
3

(3)
, 1

6

(
3−
√

3
)(2)

, 1
6

(
2−
√

2
)(3)

, 0(1)
}
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The 3-dimensional eigenspace

X2 =



−α
−β
−γ(

−1−
√

2
)
α + β + γ(

1
2

(
4 +
√

2
)
− 1
)
α +

(
1 + 1

2

(
−4−

√
2
))
β − γ(

2 + 1
2

(
−4−

√
2
))
α +

(
2 + 1

2

(
−4−

√
2
))
β + γ

β −
√

2α(
1 +
√

2
)
α− β +

(
−1−

√
2
)
γ(

−2−
√

2
)
α +
√

2β +
(
1 +
√

2
)
γ(

3
2

(
4 +
√

2
)
− 5
)
α +

(
1 + 1

2

(
−4−

√
2
))
β +

(
−1−

√
2
)
γ

1
2

(
−4−

√
2
)
α +

(
1
2

(
4 +
√

2
)
− 2
)
β +

(
1 +
√

2
)
γ

α−
√

2β
√

2β − α
1
2

(
4 +
√

2
)
α +

(
2 + 1

2

(
−4−

√
2
))
β +

(
−1−

√
2
)
γ(

5− 3
2

(
4 +
√

2
))
α +

(
1
2

(
4 +
√

2
)
− 1
)
β +

(
1 +
√

2
)
γ(

2 +
√

2
)
α−
√

2β +
(
−1−

√
2
)
γ(

−1−
√

2
)
α + β +

(
1 +
√

2
)
γ

√
2α− β(

1
2

(
4 +
√

2
)
− 2
)
α +

(
1
2

(
4 +
√

2
)
− 2
)
β − γ(

1 + 1
2

(
−4−

√
2
))
α +

(
1
2

(
4 +
√

2
)
− 1
)
β + γ(

1 +
√

2
)
α− β − γ
γ

β

α



A particular graph realisation obtained from the eigenspace X2 look as follows:
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Figure 6.22: Eigenspace realisation of the truncated octahedron graph derived
from the eigenspace X2.

The Great Rhombicosidodecahedron

Figure 6.23: The great rhombicosidodecahedron and the corresponding 1-
skeleton graph.

A particular geometric realisation derived from the eigenspace X2:

Figure 6.24: Affine B-regular great rhombicosidodecahedron.
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The Snub Cube
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Figure 6.25: The small rhombicuboctahedron and the corresponding 1-
skeleton graph.

The eigenspace X2 corresponding to the second highest eigenvalue is:
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X2 =



