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Abstract 
 

Neonatal Hypoxic Ischaemic Encephalopathy (HIE) is a major cause of morbidity and mortality in 

newborns throughout the world with an incidence of 1-8/1000 newborns in developed countries and 

up to 26/1000 newborns in developing countries. It causes one million neonatal deaths globally per 

year. Electroencephalography (EEG) is a useful method for assessment of brain activity in newborns 

with HIE. EEG performs well in the early diagnosis and classification of HIE severity and in 

predicting neurodevelopmental outcome. A normal EEG is highly predictive of a normal outcome 

and various abnormal EEG features are associated with neurological abnormalities or death.  

A systematic review and meta-analysis of the literature was undertaken to determine which specific 

background features of the EEG best predict outcome (Aim 1). Automatic detection and classification 

would be useful for clinicians and reduce workload and subjectivity. Signal processing approaches 

particularly in the joint time-frequency domain and machine learning techniques have been used to 

characterise (Aim 2), and to detect and classify (Aim 3) these identified features. The final goal (Aim 

4) was to identify the combination of EEG signal features that best predict neurodevelopmental 

outcome in a cohort of term neonates with HIE. 

The first contribution of this project was to identify the specific EEG background patterns, in term 

neonates with HIE, that best predict neurodevelopmental outcome through a systemic review of the 

published literature. A meta-analysis was performed to establish the prognostic value of the identified 

EEG background patterns and the pooled sensitivity and specificity were calculated. A significant 

problem was identified: the use of different definitions of the different abnormal EEG features with 

respect to voltage level, phase or frequency. Agreement on definitions is necessary for the effective 

implementation and use of EEG in NICUs, I have called for the adoption of specific definitions. 

The second contribution was to the optimal use of time-frequency distributions (TFD) for the 

characterisation of EEG signals and other non-stationary signals. Two optimisation methods, one a 

global method using a hybrid genetic algorithm and a second, a local optimisation method using a 

locally optimised spectrogram, have been proposed to optimise the TFD. These contributions present 

a data-adaptive kernel and analysis-window that reduces the presence of cross-terms and enhances 

concentration and resolution. The global optimisation method uses single global parameters whereas 

the local optimisation method divides the TFD into small grids and performs local optimisation. Both 

methods are applied automatically, and no user input is necessary. Using both simulated signals and 

real EEG, both methods improved characterisation. The optimised TFDs are not only suitable for 
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characterisation of non-stationary signals, but also have applications in signal detection and 

classification. 

The third contribution was to the design and optimisation of classification of multi-channel EEG 

background patterns in term neonates with HIE. Two classification methods utilising a single feature 

subset and a class-specific feature subset have been designed and optimised to classify five EEG 

background patterns: burst, suppression, normal, seizure and artefact. These patterns are clinically 

relevant to treatment and prediction of neurodevelopmental outcomes. Various time domain, 

frequency domain and joint time-frequency domain features are first extracted and then concatenated 

to produce a long feature set. A hybrid feature selection (HFS) algorithm was proposed to 

simultaneously select the prominent feature subset as well as the support vector machine (SVM) 

tuning parameters. Three fusion techniques, channel fusion, feature fusion and decision fusion, have 

been used in the multi-channel classification. Finally, two outputs of a decision support system (DSS), 

‘EEG state’ and ‘EEG quality’, are presented as useful parameters to assist clinical staff in 

management of babies with HIE.  

The fourth contribution was the conduct of a study to test the relationship between the identified EEG 

features in term neonates with HIE and neurodevelopmental outcome at the age of 2 years. A highly 

discriminative and non-redundant feature subset as well as SVM parameters have been selected from 

this high dimensional feature set using a HFS algorithm. This algorithm is applied to the statistically 

most unbiased Leave-One-Subject-Out (LOSO) cross-validation and an optimised model is created 

using the most consistent feature subset. This model predicts good/poor neurodevelopmental outcome 

with 83.77% accuracy when applied to a separate dataset and improved the prediction accuracy of 

other approaches/studies by 5–10%. A DSS has been built as a potential application of the model to 

visualise the ‘probable long-term neurodevelopmental outcome’ in a continuous probabilistic 

fashion. These results provide strong support for a future objective decision support tool for the early 

prediction of neurodevelopmental outcome for babies with HIE. 

In summary, this project makes significant contributions to optimise use of TFDs and SVM for EEG 

signal characterisation and the detection and classification of abnormal EEG patterns used in the 

prediction of neurodevelopmental outcome and suggests future directions for research and translation 

to clinical practice.  
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Chapter 1 Introduction 
 

The human brain is the main control system of the body and its most complex structure, with billions 

of neurons and many dynamic interactions within the brain’s networks. Brain injury is a leading cause 

of morbidity and mortality around the globe; in the United States alone, an estimated 1.7 million 

people suffer brain injury each year, and the estimated annual cost of brain injury is over US$60 

billion [1]. For number of reasons, the case of neonatal brain injury is even more complex. For 

example, neonates are unable to verbally communicate with clinicians, making it difficult to identify 

signs and symptoms of injury. Additionally, the brain requires a continuous supply of oxygen and 

nutrients as the main fuel of the control system. There are risks of inadequate supply of oxygen and 

nutrients before, during and after delivery, arising from cord entanglement, placental abruption, 

antepartum maternal hypotension or trauma, intrapartum uterine hyperstimulation and postnatal 

cardiopulmonary abnormalities [2]. A global insufficiency of oxygen may result in the clinical 

condition of Hypoxic Ischaemic Encephalopathy (HIE); brain cells begin dying within minutes 

without oxygen and nutrients, and this leads to short- and long-term damage, with clinical 

manifestations including mental retardation, seizures, cerebral palsy, visual and auditory impairments 

and even death, depending on the area of the brain affected by lack of oxygen [2].  

HIE is a common medical term describing brain injury due to lack of oxygen supply. ‘Hypoxic’ means 

a decreased amount of oxygen, ‘ischaemic’ a decrease in blood flow and ‘encephalopathy’ the injury 

to the brain; together, ‘Hypoxic Ischaemic Encephalopathy’ means a decreased amount of oxygen 

caused by a decrease in blood flow resulting in injury to the brain. HIE can be defined as the presence 

of any two of three features in the presence of a known perinatal event [3] (cord prolapse or rupture, 

pathological fetal heart rate tracing, placental abruption, placenta praevia, uterine rupture and 

shoulder dystocia etc.)—need for respiratory support shortly after birth, an Apgar score at 5 min of 

< 5, or evidence of acidosis (pH< 7) [3].  

HIE is a major cause of mortality and morbidity in newborns throughout the world. The World Health 

Organization (WHO) reports that neonatal deaths account for 37% of mortality in children under five 

years of age and 23% of these deaths are associated with asphyxia [4] and it causes one million 

neonatal deaths globally per year [5, 6]. The occurrence of neonatal HIE is up to 8 per 1000 newborns 

in developed countries, increasing to 26 per 1000 newborns in developing countries [2]. In Europe, 

HIE is the third most common cause of neonatal mortality, resulting in 21% of term infant deaths 

[7]. The mortality rate is dependent on the level of HIE severity: 10% for moderate HIE and 60% 

for severe HIE. About 30% of survivors with moderate HIE, and close to 100% with severe HIE, 

develop permanent neurological disability [8-10]. The authoritative statistics released by the 



 
 

2

Queensland Government in Australia in 2015 reported that, from 2007 to 2012, the incidence of 

intrauterine hypoxia and birth asphyxia was 4– 6 per 1000 newborns [11]. The consequences among 

the survivors are significant, with morbidity comprising cognitive delay (45%), cerebral palsy 

(29%), visual loss (26%) and sensorineural deafness (9%) [7]. The consequences of neonatal HIE 

have a major impact not only on the affected person but also on their family as well of the costs to 

society. These facts indicate that, despite the improvements in medical care, asphyxia is still a major 

threat to the survival and health of newborns. 

1.1 EEG as a prognostic and diagnostic tool 
Different parameters are used for the diagnosis and monitoring of these critically ill newborns. They 

include fetal heart rate abnormality, clinical features, such as those recorded in the Apgar score, and 

blood biochemistry, such as blood pH, lactate and oxygen saturation. However, these complementary 

methods of assessment cannot differentiate different clinical grades of HIE with high sensitivity and 

specificity [12]. These clinical grades are scored mainly by clinical criteria developed by Sarnat and 

Sarnat in 1976: level of consciousness, tone, neonatal reflexes, autonomic function and seizures. 

Another grading system is based on alertness, feeding, tone, respiratory status, reflexes and seizure 

activity (range: 0–6) [13]. However, these grading systems are not very sensitive to dynamic changes 

that may occur during treatment. 

As the brain is the main target, brain monitoring is ultimately needed to monitor structural changes 

and spatiotemporal functional changes. Structural changes are best monitored by magnetic resonance 

imaging (MRI), whilst functional changes are best monitored by electroencephalogram (EEG). The 

imaging technique (MRI scan) is expensive, of limited time resolution and requires the baby to be 

moved to the scanner. Moreover, long-term brain function monitoring is required for continuous 

assessment of dynamic changes for diagnosis and prognosis. Importantly, MRI does not help in the 

immediate postnatal period, as it is unable to reliably ascertain the presence and extent of HI injury 

until several days after the baby’s birth [14]. In contrast, conventional EEG (cEEG) and amplitude 

integrated EEG (aEEG), undertaken in the early postnatal period, have been shown to be highly 

predictive of long-term outcome. Another motivation for using EEG compared to MRI is the 

relatively low cost of EEG systems. This argument can be crucial for the deployment of EEG 

technology in developing countries. These potentials of EEG to aid in the early diagnosis and 

classification of HIE severity has led to renewed interest in the field of neonatal neurophysiology. 

The benefits of EEG are that it can easily be implemented at the cot-side soon after birth and that it 

provides real-time measurement of cerebral function. 
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A normal background neonatal EEG is highly predictive of a normal outcome. Various abnormal 

EEG background patterns have been consistently associated with neurological abnormalities or death. 

These normal and abnormal EEG backgrounds are defined in terms of different amplitudes, phases 

and frequencies. Generally, continuous normal voltage (CNV) and discontinuous normal voltage 

(DNV) are treated as normal EEG background patterns, whereas symmetry, asynchrony, burst 

suppression (BS), continuous low voltage (CLV) and flat trace (FT) are considered to be abnormal 

backgrounds. EEG background patterns have been correlated with different neurodevelopmental 

outcomes including cognitive delay (CD), mental retardation (MR), early death (ED), the need for 

extracorporeal membrane oxygenation (ECMO), later cerebral palsy (CP), psychomotor retardation 

(PMR), dystonic quadriplegia (DQ), spastic quadriplegia (SQ) etc. in term neonates with HIE from 

within 6 months to 2 years [15-17].  

Shany et al. investigated 39 newborns with burst-suppression (BS) and found that 8 died within 3 

years [15]. Roij et al. [16] showed that 60 out of 160 newborns with flat trace (FT) or continuous low 

voltage (CLV) died or had a major handicap. Horst et al. [17] studied 30 newborns with CLV patterns 

and found that 6 died or had a major handicap within 24 months, while Douglass et. al. [18] assessed 

22 newborns with only BS and found that 16 died or had a major handicap. These abnormal outcomes 

are broadly supported by other studies (see Chapter 2) which also report that various abnormal EEG 

patterns are associated with adverse neurodevelopmental outcomes. However, it is still not clear 

which EEG background pattern or patterns are most predictive of the neurodevelopmental outcome 

in term neonates with HIE.  

The starting point of this thesis is to identify these specific EEG background patterns that best predict 

neurodevelopmental outcome. This will enable neurophysiologists and clinicians to undertake early 

management and treatment decisions1 [19]; it will also provide opportunities for engineers to 

characterise the signal and obtain time-varying temporal and spectral information that is ultimately 

needed for an automated detection and prediction method. Automated detection will be helpful for 

clinicians and will reduce workload, training and subjectivity. This PhD project addresses the 

automated detection and classification of the EEG background patterns that best predict 

neurodevelopmental outcomes, using different signal processing and machine learning techniques. 

These approaches will be validated using multichannel neonatal EEG. Finally, a set of EEG signal 

                                                         
1 The available treatments in the immediate post-natal period and during the two years prior to neurodevelopmental 
outcome tests include (i) resuscitation and supportive care e.g., normothermia, normoglycemia, permissive mild 
hypercapnia, adequate cerebral perfusion, room air versus 100% oxygen, resuscitation training, fluid management, 
electrolyte balance, (ii) therapeutic hypothermia by selective head or whole-body cooling administered within six hours 
of birth, (iii) general anaesthesia and medications to control seizures, and (iv) treatments to assist the baby’s heart function 
and control blood pressure. Details can be found in [19]. 
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features that best predict neurodevelopmental outcome in a large cohort of term neonates with HIE 

will be identified. This project will make engineering contributions through the design and 

optimisation of novel signal processing and machine learning techniques for the characterisation of 

EEG signals, detection, and classification of abnormal EEG patterns and prediction of 

neurodevelopmental outcome.  

1.2 Definition of clinical terms 
For the sake of clarity, a brief description of some general clinical terms is given here, while the 

description of more specific terms is provided within the relevant chapters. 

Gestational age: (GA – also known as post-menstrual age), usually expressed in weeks + days: the 

time difference between the first day of the last normal menstrual period and the day of delivery. 

Term neonate: an infant born at > 36 wks. GA. Infants with HIE eligible for hypothermia treatment 

are > 34 wks GA.  

Apgar score: The Apgar score was developed by the US anaesthesiologist Virginia Apgar in 1953 

[20] and has been routinely used for more than half a century to assess neonatal health within 1–10 

min after birth. The Apgar score comprises five key components: heart rate, respiratory effort, muscle 

tone, reflex irritability and colour. Each component is scored from 0 to 2, giving at total Apgar score 

range of from 0 to 10 [21]. These components may not be of equal importance and heart rate and 

respiratory effort can be difficult to assess due to medical interventions [21].  

 

International 10-20 EEG recording system: a standard EEG recording system which defines the 

arrangement procedure of EEG electrode placement over the scalp (see Figure 1.1). It is based on the 

relationship between the location of an electrode and the underlying area of cerebral cortex. The ‘10’ 

and ‘20’ refer to the 10% or 20% inter-electrode distance [22]. Each point in Figure 1.1 indicates a 

possible electrode position. Each site has a letter (to identify the lobe) and a number or another letter 

to identify the hemisphere location. The letters F, T, C, P, and O stand for frontal, Temporal, Central, 

Parietal and Occipital. (Note that there is no ‘central lobe’; this is used for identification purposes). 

Even numbers (2,4,6,8) refer to the right hemisphere and odd numbers (1,3,5,7) refer to the left 

hemisphere. The z refers to an electrode placed on the midline. The smaller the number, the closer 

the position is to the midline. Nasion is the point between the forehead and nose. Inion is the bump 

of the occipital bone at the back of the skull. 
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 (a)        (b) 

Figure 1.1: The 10–20 EEG system [22].  

Burst-suppression: EEG burst suppression pattern (also called ‘paroxysmal’ [23] and ‘spontaneous 

activity transients’ (SATs) [24, 25]) is a collection of alternating bursts of high voltage with duration 

1– 10 s and composed of various patterns (delta and theta range frequencies with superimposed and 

inter-mixed spikes, sharp waves and faster activity) followed by periods of marked background 

attenuation known as suppression [26, 27] (see Figure 1.2). 

Low voltage: Low voltage EEG activity can be defined as the disappearance of spindles and low 

voltage background activity [28]. 

Flat trace: Flat trace or isoelectric pattern is the extreme condition of cerebral inactivity which is 

also called ‘electro cerebral silence’ (ECS) [28].  

Seizures: Seizures are paroxysmal or convulsive events caused by a hypersynchronous discharge of 

groups of neurons (see Figure 1.2). The morphology of neonatal EEG seizures varies, but 

characteristically consists of monophasic repetitive discharge of sharp or slow wave activity.  
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Figure 1.2: Multichannel neonatal EEG signals. Signal amplitude is in microvolts (μV). The bottom line shows 
the neurologist classification (see Chapter 4 for details). 

Artifacts: Artifacts are unwanted signals produced by the random movement of the subjects, 

electrode contact, electrocardiogram, respiration, eye blinking and electrical interference in the 

NICUs [29]. These different types of artifacts are generalised and defined as an ‘artifact’ class in this 

project (see Figure 1.2). 

Neurodevelopmental outcome: ‘Neurodevelopment’ represents the progressive, systematic 

transformation of behaviour and activities which are observed as neonates become older. Their 

physical and mental capacity and understanding of the world around them are expected to increase 

and mature as time advances. ‘Neurodevelopmental outcome’ represents this maturity. ‘Poor 

neurodevelopmental outcome’ includes the neurodevelopmental disorders cerebral palsy, intellectual 

disability, hearing loss and visual impairment etc. [30].  

BSID-III: Bayley Scales of Infant and Toddler Development (version III), developed by psychologist 

Nancy Bayley. This is one of the most comprehensive and internationally recognised tools for 

neurodevelopmental assessment of infants in the five key developmental domains of cognition, 

language, social-emotional, motor and adaptive behaviour, and can be performed in the age range 

1– 42 months [31].  

EEG frequency band: Frequency of EEG, in 퐻푧, is the number of repetitions of a pattern within a 

second [32]. There are four main EEG frequency bands as described Table 1.1. 
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Table 1.1 EEG frequency band. 

Activity Frequency (Hz) 

Beta,  훽 > 13 
Alpha, 훼 8 − 13 
Theta, 휃 4 − 8 
Delta, 훿 0 − 4 

1.3  EEG signal analysis 
Neonatal EEG is commonly used as a tool to assess brain function and is suitable for long-term 

monitoring. The recorded signals provide important information on cerebral activities. In addition, 

neonatal EEG has been shown to be a robust predictor of neurodevelopmental outcome. In this 

project, EEG has been analysed in order to characterise, classify and predict the neurodevelopmental 

outcome. Joint time–frequency analysis has been considered as a signal processing approach in this 

project for signal characterisation and analysis. These considerations will inform the new signal 

processing methods.  

1.3.1 Signal characterisation 
Signals are some form of measured quantity, normally recorded on measurement devices over a 

period of time. One of the most important aims of signal processing is to characterise signals and 

extract valuable information from the signals in order to describe signals and their properties. Signals 

are usually represented as functions of time, i.e. 푥(푡). Figure 1.3 shows an example of an EEG signal 

as a function of time. Analysis of the signal in the time domain is known as time (푡) domain analysis.  

Figure 1.3(a) is pseudo-periodic, i.e. it has certain waveforms which are repeating. One can extract 

frequency information using frequency (푓) domain analysis (see Figure 1.3 (b)) by Fourier transform 

of 푥(푡)  

푋(푓) = 푥(푡)푒  푑푓 (1.1) 

where 푋 (푓) represents the 푓-domain signal. 
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(a)                                                                                          (b) 

 

(c) 

Figure 1.3: (a) 푡-domain plot of newborn EEG seizure signal and corresponding (b) 푓-domain plot and time-
frequency (푡,푓) representation. 

Signals can be categorised into stationary signals and nonstationary signals. Stationary signals have 

constant frequency or constant statistical proprieties over time, whereas nonstationary signals have 

frequency content that changes over time. Most real-world signals, including EEG signals, are 

nonstationary. The spectral contents of EEG vary in response to internal and external stimuli. The 푡-

domain analysis and 푓-domain analysis can only provide limited information and cannot describe 

information that changes over time alone. 

1.3.2 Need for time-frequency signal processing 
Time-frequency representations (TFRs) are capable of fully characterising the nature of non-

stationary signals over classical 푡-domain or 푓-domain representations. This is because in both  푡- 

and 푓-domain representations, the variables 푡 and 푓 are treated as mutually exclusive: to represent 

one variable, the other variable is ‘integrated out’. Consequently, signals are non-localised with 

respect to the excluded variable. In contrast, joint time-frequency representation using time-frequency 

distribution (TFD) represents the signal energy distribution as a function of both 푡 and 푓 together 
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where 푡 and 푓 are not mutually exclusive. For example, Figure 1.3(c) shows the (푡, 푓) representation 

of EEG and shows how the frequency content of this signal changes over time. This property 

motivates the researchers to process and analyse non-stationary signals such as biomedical signals 

and speech signals using TFDs in order to unveil the signal characteristics accurately. A more detailed 

definition of TFD can be found in Chapter 3. 

1.3.3 Representing a signal in the time-frequency domain 
There are many ways of representing a signal in the time-frequency domain. One of the simplest is 

the short-time Fourier transform (STFT) [33]. First, it divides the whole signal into short-time 

window (segments) and then applies Fourier transform to these segments. The squared magnitude of 

the STFT is a real-valued representation called the spectrogram. The standard spectrogram is easy to 

interpret. However, its performance depends on the analysis window that has been set heuristically 

and provides poor time or frequency resolution [34].2  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.4: TFD representation of a simulated signal: (a) 푡-domain signal and (b) its corresponding ideal(푡,푓), (c) 
spectrogram and (d) scalogram representation. 

 

                                                         
2 In signal processing, resolution is used as a performance measure. It defines how well a method or approach 
separates/distinguishes different signal components in the time or frequency or time-frequency axis. 
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For example, Figure 1.4(c) plots the standard spectrogram of a multicomponent signal (Figure 1.4(a)). 

It provides poor resolution as the signal components are not separated (or visualised) and it is far from 

the ideal time-frequency distribution (Figure 1.4(b)).  

Another method for generating time-frequency representations is wavelet transforms [3], which 

decompose the signal into a set of basis functions in terms of time and scale. As scale is inversely 

proportional to frequency, the wavelet transform can generate a time-frequency representation called 

the ‘scalogram’. The wavelet transform has many successful applications, including in de-noising 

and image compression. A limitation of the scalogram is that it does not provide good resolution 

throughout the time-frequency representation, thus making interpretation of the representation 

difficult, as shown for example in Figure 1.4(d).  

