519 research outputs found

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    Automatic Detection of Epileptic Seizures in Neonatal Intensive Care Units through EEG, ECG and Video Recordings: A Survey

    Get PDF
    In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost importance for a timely, effective and efficient clinical intervention. The continuous video electroencephalogram (v-EEG) is the gold standard for monitoring neonatal seizures, but it requires specialized equipment and expert staff available 24/24h. The purpose of this study is to present an overview of the main Neonatal Seizure Detection (NSD) systems developed during the last ten years that implement Artificial Intelligence techniques to detect and report the temporal occurrence of neonatal seizures. Expert systems based on the analysis of EEG, ECG and video recordings are investigated, and their usefulness as support tools for the medical staff in detecting and diagnosing neonatal seizures in NICUs is evaluated. EEG-based NSD systems show better performance than systems based on other signals. Recently ECG analysis, particularly the related HRV analysis, seems to be a promising marker of brain damage. Moreover, video analysis could be helpful to identify inconspicuous but pathological movements. This study highlights possible future developments of the NSD systems: a multimodal approach that exploits and combines the results of the EEG, ECG and video approaches and a system able to automatically characterize etiologies might provide additional support to clinicians in seizures diagnosis

    Towards developing a reliable medical device for automated epileptic seizure detection in the ICU

    Get PDF
    Abstract. Epilepsy is a prevalent neurological disorder that affects millions of people globally, and its diagnosis typically involves laborious manual inspection of electroencephalography (EEG) data. Automated detection of epileptic seizures in EEG signals could potentially improve diagnostic accuracy and reduce diagnosis time, but there should be special attention to the number of false alarms to reduce unnecessary treatments and costs. This research presents a study on the use of machine learning techniques for EEG seizure detection with the aim of investigating the effectiveness of different algorithms in terms of high sensitivity and low false alarm rates for feature extraction, selection, pre-processing, classification, and post-processing in designing a medical device for detecting seizure activity in EEG data. The current state-of-the-art methods which are validated clinically using large amounts of data are introduced. The study focuses on finding potential machine learning methods, considering KNN, SVM, decision trees and, Random forests, and compares their performance on the task of seizure detection using features introduced in the literature. Also using ensemble methods namely, bootstrapping and majority voting techniques we achieved a sensitivity of 0.80 and FAR/h of 2.10, accuracy of 97.1% and specificity of 98.2%. Overall, the findings of this study can be useful for developing more accurate and efficient algorithms for EEG seizure detection medical device, which can contribute to the early diagnosis and treatment of epilepsy in the intensive care unit for critically ill patients

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy

    Get PDF
    OBJECTIVE: To assess if early clinical and electroencephalography (EEG) features predict later seizure development in infants with hypoxic-ischemic encephalopathy (HIE). METHODS: Clinical and EEG parameters <12 h of birth from infants with HIE across eight European Neonatal Units were used to develop seizure-prediction models. Clinical parameters included intrapartum complications, fetal distress, gestational age, delivery mode, gender, birth weight, Apgar scores, assisted ventilation, cord pH, and blood gases. The earliest EEG hour provided a qualitative analysis (discontinuity, amplitude, asymmetry/asynchrony, sleep-wake cycle [SWC]) and a quantitative analysis (power, discontinuity, spectral distribution, inter-hemispheric connectivity) from full montage and two-channel amplitude-integrated EEG (aEEG). Subgroup analysis, only including infants without anti-seizure medication (ASM) prior to EEG was also performed. Machine-learning (ML) models (random forest and gradient boosting algorithms) were developed to predict infants who would later develop seizures and assessed using Matthews correlation coefficient (MCC) and area under the receiver-operating characteristic curve (AUC). RESULTS: The study included 162 infants with HIE (53 had seizures). Low Apgar, need for ventilation, high lactate, low base excess, absent SWC, low EEG power, and increased EEG discontinuity were associated with seizures. The following predictive models were developed: clinical (MCC 0.368, AUC 0.681), qualitative EEG (MCC 0.467, AUC 0.729), quantitative EEG (MCC 0.473, AUC 0.730), clinical and qualitative EEG (MCC 0.470, AUC 0.721), and clinical and quantitative EEG (MCC 0.513, AUC 0.746). The clinical and qualitative-EEG model significantly outperformed the clinical model alone (MCC 0.470 vs 0.368, p-value .037). The clinical and quantitative-EEG model significantly outperformed the clinical model (MCC 0.513 vs 0.368, p-value .012). The clinical and quantitative-EEG model for infants without ASM (n = 131) had MCC 0.588, AUC 0.832. Performance for quantitative aEEG (n = 159) was MCC 0.381, AUC 0.696 and clinical and quantitative aEEG was MCC 0.384, AUC 0.720. SIGNIFICANCE: Early EEG background analysis combined with readily available clinical data helped predict infants who were at highest risk of seizures, hours before they occur. Automated quantitative-EEG analysis was as good as expert analysis for predicting seizures, supporting the use of automated assessment tools for early evaluation of HIE