(
107
111
− 26

111

(
6 +
√

7
))
α +

(
209
111
− 29

111

(
6 +
√

7
))
β +

(
6
37

(
6 +
√

7
)
− 56

37

)
γ(

41
111
− 11

111

(
6 +
√

7
))
α +

(
− 61

111
− 8

111

(
6 +
√

7
))
β +

(
56
37
− 6

37

(
6 +
√

7
))
γ(

209
111
− 29

111

(
6 +
√

7
))
α +

(
41
111
− 11

111

(
6 +
√

7
))
β +

(
1
37

(
6 +
√

7
)
− 34

37

)
γ(

− 61
111
− 8

111

(
6 +
√

7
))
α +

(
107
111
− 26

111

(
6 +
√

7
))
β +

(
34
37

+ 1
37

(
−6−

√
7
))
γ(

47
111

(
6 +
√

7
)
− 266

111

)
α +

(
14
111

(
6 +
√

7
)
− 32

111

)
β +

(
50
37
− 8

37

(
6 +
√

7
))
γ(

118
111
− 10

111

(
6 +
√

7
))
α +

(
23
111

(
6 +
√

7
)
− 116

111

)
β +

(
8
37

(
6 +
√

7
)
− 50

37

)
γ(

23
111

(
6 +
√

7
)
− 116

111

)
α +

(
47
111

(
6 +
√

7
)
− 266

111

)
β +

(
78
37
− 11

37

(
6 +
√

7
))
γ(

14
111

(
6 +
√

7
)
− 32

111

)
α +

(
118
111
− 10

111

(
6 +
√

7
))
β +

(
11
37

(
6 +
√

7
)
− 78

37

)
γ(

7
111

(
6 +
√

7
)
− 16

111

)
α +

(
59
111
− 5

111

(
6 +
√

7
))
β +

(
72
37
− 13

37

(
6 +
√

7
))
γ(

275
111
− 44

111

(
6 +
√

7
))
α +

(
200
111
− 32

111

(
6 +
√

7
))
β +

(
13
37

(
6 +
√

7
)
− 72

37

)
γ(

200
111
− 32

111

(
6 +
√

7
))
α +

(
7

111

(
6 +
√

7
)
− 16

111

)
β +

(
25
37
− 4

37

(
6 +
√

7
))
γ(

59
111
− 5

111

(
6 +
√

7
))
α +

(
275
111
− 44

111

(
6 +
√

7
))
β +

(
4
37

(
6 +
√

7
)
− 25

37

)
γ(

8
111

(
6 +
√

7
)
− 50

111

)
α +

(
26
111

(
6 +
√

7
)
− 107

111

)
β +

(
1
37

(
6 +
√

7
)
− 34

37

)
γ(

29
111

(
6 +
√

7
)
− 209

111

)
α +

(
11
111

(
6 +
√

7
)
− 152

111

)
β +

(
34
37

+ 1
37

(
−6−

√
7
))
γ(

26
111

(
6 +
√

7
)
− 107

111

)
α +

(
29
111

(
6 +
√

7
)
− 209

111

)
β +

(
19
37
− 6

37

(
6 +
√

7
))
γ(

11
111

(
6 +
√

7
)
− 152

111

)
α +

(
8

111

(
6 +
√

7
)
− 50

111

)
β +

(
6
37

(
6 +
√

7
)
− 19

37

)
γ(

5
37

(
6 +
√

7
)
− 59

37

)
α +

(
7
37

(
6 +
√

7
)
− 53

37

)
β +

(
75
37
− 12

37

(
6 +
√

7
))
γ(

22
37
− 5

37

(
6 +
√

7
))
α +

(
16
37
− 7

37

(
6 +
√

7
))
β +

(
12
37

(
6 +
√

7
)
− 75

37

)
γ(

7
37

(
6 +
√

7
)
− 53

37

)
α +

(
22
37
− 5

37

(
6 +
√

7
))
β +

(
− 6

37
− 2

37

(
6 +
√

7
))
γ(

16
37
− 7

37

(
6 +
√

7
))
α +

(
5
37

(
6 +
√

7
)
− 59

37

)
β +

(
6
37

+ 2
37

(
6 +
√

7
))
γ

α + β − γ
γ

β

α



The affine B-regular snub cube is not affine regular. A particular realisation looks

as follows.
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Figure 6.26: The affine B-regular snub cube



Chapter 7

Conclusion

In the thesis we studied

• classification of ∨-systems

• limiting shapes of polyhedra under Buffon transformation

The main findings of the thesis are

• proof of the local completeness of Feigin-Veselov list of the 3-dimensional

∨-systems

• proof of the existence of affine B-regular polyhedron of a given simplicial

combinatorial type with Platonic symmetry.

Although the problem of classification of ∨-systems seems to be very hard, in

dimension 3 it does not look hopeless. As we have seen, matroids provide a natural

framework for the problem of classification of ∨-systems. Fixing the matroidal

structure of a certain type the projective rigidity property allows to analyse the

∨-conditions directly starting with one vector realisation of a given ∨-system. All

known irreducible ∨-systems in dimensions 3 have a rigid underlying matroid. For

small vector configurations this direct method leads to the full classification of

∨-systems of a given matroid type.

A big step towards the full classification would be finding a procedure for genera-

tion of the class of ∨-system type matroids. As we have seen [26] this is a highly

106
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non-trivial task for several reasons. The number of simple rank 3-matroids grows

rapidly with the number of elements. Moreover, the number of realisable (vector-)

matroids on more than 8 elements is unknown. Further constrains are needed in

order to restrict and characterise the class of suitable candidates.

An important result from the theory of matroids is Seymour’s decomposition theo-

rem [44]. A matroid is called regular if it is representable over all fields. Seymour’s

theorem states that all regular matroids can be build up in a simple way as sums

of certain type of simpler well defined (graphic) matroids, their duals, and one

special matroid on 10 elements. Examples of degenerations and extensions of ∨-

system matroids indicate a possibility of the existence of a similar result for the

∨-system type matroids. In particular, we have seen that the matroid F3 can be

obtained as a sum of two simpler matroids.

Another possible direction is the problem of identification of forbidden minors. In

analogy to the theory of matroids and the theory of graphs, where many families

have been proved to be closed under taking minors, there is a possibility to reduce

the problem of classification of ∨-systems to the task of the identification of the

forbidden minors. The interesting example of the matroid on 10 elements [26],

which does not permit a vector realisation with respect to the ∨-conditions would

be a natural choice as a staring point in this direction.

Further investigation of the structural properties of the ∨-system type matroids

listed in Chapter 2 could develop useful as tools for both directions, the question

of characterisation of the class of admissible matroids and the identification of

forbidden type matroids.

In the second part the main remaining problem is to describe all combinato-

rial structures of polyhedra admitting affine B-regular realisations. In Colin de

Verdière approach this means that the corresponding symmetrised Buffon matrix

has Colin de Verdière property. Again in full generality this seems to be a very

hard question.

Note that the Buffon regularisation procedure can naturally be interpreted as the

search of an ideal shape of a given polyhedron. In that sense it can be considered as

one of the earliest examples of the trend, popular in modern differential geometry.

For manifolds this usually leads to the solutions of certain nonlinear PDEs like

the mean curvature flow in the theory of minimal surfaces [20] or the celebrated
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Ricci flow in Thurston’s geometrisation programme [34]. Our case is conceptually

closer to the description of the minimal submanifolds in the unit sphere using the

eigenfunctions of the Laplace-Beltrami operator, see [23, 45].

The main difference with the differential case is that the generic graphs are much

less regular objects than manifolds, even under our assumption of Platonic sym-

metry. The crucial thing here is a large multiplicity of the second eigenvalue of

the Buffon operator. How to guarantee this is a good question.

The symmetry assumption seems to be natural. We already mentioned an interest-

ing result of Mowshowitz [35], who showed that if all eigenvalues of the adjacency

matrix A of a graph are different, then every automorphism of A has order 1 or 2.

Some interesting related results for the graphs with vertex transitive group action

can be found in [21]. Note that in our case the group action is far from being

vertex transitive.

An interesting question concerns the decomposition of F(V) into the irreducible

G-modules with respect to the Buffon spectrum. We saw that the geometric

representation always appears at the subdominant level, but we do not know

much about higher levels.