A quadratic time-frequency distribution (QTFD) is a quadratic transformation of the 푡-domain signal 

into the (푡, 푓) domain. Although there are other classes of TFDs, QTFDs are probably the most useful 

due to their simple interpretation, high resolution and widespread use [33]; they  have become a 

standard tool in many disciplines and will be used as the main signal processing approach in this 

project. 

Wigner-Ville distribution (WVD) is the fundamental member of the QTFD class and provides high 

resolution (푡,푓) representation; however, it suffers from cross-terms (see Figure 1.5(a)). The cross-

terms can be suppressed by smoothing the WVD with a properly adjusted kernel (see Chapter 3) 

function and this results in a high resolution and cross-term free (푡,푓) signature (see Figure 1.5(b)). 

One of the fundamental goals of this project is to design and optimise high resolution QTFDs and 

show ‘how the optimised QTFDs offer better performance in terms of EEG signal characterisation 

and classification’. 

 
(a) 

 
(b) 

Figure 1.5: TFD representation using WVD and optimised adaptive directional TFD (ADTFD). See Chapter 3 for 
a detailed definition.  
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1.3.4 Tilings representation  

Tilings are another way to quantify the effectiveness of QTFDs. Figure 1.6 shows the tilings for 푡-

domain, 푓-domain and (푡, 푓) -domain using rectangular tiles. The 푡-domain and 푓-domain analysis 

cannot provide frequency and time information, respectively. Fig 1.6(c) shows the tiling for STFT, 

which is obtained by using a fixed analysis window for all time. Figure 1.6(d) and (e) show the 

wavelet transform (WT) and wavelet packet (WP) transform. These transforms firstly divide the 

spectral contents into high and low frequencies, and then analyse the signal. For example, WT has 

narrow time windows, that yield better time resolution at higher frequencies, and wider time windows, 

that yield better frequency resolution at low frequencies. Figure 1.6(f) indicates that the generalised 

(푡,푓) method adapts the signal analysis window in time as well as frequency; from (0,푇 ) the tiling 

of generalised (푡, 푓) is as in Figure 1.6 (c), as denoted by the grey line. From (푇 ,푇 ) the tiling is as 

in Figure 1.6 (e) and is denoted by the dark grey line, while from (푇 ,푇 ) the tiling is as in Figure 1.6 

(d), as denoted by the light grey line. These facts suggest that STFT, WT and WP are the particular 

cases of the generalised (푡, 푓) representation ([33], p. 98). This generalised (푡, 푓) representation can 

be obtained from QTFDs and provides high resolution (푡, 푓) representation, as seen in Figure 1.5. 

These rationales also underlie the use of a QTFD signal processing approach in this project.  

 
Figure 1.6: Tilings of the time-frequency plane: (a) time-domain tiling, (b) frequency-domain tiling, (c) STFT 
tiling, (d) wavelet tiling, (e) wavelet packet tiling and (f) generalised (푡,푓) tiling. 

1.4 Significance and motivation  
This project advances the field of newborn EEG analysis using time-frequency signal processing and 

machine learning techniques. The significance of this research falls within four major categories: 
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 Significance of the identification of specific EEG background patterns that best predict 

neurodevelopmental outcome 

− HIE occurs following a peripartum hypoxic-ischaemic insult to the neonatal brain. EEG is a useful 

method of assessment in asphyxiated infants and various background patterns of EEG are the robust 

predictor of neurodevelopmental outcome. It is necessary to identify which specific background 

pattern(s) are the most predictive of neurodevelopmental outcome to allow clinicians to identify those 

neonates most appropriate to enrol in the studies of neuroprotective or neurorestorative therapies and 

neurointensive care as well as guide therapy.  

 Significance of EEG abnormality characterisation  

‘Signal characterisation’ is a broad term. As with other signals, EEG characterisation is important as 

it will allow visualisation and description of the signal in various domains such as 푡-domain, 푓-

domain and (푡, 푓) domain.  

EEG is a non-stationary signal and TFD is well suited for the analysis of such a non-stationary signal 

over the 푡- and 푓-domains. It provides an optimal graphical way to visualise and characterise time-

varying frequency content of the signal components. This can help in understanding the properties of 

the EEG signal patterns in order to determine the best approach (such as change detection or pattern 

recognition) to further analysing and processing the signal. The core idea is that different EEG 

background patterns show different signatures in the (푡, 푓)-domain. Therefore, various features 

extracted from these domains offer discriminative information required for automated detection and 

recognition. To achieve a higher accuracy in detection or pattern recognition, these features need to 

be extracted from (푡,푓) representations of EEG signals using TFDs with high-resolution and minimal 

cross-term interferences. 

Spectrogram and other QTFDs are widely used due to their high resolution and easy interpretation. 

The spectrogram is sensitive to analysis window, whereas the other QTFDs are sensitive to kernel 

parameter(s). Proper choice of analysis window and window parameter, as well as the kernel 

parameter(s), provides high resolution TFDs, minimises cross-term interferences and significantly 

improves signal characterisation and classification. 

 Significance of EEG background classification/ Significance of newborn scalp EEG monitoring  

Monitoring of scalp EEG in the newborn is useful for predicting long-term neurological consequences 

and in reducing mortality/morbidity [45]. The current dominant approach to newborn EEG 

assessment is based on visual inspection of the EEG by an expert. This process can be subjective, 
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requires high levels of expertise and usually takes considerable time, especially for long EEG 

recordings. 

Currently, visual inspection is treated as the ‘gold standard’, whereas automated EEG analysis is a 
relatively new research area and is primarily a research tool. Much research focuses on specific 
patterns: for example, neonatal seizure detection and localisation [29, 35-37], and detection of the 
sleep-wake cycle [38]. Classification of a broader variety of EEG background patterns will increase 
the system complexity and the need for specific EEG data, especially in long-term multichannel EEG 
recordings. Restricted numbers of detectable patterns constrain the use of automatic algorithms in 
clinical settings. An automated detection and classification can aid in diagnosis and assist in 
subsequent clinical management.  

 Significance of early prediction of neurodevelopmental outcome  

Early prediction of neurodevelopmental outcomes is still a major challenge in neonates, as neonatal 
brain injury leads to a variable probability of developing various serious long-term 
neurodevelopmental disorders in childhood. There is an increased in risk of poor outcomes when 
longer durations of abnormal EEG results are observed in neonates [39, 40]. Different features can 
be extracted from EEG data to seek associations with the neurodevelopmental outcome. 

A normal research procedure to predict the outcome in neonates using EEG is to collect EEG data at 
the very early stage of life, then assess the babies at the age of one or two years using some outcome 
measurement test such as BSID test and correlate the EEG features with the outcome. This feature or 
a set of features can then be considered as neurophysiological biomarker(s). 

Once the neurophysiological biomarker(s) are identified, a model can be built to predict the outcome at 
a very early stage. This could benefit the baby by guiding new neuro-protective or neurorestorative 
therapies and neurointensive care to reduce morbidity and mortality. The final motivation of this 
research is to save the life of asphyxiated newborns by identifying those features that could be used as 
accurate neurophysiologic biomarker(s). 

1.5 Aims and objectives 
This project has the following aims and objectives.  

Aim 1: Identify the EEG background features or patterns that best predict outcome in term neonates 
with HIE. 

Aim 2: Design and optimise time-frequency distributions for EEG signal analysis.  

Objective 1: Automatic fast optimisation of quadratic TFDs using the hybrid genetic algorithm. 

Objective 2: Robust time-frequency representation based on fractional Fourier transforms.  

Aim 3: Classify multichannel neonatal EEG background patterns.  
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Objective 1: Method-1 (Classification using single feature subset) 

Objective 2: Method-2 (Classification using class-specific feature subset) 

Aim 4: Test the identified EEG signal features in the prediction of neurodevelopmental outcome in 
term neonates with HIE. 

1.6 Proposed approaches and methods  
The following approaches and methods will be used to address the aims and objectives stated in the 

previous section. Figure 1.7 shows the concept map of this thesis.  

  
Figure 1.7: Concept map of the thesis. 

Firstly, this thesis identifies the EEG background patterns; it then develops methods to characterise 

and classify these patterns; finally, it uses the developed methods to test prediction of the 

neurodevelopmental outcome. 

Aim 1: Identify the EEG background features or patterns that predict outcome in term neonates with 

HIE 

Attention has been drawn, in Section 1.1, to the fact that it is still unclear which background features 

(or patterns) of the EEG, in term neonates with HIE, best predict outcome. The published literature 

is very inconsistent in terms of feature definitions and there has been no systematic approach. The 
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starting point of this project is to identify from the literature the EEG background features or patterns 

that best predict the neurodevelopmental outcomes. A systematic review is conducted, and meta-

analysis of the literature is performed to achieve this aim. The analysis categorises the background 

features (or patterns) and identifies the background patterns that predict neurodevelopmental 

outcome. See Chapter 2 for details. 

Aim 2: Design and optimise time-frequency distributions for EEG signal analysis 

Two optimisation methods – global optimisation (objective 2.1) and local optimisation (objective 2.2) 

– have been proposed to obtain high resolution TFDs. The (푡, 푓) energy concentration measure 

(ECM) has been used to automatically select the optimal parameters in both algorithms. These 

methods are expected to increase the readability of the (푡,푓) signatures and reduce misinterpretation 

of the (푡, 푓) signature by minimising the cross-terms for multicomponent and non-stationary signals 

without a priori signal information.  

To address objective 2.1, a novel framework is developed that automatically adjusts the QTFD kernel 

parameters by using a hybrid genetic algorithm (HGA). To address objective 2.2, a novel spectrogram 

called the ‘Locally Optimised Spectrogram’ (LOS) is designed to obtain a high-resolution time-

frequency representation based on the short-time fractional Fourier transforms (STFrFT). The HGA 

algorithm optimises the TFD globally, whereas LOS divides the TFD into several grids and performs 

local optimisation. See Chapter 3 for details. 

Aim 3: Classify multichannel neonatal EEG background patterns  

Two classification methods (method-1 and method-2) are designed and optimised to classify EEG 

background patterns including burst, suppression, normal and seizure in the presence of artifacts. 

These patterns are the predictors of neurodevelopmental outcomes. Classification method-1 uses a 

single feature subset for all classes, whereas classification method-2 uses class-specific features. 

Method-2 is expected to increase the classification performance as the selected feature subset is class-

specific. 

Various time domain, frequency domain and joint time-frequency domain features are first extracted 

and then concatenated to produce a long feature set. A hybrid feature selection (HFS) algorithm is 

proposed to simultaneously select the prominent feature subset as well as the classifier parameters. A 

state-of-the-art machine learning algorithm called Support Vector Machine (SVM) has been 

optimised and used to classify different neonatal EEG patterns using the feature subset selected by 

the hybrid feature selection (HFS) algorithm. This HFS algorithm uses a genetic algorithm that not 

only selects the prominent feature subset but also simultaneously selects the SVM tuning parameters 
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to ensure the optimal use of the SVM classifier. Three fusion techniques - channel fusion, feature 

fusion and decision fusion - are used for the multichannel classification. See Chapter 4 for details. 

Aim 4: Testing of EEG signal features that best predict neurodevelopmental outcome in term neonates 

with HIE 

Various time domain, frequency domain and joint time-frequency domain features are extracted from 

EEG in term neonates with HIE to seek association of these features with the neurodevelopmental 

outcome as assessed by BSID-III. BSID-III provides developmental scores for cognitive, language, 

motor and combined score. The hybrid feature selection (HFS) algorithm, developed in Aim 3, is 

used to select a prominent feature subset. EEG signal-based features are investigated with nonlinear 

support vector machines (SVMs) for their ability to predict neurodevelopmental outcome. See 

Chapter 5 for details. 

The following applications are introduced for the proposed methods: 

 Application of the optimised TFD to characterise newborn EEG 

 Application of optimised classifier for multichannel EEG background patterns classification 

 Application of EEG signal features to predict neurodevelopmental outcome. 

1.7 Contributions  
A number of original contributions, specifically in the fields of signal processing and machine 

learning, are made for the characterisation, detection, classification of biomedical signals especially 

neonatal EEG signal and, finally prediction of neurodevelopmental outcome. These contributions are 

summarised below aim-by-aim: 

Aim 1:  

 The systemic review and meta-analysis identified that burst suppression, low voltage and flat 
trace, trace alternant, asynchrony and asymmetry are the most predictive of poor 
neurodevelopmental outcome. These patterns can be potentially used as diagnostic markers. 

Aim 2: 

Objective 1:  

 A novel framework for a fully automatic optimisation of Quadratic Time-frequency 
Distributions (QTFDs) has been proposed. 

 The problem of optimisation of Reduced Interference Distributions (RIDs) (also called 
QTFDs due to their quadratic nature) has been formulated as a cost function of a modified 
energy concentration measure index to be minimised for the non-stationary signal without a 
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priori signal information, and a hybrid genetic algorithm (HGA) proposed to find the optimal 
and fine-tuning QTFD parameters. 

 The proposed approach overcomes the need for human intervention, which is time-
consuming. 

 A fast and memory efficient optimisation has also been implemented in the optimised use of 
TFDs, especially for long recordings or multisensor data as for multichannel EEG recordings. 
This will significantly reduce the processing and consequent decision-making time.  

Objective 2:  

 A novel TFD, ‘Locally Optimised Spectrogram’ (LOS), is designed from the short-time 
fractional Fourier transform by locally optimising both window length and chirp rate. It 
automatically determines the locally optimal window parameters and fractional order (angle) 
for all signal components, leading to a high resolution and cross-term free time-frequency 
representation. 

 The proposed method demonstrates superior performance by quantitative comparison with 
other state-of-the-art QTFDs. Different simulated multicomponent signals of varied amplitude 
and wide-ranging (푡, 푓)  characteristics are used to demonstrate the efficiency of the proposed 
method. 

 A relationship between LOS and other TFDs has been derived.  

 Finally, a qualitative assessment of global and local optimisation has been provided. 

Aim 3: 

 An improved characterisation of neonatal EEG background patterns is developed by using 
state-of-the-art optimised time-frequency distribution. Different EEG backgrounds show 
different (푡, 푓)  signature on the (푡, 푓)  plane which indicates the prominent use of TFD in the 
classification. 

 Different established 푡, 푓 and (푡, 푓) domain-based feature have been extracted to characterise 
and classify the EEG background patterns and HFS algorithm is used to select prominent 
feature subset. 

 Both classification methods (method-1 and method-2) have been applied to multichannel 
neonatal EEG background patterns classification. Different fusion techniques have been 
applied to solve this complex multiclass and multichannel problem and the classification 
performance of different approaches has been compared. 

 A decision support system is also discussed as a potential application of the proposed 
approach.   
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Aim 4: 

 Signal processing features are identified that correlate with neurodevelopmental outcome in a 
large study cohort of babies with HIE, with neurodevelopmental outcome defined by BSID-
III.  

 Various time domain, frequency domain and (푡,푓) domain features are extracted from the 
neonatal EEG recorded within the first 24 hours after birth to seek associations with the 
neurodevelopmental outcome.  

 A probabilistic decision support system is derived as a potential application of the proposed 
system. 

 The significance of this aim is that it will define those EEG features, both previously described 
and new, that most accurately predict neurodevelopmental outcome at 2 years. These features 
can be used as neurophysiological biomarker(s) to reduce morbidity and mortality in 
newborns.  

1.8 Thesis organisation 
The thesis is organised as follows:  

Chapter 1 contains the background, rationale, aims and objectives of the thesis. It also briefly 

describes newborn HIE and associated EEG abnormalities. A relevant literature review has been 

provided within each chapter due to the multidimensional nature of this research. 

Chapter 2 determines which specific background features of the EEG in term neonates with HIE best 

predict outcome. A structured literature review and meta-analysis of the literature is performed in 

order to determine the pooled sensitivity and specificity of the various background patterns.  

Chapter 3 presents the design and optimisation of time-frequency distribution for the non-stationary 

signal characterisation of bio signals such as the EEG signal. There are two objectives: (i) to develop 

a state-of-the-art optimisation technique to fully optimise the kernel parameters of the existing QTFDs 

and compare this with other optimisation methods, and (ii) to design a novel TFD (‘Locally Optimised 

Spectrogram’ LOS), and compare it with other TFDs. 

Chapter 4 presents the design and optimisation of a classifier for multichannel neonatal EEG 

background pattern classification. First it describes the background problem, including relevant 

literature review, then it describes methodology to extract features in order to classify EEG 

background patterns. The HFS algorithm is proposed for selecting prominent features and nonlinear 

SVM parameters simultaneously.  
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Chapter 5 tests a set of EEG signal features that best predict neurodevelopmental outcome in a large 

study cohort of term infants with HIE. 

Chapter 6 provides concluding remarks and suggestions for future work. 
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Chapter 2 EEG background features that predict outcome in term 
neonates with Hypoxic Ischaemic Encephalopathy 

2.1 Introduction  
Hypoxic ischaemic encephalo-pathy (HIE) 

occurs following a peripartum hypoxic-

ischaemic insult to the brain. A secondary 

energy failure follows, with build-up of 

reactive metabolites and injury ensues [32]. 

HIE is a major cause of morbidity and 

mortality in newborns [5, 41]. The spectrum 

of long-term morbidity in survivors ranges 

from mild motor and cognitive deficits to 

cerebral palsy and severe cognitive deficits 

[42]. The outcomes of HIE or ‘birth 

asphyxia’ can be devastating and permanent, 

making it a major burden for the patient, the 

family and society [43]. The ability to 

accurately predict outcomes in this 

population is important in identifying those 

most appropriate to enrol in studies of 

neuroprotective or neuro-restorative 

therapies. 

EEG is a useful method of assessment in 

asphyxiated infants. Conventional and 

amplitude integrated EEG (aEEG) both 

perform well in predicting outcome [44] and 

in the early diagnosis and classification of 

HIE severity [12]. The benefits of EEG are 

that it can easily be implemented at the cot-

side soon after birth and it provides a real-

time measure of cerebral function [12]. Detecting seizures [29, 45, 46] and assessing response to 

anticonvulsants [47] are other useful functions of EEG recording in the clinical setting, particularly 

because many seizures in the newborn have no detectable clinical manifestations. A normal EEG is 

 
What is already known on this topic? 
 
 

Different EEG background patterns can 

predict neurodevelopmental outcomes in term 

neonates with HIE. 

Published literature may use the same 

background pattern term but use different 

amplitude level, phase, frequency and duration 

in the definition. 
 

 
What is the contribution of this study? 
 

 
 
 A systemic review was undertaken to 

determine the specific EEG background 

patterns that best predict neurodevelopmental 

outcomes in term neonates with HIE. 
 

 A meta-analysis has been performed to 

establish the prognostic value of the identified 

EEG background patterns and the pooled 

sensitivity and specificity have been 

calculated. 
 

 Agreement on definitions is necessary for the 

effective implementation and use of EEG in 

NICUs and some definitions have been 

suggested. 
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highly predictive of a normal outcome, whereas various abnormal EEG features have been 

consistently associated with neurological abnormalities or death [47]. A systematic review and meta-

analysis of the literature was undertaken to determine which specific background features of the EEG, 

in term neonates with HIE, have been described that best predict outcome. 

2.2 Methods 

2.2.1 Search strategy and inclusion and exclusion criteria 

A literature search was conducted of the PubMed, EMBASE and CINAHL databases for studies 

published between January 1960 and April 2014. The search terms HIE or asphyxia, EEG, term 

newborn infants, prognosis or outcomes; and their derivatives were used to locate relevant studies. 

For PubMed, the specific search was: ((((("Asphyxia Neonatorum"[Mesh] OR asphyx*[tiab]) OR 

Hypoxic Ischemic Encephalopathy OR sarnat[tiab])) AND ((((Term* OR Neonate OR newborn OR 

neonat*) AND (Electroencephalo* OR EEG))), accessed 1 May 2014. Titles and abstracts were 

screened for relevant materials. Only studies published in English were considered. Two reviewers 

searched articles to determine which studies reported EEG background features and a 

neurodevelopmental outcome at ≥ 12 months age of term infants affected by HIE. Studies that 

identified the specific abnormal EEG background features were included e.g., burst suppression, 

continuous low voltage or low voltage and flat trace or isoelectric. Details are discussed in the 

discussion section.  

2.2.2 Data extraction 

Two reviewers (A. Awal and M. Lai) collected the following data from the included studies; number 

of infants, HIE Sarnat stage, type of EEG used, EEG background features identified, follow up period 

and neurodevelopmental assessments and outcome data. Where there was ambiguity in the 

description, for example in the EEG background feature classification or outcome level of disability, 

a third reviewer (P. Colditz) was consulted and a majority view prevailed. Data were extracted from 

published studies; no attempts were made to contact authors to clarify data or retrieve incomplete 

data. 

2.2.3 Statistical analysis 

The prognostic accuracy of each EEG background feature was assessed using the 2 × 2 matrix, shown 

in Table 2.1. Different terms of this matrix are defined as follows:  

 Feature Present (퐹푃+): Presence of an abnormal EEG background feature (e.g. burst 

suppression, low voltage, and flat trace) is considered as 퐹푃 +.  
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 Feature Absent (퐹퐴−): Absence of an abnormal EEG background feature (e.g. CNV 

(continuous normal voltage), DNV (discontinuous normal voltage)) is considered as 퐹퐴 −.  

 True Positive (푇푃): An abnormal EEG background feature or pattern associated with an 

abnormal neurodevelopmental outcome. 

 False Positive (퐹푃): An abnormal EEG background feature or pattern that falsely predicts a 

normal outcome. 

 False Negative (퐹푁): A normal EEG background pattern, which falsely predicts an abnormal 

outcome. 