    Vauvojen unen luokittelu patja-sensorilla ja EKG:lla

    Get PDF
    Infants spend the majority of their time asleep. Although extensive studies have been carried out, the role of sleep for infant cognitive, psychomotor, temperament and developmental outcomes is not clear. The current contradictory results may be due to the limited precision when monitoring infant sleep for prolonged periods of time, from weeks to even months. Sleep-wake cycle can be assessed with sleep questionnaires and actigraphy, but they cannot separate sleep stages. The gold standard for sleep state annotation is polysomnography (PSG), which consist of several signal modalities such as electroencephalogram, electrooculogram, electrocardiogram (ECG), electromyogram, respiration sensor and pulse oximetry. A sleep clinician manually assigns sleep stages for 30 sec epochs based on the visual observation of these signals. Because method is obtrusive and laborious it is not suitable for monitoring long periods. There is, therefore, a need for an automatic and unobtrusive sleep staging approach. In this work, a set of classifiers for infant sleep staging was created and evaluated. The cardiorespiratory and gross body movement signals were used as an input. The different classifiers aim to distinguish between two or more different sleep states. The classifiers were built on a clinical sleep polysomnography data set of 48 infants with ages ranging from 1 week to 18 weeks old (a median of 5 weeks). Respiration and gross body movements were observed using an electromechanical film bed mattress sensor manufactured by Emfit Ltd. ECG of the PSG setup was used for extracting cardiac activity. Signals were preprocessed to remove artefacts and an extensive set of features (N=81) were extracted on which the classifiers were trained. The NREM3 vs other states classifier provided the most accurate results. The median accuracy was 0.822 (IQR: 0.724-0.914). This is comparable to previously published studies on other sleep classifiers, as well as to the level of clinical interrater agreement. Classification methods were confounded by the lack of muscle atonia and amount of gross body movements in REM sleep. The proposed method could be readily applied for home monitoring, as well as for monitoring in neonatal intensive care units.Vauvat nukkuvat suurimman osan vuorokaudesta. Vaikkakin laajasti on tutkittu unen vaikutusta lapsen kognitioon, psykomotoriikkaan, temperamenttiin ja kehitykseen, selkeää kuvaa ja yhtenäistä konsensusta tiedeyhteisössä ei ole saavutettu. Yksi syy tähän on että ei ole olemassa menetelmää, joka soveltuisi jatkuva-aikaiseen ja pitkäkestoiseen unitilan monitorointiin. Vauvojen uni-valve- sykliä voidaan selvittää vanhemmille suunnatuilla kyselyillä ja aktigrafialla, mutta näillä ei voi havaita unitilojen rakennetta. Kliinisenä standardina unitilojen seurannassa on polysomnografia, jossa samanaikaisesti mitataan mm. potilaan elektroenkelografiaa, elektro-okulografiaa, elektrokardiografiaa, electromyografiaa, hengitysinduktiivisesta pletysmografiaa, happisaturaatiota ja hengitysvirtauksia. Kliinikko suorittaa univaiheluokittelun signaaleista näkyvien, vaiheille tyypillisten, hahmojen perusteella. Työläyden ja häiritsevän mittausasetelman takia menetelmä ei sovellu pitkäaikaiseen seurantaan. On tarvetta kehittää tarkoitukseen sopivia automaattisia ja huomaamattomia unenseurantamenetelmiä. Tässä työssä kehitettiin ja testattiin sydämen syke-, hengitys ja liikeanalyysiin perustuvia koneluokittimia vauvojen unitilojen havainnointiin. Luokittimet opetettiin kliinisessa polysomnografiassa kerätyllä datalla 48 vauvasta, joiden ikä vaihteli 1. viikosta 18. viikkoon (mediaani 5 viikkoa). Vauvojen hengitystä ja liikkeitä seurattiin Emfit Oy:n valmistamalla elektromekaaniseen filmiin pohjatuvalla patja-sensorilla. Lisäksi ECG:lla seurattiin sydäntä ja opetuksessa käytettiin lääkärin suorittamaa PSG-pohjaista luokitusta. Esikäsittelyn jälkeen signaaleista laskettiin suuri joukko piirrevektoreita (N=81), joihin luokittelu perustuu. NREM3-univaiheen tunnistus onnistui parhaiten 0.822 mediaani-tarkkuudella ja [0.724,0.914] kvartaaleilla. Tulos on yhtenevä kirjallisuudessa esitettyjen arvojen kanssa ja vastaa kliinikkojen välistä toistettavuutta. Muilla luokittimilla univaiheet sekoituivat keskenään, mikä on oletattavasti selitettävissä aikuisista poikeavalla REM-unen aikaisella lihasjäykkyydellä ja kehon liikkeillä. Työ osoittaa, että menetelmällä voi seurata vauvojen uniluokkien oskillaatiota. Järjestelmää voisi käyttää kotiseurannassa tai vastasyntyneiden teholla unenvalvontaan
    corecore