Finally, a natural question is what happens in higher dimension. We believe

that for the simplicial polyhedra we should expect similar result if we assume

the symmetry under an irreducible Coxeter group. Note that in dimension 4 we

have 6 regular polyhedra with the symmetry groups A4 = S5, B4, F4 and H4,

while in dimension more than 4 we have only analogues of tetrahedron, cube and

octahedron. A generalisation of Lovász construction to many dimensions can be

found in [22].
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Appendix A

Catalogue of all known real

3-dimensional ∨-systems

    B  ( 2)  
3

A (c)
3

A
     

3D (t,s)
3

(AB (t), A ) 
4 1 1

(AB (t), A ) 
4 1 2

F (t)3

G (t)3

(E ,A )
6 1

3

(E , A )
8 5

(E , A )
7

2

2

(E , A  x A  )   
7 1 3 2

(E , A  x A  )   
7 1 3 1

(E , A )
 7 1

4

(E , D )
8 5

(E , A  x D  )   
8 1 4

(E , A )
7 4

(E , A  x A  )   
6 1 2

(E , A  x A  )   
7 1 2

2

(E , A  x A  )   
8 2 3

(H , A )   
4 1

(E , A  x A  )   
8 1 3

2

(E , A  x A  )   
8 2 1

2

(E , A  x A  )   
8 1 2

3
H3(E , A  x A  )   

8 1 4

(E , A )
6 3

(E , D )
7 4

P
A  (t,t,1,1)

3

    B (γ;c)  
3

Figure A.1: The map of all known 3-dimensional ∨-systems from [15]
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We use here the notations from [14, 15]. In particular, for a Coxeter group G

and its parabolic subgroup H (G,H) denotes the corresponding ∨-system given

by the restriction procedure [14]. When the type of the subgroup does not fix the

subgroup up to a conjugation the index 1 or 2 is used to distinguish them. A

schematic way to present all known ∨-systems in dimension 3 taken from [15] is

shown above.

Each 3D ∨-system A is presented below by the matrix with columns giving the

covectors of the system (the first row is simply the labelling of the covectors).

We give the graphical representation of the corresponding matroid with the list of

orthogonal pairs, 2-flats, the form G and the values of ν-function. The ordering of

the list is according to the number of covectors in the system. The parameters are

assumed to be chosen in such a way that all the covectors are real and non-zero.

∨-systems A3(c1, c2, c3)

A =


1 2 3 4 5 6
√
c1 0 0 −√c1c2 −√c1c3 0

0
√
c2 0

√
c1c2 0 −√c2c3

0 0
√
c3 0

√
c1c3

√
c2c3



1

4

2

3
5

6
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G =


c1(1 + c2 + c3) −c1c2 −c1c3

−c1c2 c2(1 + c1 + c3) −c2c3

−c1c3 −c2c3 c3(1 + c1 + c2)



I2 ={(1, 6), (2, 5), (3, 4)}

I3 =


(1, 2, 4), (1, 3, 5), (2, 3, 6), νj =

1−cj+
∑3
i=1 ci

1+
∑3
i=1 ci

, j = 1, 2, 3

(4, 5, 6), ν =
∑3
i=1 ci

1+
∑3
i=1 ci

∨-system D3(t, s)

A =


1 2 3 4 5 6 7

1 1 1 1 0 0
√

2(s+ t− 1)

1 −1 −1 1

√
2(s−t+1)

t 0 0

1 −1 1 −1 0

√
2(t−s+1)

s 0



1 6 4

2
7

5

3
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G = 2(1 + s+ t)


1 0 0

0 1
t 0

0 0 1
s



I2 ={(5, 6), (5, 7), (6, 7)}

I3 =


(1, 2, 7), (3, 4, 7) ν31 = s+t

1+s+t

(1, 3, 5), (2, 4, 5) ν32 = 1+s
1+s+t

(1, 4, 6), (2, 3, 6) ν33 = 1+t
1+s+t

∨-system (E6, A3)

A =



1 2 3 4 5 6 7 8

2 2 2
√

6 2 −2 2 −2 0

2 −2 0 1
2

1
2 −1 −1

√
6

2

0 0 0 1
2

1
2 1 1

√
6

2



8 6 2

3
5

1

7

4
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G = 4


12 0 0

0 3 0

0 0 1


I2 ={(1, 5), (2, 4), (4, 7), (5, 6)}

I3 =

(2, 5, 7), (1, 4, 6) ν31 = 1
2

(6, 3, 7), (8, 1, 7), (1, 2, 3), (8, 6, 2) ν32 = 2
3

I4 =
{

(8, 4, 3, 5) ν4 = 2
3

∨-systems of B3(c1, c2, c3, γ)

A =



1 2 3

√
2c1(c1 + γ) 0 0

0
√

2c2(c2 + γ) 0

0 0
√

2c3(c3 + γ)

· · ·

· · ·

4 5 6 7 8 9

0
√
c1c3

√
c1c2 0 −√c1c3 −√c1c2

√
c2c3 0

√
c1c2 −√c2c3 0

√
c1c2

√
c2c3

√
c1c3 0

√
c2c3

√
c1c3 0
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9

8

7

5

42

6

1

3

G = 2(c1 + c2 + c3 + γ)


c1 0 0

0 c2 0

0 0 c3


I2 ={(1, 4), (1, 7), (2, 5), (2, 8), (3, 6), (3, 9)}

Four 3-point lines:

I3 ={(4, 5, 9), (4, 6, 8), (5, 6, 7), (7, 8, 9)} , ν3 =
∑
ci

2(γ+
∑3
i=1 ci)

Three 4-point lines:

I4 ={(1, 2, 6, 9), (1, 3, 5, 8), (2, 3, 4, 7)} , ν4j =
γ−cj+

∑
ci

γ+
∑3
i=1 ci)

, j=1,2,3

∨-system (E6, A
3
1)