 True Negative (푇푁): A normal EEG background pattern associated with a normal outcome. 

Table 2.1: 2 × 2 confusion matrix used in the analysis. 

 Abnormal outcome Normal outcome 
Feature Present (퐹푃+) True Positive (푇푃) False Positive (퐹푃) 
Feature Absent (퐹퐴−) False Negative (퐹푁) True Negative (푇푁) 

 
Sensitivity and specificity were calculated as follows: 

푆푒푛푠푖푡푖푣푖푡푦 =
푇푃

푇푃 + 퐹푁
 

푆푝푒푐푖푓푖푐푖푡푦 =
푇푁

푇푁 + 퐹푃
 

(2.1) 

We constructed forest plots to show the sensitivity and specificity of each study graphically [48]. 

Forest plots were calculated by using Review Manager (RevMan) version 5.2 software [49]. 

Because of the study heterogeneity summary statistics cannot be provided using RevMan. We, 

however, estimated the ‘summary point’ for sensitivity and specificity and receiver operating 

characteristic (ROC) curve using STATA [50]. The ‘푚푒푡푎푛푑푖’ command was used for the meta-

analysis which provides sensitivity, specificity with confidence interval using a random effects model 

from multiple studies to estimate the pooled sensitivity and specificity and best fit regression analysis 

parameters for Hierarchical Summary Receiver Operating Characteristics (HSROC) model to 

determine the summary ROC curve [50].  

2.3 Results 
Of the 860 articles generated by the initial search strategy, 566 studies remained when duplicates 

were removed. In the first stage, only 48 studies remained after hand-searching for the presence of 

reporting of EEG background features along with neurodevelopmental outcome in term neonates with 

HIE. A further 4 more were identified through hand-searching the references contained in the 48 

studies. A total of 52 studies were finally identified. A further 21 studies were excluded because they 
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did not report on specific features of the background EEG; justification for the exclusion of these 21 

studies is provided in the discussion section. Finally, 31 studies were included in the meta-analysis 

that which can distinguish among different abnormal background features. A flowchart of the search 

strategy is shown in Figure 2.1. 

 

Figure 2.1: Flowchart of the search and study selection process. 

 

Table 2.2: Summary of the included studies 

Authors 
Year of 
Publicatio
n 

#Asphyxia 
or HIE 
Stage 
I/II/III 

Type 
of 
EEG 

Timing 
of EEG 
 

No. of 
infants, 
M:F 
ratio 

Follow 
up age 

Outcome measure EEG and outcome* 

al Naqeeb 
et al. 

1999 

14/17/7 aEEG Within 
12 hours 
of birth 

20 
$NR 

18 – 24 
months 

Neurological 
examination 

Estimation of the 
Griffith’s General 
Quotients 

9 normal aEEG – all normal 
outcome 

2 moderate aEEEG-1 died, 1 
survived 

9 BS- all died, severe to 
moderate outcome 

Ancora et 
al.  

2011 

-/8/4 

 

aEEG Within 4 
hours 

12 

all 
cooled 

Mean 
age 17.3 
months 

Griffiths’ mental 
Development 
Scales 

 

2 normal aEEG- normal 
outcome 
1 moderate aEEG-abnormal 
outcome 

Primary Database 
Search (푛 =  860) 

Relevant articles 
(푛 =  566) 

Eligible Studies 
(푛 =  48) 

Eligible Studies 
(푛 =  52) 

Studies included 
(푛 =  31) 

Duplicates removed, 
not in English(푛 =
 294)

Excluded after 
reading title and 

abstract and, long-
term follow up < 12 

Excluded, no 
distinction between 
background features 

(푛 =  21) 

Studies identified 
from references 

(푛 =  4) 
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NR 9 BS aEEG- 6 normal and 3 
abnormal outcome 

Azzopardi 
et al. 

 1999 

12/5/4 EEG Within 
12 hours 
of birth 

22 

NR 

12 – 24 
months 

A standardised 
neurological 
assessment, when 
possible by 
Griffiths 
developmental 
assessment 

13 normal EEG- normal 
outcome 
3 LV- abnormal outcome 

6 BS- 4 normal and 2 
abnormal outcome 

Azzopardi 
et al. 

2000  

- aEEG/
EEG 

NR 16 

NR 

3 – 18 
months 

Griffiths general 
quotient 

 

6 normal EEG-normal 
outcome 
3 LV-all abnormal outcome 

5 BS- 4 normal 1 abnormal 
outcome 

Biagioni 
et al.  

2001 

8/16/1 EEG Within 
the first 
72 hours 

25 

13:12 

2 years Standardised 
protocol of 
neurological 
examination 

Griffiths’ 
developmental 
scales 

9 normal EEG- 8 normal and 
1 abnormal 
14 BS- 1 normal and 13 
abnormal 

2 LV- all abnormal 

Bourez-
Swart et 
al. 

2009 

n/a aEEG/ 

cEEG 

NR 12 

NR 

12 
months 

NR 
4 normal- 3 normal and 1 
abnormal 
2 BS- 1 normal and 1 
abnormal 
6 discontinuous- 2 normal and 
4 abnormal 

Csekő et 
al. 

2013 

NR 

 

 

aEEG 6 - 72 
hours 

70, 

41:19 

all 
cooled 

18 to 24 
months 

Bayley Scales of 
Infant 
Development II 
(BSID II) 

Mental 
Developmental 
Index (MDI) or 
Psychomotor 
Developmental 
Index (PDI) 

41 normal aEEG- 38 normal 
and 3 abnormal 
10 BS- 3 normal and 7 
abnormal 
6 LV- all abnormal 

1 FT- 1 abnormal 

El-
Ayouty et 
al. 

2007 

3/21/10 EEG Within 
72 hours 

34 

NR 

18 
months 

Denver 
Developmental 
Screening Test II 

7 normal EEG- all normal 
outcome 
13 BS- all abnormal 

5 LV- all abnormal 

Eken et 
al. 

1995  

10/7/14 &CFM within 
24 hours 

31  

NR 

3-24 
months 

Griffiths’ 
developmental 
scales 

12 normal EEG- 1 normal and 
11 abnormal 
11 BS- 2 normal and 9 
abnormal 
3 LV- all abnormal 

5 FT- all abnormal 

Finer et 
al. 

1983 

7/41/1 EEG Within 
first 
week 

49 

26:23 

27 
months 

Neurological 
examination 

16 normal EEG- 14 normal 
and 2 abnormal 
3 LV- all normal 

26 BS- 19 normal and 7 
abnormal 

Gucuyene
r et al. 

-/6/4 aEEG Within 6 
hours 

10 

6:4 

8-18 
months 

Bayley Scales of 
Infant 

Before Cooling: 
3 normal aEEG- all normal  
5 BS- all normal 
2 FT-all abnormal 
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2012 All 
cooled 

Development II 
(BSID II) 

After cooling 
8 normal aEEG- all normal  
1 BS- abnormal 
1 FT-all abnormal 

Hallberg 
et al. 

2010 

3/16/4 aEEG Within 6 
hours 

23 

15:8 

all 
cooled 

4 and 12 
months 

Neurological 
examinations 

Alberta Infant 
Motor Scale 

6 normal aEEG- normal 
outcome 

15 BS- 10 normal, 5 abnormal 

Hamelin 
et al. 

2011 

NR EEG 1st EEG 
within 
17 hours  

2nd EEG 
within 
72 hours 

Cooled 

4:12 

Non-
Cooled 

9:14 

12 
months 
– 7 
years 

Neurological 
examination 

Cooled  
6 normal EEG- all normal 
10 LV- 6 normal and 4 
abnormal 
Non-Cooled 
3 normal EEG- all normal 
20 LV- all abnormal 

Holmes et 
al. 

1982 

NR EEG Within 2 
weeks 

38 

NR 

24 
months 

Neurological and 
developmental 
examinations 

15 normal EEG- all normal 
11 BS- all abnormal 

12 LV- 1 normal and 10 
abnormal 

Jose et al. 

2013 

9/13/9 EEG Within 7 
days 

31 

24:7 

12 
months 

Denver 
Developmental 
Screening Test II 

Neurological 
examination 

17 normal EEG- 15 normal 
and 2 abnormal 

13 BS- all abnormal 

van 
Lieshout 
et al.  

1995 

7/7/9 EEG 14 
before 
3rd day 

9 before 
10th day 

23 

NR 

18 
months 
– 7 
years 

WHO disability 
scoring  

Neurological 
examination 

13 normal EEG- all normal 
4 BS- 2 normal and 2 
abnormal 
3 LV- all abnormal 

3 FT- all abnormal 

Polat et 
al. 

2012 

11/10/3 EEG NR 25 

NR 

44-48 
months 

Denver 
Neurological 
examination 

13 normal EEG- all normal 
6 BS- all normal 

6 LV- all abnormal 

van Rooij 
et al. 

2005 

NR aEEG Within 6 
hours 

160 

NR 

At least 
24 
months 
to 10 
years 

Griffiths mental 
developmental 
scale 

70 normal aEEG- 64 normal 
and 6 abnormal  
25 BS- 6 normal and 19 
abnormal 

65 FT- 5 normal and 60 
abnormal 

Selton et 
al. 

1997 

5/16/17 EEG Between 
2 - 7 
days 

38 

14:24 

12 
months 
to 8 
years 

Amiel-Tison 
neurological 
evaluation 

14 normal aEEG- 13 normal 
and 1 abnormal 
10 BS- 2 normal and 8 
abnormal 

4 LV- 3 normal and 1 
abnormal 

Shankara
n et al. 

2011 

-/71/37 aEEG Within 9 
hours 

108 

62:57 

57 
cooled 

51 non-
cooled 

18 to 22 
months 

Neurological and 
developmental 
evaluations, 
Gross Motor 
Function 
Classification 
System 
(GMFCS), 
Bayley Scales of 
Infant 
Development II 

24 normal aEEG- 18 normal 
and 6 abnormal 
22 BS- 11 normal and 11 
abnormal 
26 LV- 13 normal and 13 
abnormal 
36 FT- 13 normal and 23 
abnormal 
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Shany et 
al. 

2006 

14/14/9 aEEG Within 
3-6 
hours 

39 

NR 

3.6 
years 
(mean) 

Amiel-Tison and 
Gosselin 
neurological 
evaluation 

23 normal aEEG- 21 normal 
and 2 abnormal 
3 discontinuous- 2 normal and 
1 abnormal 

14 BS- 4 normal and 10 
abnormal 

Takeuchi 
et al. 

1989 

NR EEG Within 3 
weeks 

173 

NR 

12 
months 
- 15 yrs, 
mean 
3.2 yrs 

Neurological 
examination 

31 normal EEG- 29 normal 
and 2 normal 
18 BS- all abnormal 
20 LV- 10 normal and 10 
abnormal 

13 FT- all abnormal 

Ter Horst 
et al. 

2004 

4/18/5 aEEG 60 min – 
22 hrs 

30 

NR 

24 
months 

Paediatric and 
neurological 
exam based on 
Touwen 

19 normal- all normal 
5 LV- all abnormal 

1 FT- abnormal 

Thoresen 
et al. 

2010 

NR aEEG Soon 
after 
birth 
until 
after 
cooling 

74 

31 non-
cooled 

43 
cooled 

18 
months 

Bayley Scales of 
Infant 
Developmental II 

Normothermic: 
12 normal aEEG- 8 normal 
and 4 abnormal 
13 BS- 3 normal and 10 
abnormal 
1 LV- abnormal 
5 FT- all abnormal 
Hypothermic : 
16 normal aEEG- all normal 
18 BS- 9 normal and 9 
abnormal 
1 LV- abnormal 
8 FT- 1 normal and 7 
abnormal 

Thornber
g et al. 

1994 

NR CFM Soon 
after 
admissio
n 

38 

14:24 

18-30 
months 

NR 20 normal- 17 normal and 3 
abnormal 

11 BS- all abnormal 

Toet et al. 

1999 

-/17/20 aEEG After 
admissio
n 

 

73 

NR 

12 
months 
to 6 
years 

Griffiths mental 
developmental 
scale 

Items from 
Amiel-Tison and 
Renier evaluation 
and Touwens test 

Alberta Infant 
Motor Scale in 
children < 18mths 

32 normal EEG- 27 normal 
and 5 abnormal 
29 BS- 8 normal and 21 
abnormal 
6 LV- all abnormal 

1 FT- abnormal 

Toet et al. 

2002 

NR CFM/
EEG 

At 3 and 
6 hours 
after 
birth  

36 

NR 

3-24 
Months 

Griffiths mental 
developmental 
scale 

Items from 
Amiel-Tison and 
Renier evaluation 
and Touwens test 

Alberta Infant 
Motor Scale in 
children < 18mths 

20 normal- 8 normal and 12 
abnormal 
7 BS-2 normal and 5 
abnormal  

5 FT- all abnormal 

 

Watanabe 
et al. 

1980 

NR EEG Within 2 
days 

132 

NR 

NR NR 23 normal EEG- all normal 
31 BS- 30 normal and 1 
abnormal 
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74 LV- 9 normal and 65 
abnormal 

Wertheim 
et al. 

1994 

10/22/5 EEG Soon 
after 
admissio
n 

37 

19:18 

12, 18 
months 

Griffith 
developmental 
scales 

8 normal EEG- all normal 
8 BS- 4 normal and 4 
abnormal 

7 FT- all abnormal 

Hellström
-Westas 
et al. 

1994 

9/5/24 

(0/1/2-3) 

aEEG Within 6 
hours 

47 

NR 

12-18 
months 

NR 26 normal- 25 normal and 1 
abnormal 
14 BS- 3 normal and 11 
abnormal 
2 LV- all abnormal 

5 FT- all abnormal 

Zeinstra 
et al. 

2001 

-/27/9 

 

EEG 1st: 
between 
12 and 
36 hours 

2nd: 
between 
7-9 days 

36 

NR 

6 and 12 
months 

Examined by 
neonatologist and 
paediatric 
neurologist, 

WHO disability 
scoring  

10 normal EEG- all normal 
10 BS- 7 normal and 3 
abnormal 
Other patterns are moderate 
EEG, Epileptic EEG, 
Asymmetry-Positive temporal 
wave. 

 

2.3.1 Statistical analysis  

Total of 1948 term neonates with HIE with follow up available at 12 months of age or older were 

investigated in the 31 studies. Table 2.2 provides a summary of the numbers of infants and HIE 

severity. The score or severity of HIE was clearly described in 20 (64.5%) studies and hypothermia 

(HT) was used in 7 (22.5%) studies. In 4 (13%) studies it was necessary to extract data to construct 

the 2-way table.  

The included studies used single, dual, and multichannel EEG; 14 (45%) studies used aEEG or single 

or dual channel EEG, 14 (45%) studies used international 10-20 EEG or continuous multichannel 

EEG, and 3 (10%) studies used both. The age at developmental assessment ranged from 12 months 

to 9 years. 

Twenty-nine of the 31 studies, involving a total of 914 term neonates reported the relationship 

between outcome and burst suppression pattern of EEG. The forest plot of sensitivity and specificity 

with 95% 퐶퐼 is given in Figure 2.2(a). 19 studies involving 567 neonates reported outcomes for low 

voltage EEG. A forest plot of sensitivity and specificity with 95% 퐶퐼 is given in Figure 2.2(b). 13 

studies involving 493 babies reported outcomes for flat trace. Forest plot of sensitivity and specificity 

with 95% 퐶퐼 is shown in Figure 2.2(c). 
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(a) 

 

(b) 
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                                                                                           (c) 

Figure 2.2: Forest plot of sensitivity and specificity for (a) burst suppression (b) low voltage (c) flat trace with 
outcome. Some studies [47, 51-57] used hypothermia in their HIE management. Letter ‘b’ and ‘a’ after the year of 
publication in the forest plots indicate the measure before and after cooling respectively of the same study. 

2.3.2 Meta-analysis 
To generate a clear overview of the operating characteristics of different EEG background features, the 

ROC curves were estimated using HSROC model as recommended in the Cochrane handbook [49, 

58]. Figure 2.3(a-c) shows the ROC curve using the HSROC model for burst suppression, low voltage 

and flat trace respectively. The pooled sensitivity and pooled specificity and overall summary of this 

review are given in Table 2.3. 

 
(a) 

 
 

(b) 
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(c) 

Figure 2.3: Meta-analysis using HSROC model for: (a) burst suppression (b) low voltage (c) flat trace EEG 
related to outcome. The size of the circles is a visual representation of the number of subjects in each study. The 
summary point is the summary value for sensitivity and specificity confined by the 95% confidence region. The 
95% prediction region gives a visual representation of the forecast of sensitivity and specificity in future studies 
(Stata, 2009). 

Table 2.3: Pooled sensitivity and specificity with confidence interval for different EEG background patterns 

EEG Background 
patterns 

No. of 
Studies 

No. of 
Neonates 

Pooled Sensitivity Pooled Specificity 

   Point Estimate 95% CI Point Estimate 95% CI 
Burst suppression  29 914 0.87 0.78 − 0.92 0.82 0.72 − 0.88 
Low voltage 19 566 0.92  0.72 − 0.98 0.99 0.87 − 1.0  
Flat trace 13 493 0.78 0.58 − 0.91 0.99 0.88 − 1.0  

2.4 Discussion  
This meta-analysis has established the prognostic value of different EEG background patterns in term 

neonates with HIE. To our knowledge this is the first review to analyse systematically different EEG 

techniques (CFM, aEEG, cEEG, international 10–20 EEG) and the background activity as a predictor 

of neurodevelopmental outcome. The meta-analysis clearly indicates that some features of EEG 

predict outcome accurately in term neonates with HIE.  

One channel (CFM) or two channel (aEEG) EEG are currently widely used in NICUs due to ease of 

use and ease of interpretation. However several studies have shown that CFM or aEEG interpretation 

is user dependent [59, 60] and variable [61]. A recent meta-analysis has reported that sensitivity and 

specificity of aEEG and continuous EEG for predicting neurodevelopmental outcome are similar [44]. 



 
 

31

There are clearly trade-offs in using single or dual channel EEG or multichannel EEG [12, 44, 59, 

60]. We therefore chose to review background features derived from studies using all 3 EEG data 

collection system. There are two critical issues that relate to the findings reported in this study: (a) 

issues relating to the definitions of abnormal patterns and (b) issues relating to the selection criteria 

for the studies included. 

2.4.1 Issues relating to the definitions of abnormal patterns 

A significant problem in the classification of different abnormal EEG features is that there is no 

universal definition of different abnormalities in terms of voltage level, phase or frequency. For 

example, voltage levels used to define an abnormality such as low voltage often differ between 

studies. Although not the primary goal of this review and meta-analysis, we note that in the case of 

isoelectric or flat trace EEG, different voltage amplitude levels are used in different studies: : < 10 휇푉 

was used in [62-65] , < 5 휇푉 in [17, 66-75] and < 3 휇푉 in [76]. Other studies did not provide an 

exact definition of the flat trace [77, 78] .  

Similarly there was variation in the definition of ‘low voltage’: < 5 휇푉 was used in [16, 17, 52, 

73], 5 − 10 휇푉 by [74, 75], 5− 15 휇푉 by [51, 69, 71], 5 − 20 휇푉 by [66, 68], < 20 휇푉 was in [54, 

79, 80], 5 − 25 휇푉   in [81-83], < 25 휇푉 in [76], < 30 휇푉 by [62] and 10 − 50 휇푉 in [64, 65]. Some 

studies did not provide a definition of low voltage [72, 78].  

As with flat trace and low voltage, variations of the voltage amplitude used in defining burst 

suppression were different. To define suppression, < 5 휇푉 was used by [16, 17, 70, 71, 73-75, 81], 

0 − 2 휇푉 by [52], 5 − 10 휇푉 by [84, 85], < 10 휇푉 by [62]. To define burst pattern: ≥ 25 휇푉  was 

used by [15, 74, 75] . > 45 휇푉 was used by [79, 80], > 50 휇푉 by [86], 75− 250 휇푉 by [87] 100 −

1000 휇푉 by [88]. Unlike the voltage amplitude variation for defining bust suppression, in the 

frequency domain, most of the studies agreed that burst activity is dominant in the delta and theta 

bands. 

The time and duration of EEG recordings has been variable. Most studies report using early EEG data 

– typically at 3-72 hrs but some have used recordings up to two weeks after birth to correlate with 

neurodevelopmental outcome as shown in Table 2.2. Some have contrasted times of recording: for 

example, Toet et al. showed that sensitivity and specificity of burst suppression, together with flat 

trace and low voltage, for poor outcome at 3 hrs was 85% and 77% respectively and at 6 hrs was 91% 

and 86% respectively [82]. However, not all reported better test characteristics at six hours than earlier 
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with Shany et al. (2006) reporting the sensitivity of burst suppression at 3 hrs to be 83% and at 6 hrs 

to be 75%.  

2.4.2 Issues relating to the selection criteria for the studies included 
Some studies described the relationship between individual background patterns and 

neurodevelopmental outcome without reporting on outcome of the babies who had been diagnosed 

with HIE and did not have the pattern: For example, burst suppression was reported in [18, 79, 89, 

90] without providing information on the outcome of EEG without this feature. Thus we were unable 

to construct a 2-way table for the meta-analysis. 

Some studies did not define the specific characteristics of EEG background patterns including low 

voltage, flat trace, and burst suppression but described more general classes such as minimal, mild, 

moderate, marked, and maximally depressed EEG background. In the studies of [64, 66, 67, 70, 71, 

77, 85, 91, 92], we were able to extract information, but in 21 of 52 studies, it was not possible to 

extract individual EEG background information.  