A =



1 2 3 4 5 6 7 8 9 10

√
2
√

2 2
√

3 0
√

2 −
√

2 −
√

2
√

2 0 0
√

2 −
√

2 0 2
√

2
2 −

√
2

2

√
2

2 −
√

2
2 1 −1

0 0 0 0
√

2
2

√
2

2

√
2

2

√
2

2 1 1
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7

9
5

3

8

10

6

1
2

4

G =


24 0 0

0 12 0

0 0 4


I2 ={(1, 7), (1, 8), (2, 5), (2, 6), (5, 6), (7, 8)}

I3 =

(10, 2, 7), (4, 6, 7), (9, 8, 2), (1, 5, 10), (4, 5, 8), (9, 1, 6), ν31 = 5
12

(4, 9, 10), ν32 = 1
2

I4 ={(4, 1, 2, 3), (9, 5, 3, 7), (6, 3, 8, 10)} , ν4 = 2
3
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∨-system (AB4(t), A1)2

A =



1 2 3 4 5 6 7 8 9 10

√
2 0 0 1 1√

4t2+1
1 1√

4t2+1
0 0 t

√
2√

(t2+1)

0
√

2 0 1 − 1√
4t2+1

0 0 1 1√
4t2+1

t
√

2√
(t2+1)

0 0
√

2 0 0 1 − 1√
4t2+1

1 − 1√
4t2+1

t
√

2√
(t2+1)



9

7

5 2 4 1

6
3

8
10

G =


6− 2

1+t2
+ 2

1+4t2
6(t2+2t4)
1+5t2+4t4

6(t2+2t4)
1+5t2+4t4

6(t2+2t4)
1+5t2+4t4

6− 2
1+t2

+ 2
1+4t2

6(t2+2t4)
1+5t2+4t4

6(t2+2t4)
1+5t2+4t4

6(t2+2t4)
1+5t2+4t4

6− 2
1+t2

+ 2
1+4t2


I2 = {(1, 9), (2, 7), (3, 5), (5, 10), (7, 10), (9, 10)}

I3 =


(1, 8, 10), (2, 6, 10), (3, 4, 10) ν31 = 1+4t2

3(1+2t2)

(4, 6, 9), (4, 7, 8), (5, 6, 8) ν32 = 3+4t2

6(1+2t2)

(5, 7, 9) ν33 = 1
2(1+2t2)

I4 = {(1, 2, 4, 5), (1, 3, 6, 7), (2, 3, 8, 9)}, ν4 = 2
3
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∨-system (AB4(t), A1)1

A =



1 2 3 4 5 6 7 8 9 10 11

√
2(2t2 + 1) 0 0

√
2
√

2 t
√

2 t
√

2 t t t t

0 2
√

2(t2 + 1) 0
√

2 −
√

2 0 0 2t −2t 2t −2t

0 0 t
√

2(2t2 − 1) 0 0 t
√

2 −t
√

2 t t t −t



9
6

8

2

4

1

5

10 7 11

3

G = 6


1 + 2t 0 0

0 2 + 4t 0

0 0 t2+2t4

1+t2



I2 = {(2, 3), (3, 4), (3, 5), (4, 9), (4, 11), (5, 8), (5, 10)}

I3 =


(4, 6, 10), (4, 7, 8), (5, 6, 11), (5, 7, 9) ν31 = 3+4t2

6(1+2t2)

(1, 8, 11), (1, 9, 10) ν32 = 1+3t2

3(1+2t2)

(3, 8, 10), (3, 9, 11) ν33 = t2

(1+2t2)

I4 =


(2, 6, 8, 9), (2, 7, 10, 11) ν41 = 2

3

(1, 2, 4, 5) ν42 = 3+2t2

3(1+2t2)

(1, 3, 6, 7) ν43 = 1+4t2

3(1+2t2)
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∨-system G3(t)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13

√
2t+ 1 0

√
2t+ 1

√
2t−1

3 2
√

2t−1
3

√
2t−1

3 0 1 1 0 0 1 1

0
√

2t+ 1
√

2t+ 1 −
√

2t−1
3

√
2t−1

3 2
√

2t−1
3 0 0 0 1 1 1 1

0 0 0 0 0 0
√

3
t 1 −1 1 −1 1 −1



5

13

3
12

7

11

9

10

6

2

4

1
8

G =


4(1 + 2t) 2(1 + 2t) 0

2(1 + 2t) 4(1 + 2t) 0

0 0 3(2 + 1
t )



I2 ={(4, 7), (4, 12), (4, 13), (5, 7), (5, 10), (5, 11), (6, 7), (6, 8), (6, 9)}
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I3 =

(2, 9, 13), (2, 8, 12), (3, 8, 11), (1, 11, 13), (1, 10, 12), (3, 9, 10) ν31 = 3+4t
6(1+2t)

(4, 8, 10), (6, 11, 12), (6, 10, 13), (5, 9, 12), (5, 8, 13), (4, 9, 11) ν32 = 1+4t
6(1+2t)

I4 ={(2,7,10,11),(1,7,8,9),(3,7,12,13)} ,ν4 = 3+2t
3+6t

I6 = {(1, 2, 3, 4, 5, 6)},ν6 = 2t
1+2t

∨-system (E7, A
2
1 × A2)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13

√
3
√

3 2 0 0 1√
2
− 1√

2
− 1√

2
1√
2

√
3
2 −

√
3
2 −

√
3
2

√
3
2√

3 −
√

3 0 2
√

6 0 3√
2
− 3√

2
3√
2
− 3√

2

√
3
2 −

√
3
2

√
3
2 −

√
3
2

0 0 0 0 1 1√
2

1√
2

1√
2

1√
2

√
3
2

√
3
2

√
3
2

√
3
2



10

5

11

8

9

4

13
2

1

6

7

3

12
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G = 9


2 0 0

0 6 0

0 0 1


I2 ={(1, 8), (1, 9), (2, 6), (2, 7), (3, 5), (4, 5), (6, 11), (7, 10), (8, 13), (9, 12)}

I3 =



(5, 9, 8), (7, 5, 6) ν31 = 2
9

(10, 3, 12), (11, 13, 3) ν32 = 7
18

(6, 3, 8), (7, 9, 3) ν33 = 5
18

(6, 1, 12), (10, 2, 8), (7, 13, 1), (11, 9, 2) ν34 = 1
3

I4 =

(5, 13, 2, 12), (11, 5, 10, 1) ν41 = 4
9

(4, 2, 3, 1) ν42 = 5
9

I5 ={(11, 7, 4, 8, 12), (6, 10, 13, 9, 4)} , ν5 = 2
3

∨-system F3(t)



1 2 3 4 5 6 7 8 9 10 11 12 13

√
4t2 + 2 0 0 1 1 1 1 0 0 t

√
2 t

√
2 t

√
2 t

√
2

0
√

4t2 + 2 0 1 −1 0 0 1 1 t
√

2 −t
√

2 t
√

2 −t
√

2

0 0
√

4t2 + 2 0 0 1 −1 1 −1 t
√

2 t
√

2 −t
√

2 −t
√

2
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11

9
12

1

5
2

4

6 7

10
8 13

3

G = (6 + 12t2)I

I2 ={(4,11),(4,13),(5,10),(5,12),(6,13),(7,10),(7,11),(8,11),(8,12),(9,10),(9,13)}

I3 =
{

(4, 6, 9), (4, 7, 8), (5, 6, 8), (5, 7, 9), ν31 = 1
2+4t2

I4 =


(1, 2, 4, 5), (1, 3, 6, 7), (2, 3, 8, 9), ν32 = 2(1+t2)

3+6t2

(1, 8, 10, 13), (1, 9, 11, 12), (2, 6, 10, 11), (2, 7, 12, 13),

(3, 4, 10, 12), (3, 5, 11, 13), ν33 = 1+4t2

3+6t2

Coxeter ∨-system H3

A =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2φ 0 0 1 −1 1 1 φ −φ φ φ φ2 φ2 −φ2 φ2

0 2φ 0 φ φ −φ φ −φ2 φ2 φ2 φ2 1 −1 1 1

0 0 2φ φ2 φ2 φ2 −φ2 1 1 −1 1 −φ φ φ φ


with the golden mean φ = 1+

√
5

2 and φ2 = φ+ 1.
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6

8

9

5

3

7

1014 12

13 15 11

4

21

G = 10(3 +
√

5)I

I2 =

(1, 2), (1, 3), (2, 3), (4, 8), (4, 12), (5, 10), (5, 13), (6, 11),

(6, 14), (7, 9), (7, 15), (8, 12), (9, 15), (10, 13), (11, 14).

I3 =

(1, 8, 10), (1, 9, 11), (2, 4, 6), (2, 5, 7), (3, 12, 15),

(3, 13, 14), (4, 9, 13), (5, 11, 12), (6, 10, 15), (7, 8, 14) ν31 = 3
10

I5 =

(1, 4, 5, 14, 15), (1, 6, 7, 12, 13), (2, 8, 11, 13, 15), (2, 9, 10, 12, 14),

(3, 4, 7, 10, 11), (3, 5, 6, 8, 9) ν5 = 1
2
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∨-system (E8, A1 × A4)

A =



1 2 3 4 5 6 7 8 9 10 11 12

√
10

√
10

√
2
√

2 0 0 2 0 1 −1
√

5 −
√

5
√

10 −
√

10 0 0
√

5
√

10 0 2
√

10 2
5

5
2 −3

√
5

2 −3
√

5
2

0 0
√

2 −
√

2
√

5 −
√

10 0 0 1
2

1
2

√
5

2

√
5

2

· · ·

· · ·

13 14 15 16

√
10 −

√
10 0 0

√
10
2

√
10
2 − 5√

2
3
√

10
2√

10
2

√
10
2

1√
2

√
10
2



7

11

6

3

13

4

14 5

15

2

1

12

                 10    
                      8
                       
                        16

                                    
                                     

                                       9

G = 30


2 0 0

0 5 0

0 0 1



I2 ={(1, 10), (2, 9), (3, 8), (3, 10), (3, 14), (4, 8), (4, 9), (4, 13), (6, 7), (6, 9), (6, 10),

(7, 15), (7, 16), (13, 15), (14, 15)}
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I3 =



(5, 10, 11), (5, 9, 12), (7, 11, 12) ν31 = 7
30

(7, 9, 10) ν32 = 1
10

(3, 16, 11), (4, 5, 1), (4, 16, 12), (3, 5, 2), (11, 15, 1), (2, 15, 12) ν33 = 4
15