Some other background patterns including trace alternant, asynchrony and, asymmetry have also been 

reported but for only a very small number of babies. Murray et al. and al Naqeeb et al. reported that, 

5 out of 7 newborns and 1 out of 40 newborns respectively, who showed some degree of asymmetry 

on EEG had a poor neurodevelopmental outcome whereas Zeinstra et al. reported 1 out of 36 

newborns showing this feature had normal development [62, 64, 84]. Mariani et al. found that 75% 

of the newborns who had trace alternant had poor neurodevelopmental outcome [68]. Although these 

two background features have been reported to predict outcome moderately well in a relatively small 

number of infants, the ability of burst suppression, flat trace and low voltage EEG to predict outcome 

is superior in a much larger number of babies (see Table 3). A number of studies collapse these 

features, in variable and sometimes ill-defined ways and classify the EEG as ‘moderate’ in 

abnormality [32, 62, 63, 70, 85, 93, 94]. Although ‘moderate’ EEG predicts neurodevelopmental 

outcome, we chose to find the specific background patterns that best predict neurodevelopmental 

outcome and hence, we excluded these studies. Some studies [52, 84, 89, 95] include seizure as a 

background pattern but we did not classify seizure as a background feature and so excluded this 

feature from our analysis.  
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2.4.3 Assessment of neurodevelopmental outcome  
Neurodevelopmental outcomes were measured using different assessment methods, criteria and at 

different ages from 12 months to 9 years. Studies used structured examinations [96-101] and/or 

general neurological examinations [102-106] to define ‘normal’ or ‘abnormal’ neurodevelopmental 

outcome as shown in Table 2.2. A few studies used their own follow up index to define ‘normal’ or 

‘abnormal’ outcome [47, 69, 71]. Some studies sub-classified outcome as normal, minor or mildly 

abnormal, moderate and severely abnormal or death. During review of the relevant studies, it was 

agreed to collate normal, minor or mildly abnormal outcome as a ‘normal outcome’ and moderate or 

severely abnormal or death as an ‘abnormal outcome’. This simplified the data to allow 2-way table 

calculations. 

2.4.4 Strengths and weaknesses 
This review is based on the relationship between EEG background patterns and outcome. The meta-

analysis was performed taking the PRISMA statement [107] into account. Analysis using the random 

effects model and HSROC model was used to account for heterogeneity among numerous studies 

over the last 50 years with long-term neurodevelopmental follow-up ranging from 12 months to 9 

years which added to the reliability of this structured review.  

A meta-analysis published by Spitzmiller et al. (2007) was focused only on aEEG and included 8 

studies [108] all of which were captured by our search criteria and included in our meta-analysis. This 

study does not report specific background patterns but reporting as severe abnormal EEG patterns 

with neurodevelopmental outcome. 

Like other systematic reviews and meta-analysis, the presence of bias is possible. Selection bias may 

have resulted from the approach to selecting the different voltage amplitudes, phases, and frequencies 

used to define different abnormal EEG patterns as well as differences in the timing of the EEG. We 

introduced language bias by restricting to English language sources. Publication bias is also possible 

by selecting only journal articles and excluding conference paper, case studies, and review articles. 

Like EEG background features, the presence of clinical and/or subclinical seizures can also predict 

neurodevelopmental outcome. A recent review covering literature from 1954 to 2013 suggests that 

17.9% of neonates with seizures develop epilepsy and in 80.7%, epilepsy was associated with other 

neurological impairments [109]. Given the differing ability of CFM, aEEG and full EEG to diagnose 

seizures, we support the recent call for evidence-based studies of seizure recognition and management 

[110]. A more detailed focus on neonatal seizures is beyond the scope of this project.  
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2.4.5 Validity of result in newborns treated with hypothermia  
Therapeutic hypothermia has been introduced into standard practice in the past decade in babies with 

HIE as it reduces rates of death, severe disability and cerebral palsy [111, 112]. EEG appears not to 

be significantly affected by HT [113, 114] and so it is reasonable to include studies with babies treated 

with HT as we have done for [47, 51-55].  

2.4.6 Suggestions for type of EEG recording in NICUs 
We have shown the potential for variation in predicting outcome to be caused by different EEG 

recording techniques, the timing of EEG recordings and the specific definitions used for defining 

background features. We make the following suggestions to assist in optimising the use and 

interpretation of EEG in NICUs: 

Timing of EEG: Attempts should be made to report findings at 6 hours after birth because several 

studies have shown that features at this time have the best predictive characteristics [62, 82].  

Suggested EEG techniques: There are trade-offs among EEG techniques. For longer term monitoring 

including for the detection of seizures, we suggest aEEG ideally with intermittent full array EEG as 

described in [115] to confirm features and seek evidence of seizures not seen in 2 channel EEG. aEEG 

electrode position should be at 푃  and 푃  location because it is over the cerebrovascular watershed 

region at high risk for acquired injury [116] and more prone to seizure [117]. 

Finally, continuous computer analysis allows robust measurement of features and use of frequency 

and time-dependent analytic strategies may allow features not detectable to visual analysis of EEG to 

be detected [115, 118]. Suggested definitions of relevant EEG background features are given in Table 

2.4. 

Table 2.4: Recommended definitions of EEG background features: 

Patterns Amplitude, duration or characteristics of EEG activity* 
CNV& Continuous background activity with voltage ±10– 25  휇푉 but without sleep 

stages. 

DNV Discontinuous trace, with voltage predominantly >  5 휇푉. 

Burst suppression# High voltage (> 30휇푉) delta (0.4 − 4퐻푧) and theta (4 − 8퐻푧) activities 
lasting 1 − 10푠푒푐 with suppressed activity of < 5 휇푉 lasting > 2 푠. 

Modified burst 
suppression  

Burst suppression with suppressed activity of > 5 휇푉. 

Asymmetry  > 25% consistent asymmetry between homologous brain regions can be treated 
as abnormal asymmetry. Asymmetry should be present in all states [23].  

Asynchrony  > 50% of EEG burst that occurs asynchronously between hemispheres and the 
time difference of the onset of burst between hemispheres is > 1.5 푠 can be 
treated as abnormal asynchrony. To measure asynchrony, 5 consecutive 
minutes should be used [23].  
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Low voltage Continuous background patterns (5 ± 3) 휇푉 throughout the record.  

Flat trace Mainly inactive (isoelectric tracing), consistently < 5 휇푉. 
*Age related issues need to consider while defining abnormal background feature. This is because pattern which is normal 
at preterm and may be treated as abnormal in term neonates [75]. 
& CNV with the band of aEEG activity altering in width, indicating cycling of sleep stages can be treated as CNV with 
cycling of sleep stages (CNV-S)[119]. 
#According to reactivity to external stimuli burst suppression can be classified as reactive and non-reactive burst 
suppression and both have prognostic value [18]. According to density of occurrence of burst per hours, burst suppression 
is also classified as burst suppression (+) and burst suppression (-) [burst suppression (+) denotes burst density ≥100 
burst/h, and burst suppression (-) means burst density <100 burst/h [75]]. The time interval between two consecutive 
bursts is called inter-burst interval (IBI). IBI can be classified as type 1 and type 2 according to the cerebral activity [Type 
1 denotes IBI ≥2 s with no cerebral activity in any channel and type 2 means rare transient or low voltage activity [120]]. 
Sometimes prolonged suppression periods with bursts are termed Permanent Discontinuous Activity (PDA) [23].  

2.5 Overall summary  
This chapter established the background features of EEG that accurately predict long-term 

neurodevelopmental outcome in term neonates with HIE. These results have been generated in studies 

of term neonates. Further studies are needed to determine the usefulness of EEG background patterns 

for prognostication of outcome in preterm infants. 

Differences in definitions of and lack of an accepted classification system for EEG background 

patterns are a major impediment to synthesis of available information. Published material may use 

the same background pattern term but use different amplitude level, phase, frequency and duration in 

the definition. Agreement on definitions is necessary for the effective implementation and use of EEG 

in NICUs and we have suggested some definitions. 

The studies reviewed here are from different decades covering the change from analogue to digital 

EEG equipment. However, we are interested in the ability of EEG background patterns in term infants 

to predict neurodevelopmental outcome rather than precision of this clinical tool. Despite these issues 

(Sensitivity 0.87 [95% CI (0.78-0.92)]; Specificity 0.82 [95% CI (0.72-0.88)], low voltage 

(Sensitivity 0.92 [95% CI (0.72-0.97)]; Specificity 0.99 [95% CI (0.88-1.0)], and flat trace 

(Sensitivity 0.78 [95% CI (0.58-0.91)]; Specificity 0.99 [95% CI (0.88-1.0)]) predict 

neurodevelopmental outcome with a high sensitivity and specificity. This contribution may motivate 

the neurophysiologists and the clinicians to take early management process and also opens the door 

for engineers to further processing the signals such as signal characterisation, automatic detection and 

classification. Most of the patterns are marked by visual inspection. Visual inspection of the EEG 

signal is routine but visual interpretation and classification is laborious and time-consuming, 

especially in the case of long recordings. It also requires experienced interpreters, who are not always 

available. To overcome these limitations, an automated detection and classification approach would 
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provide a decision support to the clinical staff. State-of-the-art signal processing and machine learning 

approach will be designed, optimised and applied for the analysis and automatic classification of these 

prognostic EEG background features in the next three chapters.    
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Chapter 3 Design and optimisation of time-frequency distribution and 
application to EEG3 

3.1 Introduction  
Accurate characterisation of EEG, including 

its background patterns in the (푡, 푓) domain, 

helps understand the characteristics of EEG 

signals and assists in optimal representation 

and in extracting the key features from EEG 

for automatic detection and classification.  

In Chapter 1, it was shown that EEG is a 

non-stationary signal, i.e. the statistical 

properties of the frequency and amplitude 

content change over time, resulting from the 

relatively random firing of neurons. It has 

been shown that joint (푡,푓) representation, 

i.e. TFD, is well-adapted for the 

characterisation and analysis of this non-

stationary signal. In addition, various 

dynamic features extracted from TFD can 

increase detection and classification 

accuracy [33]. However, a TFD with high 

resolution and high concentrations with no 

cross-terms is desirable in order to provide 

optimal or ideal representation of a signal 

and extract features for detection and 

classification.  

Over the last decades, a large number of 

TFDs have been proposed by researchers to obtain the desirable properties mentioned above [33]. 

Generally, TFDs have some parameters; these are used to adjust the TFD kernels and improve the 

                                                         
3 This chapter is an extended version of the following publications: 
(i) M. A. Awal and B. Boashash, "An automatic fast optimization of Quadratic Time-frequency Distribution using the 
hybrid genetic algorithm," Signal Processing, vol. 131, pp. 134–142, Feb 2017. 
(ii) M. A. Awal, S. Ouelha, S. Dong and B. Boashash, "A robust time–frequency representation based on the local 
optimization of the Short-Time Fractional Fourier Transform, Digital Signal Processing, vol. 70, pp. 125-144, Aug 2017. 

 
What is already known on this topic? 
 
 
 

QTFD is very useful for the characterisation and 

analysis of nonstationary signals e.g. EEG signal. 

Proper selection of QTFD kernel parameters, 

analysis window and window parameter(s) offers 

a high-resolution (푡, 푓) signature and improves 

characterisation. 

 

 
What is the contribution of this study? 
 

 
 

 Two optimisation methods: (i) global 

optimisation (using Hybrid Genetic Algorithm 

(HGA)) and (ii) local optimisation (using 

Locally Optimised Spectrogram (LOS)) have 

been proposed for a fully automatic 

optimisation of QTFDs. 

 Suitable for the non-specialist users and 

provides a useful tool for the analysis of non-

stationary signals. 

 Different measures have been used and 

compared to justify and validate the efficiency 

of the proposed methods. 
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characterisation of various non-stationary signals. The selection of optimal parameters depends on 

the nature of signal: the parameters that are optimal for one signal are different for another signal. 

The optimal selection of these parameters offers a highly energy concentrated (푡,푓) representation 

with signal-dependant resolution [34]. But, how can we select these parameters for a multicomponent 

signal without a priori signal information? This is an important problem as the solution of this 

problem will provide an automatic procedure to obtain a high-resolution TFD, which in turn can 

significantly improve signal characterisation and classification.  

The most popular TFDs are the spectrogram at one hand and the Wigner-Ville distribution (WVD) at 

the other hand. The performance of the spectrogram is heavily dependent on the analysis window, 

which is set heuristically ([33], pp. 78–79) [121]. This fixed window approach is not suitable for 

multicomponent signals comprising both short and long duration overlapping components. This is a 

major limitation of the use of the spectrogram. 

WVD is free from analysis window considerations and provides superior component concentration; 

however, it suffers from cross-terms, potentially leading to confusion and misinterpretation of the 

signal components (due to the quadratic nature of the transform) ([33], Chapter 3). A well-known 

technique is to smooth or filter the WVD by a kernel function to reduce the cross-terms, resulting in 

Reduced Interference Distributions (RIDs). Consequently, RIDs have been extensively used due to 

their high resolution and easy interpretation in the (푡, 푓) −plane. However, the performance of RIDs 

depends on the choice of kernel function and each kernel function has one or more kernel parameters 

balancing concentration, resolution and cross-terms in RIDs.  

The analysis window, window parameters and kernel parameters are often selected manually based 

on visual inspection (([33], pp.93–94, 297–298), [34]). This is time consuming and not feasible in 

certain applications – for example, in automatic pattern recognition and classification [29]. 

Additionally, the specialist knowledge of concentration and resolution that is required for correct 

interpretation precludes non-specialist operators. In this chapter, we address and mitigate this 

complexity by providing two optimisation methods (global optimisation and local optimisation) to 

fully automatic optimise the TFDs. Section 3.2 presents a global optimisation method that uses a 

hybrid genetic algorithm. Section 3.3 presents a local optimisation method based on the Locally 

Optimised Spectrogram. Section 3.4 and Section 3.5 provide a qualitative assessment of these two 

methods and their potential applications, respectively.  
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3.2 Method-1: global optimisation method 
The hybrid genetic algorithm is proposed for a fully automatic optimisation of TFDs. First, we will 

define the problem mathematically and then describe the detailed methodology. The key topics 

covered by this section are as follows: 

 The problem of optimisation of RIDs (also called QTFDs due to the quadratic nature) has 

been formulated as minimising the cost function of a modified energy concentration measure 

for non-stationary signals without a priori signal information (Section 3.2.2).  

 A hybrid genetic algorithm (HGA) has been proposed to find the optimal and fine-tuning 

QTFD parameters (Section 3.2.3).  

 Different state-of-the-art QTFDs like SPWVD, EMBD, CKD and ADTFD have been used to 

demonstrate the proposed approach (Section 3.2.4) and compared with other methods (Section 

3.2.7). 

 The robustness of the proposed method has been demonstrated under different signal-to-noise 

ratio (SNR) conditions in the application of IF estimation (Section 3.2.5). 

 A fast and memory efficient optimisation has also been implemented in Section 3.2.6 for the 

optimised use of TFDs, especially for long recordings or multi-sensor data, for example, in 

multichannel EEG recordings.  

Appendix 3.A describes the computer code used in this section.  

3.2.1 Background Problem  

For a given analytic signal4 푧(푡) associated with a real signal 푥(푡), the signal kernel 퐾푧(푡, 휏) is 

defined as  

 퐾 (푡, 휏) = 푧 푡 +
휏
2 푧∗ 푡 +

휏
2  (3.1) 

                                                         
4 Analytic signals are used when producing their TFDs because the total bandwidth of the signals can be halved by 
removing the negative frequencies, allowing a minimal sampling frequency at half of the usual Nyquist rate. Also, by 
using analytic signals, the interference terms due to the interaction between positive and negative components can be 
avoided. Given a real signal 푥(푡), its analytic associate can be defined as: 푧(푡) = 푥(푡) + 푗 ℋ{푥(푡)} ; where ℋ{푥(푡)} is 
the Hilbert transform of 푥(푡) and can be obtained by  

ℋ{푥(푡)} = ℱ ← −푗. 푠푔푛 (푓) ℱ →  {푥(푡)} , where 푠푔푛 (푓)
−1, 푖푓 푓 < 0
0, 푖푓 푓 = 0

+1, 푖푓 푓 > 0
 

The Matlab function  ℎ푖푙푏푒푟푡(푥) can be used to compute analytic signal.  
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where 휏 and ∗ indicate the temporal lag and complex conjugation. The Fourier transform (FT) of 

퐾 (푡, 휏) with respect to 휏 results in the WVD of the signal, i.e.: 

 푊 (푡,푓) = ℱ → {퐾 (푡, 휏)} (3.2) 
WVD provides superior component concentration; however, it suffers from cross-terms, potentially 

leading to confusion and misinterpretation of the signal components (due to the quadratic nature of 

the transform) ([33], Chapter 3). A well-known technique is to smooth or filter the WVD by a kernel 

function to reduce the cross-terms, resulting in Reduced Interference Distributions (RIDs), 휌 (푡,푓). 

It can be represented in the continuous (푡, 푓) domain as: 

 휌 (푡, 푓) = 푊 (푡,푓) ∗푡 
∗
푓   훾(푡, 푓) (3.3) 

Where ∗푡   and 
∗
푓 denotes the convolutions over time and frequency respectively. It can also be defined 

in the discrete domain [[33], pp. 364]:  

 휌 [푛, 푘] =  →
 퐺[푛,푚]

 ∗  (푧[푛 + 푚] 푧∗[푛 − 푚])  (3.4) 

where 퐺[푛,푚] is the discrete time-lag kernel, 푧[푛] that defines the analytic associate of the original 

signal, y[n], ∗푛 denotes the convolution in the discrete time domain, and (. )∗ represents the complex 

conjugate. Table 3.1 provides the definition of different QTFDs, their time-lag kernel functions, and 

the controlling parameter(s) used in this study. For brevity, this study confines the discussion to state-

of-the-art fixed and adaptive QTFDs like smoothed pseudo Wigner-Ville distribution (SPWVD), 

extended modified B distribution (EMBD), extended compact support kernel or compact kernel 

distribution (CKD) and adaptive directional TFD (ADTFD) [33]. These TFDs have proven popular, 

as they offer better resolution and concentration; this is because they can independently adjust 

smoothing kernel parameters along the time and frequency axis (they are also called ‘separable kernel 

TFDs’), ensuring the signal-dependent kernel results in a high resolution TFD [122]. In this study, 

the adjustment of kernel parameters is formulated as an optimisation problem that provides the most 

compact and high-resolution time-frequency representation.  
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Table 3.1: QTFDs used in this study ([33], p. 341). 

QTFDs 퐺[푛,푚] Controlling parameters 
WVD 훿[푛] - 

SPWVD 푤[푛] 푤[푚] 푤[. ] = Kaiser window; 
w , 훽 ,푤 ,훽   

 
 

EMBD 
푐표푠ℎ [푛]

∑ 푐표푠ℎ [푛]
푐표푠ℎ [푚]

∑ 푐표푠ℎ [푚]
 

훼, 훽; 
 0 ≤ 훼 ≤ 1, 0 ≤ 훽 ≤ 1 

 
 

CKD [29] 퐷퐹푇
푙 → 푛 푒 푒 푒  

 
푐,퐷,퐸 

ADTFD  See Ref. [[33], pp. 299-305] 푎, 푏 
 

3.2.2 Formulation of the optimisation problem 

An optimal QTFD maximises the 휌 [푛, 푘] concentration and resolution, as well as minimising cross-

terms for all signal components. To achieve this, a measure needs to be used as an objective or cost 

function (퐽). TFDs’ information theoretic measures, the ratio of norms-based measure, the normalised 

instantaneous resolution measure and the energy concentration measure have been reported as TFD 

measurement indexes ([33], Chapter 7). Each index has strengths and weaknesses; for example, the 

norm-based concentration measure must be normalised to ensure accurate performance when cross-

terms exists. It also discriminates the low-concentrated components relative to the highly 

concentrated ones within the same TFD; a detailed review can be found in [123]. A comprehensive 

resolution measure has been proposed in [124] and modified in ([33], pp. 438–44). This is an in-depth 

measure based on the morphology of a TFD and calculated by the weighted sum of concentration, 

resolution and cross-term interference [124]. However, the use of this method is computationally 

costly because the position of cross-terms can be defined only after an iterative procedure for a real-

life multicomponent signal without a priori signal information [125]. On the other hand, the energy 

concentration measure (ECM) is efficient, simple to implement and does not suffer from the problem 

of low energy concentration for weak signal components [123]. Due to its simplicity, this index is 

used as an objective function for the proposed optimisation and can be defined for a normalised 

TFD (i. e.∑ ∑ ρ [n, k] = 1) as:  

 
J(ρ [n, k]) =

1
2N

|ρ [n, k]|  
 

(3.5). 
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The term  multiplies the original ECM index (hence, called modified ECM) to scale down the 

concentration as a convenience for the computation of some algorithms, e.g. gradient descent. The 

rationale is that the ECM index, i.e. Equation (3.5). is a square function and different function 

minimisers (e.g. see Equation (3.13) are based on the derivative of the cost function. The derivative 

of a square function produces 2 and  will cancel out the 2. Thus, multiplying the original ECM index 

by  will remove the doubling effect and scale down the ECM index. In addition,  is also multiplied 

with the ECM index to make the cost function less dependent on the signal length (i.e. number of 

samples) and produces a normalisation effect. This justifies the use of  as the ECM index scaling 

factor. A lower value of J(ρ [n, k]) represents a more compact TFD representation. This value is 

signal dependent, as it is affected by the number and closeness of signal components, signal duration 

(i.e. signal length) and signal complexities. The objective function for the proposed method can be 

formulated as  

 min
 

 퐽 (휌 [푛, 푘]);  푘푒푟푛푒푙 푝푎푟푎푚푒푡푒푟푠  (3.6). 

This general framework for the QTFD optimisation problem can be interpreted as ‘minimise the cost 

J (ρ [n, k]), kernel parameters  as a function of QTFD kernel parameters’.  