(4, 10, 15), (3, 9, 15), (3, 4, 7) ν34 = 2
15

I4 = {(7, 2, 8, 1), (12, 8, 10, 14), (14, 16, 9, 1), (13, 16, 10, 2), (13, 5, 14, 7), (13, 9, 8, 11)},

ν4 = 2
5

I5 ={(15, 8, 16, 5, 6), (12, 1, 13, 3, 6), (11, 2, 14, 4, 6)}, ν5 = 3
5

∨-system (E8, A2 × A3)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13

2
√

3 2
√

3 0 0
√

3
√

15
2 2

√
3 0 3

2
3
2 −3 −3 3

√
6

2

2
√

3 −2
√

3 2 2 0 0 0 2
√

6 2 −2 2 −2 0

0 0 2 −2
√

3 −
√

15
2 0 0 1

2
1
2 1 1

√
6

2

· · ·

· · ·

14 15 16 17

−
√

3
2 −

√
3

2

√
3

√
3

2
√

3 −2
√

3 2
√

3 −2
√

3
√

3
2 −

√
3

2

√
3

√
3



13

1

15

9

7                                       6                   5

  12

4

                                   11                                   3

2         14
                      10

10                8

17
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G = 30


3 0 0

0 4 0

0 0 1


I2 ={(1, 10), (2, 9), (3, 7), (3, 10), (3, 15), (4, 7), (4, 9), (4, 14),

(5, 11), (5, 12), (9, 11), (9, 17), (10, 12), (10, 16), (11, 15), (12, 14)}

I3 =


{(5, 9, 15), (5, 10, 14), (7, 9, 14), (7, 10, 15)} ν31 = 1

6

{(3, 14, 17), (4, 12, 13), (4, 15, 16), (7, 11, 16), (7, 12, 17), (8, 11, 12),

(1, 4, 5), (1, 11, 14), (2, 3, 5), (2, 12, 15), (3, 4, 8), (3, 11, 13)} ν32 = 4
15

I4 =


(8, 9, 10, 13) ν41 = 4

15

(1, 2, 7, 8), (1, 13, 15, 17), (2, 13, 14, 16), (5, 6, 7, 13), (5, 8, 16, 17),

(6, 8, 14, 15) ν42 = 2
5

I6 ={(1, 3, 6, 9, 12, 16), (2, 4, 6, 10, 11, 17)}, ν6 = 3
5

∨-system (E8, A
2
1 × A3)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 0 0 2 2 2 0 0
√

2
2

√
2

2

√
2

2

√
2

2

2 −2 2 2 0 0 0 2
√

10 0 2
√

2 −2
√

2 −2
√

2 2
√

2

0 0 2 −2 2 −2 0 0 2
√

2
2 −

√
2

2

√
2

2 −
√

2
2

· · ·

· · ·

14 15 16 17

√
2

√
2

√
2

√
2

2
√

2 −2
√

2 −2
√

2 2
√

2
√

2 −
√

2
√

2 −
√

2
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5

2                               
                            

15

3

14

79 6

16
                                                                4

                                            11
                                                           10
                                                      8
                                                                           1

                            12
                                             17

                                            

                                

                                                                                                                                                                                                                  13

G = 30


1 0 0

0 4 0

0 0 1



I2 ={(1, 9), (1, 11), (1, 12), (2, 9), (2, 10), (2, 13), (3, 7), (3, 12),

(3, 13), (4, 7), (4, 10), (4, 11), (5, 11), (5, 13), (6, 10), (6, 12)}

I3 =



(7, 10, 11), (7, 12, 13), (9, 10, 13), (9, 11, 12) ν31 = 1
6

(9, 15, 16), (9, 14, 17), (7, 16, 17), (7, 14, 15) ν32 = 4
15

(1, 10, 15), (1, 13, 16), (2, 11, 14), (2, 12, 17), (3, 10, 17),

(3, 11, 16), (4, 12, 15), (4, 13, 14) ν33 = 7
30

I4 ={(1, 2, 7, 8), (1, 3, 6, 14), (1, 4, 5, 17), (2, 3, 5, 15), (2, 4, 6, 16), (3, 4, 8, 9), (5, 6, 7, 9)},

ν4 = 2
5

I6 ={(6, 8, 11, 13, 15, 17), (5, 8, 10, 12, 14, 16)},ν6 = 3
5

∨-system (E8, A
3
1 × A2)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

√
3 3 0 1

√
3 0

√
6 0 0

√
6
√

3 3 1
√

3 0 2
√

6 0
√

6
√

3 0 3 −1 0
√

3 0
√

6 0
√

6
√

3 3 2 0
√

3 1 0
√

6
√

6

0 3 3 0 −
√

3 −
√

3 0 0 6
√

2 3
√

6 4
√

3 6 3 3
√

3 3
√

3 3 2
√

6 2
√

6
√

6
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4

7                                              10       
                                                              12
                                              14              17

13

11

6

2
16

5     18    9        19

                                        1
                                                         
                                                          8

                                                                                                                                     
                                                                 

                                                                            3

15

G = 30


1 0 0

0 2 0

0 0 3



I2 = {(1, 9), (1, 15), (1, 17), (2, 9), (2, 14), (2, 16), (3, 7), (3, 11),

(3, 13), (4, 7), (4, 10), (4, 12), (5, 11), (5, 12), (6, 10), (6, 13), (10, 15), (11, 17), (12, 16),

(13, 14), (14, 19), (15, 19), (16, 18), (17, 18)}
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I3 =

(3, 15, 18), (3, 16, 19), (4, 14, 18), (4, 17, 19), (7, 14, 17), (7, 15, 16) ν31 = 7
30

(7, 13, 11), (2, 12, 18), (2, 13, 19), (1, 10, 19), (1, 11, 18), (7, 10, 12) ν32 = 1
6