To illustrate this optimisation problem, the smoothed pseudo-WVD (SPWVD) is considered first. It 

belongs to a subclass of QTFDs known as separable kernel distributions [125]. Window length and 

window parameters are the kernel parameters in the case of SPWVD. A Kaiser-Kaiser window has 

been chosen in this study, as the controlling parameter (훽) spans the fundamental window trade-off 

between main-lobe width and side-lobe level. The proper adjustment of the window length and 

controlling parameter can be done using a data-adaptive kernel. So, the controlling parameters of 

Kaiser-Kaiser SPWVD are w , 훽 , 푤 , 훽  which represent the window lengths and window 

parameter in the time and frequency axis, respectively. The optimisation problem in the case of the 

Kaiser-Kaiser SPWVD can then be formulated as: 

 min
, , ,

 퐽 휌 [푛, 푘] ; w ,훽 ,푤 ,훽  (3.7) 

which is interpreted as ‘minimise the cost 퐽 휌 [푛,푘] ; 푤 , 훽 ,푤 ,훽  as a function of 

푤 ,훽 ,푤 ,훽 ’. Similarly, for EMBD, CKD and ADTFD the optimisation problem can be 

formulated as  

 min
,

 퐽 휌 [푛, 푘] ;  훼, 훽  (3.8) 
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 min
, ,

 퐽 휌 [푛, 푘] ;  푐,퐷,퐸  (3.9) 

 min
,

 퐽 휌 [푛,푘] ;푎, 푏  (3.10) 

3.2.3 Proposed optimisation: hybrid genetic algorithm  

The optimisation of QTFDs is a complex problem. Classical gradient-based optimisation techniques 

for optimising QTFDs (i) are highly dependent on the initial values of the kernel parameters, (ii) 

generate only a single point at each iteration resulting in many iterations, and (iii) do not guarantee 

reaching a global minimum. These constraints motivate us to use the genetic algorithm (GA), as it is 

derivative-free, produces a population of TFD kernel parameters at each iteration and the best 

parameters in the population converge to an optimal QTFD [126]. Thus, the GA is a useful method 

of solving such a complex problem, and it can be defined as eight-component tuples, i.e. 퐺퐴 =

(퐸,퐹,푃 ,푃,Φ, Γ,Ψ,푇), where 퐸,퐹,푃 ,푃,Φ, Γ,Ψ,푇 represent an encoding method of individual, 

fitness (or objective function), initial population, population size, selection, crossover and mutation 

operator and termination condition respectively. It is based on the ‘natural selection’ process, 

imitating the principles of biological evolution, i.e. repetitively adapt a population of individual 

solutions from the current population and treat them as parents to produce the offspring for the next 

generation. Over consecutive generations, the population approaches an optimum solution. An 

overview of GA can be found in [126], while the terminology and uses of ‘GA’ can be found in [127].  

The GA can approach the optimal solution relatively fast, but to achieve convergence it requires the 

evaluation of many functions. The proposed method to optimise RIDs is to run the GA for a small 

number of generations. It will produce sub-optimal parameters for QTFDs that solves the initial value 

problem (unlike classical optimisation techniques), therefore making the technique fully automated. 

These QTFD parameters are then used as initial points for another optimiser that is faster and efficient 

for a derivative-free local search, based on the Nelder–Mead algorithm [128]. This combination is 

denoted as hybrid genetic algorithm (HGA) and shown in Figure 3.1. The HGA setup parameters and 

functions are presented in Table 3.2 (See Section 3.2.8 for details).  
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Figure 3.1: Hybrid genetic algorithm (HGA) for TFD parameters optimisation; 푖 = 1, … ,푃 and 푔 = 1, … ,퐺  
represent the population size and generation limit respectively. Firstly, a population 푖 = 1, … ,푃 of TFD parameters 
are randomly selected within the bounds (see Table 3.3) and then evaluated and applies genetic operations 
(selection, cross-over and mutation) to generate another population of TFD parameters for the next generation. It 
iterates until the termination criteria are satisfied and finally GA provides the best fitted TFD parameters. These 
parameters are further refined by a Nelder-Mead algorithm and finally the optimal TFD parameters are selected.  
 

Table 3.2: HGA setup. 

Max. number of generations See Table 3.3 
Stall generations 50 
Fitness function Eqn. (3.6).  
Population 

 

    size 20 
    type Double Vector 
Selection function Stochastic uniform 
Elite count 2 
Crossover 

 

    type Scattered 
    fraction 80% 
Mutation 

 

   Type Gaussian 
    init. variance 1 
Migration 

 

    direction forward 
    interval 20 
    fraction 20% 
Scaling function Fit scaling rank 
Classical Optimiser  Nelder–Mead Algorithm 
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The GA can diverge from the feasible space if the creation of the initial populations is unbounded. 

To deal with that, populations are bounded by the known lower and upper bounds of the parameters. 

These bounds are recommended in previous studies ([33], pp. 125–28, 299–305), [125]) and shown 

in Table 3.3.  

Table 3.3: Number of generations and QTFD parameter set up. 

TFD Name 
 

Bounds 

SPWVD 
(Kaiser-Kaiser) 

EMBD CKD ADTFD 

Parameters 
 

푤&  훽  푤&  훽  훼 훽 푐 퐷  퐸 푎 푏 
 

Lower Bounds 5 0.01 5 0.01 0 0 0.01 0.01 0.01 2 4 
 

Upper Bounds 푁
3  20 푁

3  20 1 1 10 1 1 3 30 
 

# of Generations 20 20 30 20 

⌊. ⌋ is the 푓푙표표푟 function; & should be integer. 
 

3.2.4 Results on method-1 
Two signals were used to illustrate the performance of the proposed method: (a) a multicomponent 

simulated signal (푠 (푡)) with different orientations, and (b) a real-world bat signal (푠 (푡)). For 

convenience, all (푡, 푓) representations were given with the same MATLAB colormap, in order to 

show results in a fair and comparable manner. Different QTFDs with their optimal kernel parameters 

are shown to exhibit the resulting high resolution and high concentration TFD. A better trade-off was 

observed between the interferences and the (푡, 푓) resolution when the parameters are optimised, as 

detailed below. 

The simulated multicomponent signal 푠 (푡) consists of linear FMs, constant FM and frequency-

modulated Gaussian (see Section 3.3.4.1.4 for signal model). Figure 3.2 illustrates the optimal (푡,푓) 

representation of this signal using the SPWVD, EMBD, CKD and ADTFD with HGA selected 

parameters. For comparative purposes, the ideal TFD and the WVD have also been represented. The 

optimised EMBD provided a sharp localisation but suffers from cross-terms whereas the SPWVD 

failed to separate closely spaced LFM components; the CKD provided the best compromise among 

the fixed TFDs. The ADTFD showed the best performance and very close to ideal TFD as it is adapted 

to (푡,푓) directions. All fixed and adaptive TFDs showed a significant improvement in resolution 

when compared to the WVD.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.2: (a) Ideal TFD representation and (b) WVD. The optimisation of QTFDs using HGA method: (c) Kaiser-
Kaiser SPWVD, w , β , w ,β  = (97, 12.3,143,13.6), (d) EMBD,(α,β) = (0.3, 0.3) (e) CKD, (c, D, E) =
(7, 0.2, 0.2); and (f) ADTFD, (a, b) = (3, 13.4). Optimised parameters are shown in brackets, ().  

The real-world bat signal 푠 (푡) was also used to show the efficiency of the proposed method. The 

optimised SPWVD and CKD provided cross-term free signatures, whereas the EMBD provided a 

sharp localisation but suffers from cross-terms. The optimised ADTFD offered the sharpest 
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localisation of all the components due to its adaptive procedure (see Figure 3.3). Note that an ideal 

TFD is not shown as it is not known precisely given that it is a real-world signal, and the WVD is 

also not shown as it is known to suffer from heavy cross-terms. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3: Optimisation of QTFDs using HGA method: (a) Kaiser-Kaiser SPWVD, w ,β , w ,β =
(59, 7.8,160, 6.7), (b) EMBD, (α, β) = (0.2, 0.5) (c) CKD, (c, D, E) = (3.5,0.12, 0.1) and (d) ADTFD, (a, b) =
(3, 15.8), Optimised parameters are shown in brackets, (). 

3.2.5  Instantaneous frequency (IF) estimation  

One of the unique capabilities of (푡,푓) methods is the estimation of the signal IF ([33], pp. 611–19, 

620–26). This IF estimation capability is often used as a performance evaluation criterion for TFDs, 

including its robustness in the presence of noise. In this study, the IF was estimated by the component 

extraction method presented in ([33], pp. 611–19; [129], see Appendix 3.C). The signal model is 

defined as: 

 x(t) = cos( 18.85t + 125.664t) + cos( 18.85t +  94.248t) + n(t); (3.11) 
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where n(t) is additive white Gaussian noise. Figure 3.4 shows the logarithmic mean square error 

(MSE) between the actual and the estimated IF under different SNRs by performing 100 simulations 

at each SNR level. For this signal, different optimised TFDs showed better performance than the 

WVD. In addition, the locally optimised TFD also performed better than the globally adaptive TFDs 

(e.g. global and local adaptive EMBD). As expected, the ADTFD with optimal parameters 

outperformed the other TFDs for IF estimation. These results show that an accurate estimation of the 

IF of the signal components is directly related to the auto-term resolution property and cross-term 

suppression property of (푡,푓) methods.  

 

(a) 

 

(b) 

Figure 3.4: IF estimation of a multicomponent signals using different optimised QTFDs by the HGA method 
under different SNRs ranging from -15dB to +15dB; (a) logarithmic MSE for x (t) signal component and (b) for 
x (t) signal component. EMBD global adaptive represents that the same parameters (hence, called global) were 
used in EMBD in each iteration under all SNR conditions whereas EMBD local adaptive (as well as, in all other 
QTFD cases), the QTFD parameters were determined by the HGA in each iteration under all SNR conditions.  

3.2.6 Fast and memory efficient implementations of QTFDs  

In the era of ‘big data’, the issues of TFD computation and optimisation present a significant challenge 

in the case of long recordings or multisensor data such as multichannel EEG signals. This is because 

TFDs are two dimensional (2D) functions and require N log N numerical operations (a basic FFT 

element requires N log N operations). An increase in the number of numerical operations will also 

result in an increase in computational time; programs often stop due to ‘out of memory’ errors for 

long data. Therefore, designing memory efficient and optimised TFD implementations is very 

important ([33], Section 6.6).  

The separable-kernel TFD, where G[n, m] = g[n]. g[m], is usually oversampled. TFD computations 

and memory requirements can be significantly reduced by eliminating this oversampling. In addition, 

modern computers possess multicore processors and parallel computing can be used to further speed 
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up the HGA optimisation. Following the methodology presented in [33] (pp. 374–83) for generating 

fast TFDs and parallel computing, the efficient optimisation of TFDs was also implemented in this 

study. This process not only optimises TFDs in terms of optimising the TFD parameters, but also in 

terms of computational time. Table 3.4 compares the computational time of the optimal EMBD using 

a standard and memory efficient implementation. Further memory reduction can be done by 

generating under-sampled TFDs computing only a subset of the TFDs (called decimated TFD 

method).  

Table 3.4: Computation time of standard and fast implementation of EMBD* 

Signals (푁) Standard implementation 
(s) 

Fast implementation 
(s) 

Simulated signal(푁 = 512) 104.6 ±  1.9 3.97 ± 0.2 

Bat signal (푁 = 400)  53.1 ±  1.2 3.59 ± 0.4 

Newborn EEG Seizure (푁 = 1024) 878.7 ± 43.1 11.5 ±  0.7 
*This experiment was run in the Windows-7 on an Intel Core i-7 platforms having 8GB RAM and was connected to 4 
‘local workers’ using Matlab’s Parallel Computing Toolbox. Each signal was run 50 times and the mean±standard 
deviation of the computation time is presented here. 

3.2.7 Comparison with other techniques 

The TFD optimisation method can be implemented in a straightforward way by minimising the cost 

function using an exhaustive search. However, this process is computationally inefficient, especially 

in the case of multiple sensitive parameters. One of the state-of-the-art methods for optimising TFDs 

is gradient descent [123] and it is selected here as one of the fast and simplest methods. The main 

equation for optimising TFDs using gradient descent can be expressed as  

 
θ = θ − μ

∂ J[ρ(n, k; θ )]
∂θ

 
(3.12) 

where θ is the set of controlling parameter(s) (e.g. for EMBD θ ∈ α, β) and μ is the step size selected 

by the user. The step size should not be too small or too large, to avoid slow convergence and 

divergence respectively. However, as stated before, the calculation of the differential part of Equation 

(3.12) is a complex task; it can be approximated based on J[ρ(n, k;θ )] calculated with θ  and its 

previous value θ  and repeated simultaneously to converge to the solution.  

 
θ = θ − μ

 J[ρ(n, k;θ )] − J[ρ(n, k;θ )]
θ − θ

 
(3.13) 

This method can be applied to optimise any QTFDs, e.g. EMBD. The EMBD, ρ (n, k;α, β), has 

two parameters, α and β, and the optimisation of α and β using this method can be expressed as  
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α = α − μ

 J ρ (n, k; α ,β ) − J[ρ (n, k;α , β )]
α − α

 

 

(3.14) 

 
β = β − μ

 J ρ (n, k; α , β ) − J[ρ (n, k;α , β )]
β − β  

(3.15) 

Equations (3.14) and (3.15) are iterated simultaneously to converge to the solution. The main method 

with the application to optimise EMBD has been discussed here. Other QTFDs can be optimised in 

the same way. 

Figure 3.5 shows the optimised representation of the EMBD and the effect of choosing initial 

parameters and step size. This happens due to different choice of initial parameters and step size; the 

algorithm converges to different local minima. Another well-known optimisation algorithm is the 

Nelder–Mead Algorithm [128] which can also be used to find the minimum or maximum of an 

objective function in a multidimensional space. This algorithm was also applied to optimising TFDs, 

as the complex derivative is not to be known, unlike the gradient descent method [128]. However, 

like the gradient descent method, users need to supply initial parameters. Figure 3.5(c–d) illustrates 

the optimised EMBD representation using this classical optimisation algorithm.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.5: EMBD parameter optimisation using gradient descent: (a) The final optimised parameters calculated 
by this method are 훼 = 0.02,훽 = 0.60 [ECM index 90.5 × 10 ] when the initial parameters are 훼 = 0.01,훽 =
0.6; 훼 = 0.1,훽 = 0.85 and 휇 = 1/50 and (b) 훼 = 0.16,훽 = 0.39 [ECM index 66.10 × 10 ] when 훼 =
0.16,훽 = 0.4; 훼 = 0.25,훽 = 0.5 and 휇 = 1/100. The final optimised EMBD parameters calculated by using 
Nelder–Mead algorithm: (c) 훼 = 0.01,훽 = 0.5 [ECM index 112.1 × 10 ] when initial parameters are 훼 =
0.5,훽 = 0.9 and (d) 훼 = 0.06,훽 = 0.12 [ECM index 101.7 × 10 ] when initial parameters are 훼 = 0.01,훽 =
0.01. Optimal ECM index are shown in brackets [.].  

3.2.8 Discussion of method-1 
A fully automatic optimisation of QTFDs using the HGA method is useful for characterising non-

stationary signals without a priori signal information. The main improvement of HGA is to improve 

the accuracy of getting precise, accurate, signal-dependent TFD kernel parameters with significantly 

reduced search space with respect to a direct search. In this way, HGA is able to improve the TFD 

representation of non-stationary signals in a reasonable time and makes the process fully automated. 

In addition, this study provides a general framework for optimising the parameters of any QTFD. 

This method can be used to optimise the parameters of any other TFDs. Reference [130] uses 

evolutionary programming to optimise only Multiform Tiltable Exponential TFD (MTED) based on 

the distribution norms. However, as mentioned in Section 3.2.2, this method of optimising TFD fails 

to perform in the expected way when the interferences appear, especially in the case of 

multicomponent signals comprising high and low amplitude components [123].  

Another issue is the selection of HGA setup parameters and functions shown in Table 3.2 as it plays 

a vital role on the optimisation. This selection was based on several experiments performed on 

different signals and by observing the convergence curve defined as ‘objective function J(ρ [n, k] 

versus number of generation plot’. For example, Figure 3.6 shows the convergence curve when the 

CKD was applied to the simulated signal represented in Figure 3.2. It can be seen that, after 20 

‘generations’, the solution (J(ρ [n, k])) is almost saturated and, therefore, G = 30 was chosen with 

confidence for the CKD. In addition, the Nelder-Mead algorithm was applied to further refine these 
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parameters and, finally, the optimal parameters were chosen. Similar experiments have been done for 

other TFDs as well.  

 

Figure 3.6: Convergence curve for CKD parameter optimisation. 

To summarise: 

 The Gradient descent method is faster than HGA, but it is highly dependent on the choice of 

initial value of the kernel parameters and step size, 휇. Traditionally, users need to supply the 

initial kernel parameters and step size. This requires specialist knowledge of TFDs and the 

signal under analysis; users often use trial and error (initial guess) by supplying different 

initial parameters and step size. The convergence of the HGA method is independent of the 

initial parameters and is suitable for fully automated optimisation of QTFDs for most non-

stationary signals.  

 The classical optimisation Nelder–Mead algorithm is derivative-free and also converges faster 

than HGA. However, this method is also dependent on the correct choice of the initial kernel 

parameters and it suffers the same problems as the gradient descent. 

Due to the advantages of the HGA mentioned above, various QTFDs have been optimised using this 

method. Note that the performance of different QTFDs is different depending on the nature of non-

stationary signals and the shape of the kernel. This study proposes a method for optimising various 

QTFDs and users need only to choose the optimal TFD for the signal they are going to analyse. One 

can also generate multiple ‘optimised’ TFDs for their signal and select the most optimal TFD, either 

by inspection or by selecting the TFD that offers the minimum cost, J(ρ [n, k]). This fact indicates 

that, though this study automatically optimises the TFDs in terms of balancing concentration, 

resolution, cross-terms and computation, it still requires specialist knowledge in terms of correct 

interpretation of the results. That can be addressed in future work by combining AI (Artificial 
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Intelligence) techniques with TFD representation and implementation methods. Further improvement 

of the proposed method can also be achieved by applying post-processing steps which are now under 

consideration ([33] pp. 418–23). 

3.3 Method-2: Local optimisation method 
A global optimisation method was presented in Section 3.2. This method selects single global 

parameters to optimise the TFD. However, when a signal is composed of closely spaced chirp signals, 

or of a mixture of short and long duration components which overlap within the (푡, 푓) domain, the 

global optimisation method cannot significantly improve the (푡,푓) resolution or concentration. This 

justifies the need for a local optimisation of TFD. To overcome this issue, we propose an improved 

(푡,푓) representation, named Locally Optimal Spectrogram (LOS), based on the fractional Fourier 

transform (FrFT) to locally enhance the resolution. This method is well-suited for the analysis of 

multicomponent, non-stationary signals when we do not have a priori signal information, a common 

situation when one deals with real-life signals, e.g. electroencephalograph (EEG) signals. The results 

demonstrate the effectiveness of the LOS using different simulated signals and a real-life application 

using clinical EEG signals. The key topics covered by this section are as follows: 

 A simple and efficient optimisation procedure is proposed to enhance the resolution of the 

spectrogram for non-stationary and multicomponent signals by taking the window length and 

chirp rate into account. This process ensures the compact representation of the local signal 

behaviour both in time and frequency (Section 3.3.2). 

 Different simulated multicomponent signals of varied amplitude and wide-ranging 

(푡, 푓) characteristics were used to demonstrate the efficiency of the proposed method. The 

LOS ws compared with other state-of-the-art fixed and adaptive time-frequency methods in 

Section 3.3.4. 

 Various time-frequency measure indexes were used to ensure (1) a thorough and rigorous 

quantitative evaluation, and (2) a fair comparison of the LOS with other state-of-the-art 

methods in Section 3.3.4.2. 

 The robustness of the LOS was evaluated for instantaneous frequency (IF) estimation 

purposes. In Section 3.3.5, a simulation was run 100 times under different SNR conditions 

(Monte-Carlo approach) comparing the effectiveness and robustness of the LOS with other 

TFDs. 

 Section 3.3.6 discusses the relationship between LOS and other TFDs; this relationship 

generalises the proposed approach. 
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Note that we have focused only on the analysis of QTFDs due to their simple interpretation, high 

resolution and widespread use. The computer programs used in this study are described in appendix 

3.A. Appendix 3.B provides a pseudocode for generating the fractional S-Method. 

3.3.1 Proposed method – Locally Optimal Spectrogram 

The proposed LOS is derived from fractional Fourier transform and, therefore, it is important to 

briefly describe the fractional Fourier transform prior to discussing the proposed method.  

3.3.1.1 Fractional Fourier Transform (FrFT) 

The FrFT is the generalisation of the classical Fourier transform (FT). It can be regarded as a rotation 

by an arbitrary angle α in the (푡,푓) plane [131, 132]. The classical Fourier transform (FT) corresponds 

to a rotation over an angle α = π 2⁄  in the (푡, 푓) plane. The FrFT is defined as [133]: 

 
푋 (푢) = 푥(푡)퐾 (푢, 푡)푑푡 

 

(3.16) 

 where 훼 = 푝(휋 2)⁄ ; 푝 ∈ ℝ and the kernel 퐾  is defined by: 퐾 (푢, 푡) =

 푒 ⁄ 푒 ⁄ 푒 / ,훼 ≠ 푝휋 

 

(3.17) 

Special cases of the FrFT are 푋 (푢) = 푥(푢),푋 (푢) = 푥(−푢) and 푋 ⁄ (푢) corresponding to the 

classical FT. The orthogonal pair (푢, 푣) characterises a new physical quantity in the fractional Fourier 

domain and is related to (푡, 푓) as [134]:  

 푡
푓 = cos 훼 − sin훼

sin훼 cos훼
푢
푣  (3.18) 

Therefore, the (푢, 푣) plane is only the rotation of the (푡, 푓) plane in the fractional domain by an 

angle 훼.  

3.3.1.2 Rationale for using the FrFT 

Figure 3.7 interprets the concept of FrFT in the (푡, 푓) plane. By applying the classical FT, ℱ(x(t)), a 

time domain signal x(t) is changed to its frequency domain counterpart, X(f), which rotates the signal 

over an angle π 2⁄  counter-clockwise. By again applying FT i.e. ℱ x(t) = x(−t) rotates 2π 2⁄  

angle and similarly ℱ x(t) = X(−f) rotates 3π 2⁄  and ℱ x(t) = x(t) rotates 4π 2⁄  [133].  
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Figure 3.7: Illustration of classical FT and fractional FT and the representation of a signal whose principal axis 
corresponds to fractional time-frequency axis. 훼 is the angle (훼 = 푝(휋/2)) and 푝 is the transform order ranging 
from 0 to 4.  

The FrFT ℱ 푥(푡)  provides a generalisation of the classical FT and offers improved flexibility when 

designing high resolution time-frequency signatures, as the signal chirp rate can be adapted by this 

approach. In the case of the signal whose principal axis does not correspond to the time or the 

frequency plane, as in Figure 3.7, the FrFT applies an affine transformation in the phase plane leading 

to an optimum signal representation [134]. This can be done by properly adjusting the FrFT transform 

order (angle). This justifies the analysis of a signal in the fractional Fourier domain.  

3.3.1.3 Short-Time Fractional Fourier Transform (STFrFT) 

By generalising the STFT in the same manner as the FT, the short-time fractional Fourier transform 

(STFrFT) can be defined as ([135], pp. 135–36):  

 
STFrFT (푢, 푣) = 푋 (푢 + 휏)푤(휏)푒 푑휏 

 

(3.19) 

 
STFrFT (푢, 푣) = 푥(푡 + 휏)푤(휏)퐾 (푢, 휏)푑휏 

 

(3.20) 

These formulations indicate that the lag truncation can be applied prior to or after signal rotation with 

the same results ([135], pp. 135–36). The fractional spectrogram (FrSpec) is calculated by squaring 

the magnitude of STFrFT, i.e.  

 FrSpec(푢, 푣) = |STFrFT (푢, 푣)|  (3.21). 

훼 
훼 

푡 

푓 
푢 푣 

푥(푡) 

ℱ 푥(푡)  

ℱ 푥(푡)  

ℱ 푥(푡)  

ℱ 푥(푡)  
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Equations (3.19)(3.21) indicate that the performance of the STFrFT and FrSpec is determined by the 

rotation angle 훼, the shape and the length of the analysis window. The transform order determines 

the rotation angle by 훼 = 푝 (휋 2)⁄ . Regarding the window shape, the confined Gaussian window 

(CGW) can be selected as it has been shown that it gives a better performance than traditional 

windows (e.g. Gaussian window, hamming window, hanning window) under minimal root mean 

square time-bandwidth product [136]. However, it requires tedious minimisation procedures and 

hence an approximation of the CGW called ‘Approximate Confined Gaussian’ window (ACGW) 

[136] is used in this study. 

The requirements for producing high resolution 퐹푟푆푝푒푐 are:  

(a) the optimisation of the transform order (angle) and window parameters, and 

(b) all components of a multicomponent and nonstationary signal must be clearly resolved 

without a priori signal information.  

This study proposes an improved local optimisation technique designed to meet these requirements.  

3.3.2 Proposed optimisation 

The proposed algorithm uses a set of transform angles (훼(푖)) and analysis window lengths (퐿 (푖)). 

This is because, for an arbitrary multicomponent and nonstationary signal, without a priori 

information the selection of appropriate values for (훼, 퐿 ) is not trivial [137]. Therefore, in order to 

find the most compact representation for all signal components, an estimate of 훼  and 퐿  is 

required. To find this estimate, a search algorithm spanning the space of 훼, 퐿  chooses the optimal 

window length and transform angle for the input signal. Then 푆푇퐹푟퐹푇 , (푢, 푣) is chosen by 

maximising or minimising a specific objective function in a small (푡, 푓) region, such that only one 

component lies in the region. In this way, the most compact (푡,푓) representation of all signal 

components can be achieved, resulting in a high resolution (푡, 푓) signature. The proposed 

optimisation requires two major elements that must be selected prior to calculation: 

  (1) settings of window length(퐿 ), and fractional angle(훼), and 

(2) proper objective function or optimisation criterion.  

The following strategy is used to meet the requirements. 
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3.3.2.1  Settings of window length (퐋퐰), and fractional angle (훂) 

The window length plays a key role in the LOS. Different studies used 퐿 = 퐿 4⁄ , where 퐿  is the 

signal length, as an analysis window for spectrogram ([33], pp.729–30). In this study, we define a set 

of 퐿  using the following equation:  

 퐿 (푖) = ⌊(푖 × 10) + (퐿 40⁄ ) + 1⌋; 푖 = 0,1, … , (퐷 − 1),  

where 퐷 ∈ ℕ is a positive integer and ⌊. ⌋ is a 푓푙표표푟 function.  

(3.22) 

It can be seen from Equation (3.22) that, 퐿 (푖) ranges from short to wide windows that can take care 

of both short and long duration signal components in the optimisation technique. It is also adaptive, 

in the sense that, 퐿 (푖) is changed according to signal length 퐿 .  

Like the window length, the fractional angle 훼 = 푝(휋 2),푝 ∈ ℝ ⁄ also plays a key role in the 

optimisation. In this study, 푝 is derived from 퐸 = 31 evenly distributed values between 0 and 4 to 

cover the whole 2휋 rotation. This corresponds to only 0.209 푟푎푑 ≈ 12° increment. This is a trade-

off between precision and computation time. Mathematically, 

 훼(푗) = 푝 (휋 2), 푗 = 0, 1, … , (퐸 − 1)⁄ ; where 퐸 ∈ ℕ is a positive integer. (3.23) 

The algorithm also requires a suitable objective function which is discussed in the next section. 

3.3.2.2 Objective function of the algorithm 

An optimal search method for the fractional order (angle) in the case of a multicomponent signal 

requires a local measure that considers TFD in a small region [137]. There are several (푡,푓) 

measurement criteria, for example, information theoretic measure [138], the ratio of norms-based 

measure ([33], pp. 401–08), normalised instantaneous resolution measure [124], and energy 

concentration measure (ECM) [123]. Each method has pros and cons, as discussed in Section 3.2.1. 

On the other hand, the ECM index is very simple, efficient to implement [123] and overcomes the 

limitations of the previous methods. Due to its simplicity, this index is useful for selecting the 

parameters 훼  and 퐿  of the LOS that give the most compact representation of all signal 

components. Unlike the norm-based concentration measures, this measure is not restricted by low 

energy concentration for weak signal components. It is used in this section for optimisation and 

expressed as 
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퐽[FrSpec(푢, 푣)] = |FrSpec(푢, 푣)| /  

 

(3.24) 

with ∑ ∑ |FrSpec(푢, 푣))| = 1 being the normalised unbiased energy constraint. The optimal choice 

according to this criterion is the one that produces the minimal value of 퐽[FrSpec(푢, 푣)] [123]. This 

ECM index permits us to determine the most appropriate fractional order in small regions of the (푡, 푓) 

plane.  

3.3.2.3 Proposed LOS 

The proposed optimisation algorithm has the following three main steps: (1) calculation of FrSpecs, 

(2) calculation of sub-optimal FrSpecs, and (3) calculation of the final LOS.  

Step 1: Calculate 퐹 number of FrSpecs (for use in step 2). To do this, firstly initialise 퐷 ∈ ℕ and 퐸 ∈

ℕ and calculate a set of (퐿 (푖)) and 훼(푗) using Eqns. (3.22) and (3.23) respectively. After that, 

calculate 퐹 number of fractional spectrograms, where 퐹 = 퐷 × 퐸, by iterating window length 

(퐿 (푖)) from 0 to 퐷 − 1 and fractional angle 훼(푗) from 0 to 퐸 − 1. The flowchart shown in 

Figure 3.8 demonstrates the step-by-step process for calculating 퐹 number of FrSpecs. Figure 

3.9(a) also shows the (퐹 = {푗푘|푗푘 = 0,1,2, … , 퐹 − 1}) numbers of FrSpec. 

 

Figure 3.8: Calculation of 퐹 number of FrSpecs; 푖 and 푗 represent the index for the analysis window length and 
transform order respectively. 

Step 2: A near-optimal FrSpec is determined from the calculated FrSpecs. To do that, each FrSpec 

(size e.g., 푃 × 푄) is divided into 푅 = {푗푗|푗푗 = 0,1, … ,푅 − 1} small blocks of size 퐾 × 퐿; i.e. 

(푃 × 푄) = 푅 × (퐾 × 퐿) and compute the ECM index for each block. Finally, a near-optimal 
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FrSpec is chosen that minimises the 퐽[퐹푟푆푝푒푐(푢, 푣)] in each 퐾 × 퐿 block from the 퐹 number 

of FrSpecs.  

Figure 3.9 shows an example of the step-by-step process for the calculation of a sub-optimal 

FrSpec. To illustrate, consider 푅 = 4. FrSpecs of size 푃 × 푄 are divided into 4 small blocks, 

i.e. 푅 = 4; (푗푗 = 0,1,2,3) of size 퐾 × 퐿. Calculate the ECM index and then iterate from 푗푘 =

0 to 퐹 − 1 to obtain the particular 퐾 × 퐿 block that has the minimum 퐽[퐹푟푆푝푒푐(푢, 푣)] value. 

This process is repeated for all other (퐾 × 퐿) blocks to obtain an optimal FrSpec for a particular 

푅 which we denote ‘sub-optimal FrSpec’. In the same way, several sub-optimal FrSpecs can be 

generated for different values of 푅, e.g. 푅 = 2, 16 (see Figure 3.10). The higher value of 푅 

divides the FrSpec into smaller blocks and vice versa.  

           

(a)                                                                           (b) 

Figure 3.9(a-b): Procedures for the calculation of sub-optimal FrSpec; ‘푗푗’ represents the index for each 
퐾 × 퐿block whereas ‘푗푘’ represents the index for each FrSpec.  

Step 3: In the experiment, it has been found that the dividing parameter 푅 plays a key role due to the 

number and orientation of signal components of a multicomponent signal in the TFD plane. 

Therefore, it is decided to use several 푅 ∈ ℕ and repeat step 2. Each particular value of 푅 

provides a full sub-optimal FrSpec matrix. For instance, 4 values of 푅 generate 4 (푡,푓) 

signatures, i.e. 푅 ,푅 ,푅 ,푅 . The final LOS can be generated by dividing each 푅  signature 

into S small blocks and finding the local maximum energy across R  as in step 2. Note that the 

size of 푆 is same for all R .  
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To illustrate, consider a particular 푆 block of 푅 . The energy of that block in 푅  is compared 

with the corresponding 푆 block of all other 푅  signatures and picks the particular 푆 block that 

has the maximum energy. This process is repeated for all other 푆 blocks to obtain the final and 

full LOS signature. Figure 3.10 depicts the process used to obtain the final LOS. 

 

Figure 3.10: Methodology to obtain LOS from 푅  (푡, 푓) signature. For instance, 4 values of 푅 generate 4 (푡, 푓) 
signatures i.e. 푅 ,푅 ,푅 ,푅 . Like step 2, find the local maximum energy of a small block 푆 and repeat the process 
to obtain the whole LOS. 

3.3.3  (풕,풇) measurement criteria  

The (푡, 푓) measurement criteria including TFD information theoretic measures, the ratio of norm-

based measure, the normalised instantaneous resolution measure and the ECM index are used to 

evaluate the performance of TFDs quantitatively. Note that the discrete version of the TFD is used in 

this section for the sake of better understanding and clarity, i.e. 푇퐹퐷[푛, 푘] is the discrete version of 

continuous 푇퐹퐷(푡, 푓), where 푛, 푘 represent discrete time and frequency respectively.   

3.3.3.1 TFD information theoretic measures 

TFDs represent a pseudo-energy density in the (푡, 푓) domain [138]; hence entropy measures can be 

used to quantify the complexity of a TFD ([33],pp 401–04). Conceptually, a highly concentrated TFD 

with a lower number of signal components is less complex, and thus has lower entropy, than a signal 

with a large number of components with cross-terms. The following entropy measures are applied in 

this study.  

3.3.3.2 (풕,풇) Renyi entropy (TFRE) 

The (푡, 푓) Renyi entropy, defined as in Equation (3.25), is an improved entropy method based on the 

(푡,푓) Shannon entropy by applying the log operator [139]. A normalisation using a distribution 

volume is applied so that it detects zero mean cross-terms when 훼 = 3 [29, 33]. 

                       TFNRE = − 푙표푔 ∑ ∑ [ , ]
∑ ∑ | [ , ]| ; 훼 > 2  

(3.25) 
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3.3.3.3 Ratio of norm-based measure 

The ratio of norm-based measure can be used to discriminate a low resolution TFD from a high 

resolution TFD, which is defined as [29, 123]: 

 
RN =

∑ ∑ 푇퐹퐷 [푛,푘]
(∑ ∑ 푇퐹퐷 [푛, 푘])  

 

(3.26) 

3.3.3.4 Energy concentration measure 

Another approach to evaluate the performance of a TFD is to measure its region of support. A highly 

concentrated TFD has a smaller region of support compared to a blurred TFD [140], as defined in 

Equation(3.24). A modified version of the energy concentration (MEC) can be defined as [140] 

 
MEC = |푇퐹퐷[푛, 푘]|  

 

(3.27) 

3.3.3.5 Hoyer measure  

The best TFD should represent the signal components as sparsely as possible in the (푡, 푓) domain, 

which means that the components can be represented sharply in the (푡, 푓) plane. Beside this 

conventional TFD measures, the Hoyer measure can be used to measure the sparsity as it satisfies 

most of the desirable properties of sparsity [141]. As TFD meets the requirements of compressed 

sensing, i.e., sparsity complexity [142], this study also uses this measure in the context of (푡,푓) 

performance evaluation [141].  

The Hoyer measure (HM) can be defined in the (푡, 푓) context as [141] 

 
HM = √퐻 −

∑ ∑ |푇퐹퐷[푛, 푘]|
∑ ∑ |푇퐹퐷[푛, 푘]|

√퐻 − 1  
 

(3.28) 

where 퐻 is the total size of the TFD, i.e. 퐻 = 푁 ×푀. 

In all the described measures except the RN and HM, a smaller value represents a more compact and 

therefore desirable representation. For the RN and HM, a higher value gives a better representation. 

3.3.4 Results of method-2 
The LOS was calculated by Equation (3.21) using the ACG window [136]. The ACG window length 

퐿  and fractional angle 훼 were optimised using the proposed techniques. The values 퐷 = 16 and 

퐸 = 31 were used in this study (see Section 3.3.7 for further explanation). The dividing parameter 푅 

was set to 2, 4 and 16 after several experiments on different signals which represent three (푅 ,푅 ,푅 ) 
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fractional spectrograms; see Section 3.3.7 for further discussion. This explores the (푡,푓) signature 

from higher to lower blocks respectively and corresponds to long and short duration signal 

components. To obtain the final LOS a flexible value of 푆 = , where ⌊. ⌋ is the 푓푙표표푟 function, is 

adapted to the signal length, 퐿 .  

3.3.4.1 Simulations study  

To illustrate the performance of the LOS method, four simulated multicomponent signals of varied 

amplitude and wide-ranging (푡, 푓) characteristics were used and the signal model is 푦(푡) =

∑ 퐴  푥 (푡) [121]. Since the study is focused on the QTFDs, we include various state-of-the-art (푡, 푓) 

methods of this class for comparison: spectrogram, S-transform (ST), S-method (SM), Wigner-Ville 

distribution (WVD) and different smoothed versions of the WVD which have shown good 

performance ([33], pp. 274–83). The WVD renders better (푡,푓) resolution but suffers from cross-

terms. The smoothed version of WVD has been introduced to reduce these interferences (hence called 

reduced interference distribution, or RID) – for example, smoothed WVD (using Hamming window), 

Choi-Williams distribution (CWD), modified B distribution (MBD), extended modified B 

distribution (EMBD) and compact-kernel distribution (CKD). Table 3.1 provides definitions of the 

RIDs, and a detailed introduction is available in [33] (pp. 274–83). RIDs have one or more 

parameter(s) to control the smoothing along the lag and Doppler axes in the ambiguity domain and 

to reach a compromise between the resolution and cross-term effects. The parameters are tuned so 

that the best representations are achieved according to the visual inspection of the resulting (푡, 푓) 

plots by an experimental search as in [29] and measuring the ECM criterion. Therefore, these 

optimised TFDs give a fair comparison with the proposed LOS. In addition, this study also compares 

the LOS with an adaptive directional TFD (ADTFD) which is adapted to direction of local 

components ([33], pp. 299–307). Although this study confined the study to the QTFD framework, 

wavelet-based (푡,푓) is also used for a complete comparison. Continuous wavelet transform (CWT) 

is a linear time-scale transform where scale is a reciprocal of frequency ([33], pp. 78–79). In fact, the 

scalogram (which is obtained by squaring the magnitude of the CWT) can be considered as a special 

case of QTFD ([33], pp. 92–98). The Morlet wavelet was used to implement the scalogram analysis. 

All (푡, 푓) representations provided in this study are given with the same MATLAB colormap in order 

to show results in a fair and comparable manner. Contour plots were used to visualise all the signal 

components and their interferences. The ideal (푡, 푓) is represented in order to compare with different 

TFDs. The sampling frequency of the simulated signals is 1 Hz and the signal duration is 푇 = 512 s.  
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3.3.4.1.1 Signal type 1: Frequency-overlapping signal terms 

The signal comprises (i) two linear frequency-modulated (FM) Gaussians (푥 (푡)  and 푥 (푡)), (ii) a 

constant FM Gaussian, 푥 (푡), and (iii) a narrow-band sinusoid 푥 (푡). Figure 3.11 shows the 

corresponding signal model and its (푡,푓) representations. 

푥 (푡)  =  2.5푒
( )   ( )           

  0                                             푒푙푠푒
 

푥 (푡)  =  2.7푒
( )   ( )            

  0                                             푒푙푠푒
 

푥 (푡)  =  1.8푒
( )            0 ≤ 푡 ≤ 511 , 

푥 (푡) =    1.3푒
( )                             

  0                                             푒푙푠푒
       , 

 푦(푡) = 푥 (푡) + 푥 (푡) + 푥 (푡) + 푥 (푡) (3.29) 
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(b) 
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(m) 

 
(n) 

Figure 3.11: (a) signal type 1 and its (푡,푓) representation: (b) ideal time-frequency representation, (c) LOS, (d) 
spectrogram (Hamming window length 41 samples), (e) ST, (f) WVD, (g) SWVD (Hamming window length = 11 
samples)  (h) CW(휎 = 20), (i) MBD (β = 0.9), (j) EMBD (α = 0.25, β = 0.12), (k) CKD (푐 = 8.5,퐷 =
0.08,퐸 = 0.3), (l) SM (Hamming window length 41 samples and correction terms (L=14)), (m) ADTFD (푎 =
3,푏 = 5), and (n) scalogram.  

The LOS showed good concentration, resolution and was close to the ideal (푡, 푓) representation, 

whereas the spectrogram exhibits poor resolution and the ST renders poor resolution and cannot 

separate all the components. Other QTFDs offer lower resolution due to the presence of cross-terms. 

Conversely, the ADTFD provided cross-term free signatures, but the energy concentration of the 

LFM components (푥 (푡), 푥 (푡)) are lower than the LOS by 5 × 10  (as shown in Figure 3.11 and 

Table 3.5). In addition, scalogram renders poor resolution as it cannot separate out the close LFM 

components.  

3.3.4.1.2 Signal type 2: Time-overlapping signal terms 

The signal comprises (i) a sinusoid 푥 (푡) (ii) a quadratic chirp 푥 (푡), and (iii) a constant frequency-

modulated Gaussian 푥 (푡). The signal and its (푡, 푓) representations are shown in Figure 3.12. 

                                              푥 (푡) =   0.5푒
( )                       

  0                                        푒푙푠푒
 

                                                       푥 (푡) = 0.8푒
( )  ( )

×
 ( )

        125 ≤ 푡 ≤ 375
0                                                      푒푙푠푒

 

                                                       푥 (푡) = 푒
( )  ,              200 ≤ ≤ 300

0,                               푒푙푠푒             
   

                                                   푦(푡) = 푥 (푡) + 푥 (푡) + 푥 (푡) (3.30) 
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 (i) 

 
(j)  

 
 (k) 

 
(l) 

 
(m) 

 
(n) 

Figure 3.12: (a) signal type 2 and its (푡,푓) representations: (b) ideal time-frequency representation, (c) LOS, (d) 
spectrogram (Hamming window length 85 samples), (e) ST, (f) WVD, (g) SWVD (Hamming window length = 35 
samples), (h) CW(휎 = 20),(i) MBD (훽 = 0.1), (j) EMBD (훼 = 0.25,훽 = 0.12) ), (k) CKD (푐 = 5.9,퐷 =
0.12,퐸 = 0.11), (l) SM (Hamming window length 85 samples and correction terms (L = 15)), (m) ADTFD (푎 =
3,푏 = 7), and (n) scalogram.  

The LOS method exhibited better resolution and energy concentration as it separates all the 

components and offers a cross-term free signature, whereas the standard spectrogram separated all 

the components but provides poor resolution. Other quadratic methods provided better concentration 

but suffer heavily from interferences, except CKD and SM which offered better resolution but lower 

energy concentration. On the other hand, the ADTFD provided sharp localisation of all the 

components with significantly lower cross-terms, except for the constant FM Gaussian (푥 (푡)) 
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component where the energy concentration was lower than other TFDs. Furthermore, the scalogram 

concentration of this signature is lower compared to most of the QTFDs.  