I4 =

(1, 2, 7, 8), (8, 10, 13, 18), (8, 11, 12, 19) ν31 = 4
15

(3, 4, 8, 9), (5, 8, 14, 15), (6, 8, 16, 17) ν32 = 2
5

I5 =

(9, 12, 13, 15, 17), (9, 10, 11, 14, 16), (2, 4, 6, 11, 15),

(2, 3, 5, 10, 17), (1, 4, 5, 13, 16), (1, 3, 6, 12, 14) ν5 = 2
5

I6 ={(5, 6, 7, 9, 18, 19)},ν6 = 3
5

∨-system (E8, A
2
2 × A1)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

√
3 3 0 1

√
3 0

√
6 0 0

√
6
√

3 3 1
√

3 0
√

3 0 3 −1 0
√

3 0
√

6 0
√

6
√

3 3 2 0
√

3

0 3 3 0 −
√

3 −
√

3 0 0 6
√

2 3
√

6 4
√

3 6 3 3
√

3 3
√

3

· · ·

· · ·

16 17 18 19

2
√

6 0
√

6

1 0
√

6
√

6

3 2
√

6 2
√

6
√

6
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2 17      14        9            5                 
7

8

19

6                 1

                                                                                                       11     15
                                                                                          
                                                                10         

                                                18

16
12

13
3

4

G = 30


2 1 3

1 2 3

3 3 12



I2 = {(1, 17), (1, 18), (4, 9), (4, 10), (4, 19), (5, 8), (5, 10), (6, 7), (6, 10), (7, 11), (7, 13),

(8, 11), (8, 16), (9, 13), (9, 16), (13, 17), (14, 18), (14, 19), (15, 17), (15, 19), (16, 18)}

I3 =


(1, 2, 6), (1, 3, 5), (2, 11, 15), (3, 11, 14), (5, 12, 15), (6, 12, 14) ν31 = 7

30

(7, 12, 18), (8, 12, 17), (3, 10, 17), (3, 7, 19), (2, 10, 18), (2, 8, 19) ν32 = 4
15

(1, 13, 15), (1, 14, 16), (4, 5, 6), (4, 14, 15), (5, 11, 16), (6, 11, 13) ν33 = 1
6

I4 =

(1, 4, 7, 8), (4, 11, 17, 18), (5, 13, 18, 19), (6, 16, 17, 19),

(7, 10, 15, 16), (8, 10, 13, 14) ν4 = 4
15
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I6 =

(2, 3, 4, 12, 13, 16); ν61 = 2
5

(2, 5, 7, 9, 14, 17), (1, 9, 10, 11, 12, 19), (3, 6, 8, 9, 15, 18) ν62 = 3
5

∨-system (H4, A1)

A =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0
√

2
2

√
2

2

√
2

2

√
2

2 a a a a b b b b 1
2

0 1 0
√

2
2

√
2

2 −
√

2
2 −

√
2

2
1
2

1
2 −1

2 −1
2 a a −a −a b

0 0 1
√

2
2 −

√
2

2

√
2

2 −
√

2
2 b −b b −b 1

2 −1
2

1
2 −1

2 a

· · ·

...

17 18 19 20 21 22 23 24 25 26 27

1
2

1
2

1
2 a

√
2 a

√
2 0 0 b

√
2 b

√
2

√
b
√

5
√
b
√

5

b −b −b b
√

2 −b
√

2 a
√

2 a
√

2 0 0 2a
√
b
√

5 −2a
√
b
√

5

−a a −a 0 0 b
√

2 −b
√

2 a
√

2 −a
√

2 0 0

...

· · ·

28 29 30 31

0 0 2a
√
b
√

5 −2a
√
b
√

5√
b
√

5
√
b
√

5 0 0

2a
√
b
√

5 −2a
√
b
√

5
√
b
√

5
√
b
√

5


with a = 1+

√
5

4 and b = −1+
√

5
4 .

G = I

I2 ={(1, 22), (1, 23), (1, 28), (1, 29), (2, 24), (2, 25), (2, 30), (2, 31), (3, 20),

(3, 21), (3, 26), (3, 27), (4, 11), (4, 13), (4, 18), (5, 10), (5, 12), (5, 19),

(6, 9), (6, 15), (6, 16), (7, 8), (7, 14), (7, 17), (8, 25), (8, 29), (8, 27),

(9, 25), (9, 26), (9, 28), (10, 24), (10, 27), (10, 28), (11, 24), (11, 26),

(11, 29), (12, 29), (12, 31), (13, 20), (13, 28), (13, 31), (14.21),

(14, 28), (12, 21), (14, 30), (15, 20), (15, 29), (15, 30), (16, 23),

(16, 27), (16, 31), (17, 22), (17, 26), (17, 31), (18, 22), (18, 27),



Appendix A. Catalogue of all known real 3-dimensional ∨-systems 132

(18, 30), (19.23), (19.26), (19, 30)}

1

16

28

71130

19

31

20
8

4

25

21 9 27 15 2  22 26 12    5    23     

24  17  3  29                      

  

10 18  6         14   

               
13

I3 =



{(1, 4, 7), (1, 5, 6), (2, 4, 5), (2, 6, 7), (3, 4, 6), (3, 5, 7), (4, 10, 25), (4, 15, 21), (4, 17, 23),

(5, 11, 25), (17, 21, 25), (8, 21, 22), (18, 20, 24), (16, 20, 25), (19, 21, 24)

(5, 14, 20), (5, 16, 22), (6, 8, 24), (6, 13, 21), (6, 19, 22), (7, 9, 24), (7, 12, 20), (7, 18, 23),

(9, 20, 23), (10, 21, 23), (11, 20, 22), (12, 23, 24), (13, 22, 24), (14, 22, 25), (15, 23, 25)} ν31 = 2
15