3.3.4.1.3 Signal type 3: Intersecting time-overlapping signal terms 

The signal comprises a nonlinear (sinusoidal) frequency-modulated component intersecting with a 

sinusoid at multiple points in the (푡, 푓) plane. The corresponding signal and its (푡, 푓) representations 

are shown in Figure 3.13.  

 

 푦(푡) = 푒  + 0.5푒   (3.31) 
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Figure 3.13: (a) signal type 3 and its (푡,푓) representations: (b) ideal time-frequency representation, (c) LOS, (d) 
spectrogram (Hamming window length 85 samples),(e) ST, (f) WVD, (g) SWVD (Hamming window length = 15 
samples), (h) CW(휎 = 10), (i)MBD (β = 0.15), (j) EMBD (α = 0.3, β = 0.4) ), (k) CKD (푐 = 2.5,퐷 = 0. ,퐸 =
0.1), (l) SM (Hamming window length 85 samples and correction terms (L = 11)), (m) ADTFD (푎 = 3, 푏 = 11), 
and (n) scalogram. 

The LOS method offered better (푡, 푓) representation, whilst standard spectrogram provided blurred 

representation. All other QTFDs provided superior (푡,푓) concentration but suffer from severe 

interferences. On the other hand, the CKD, SM and ADTFD provided a sharp localisation of each 

signal component while maintaining lower interferences. Additionally, the resolution and 

concentration of the scalogram of this signal is lower than most of the QTFDs and generates spectral 

leakage for the sinusoidal signal component.  

3.3.4.1.4 Signal type 4: Signal terms with different orientations  

This signal consists of four signal components with different orientations consisting of linear FM 

signals (푥 (푡), 푥 (푡)), constant FM (푥 (푡)) and frequency-modulated Gaussian (푥 (푡)); see 

equations (3.32)–(3.34).This type of signal is difficult to represent without severe compromise 

between (푡, 푓) concentration and resolution in the (푡,푓) domain. The signal components are formed 

as: 

 
퐶 (푡 ) = 푒  

(3.32) 

where (푓 ,푓 ) denotes the initial and final frequency of the i  component respectively. The chosen 

parameters are: 

 (푓 , 푓 ) = (0.09,0.5), (0.04,0.45), (0.5,0.2), (0.45,0.15), (0.03,0.03)  

for 푖 = 1,2, … , 5;   푡 = 50  and when 푖 = 1,2;  푡  is 0 ≤ 푡 < 300 and 푇 = 300; when 푖 = 3,4;  

300 ≤ 푡 < 512 , 푇 = 212 and, when 푖 = 5; 0 ≤ 푡  ≤ 511, 푇 = 512. In the implementation, 
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C (t)  and C (t) as well as C (t)  and C (t) sub-components are concatenated to maintain the signal 

length of 512 expressed in Equation (3.33). Another component, x (t), is a frequency-modulated 

Gaussian expressed in (3.34) and the final multicomponent signal model is expressed in (3.35).     

 푥 (푡) = [퐶 (푡)  퐶 (푡)]; 푥 = [퐶 (푡)  퐶 (푡)];푥 (푡) = 퐶 (푡) (3.33) 

 푥 (푡) = 4푒 . ( ) 푠푖푛(2휋0.125푡) ;      0 ≤ 푡 ≤ 511 (3.34) 

 푦(푡) = 푥 (푡) + 푥 (푡) + 푥 (푡) + 푥 (푡 ) (3.35) 

The corresponding signal and its (푡, 푓) representations are given in Figure 3.14.   
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Figure 3.14: (a) signal type 4 and its (푡,푓) representations, (b) ideal time-frequency representation, (c) LOS, (d) 
spectrogram (Hamming window length 225 samples), (e) ST, (f) WVD, (g) SWVD (Hamming window length= 
25 samples), (h) CW(휎 = 15), (i) MBD (β = 0.25), (j) EMBD (α = 0.25, β = 0.6) ), (k) CKD (푐 = 9.5,퐷 =
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0.12,퐸 = 0.16), (l) SM (Hamming window length 225 samples and correction terms (L = 16)), (m) ADTFD (푎 =
3,푏 = 5), and (n) scalogram. 

The LOS method handled this signal sufficiently well as it is locally optimised by the optimal window 

length and transform order (angle), whereas the standard spectrogram failed to characterise all the 

signal components. Other QTFD methods offered sharp localisation but with the expense of severe 

interference. CKD and SM provided less interference whilst ADTFD generated few interference 

(푡,푓) terms, but the energy concentration of the signal components were lower than the LOS. 

Additionally, scalogram of this signal cannot separate the 푥 (푡)  and 푥 (푡) signal components.  

From the above (푡, 푓) representations, it can be noted that none of the methods can provide excellent 

resolution, sharp localisation and cross-term free (푡, 푓) signature for all signal components. However, 

the LOS and the ADTFD methods offer a good compromise, given that they are adaptive. However, 

although ADTFD is adaptive it still requires selecting optimal ADTFD parameters manually. 

Conversely, LOS is fully automatic, as it selects the optimal parameters to provide high-resolution 

(푡,푓) signature. 

3.3.4.2 Quantitative assessment of LOS 

The analysis of Table 3.5 is based on the type 1 signal used in Section 3.3.4.1.1. For the ECM and 

the MEC, the LOS performs better than all other methods. The reason is that these measures are used 

as the objective function of the LOS. In other cases, for example in the case of TFNRE and RN, the 

ADTFD is the best performing among the different TFD methods. However, as stated above, these 

measures are not suitable for the signal composed of lower to higher amplitudes [123]. Moreover, the 

TFNRE and RN measures of the LOS are very close to the best performing ADTFD. Therefore, 

considering all the measures, the LOS method performs better due to its local adaptive property. 

Table 3.5: (푡,푓) quantitative assessments 

TFD 
 
 

(퐭, 퐟) measurement 

LOS WVD SWVD CWD MBD Spec EMBD CKD SM ADTFD 

퐓퐅퐍퐑퐄 12.7 15.2 14.7 13.7 15.1 14.5 13.8 13.2 14.0 12.5 

퐑퐍(× ퟏퟎ ퟑ) 0.25 0.14 0.15 0.33 0.12 0.08 0.16 0.25 0.11 0.38 

퐄퐂(× ퟏퟎퟑ) 9.06 480.6 236.4 181.3 385.9 51.4 62.7 36.3 32.6 14.5 

퐌퐄퐂(× ퟏퟎퟑ) 0.04 1.27 0.66 0.56 1.03 0.22 0.25 0.16 0.14 0.07 

퐇퐌 0.84 0.94 0.92 0.88 0.93 0.68 0.81 0.78 0.74 0.84 
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3.3.5 Instantaneous frequency estimation  

One of the desired (푡, 푓) features is the instantaneous frequency (IF) [143], so the IF estimation 

capability is often used as a performance evaluation criterion for TFDs, including robustness in the 

presence of noise. The IF estimation performance of the LOS under different SNRs is estimated using 

the component extraction method [129] (see Appendix 3.C). This method also requires the number 

of components before estimation. The signal model is defined as: 

 x(t) = cos( 18.85t + 125.664t) + cos( 18.85t +  94.248t) + n(t); (3.36) 

where n(t) is additive white Gaussian noise. Figure 3.15 shows the logarithmic mean square error 

(MSE) between the actual and estimated IF under different SNRs by performing 100 simulations. 

The LOS performed better than the fixed TFDs under all SNR conditions. The performance is 

comparable to the adaptive technique, the ADTFD. For example, for an SNR of −6dB considering 

the first component (Figure 3.15(a)), the LOS achieved a logarithmic MSE of −3.4 dB, while different 

fixed and adaptive TFDs (standard spectrogram, SM, CKD, ADTFD) achieved 

−1.61,−2.50,−2.73,−3.22 respectively. When estimating IF for the second component (Figure 

3.15(b)) with the same SNR(−6dB), the LOS achieved a logarithmic MSE of −3.40, while different 

fixed and adaptive TFDs (standard spectrogram, SM, CKD, ADTFD) achieved 

−1.75,−2.66,−2.89,−3.25 respectively. These findings indicate that an accurate estimation of the 

IF of the signal components is directly related to the auto-term resolution property and cross-term 

suppression property of (푡,푓) method and, hence, indicates the high resolution of the LOS. 

    

(a)                                                                                  (b) 

Figure 3.15: IF estimation of a multicomponent signals using different TFDs under different SNRs ranging from 
−15푑퐵 to +6푑퐵; (a) logarithmic MSE for the first signal component and (b) for the second signal componment. 
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3.3.6 Relationship between the LOS and the other QTFDs 

The LOS derived from the STFrFT is related to the other TFDs by adding 퐿 correction terms, i.e. 

2푅푒[STFrFT(푛,푘 + 푖)STFrFT∗(푛, 푘 − 푖)], 푖 = 1,2, … , 퐿 in the recursive formulation of discrete 

fractional S-method (FrSM) [144]. As the LOS is derived from the fractional domain, we denote it 

as FrSM instead of S-method (SM) and it can be written in the same ways as the SM [144]: 

 FrSM (푛, 푘) = FrSM (푛, 푘) + 2푅푒[STFrFT(푛, 푘 + 퐿)STFrFT∗(푛, 푘 − 퐿) ] (3.37) 

with initial (퐿 = 0) distribution FrSM (n, k) = 퐿푂푆 = |STFrFT(푛,푘)| . The optimal angle and 

window derived from the LOS methodology have been used to compute FrSM.  

Equation (3.37) can be used to relate the LOS to the other QTFDs. There are three different cases: (i) 

taking no correction terms (퐿 = 0) , Equation (3.37) becomes non-negative and has no cross-terms, 

i.e. LOS; (ii) taking (0 < 퐿 < ) correction terms, it relates to FrSM and enhances the concentration 

with the expense of interferences (cross-terms), and (iii) by gradually increasing 퐿 to 퐿 ≥ 퐿 /2 

correction terms, it becomes the WVD, which is highly concentrated but suffers from cross-terms. 

The optimal correction terms (퐿) can be obtained by measuring the MEC index, for which this 

relationship gives a minimum MEC index value.  

These adjustments of 퐿 result in a good compromise between cross-term interference and the desired 

properties. Normally a small number of correction terms are sufficient to produce a high concentration 

TFD and the objective function of LOS can be used to determine optimal correction terms. Figure 

3.16 illustrates the relationship of the LOS with other TFDs. In this way, one can improve the auto-

terms concentration, control the cross-terms and combine the good properties of the LOS and the 

highly concentrated WVD.  

Once the WVD can be calculated from the LOS, the other QTFDs can also be generated easily (see 

[33], Chapters 2 and 3). Thus, this generalisation allows the LOS to be converted to other QTFDs. 

The pseudocode of this generalisation is described in Appendix 3.B [144]. Figure 3.17 simulates an 

example to show the relationship between the LOS and the other QTFDs of the proposed method 

[145].  
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Figure 3.16: Generalisation of the proposed method: from LOS to WVD. 퐿  is the length of the signal.  
  

 

Figure 3.17: Illustration of the generalisation of the LOS. LOS renders no cross-terms and after adding few 
correction terms it enhances the energy concentration: the fourth one from the top shows the highest compromise 
between concentration and cross-terms whereas the fifth one, essentially a WVD, provides the highest concentration 
but suffers from cross-terms. In the analysis MEC(× 10 ) was used to measure the concentration and the best choice 
according to this measure is L = 28.  

3.3.7 Discussion of method-2 

An improved methodology to optimise the spectrogram has been described in this study. It 

automatically determines the optimal parameters from a set of the window length 퐿  (퐿 =

{푖|푖 = 0,1,2, … ,퐷 − 1}) and the fractional angle α (α = {푗|푗 = 0,1,2, … ,퐸 − 1}) for all signal 

components using local optimisation in order to obtain a high resolution (푡,푓) signature.  

Implementation of the LOS requires iterative calculation to determine the optimal parameters; 

therefore, a reasonable concern is the running time in applications. We tested the number of 퐷 in 

relation to the optimisation. Figure 3.18 demonstrates the LOS characterisation quality (MEC) and 

code run-time against 퐷 using the type 1 simulated signal of length 퐿 = 512. Observation shows 

that the MEC converges after the 5th iteration and the optimisation performance is saturated thereafter. 
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However, considering the run-time and energy concentration, 퐷 = 16 is safety zone and is therefore 

used in this study. The run-time is less than 20 s, which is acceptable in most applications. This 

simulation was run on a Windows-7, Intel Core i-7, 8GB RAM computer. The amount of run-time 

also depends on the signal length; the larger the signal length, the higher the computational cost, i.e. 

run-time. In addition, modern computers possess multi-core processors and parallel computing can 

be used to further speed up the processing time. This is beyond the scope of this study.  

The dividing parameter 푅 also plays a role, due to the number and orientation of signal components. 

We report that 푅 = 2, 4, 16 are found to provide minimum value of 퐽[FrSpec(푢,푣)] for a wide-range 

of time and frequency varying signals. A more robust measure to determine 푅 will be considered in 

further study of the method. Further improvement of the LOS can be achieved by adopting pre-

processing and post-processing steps as in [33, 140]. 

 

Figure 3.18: Convergence of proposed method (upper plot) and run-time measurement (lower plot). 

To summarise: 

 The standard spectrogram offers cross-term free (푡, 푓) signature but it is too sensitive to the 

analysis window selection.  

 Different state-of-the-art fixed QTFDs offer sharp localisation but suffer from cross-terms. 

One can reduce the cross-terms by adjusting the control parameters, but this task requires 

human intervention which is not suitable for an automated system. This justifies the approach 

of parameter adaptation and optimisation.   

 Among the proposed adaptive methods, the ADTFD adapts its kernel using only the direction 

information and provides a good (푡,푓) resolution with reduced cross-terms, but it still requires 

human intervention to adjust the controlling parameters ([33], pp.299–307). 
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 The LOS is locally optimised for both the analysis window and angle and does not require 

any human intervention or a priori signal information. It provides a cross-term free, high 

resolution and concentration of (푡,푓) auto-terms.  

 The LOS can be related to other TFDs by adding 퐿 correction terms. 

3.4 Comparison between method-1 and method-2 

Method-1 and method-2 can be useful tools for signal synthesis and processing, especially for non-

stationary signals. Both methods are fully automatic in the sense that users only need the signal they 

are going to analyse. The algorithms automatically choose optimal parameters for representation with 

improved resolution. A difference between the two methods is that the global optimisation method 

uses single global parameters, whereas local optimisation method divides the TFD into small grids 

and performs local optimisation. Moreover, the global optimisation method cannot significantly 

improve the (푡, 푓) resolution and concentration for signals composed of closely spaced chirp signals, 

or a mixture of short and long duration components which overlap within the (푡, 푓) domain. In 

addition, method-1 uses a complex optimisation algorithm called HGA. Therefore, a thorough 

understanding of genetic algorithm is also required. This complex optimisation increases system 

complexity and slows down the running program. On the other hand, a simplified local optimisation 

procedure is proposed in method-2. This section presents a comparison between the two proposed 

methods in terms of their computational time and performance. The HGA-based method uses the 

same optimisation criterion as LOS for a fair comparison. From Table 3.6, it can be seen that the 

average run-time for the LOS is 19.4 s, which is 5.70, 9.38 and  53.4 times lower than the standard 

implementation of HGA-optimised EMBD, CKD, and ADTFD respectively for a signal length 

of 512.  

Table 3.6: Run-time comparison* 

Run-time (in s) HGA-Optimised TFDs  
LOS EMBD CKD ADTFD 

Mean time 110.5 181.9 1035.9 ퟏퟗ.ퟒ 
Minimum time 103.6 102.5 1004.8 ퟏퟗ.ퟏ 
Maximum time 119.0 203.3 1103.4 ퟏퟗ.ퟕ 

Standard Deviation ±3.1 ±32.8 ±30.3 ±ퟎ.ퟏ 
*These experiments were run in the Windows-7 on an Intel Core i-7 platform having 8 GB RAM. The experiment was 
run 50 times and the mean, minimum, maximum and standard deviation of the computation time are presented here. 
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A more qualitative comparison between two methods is given in Table 3.7 in terms of assumption, 

visualisation, automatic selection, robust to noise, high resolution, low cross-terms and low 

computational time. For example, in standard implementation the QTFD parameters are assumed or 

manually selected (Assumption) whereas in HGA optimised QTFD or LOS, there is no assumption. 

The other properties can be described in a similar way.   

Table 3.7: Qualitative comparison of the QTFD optimisation 

 QTFDs   Assumption Visualisation Automatic 
selection 

 Robust to 
noise 

High 
Resolution 

 Low 
Cross-
terms 

Low 
Computational 

time 

  S
ta

nd
ar

d 
Im

pl
em

en
ta

tio
n 

  Spectrogram +++ + x + + + +++ 

 WVD x + NA + +++ + +++ 

 EMBD +++ ++ x + +++ ++ +++ 

 CKD +++ ++ x ++ +++ ++ +++ 

 ADTFD +++ +++ x ++ +++ +++ ++ 
 

   
G

lo
ba

l (
H

G
A

) 
O

pt
im

ise
d 

 HGA- 
SPWVD 

 x ++ +++ ++ ++ ++ + 

 HGA-EMBD x ++ +++ ++ +++ ++ ++ 

 HGA-CKD x ++ +++ ++ +++ ++ + 

 HGA-
ADTFD 

x +++ +++ +++ +++ +++ + 
 

LO
*  

 
LOS x +++ +++ +++ +++ +++ 

 
++ 

 
+++, ++, +, x represent strongly satisfied, moderately satisfied, weakly satisfied and not satisfied, respectively. NA: not 
applicable. LO* represents locally optimised QTFD.  

3.5 Application to neonatal EEG 

EEG signals possess time-varying spectral contents, and the variations of EEG amplitude and 

frequency contents are representative of certain neurological disorders [146]. Therefore, (푡,푓) 

characterisation and processing of EEG signals can provide improved information over traditional 

visual interpretation by representing an optimal (푡, 푓) signature of the time-varying spectral EEG 

contents. In this section, three neonatal EEG patterns were considered for (푡, 푓) characterisation: 

namely, seizure, suppression and burst. The presence of these patterns in newborn EEG is associated 

with adverse neurodevelopmental outcome (see Chapter 2). Early characterisation and detection of 

these patterns can aid in diagnosis and clinical management.  

Given the non-stationary nature of EEG signals, the optimised TFD can provide a useful tool for 

precise characterisation of these patterns. Figure 3.19 illustrates the (푡, 푓) characterisation of seizure, 

suppression and burst patterns. Note that, only the 0– 16 퐻푧 frequency range is considered in the 
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(푡,푓) representation, as dominant neonatal EEG components lie within this frequency range. It can 

be seen from Figure 3.19 that WVD cannot provide precise characterisation of these patterns. In fact, 

it provided significant interferences that decreases the (푡,푓) readability and can result in 

misinterpretation. On the other hand, optimised TFDs (e.g. CKD and LOS) can provide a precise 

characterisation of these patterns. The (푡, 푓) representations using optimised CKD and LOS for these 

patterns show how the frequency contents of varied amplitudes, i.e. instantaneous frequency and 

instantaneous bandwidth, change over time. Furthermore, the local signal components are better 

captured by LOS than HGA-CKD due to the local optimisation. It is also revealed that most of the 

signal components lie within the delta (0– 4 Hz) and theta (4– 8 Hz) bands.  

Another important finding is that the (푡,푓) representations or characterizations of these patterns are 

different, and thus highly discriminative. Consequently, different dynamic and non-stationary 

features can be extracted from these optimised and discriminative TFDs and can improve the signal 

detection and classification. This is one of the core motivations of designing and optimising TFDs, 

as these findings will be used in the next two chapters.  

 

Figure 3.19: (푡,푓) characterisation of EEG signal. First row presents neonatal EEG signals: seizure, burst, 
suppression. Second row represents the WVD of these patterns whereas third and fourth row represent HGA-
CKD and LOS of these patterns.  

To illustrate the application of the developed methodology, this study uses a database including 12 -

channel (퐶ℎ = 12) EEG burst-suppression (B-S) data recorded from newborns admitted to the Royal 



 
 

81

Brisbane and Women’s Hospital in Brisbane, Australia. A flowchart of the methodology is presented 

in Figure 3.20. 

 

 

Figure 3.20: Methodology for detecting multichannel neonatal EEG burst and suppression. AUC was calculated 
by thresholding. 

Table 3.8: AUC analysis for EEG burst suppression classification. 

     Features 
 
TFDs 

Max 
SVD 

SVD 
entropy 

ECM Deviation 
IF 

(퐭, 퐟) 
Renyi 

entropy 

(퐭, 퐟) 
mean 

(퐭, 퐟) 
variance 

Average 

LOS  0.99 0.71 0.98 0.80 0.79 0.97 0.98 0.88 
EMBD 0.95 0.68 0.95 0.53 0.60 0.96 0.94 0.80 
CKD 0.98 0.53 0.98 0.83 0.62 0.97 0.98 0.84 

ADTFD 0.98 0.53 0.98 0.83 0.64 0.96 0.98 0.84 
 

EEG burst and suppression patterns are marked by a paediatric neurologist. The signals were 

inspected visually to remove episodes of major artifacts. There are 115 epochs of burst and 115 

epochs of suppression extracted from artifact-free EEG signals from 3 newborns; further details can 

be found in Chapter 4. The sampling frequency is fs = 256 Hz. After pre-processing and channel 

combination, B-S data were analysed using different TFDs. Seven TFD-based features (listed in Table 

3.8, Appendix 3.D) were extracted from the B-S data. The receiver operating characteristic (ROC) 

was applied to evaluate the performance of the (푡, 푓) features in discriminating B-S patterns, and the 

area under ROC curve (AUC) is calculated. The AUC is often used to measure the quality of a feature 

or a classifier for the task of discriminating between two patterns (burst/suppression in this 

application) ([33], pp. 931–35). The AUC value lies between 0.5 and 1. A classifier with an AUC 

value of 0.5 corresponds to a random-guessing classifier, whereas an AUC value of 1 is a perfect one. 