{(1, 16, 19), (1, 17, 18), (2, 8, 9), (2, 10, 11), (3, 12, 14), (3, 13, 15), (8, 14, 17),

(11, 13, 18), (9, 15, 16), (10, 12, 19)} ν32 = 1
10

I5 ={(1, 8, 11, 12, 15), (1, 9, 10, 13, 14), (2, 12, 13, 16, 17), (2, 14, 15, 18, 19),

(3, 8, 10, 16, 18), (3, 9, 11, 17, 19)}

ν5 = 1
6
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I6 ={(1, 2, 20, 21, 26, 27), (1, 3, 24, 25, 30, 31), (2, 3, 22, 23, 28, 29), (4, 8, 19, 20, 28, 31),

(5, 8, 13, 23, 26, 30), (5, 9, 18, 21, 29, 31), (5, 15, 17, 24, 27, 28), (6, 10, 17, 20, 29, 30),

(6, 11, 14, 23, 27, 31), (6, 12, 18, 25, 26, 28), (4, 9, 12, 22, 27, 30), (4, 14, 16, 24, 26, 29),

(7, 10, 15, 22, 26, 31), (7, 11, 16, 21, 28, 30), (7, 13, 19, 25, 27, 29)}

ν6 = 1
3 }



Appendix B

Mathematica implementation of

linearised ∨-conditions

The purpose of this appendix is to demonstrate how the linearised ∨-conditions derived

in section 3.2 can be implemented in Mathematica [55]. Here we use a modified version

of the Mathematica program developed by K. Schwerdtfeger in [41].

all2Flats[A_] := Block [{At , n, Ids},

At = Transpose[A]; n = Length[At]; Ids = {{}};

Do[If[! pairListedQ[Ids , i, j], AppendTo[Ids , {i, j}];

Do[If[MatrixRank [{At[[i]], At[[j]], At[[k]]}] == 2,

AppendTo[Ids[[ Length[Ids]]], k]],

{k, j + 1, n}]],

{i, 1, n - 1}, {j, i + 1, n}];

Ids [[2 ;;]]];

gives a list of all 2-flats of a given system. Here the command

pairListedQ[L_ , i_, j_] :=

Catch[If[i == j, Throw[False ]];

Do[If[MemberQ[l, i] && MemberQ[l, j], Throw[True]], {l, L}];

False];

is used. The command

large2Flats[A_] := Select[all2Flats[A], Length [#] > 2 &];

gives only flats with more than 2 elements.

In order to check the ∨-conditions and compute the values of the ν-function one can use

the following command [41]

134
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checkV[A_] := Block[{At , G, Gi , mults , m, i = 1},

At = Transpose[A]; G = A.At; Gi = Inverse[G];

Do[mults = {};

Do[m =

Solve[Sum[At[[i]].Gi.At[[id]]*At[[i]], {i, ids}] == l*At[[id]],

l];

AppendTo[mults , If[m == {}, False , Simplify[m[[1, 1, 2]]]]] ,

{id , ids }];

Print[{i++, ids ,

If[Do[If[m =!= mults [[1]] , Return[True]], {m, mults}] === True ,

mults , mults [[1]]]}] ,

{ids , all2Flats[A]}]];

Interested in the number of parameters on which the solutions of the infinitesimal con-

strains depend (see section 3.2) we add the extension

G = FullSimplify[vt.vectors ];

Gi = Inverse[G];

x = Table[a[i], {i, n}]

vectorsx = Table[Sqrt[x[[k]]]* vectors [[k]], {k, 1, n}];

X = FullSimplify[Transpose[vectorsx ]. vectorsx ];

gorth = {};

mults = {};

gorth = Table[

Simplify[Gi.vectors [[l2i [[1]]]].X.Gi.vectors [[l2i [[2]]]]] ,

{l2i , l2}];

Do[m = Simplify[

Solve[Sum[

Simplify[

Simplify[vectors [[i]].Gi.vectors [[ids [[1]]]]]*

Simplify[Gi.vectors [[i]]]], {i, ids}] ==

l*Simplify[Gi.vectors [[ids [[1]]]]] , l]];

AppendTo[mults , Simplify[m[[1, 1, 2]]]], {ids , llarge }];

mults

Block[{Xp, vp , m1 , m2},

Do[vp = Table[vectorsx [[id]], {id, llarge [[i]]}];

Xp = Simplify[Transpose[vp].vp];

V1 = Simplify[Gi.vectors [[ llarge [[i]][[1]]]]];

V2 = Simplify[Gi.vectors [[ llarge [[i]][[3]]]]];

m1 = Simplify[

Numerator[

Simplify [( Simplify [(V1.(Xp - mults[[i]]*X).V1)]/

Simplify [(V1.G.V1)])] -

Simplify [( Simplify [(V2.(Xp - mults[[i]]*X).V2)]/

Simplify [(V2.G.V2 )])]]];

m2 = Simplify[

Numerator[

Simplify[

FullSimplify [( Simplify [(V1.(Xp - mults[[i]]*X).V1)]/
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Simplify [(V1.G.V1)])] -

Simplify [( Simplify [(V1.(Xp - mults[[i]]*X).V2)]/

Simplify [(V1.G.V2 )])]]]];

AppendTo[gorth , Simplify[m1]]; AppendTo[gorth , Simplify[m2]],

{i, Length[llarge ]}]];

MatrixForm[Transpose[vectorsx ]]

MatrixRank[

NullSpace[

Table[Coefficient[gorth[[l]], x[[j]], 1], {l, Length[gorth]}, {j,

Length[vectors ]}]]]

The results obtained using this approach are listed in section 3.2.
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