Table 3.8 shows that the LOS performed better than other global optimised QTFDs as the averaged 

AUC value (0.88) of all the features is the highest. The effectiveness of the detection features is highly 

dependent on an accurate (푡, 푓) representation that (i) eliminates erroneous information resulting from 

the cross-terms and (ii) strengthens useful information contributing to the features [147]. The LOS 
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superior characterisation performance is attributed to the local adaptation to each B-S signal, and this 

consequently leads to superior discriminating power of the features. This finding confirms that the 

local adaptation and optimisation of the LOS is also useful for signal detection and classification. 

Note that this study uses a simple case of binary (burst/suppression) class problem, but will be applied 

to a complex multiclass EEG classification problem in the next chapter.  

3.6 Overall summary  
Over the last few decades, TFDs have gained in popularity and become a standard tool in many 

disciplines. However, despite all improvements it is still difficult to adjust the kernel parameters and 

window parameters for the optimal use of TFDs. This chapter addresses this gap by providing two 

fully automatic procedures, namely global optimisation (Section 3.2) and local optimisation (Section 

3.3). These methods contribute a data-adaptive kernel and spectrogram analysis window which can 

significantly reduce the presence of cross-terms and enhance the energy concentration and resolution. 

Experiments on simulated signals, and characterisation of real world bat and EEG signals using 

different performance measures, have shown that the TFDs optimised by the proposed methods can 

achieve good (푡, 푓) resolution, optimise the local signal components and outperform the other state-

of-the-art methods in various situations. The robustness of these methods has been tested under 

various SNR values by comparing the accuracy of IF estimation. These optimised TFDs are not only 

suitable for the characterisation of non-stationary signals but also suitable to improve signal detection 

and classification. The next two chapters will apply the optimised TFDs to extract dynamic features 

for EEG background patterns classification (Chapter 4) and neurodevelopmental outcome prediction 

(Chapter 5).  
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Chapter 4 Multichannel EEG background patterns classification in 
term neonates with HIE 

 

4.1 Introduction  
Perinatal HIE follows a peripartum 
hypoxic–ischaemic insult to the brain and is 
a major cause of morbidity and mortality; 
[148, 149]. In survivors, the common 
sequelae include cerebral palsy, cognitive 
and motor impairments, neuro-
developmental delay and epilepsy. 
Pathological studies also show a pattern of 
injury, predominantly cortical or of relative 
cortical sparing but with deep grey matter 
injury particularly involving hippocampi, 
lateral geniculate nuclei, putamen, 
ventrolateral thalami and dorsal 
mesencephalon [150]. In NICUs, it is 
necessary for clinicians to obtain prompt 
and accurate diagnosis of HIE, assessment 
of its severity and guidance in the treatment 
plan. Clinical scoring systems such as the 
Sarnat score are routinely used in diagnosis 
but are not very sensitive to dynamic 
changes that may occur during treatment 
[151]. Complementary methods of 
assessment such as cord blood, pH, Apgar 
score and base deficit individually also lack 
sensitivity to different grades of HIE 
severity injury and are not reliably detected 
by conventional MR imaging in the first 
days post insult, precluding them from use 
in early diagnosis [12]. EEG is a low-cost 
and non-invasive tool which can easily be 
implemented at the cot-side soon after birth to monitor dynamic changes in cerebral function [12]. 
EEG is also used for detection of seizures and assessment of response to anticonvulsants in the clinical 

 
What is already known on this topic? 
 
 

 
Visual inspection and classification of various 

EEG background patterns are time consuming 

and require experienced interpreters. 

Features extracted from (푡, 푓) domain can 

improve the classification performance. 

Feature selection and SVM parameter 

optimisation are necessary.   
 

 

 
What is the contribution of this study? 
 

 

 Different EEG background patterns have 

been automatically classified. 

 Different features are extracted from t, 

 fand (t, f) domain for the classification using 

RBF-SVM. 

 A hybrid feature selection (HFS) algorithm 

comprised of mRMR and genetic algorithm 

has been proposed for the selection of 

prominent features and SVM parameters.  

 Two classification methods have been 

developed for this multichannel and 

multiclass EEG background patterns 

classification problem.  
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setting [47], and is particularly useful because many seizures in the newborn have no detectable 
clinical manifestations.  

Visual inspection of the EEG signal is routine but visual interpretation and classification is laborious 
and time-consuming, especially in the case of long recordings. It also requires experienced 
interpreters, who are not always available. To overcome these limitations, an automated detection 
and classification approach would provide a decision support to the clinical staff. The system needs 
to monitor and assess recovery of background EEG activity, as a normal EEG is highly predictive of 
a normal outcome, whereas various abnormal EEG features have been consistently associated with 
neurological abnormalities or death [47].  

Currently visual inspection is the ‘gold standard’; automated EEG analysis is a relatively new 
research area and still primarily a research tool. Most research has focused on specific patterns: for 
example, seizure detection and localisation [29, 35-37], burst-suppression classification [24, 152-154] 
and detection of the sleep-wake cycle [38]. Classification of a broader variety of EEG background 
patterns will increase the system complexity.  

Another important problem is the selection of the most useful features present in neonatal EEG 
background. Studies mainly use different 푡-domain, 푓-domain features. EEG is a non-stationary 
signal, i.e. the statistical properties of the frequency and amplitude content change over time, resulting 
from the random firing of neurons; joint time-frequency (푡, 푓) distribution is well adapted in this 
setting as it takes the signal non-stationarities into account. Time-frequency distribution has not been 
widely used in neonatal EEG background classification. Previous studies suggest that dynamic 
features extracted from TFD show good performance in detecting newborn seizures [29] and 
automatic grading of EEG background patterns [155]. The extraction of prominent features plays a 
vital role in the classification, but it is also necessary to optimise feature selection and classifier 
parameters as the classification accuracy depends on the optimal use of both features and classifier 
parameters.  

To overcome the above limitations, we have developed a new methodology for the appropriate use 

of these features and classifier and (푡, 푓) -features are introduced in order to classify multichannel 

neonatal EEG background patterns. The major aspects and key contributions are: 

 Characterisation of neonatal EEG background patterns using a state-of-the-art optimised 

TFDs. Different EEG backgrounds show different (푡, 푓) signatures (Section 4.4.2.1.2).  

 The extraction of different 푡, 푓 and (푡,푓) -domain features to characterise and classify the 

EEG background patterns (Section 4.4.3).  

 Proposal of a hybrid feature selection (HFS) algorithm. A state-of-the-art classifier called 

Support Vector Machine (SVM) has been optimised and used to classify different neonatal 
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EEG patterns using the feature subset selected by the HFS algorithm. This HFS algorithm 

uses a genetic algorithm that not only selects the prominent feature subset but also 

simultaneously selects the SVM tuning parameters to ensure the optimal use of the SVM 

classifier (‘Classification using single feature subset’, Section 4.4.6). 

 Classification using single feature subset selects a single feature subset for all classes which 

has been extended to select class-specific features. This method (‘Classification using class-

specific feature subset’) increases the classification performance as the selected feature subset 

is class-specific (Section 4.4.7.1).  

 The application of both classification methods (classification using single and class-specific 

feature subsets) to multichannel neonatal EEG background pattern classification. Different 

fusion techniques have been applied to solve this complex multiclass problem and 

classification performance of different approaches is compared in Section 4.5.  

 A decision support system as a potential application of the proposed approach is discussed in 

Section 4.8.  

4.2 Clinical rationale of HIE and the EEG background patterns 
This study has focused on EEG background patterns that best predict the neurodevelopmental 
outcome. Meta-analysis shows that burst and suppression patterns predict neurodevelopmental 
outcome (see Chapter 2) and that they are present in 50–60% of babies with HIE.  

During the period of suppression, about 95% of the cortical cells are electrically silenced. The cerebral 
cortex is unable to participate efficiently in information processing and cognitive processes. These 
phenomena are modulated, as a function of voltage amplitude and frequency, by the general state of 
the central nervous system and, therefore, the seriousness of the encephalopathy [156]. Depending 
on the severity and evolution of brain injury, cortical neurons can exhibit two phenomena: (i) if the 
brain is severely injured, voltage amplitude and frequency gradually decrease, the burst period 
becomes shorter, the suppression period longer, and eventually a continuous isoelectric EEG (flat 
trace) results [32]; (ii) as EEG activity increases, a repetitive hypersynchronous discharge of a 
population of cortical neurons, seizure, may occur [157]. Normalisation of EEG background may 
occur with either discontinuity or full recovery of continuous voltage [158, 159]. Figure 4.1 illustrates 
background EEG changes during severe HIE.  
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Figure 4.1: Evaluation of EEG changes during severe HIE. 

Different types of artifacts are present within EEG recordings and include electrode and wire 
interference, movement, and transient muscle artifact, to name a few. These need to be identified and 
removed to facilitate accurate analysis of the signal. Seizure and artifact are not considered a part of 
the EEG background. However, it is necessary to distinguish seizure and artifact, in addition to burst 
and suppression, to have utility in the clinical setting. Thus, the following five classes will be used 
for classification: burst, suppression, seizure, normal and artifact.  

4.3 Materials 

12-channel (퐶ℎ = 12) clinical EEG signals were used from 40 newborns admitted to the NICU, 
Royal Brisbane and Women’s Hospital, Brisbane, Australia. Neonates ≥ 35 weeks gestation were 
enrolled for EEG monitoring if they depressed at birth and required extensive resuscitation after birth; 
exhibited clinical evidence of encephalopathy; or seizures developed within 72 hours of birth. This 
study was conducted with approval from the Human Research Ethics Committees of the Royal 
Brisbane and Women’s Hospital, Brisbane, Australia. Written, informed consent was obtained from 
at least one parent of each neonate who participated in this study. 

EEG signals were collected using a MEDELEC Profile System (Medelec, Oxford Instruments, UK) 
after skin preparation using 12 Ag/AgCl electrodes placed according to the international 10–20 
standard. Monopolar recordings were collected from F3, F4, C3, C4, P3, P4, O1, O2, T3, T4, T5 and 
T6 positions. A1 and A2 are the reference electrodes. The five patterns were marked by paediatric 
neurologists, and their classification is used as the ‘ground truth’. Figure 4.2 plots a multichannel 
newborn EEG containing all five patterns. The marking of different EEG background patterns is 
shown at the bottom of the plot. The classifications denote generalised patterns; focal (localised) 
activities have been ignored. The EEG from each channel is first down-sampled from 256 Hz to 64 
Hz and then segmented into 4-s epochs.  

This database contains artifacts produced by the random movement of the subjects, electrode contact, 
electrocardiogram, respiration, eye blinking and different interference in the NICUs. The different 
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types of artifacts are generalised and regarded as an ‘artifact’ class in this study. A total of 35,542 
segments i.e. 39.5 h of EEG data comprising the above five patterns were finally extracted and used 
in this study. The mean duration of EEG per neonate was about 1 h. 

 
Figure 4.2: Neonatal EEG showing different EEG background patterns. Signal amplitude is in microvolts (μV). 
The bottom line shows the neurologist classification. 
 

4.4 Methods 
Figure 4.3 shows the general methodology used in newborn EEG background classification. The 

analyses have been done in high performance computing system at the Research Computing Centre 

of the University of Queensland.  

 

Figure 4.3: General pipeline of the multichannel EEG background classification. 

4.4.1 Pre-processing  

The DC component is removed from the EEG signals, which are then band pass filtered to 0.5–25 

Hz, a range that contains the vast majority of the energy of neonatal EEG signals.  

4.4.2 Signal transformation  

The 푡-domain multichannel EEG signal is transformed into 푓-domain using Fourier transform, and 

also into the (푡, 푓) domain using the methods presented in the next section. This is because some 
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features extracted from these domains show more discriminative properties than those in the 푡- 

domain.  

4.4.2.1  Time-Frequency analysis 

A time domain signal can be represented in (푡, 푓) domain by translating, modulating and scaling a 

basis function with a certain time and frequency localisation. Matching pursuit (MP) is one of the 

important classes in this category.  

4.4.2.1.1 Time-Frequency Matching Pursuit (TFMP) 

TFMP is an iterative atomic decomposition technique that represents a signal x[n] using an over-

complete dictionary D [33] ( See Appendix 4.A). 

The dictionary atoms are formulated from discrete Gabor atoms, which can be written as [160]: 

 
g( , , , )[n] =

K( , , , )

√s
e ( ) ⁄ cos [2πω(n− u) + θ] 

(4.1) 

where s ∈ ℝ ; u,ω ∈ ℝ;θ ∈ [0,2π]. K( , , , ) is a normalisation factor such that g( , , , ) =

1  and s, u,ω, θ correspond to an atom’s scale, translation, modulation and phase respectively. The 

features used are the number of atoms, the mean and variance of scale, translation, modulation and 

phase. Each EEG segment is decomposed by the Gabor dictionary using a 5% residual energy as 

stopping criterion and different features are extracted and presented in Table 4.2. 

4.4.2.1.2 Time-Frequency Distribution (TFD) 

A 푡-domain signal can be represented by the signal’s energy distribution simultaneously as a function 

of both time and frequency called time-frequency distribution (TFD). The quadratic time-frequency 

distribution (QTFD) is one of the most useful classes of TFD and has shown promising results for 

non-stationary signal analysis and classification [29, 33]. The QTFD of a signal x[n] can be calculated 

using [33] (p. 341): 

 ρ[n, k] =  →
 {G[n, m]∗ (z[n + m]z∗[n − m])} (4.2) 

where G[n, m]is the discrete time-lag kernel of the QTFD, 푧[푛] is the analytic associate of 푥[푛],  ∗  

represents discrete time domain convolution, and  ∗ denotes the complex conjugate. For an N-point 

signal 푦[푛], 휌[푛,푘] is represented by a 푁 × 푀 matrix where M is the number of FFT points used for 

calculating the TFD. In this chapter, extended modified B distribution (EMBD) and more recent CKD 

are chosen due to their high resolution and having shown promising results in classifying neonatal 

EEG seizure signal classification [29]. Table 4.1 shows their time-lag kernel functions and their 
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control parameter. These control parameters are optimised for each EEG segment by the method 

presented in Chapter 3. 

Table 4.1: QTFDs including kernel function and control parameters used in this study ([33],pp. 341). 

QTFDs 퐺[푛,푚] Control parameters 
 

EMBD 푐표푠ℎ [푛]
∑ 푐표푠ℎ [푛]

푐표푠ℎ [푚]
∑ 푐표푠ℎ [푚]

 
훼, 훽; 

 0 ≤ 훼 ≤ 1, 0 ≤ 훽 ≤ 1 
 

CKD  퐷퐹푇
푙 → 푛 푒 푒 푒  

 
푐,퐷,퐸 

 

In addition, the LOS (see Chapter 3) and the S-Method [135] have been used as they are prominent 

state-of-the-art TFD’s. Figure 4.4 shows the optimised CKD representation of the five-target EEG 

background patterns as an example.  

 
(a) 

  
(b)  

(c) 

 
(d) 

 
(e) 

 

Figure 4.4: (푡,푓) of different EEG background patterns using optimised CKD: (a) seizure, (b) burst, (c) 
suppression, (d) normal and (e) artifact. 

4.4.3 Feature extraction 
Feature extraction is a key part of automatic classification, as features represent a particular pattern 

from objects. Limited prior knowledge is available on whether and what features would perform well 

for the considered multiclass problem. A large set of features is extracted from the three domains: 푡-

domain, 푓-domain and (푡, 푓) domain. These features are previously used for EEG signal classification 

[35, 161, 162] and describe the EEG from different perspectives. 푡-domain and 푓-domain features 

represent temporal and spectral characteristics, whereas (푡, 푓) domain features represent non-
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stationary characteristics of a signal. Table 4.2 lists the extracted features and provides references 

with information on their implementation. These features provide temporal, spectral, entropy 

information and take the EEG non-stationarity into account; hence they are included in this study. 

4.4.3.1 풕-domain and 풇-domain feature extraction 

Different 푡-domain and 푓-domain features have been used to describe the neonatal EEG signal for 

classification [148] and those used in this study are summarised in Table 4.2 . These features are used 

in neonatal seizure detection and EEG background classification. Therefore, we explore those 

features for the current classification problem.  

Table 4.2: EEG feature extraction from different domains. 

Domain Features Features Name 

Ti
m

e 

Statistical features 

First four (mean, variance, skewness, kurtosis) 
statistical moments [35] 
Coefficient of variation, RMS power, Max, Min[35] 
Mean of the lower and upper envelope ([33],pp 944-
945) 

Entropy based features 

Hjorth moments [148] 
Higuchi fractal dimension [163] 
Renyi, Shannon and Tsaillis Entropy [164, 165] 
Approximate and Sample Entropy [165-167] 
Hurst exponent[168] 

Fr
eq

ue
nc

y 

Spectral and relative power 
based features 

 
 
 

Spectral Flatness, Flux and Entropy [35] 
Spectral Edge frequency at 80, 90 and 95% [169] 
Relative power in delta, theta and alpha bands[170] 
 
 

T
im

e-
fr

eq
ue

nc
y 

(풕
,풇

) (푡,푓) signal based features 

Matching Pursuit features [171] 
First four statistical moments of the TFD [29] 
TF Entropy, Entropy Flatness and Flux [29] 
Instantaneous Frequency mean and range [29] 
Maximum and Entropy of the singular values  
Gini Index [172], ECM 

(푡,푓) band specific features 
[in Delta, Theta, Alpha, Beta 

bands] 

First four statistical moments of the 퐼푆푃푅 [161] 
Coefficient of Variation of the 퐼푆푃푅 [161] 

(푡,푓) image based features 

Convex Hull, Perimeter and Compactness [29] 
Centred region, Rectangularity and Aspect ratio 
from the image moments [29] 
20 GLCM features extracted using [173, 174] 
16 SFTA features extracted using [175] 

 

4.4.3.2 (풕,풇) based feature extraction 

TFDs are rich in information, but the full (푡, 푓) -matrix, in the present context a matrix of dimension 

256 × 256, cannot be directly used as a set of features for the classification as this would significantly 
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increase the dimensionality of the problem. To avoid this, a small representative set of features 

describing the relevant information for the signal classification is extracted as described below. 

4.4.3.2.1 (풕,풇) statistical features 

Studies [162, 176] have extracted different prominent TFD-features to characterise neonatal EEG 

signals. In [29], the authors used statistical (푡, 푓) features to classify neonatal seizure. These features 

could be useful as they take the EEG non-stationarities into account. In addition, TFD can be 

considered as a bi-dimensional density function and TFDs of different EEG background patterns 

show different distributions [29]. Therefore, features extracted from TFDs offer significant and 

discriminative information, justifying their inclusion in the feature set (see Table 4.2).  

4.4.3.2.2 Band specific (풕,풇) features 

The (푡, 푓) features of specific EEG bands, typically delta (0 − 4 퐻푧), theta (4 − 8 퐻푧), 

alpha (8 − 12 퐻푧) and beta (12− 30 퐻푧), may be informative. The instantaneous spectral ratio 

(ISPR) has been calculated separately for each band. The ISPR has been used in electromyogram 

(EMG) analysis and we have adapted it for use in EEG. It is calculated for a TFD at each time instant 

as [161]:  

 
퐼푆푃푅[푛] =

∑ |휌[푛, 푘]|

∑ |휌[푛,푘]|
 

 

(4.3) 

where 푓  and 푓  represent the lower and upper frequency bins associated with the frequency band and 

푓  represents the highest frequency bin. Once the ISPR of a band is calculated, the mean, variance, 

coefficient of variance, skewness and kurtosis from these bands are extracted (see Table 4.2). 

4.4.3.2.3 TFD image related features 

TFD is a 2D matrix which can be transformed to a binary intensity image; different geometric features 

can be extracted from this image. By following the methodology presented in [29], different image 

related features are extracted, as in Table 4.2. In addition, Grey-level co-occurrence matrix (GLCM) 

and segmentation-based fractal texture analysis (STFA) feature extraction have been extensively used 

in image processing, especially in texture classification [174]. These feature extraction methods can 

be applied to a TFD. One study used image-based features to detect adult seizures [177]. These 

features could also be useful for classifying the TFD in terms of observed textural patterns. 

GLCM can be seen as a directional pattern counter with a specific distance 푑 and angle 휃 between 

neighbouring image pixel pairs for grey-scale images. It reflects the comprehensive information on 

the direction, adjacent interval and amplitude variations for image grey-level. For a given TFD-image 
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휌 (푛, 푘) (which is calculated from TFD, 휌[푛,푘] [29]), the corresponding GLCM can be calculated as 

[174]:  

 
푃[푖, 푗,푑,휃] = 1, 푖푓 휌 [(푛, 푘)] = 푖 푎푛푑 휌 [푛 + 푑푐표푠휃, 푘 + 푑푠푖푛휃] = 푗 

0 ,    표푡ℎ푒푟푤푖푠푒                                      

 

(4.4) 

where 푃[(푖, 푗,푑,휃)] in GLCM describes the relative frequencies or occurrences with which two pixels 

separated by a particular displacement distance 푑 and a specified angle 휃 occur on the image, one 

with grey-level 푖 and the other with grey-level 푗. Several GLCM features are extracted by the method 

presented in [173, 174].  

SFTA uses fractal dimension to describe the fractal structure of the surface indicating the grey levels 

of an image. This is one of the recent approaches, and the authors of [178] have shown that the SFTA-

based features outperformed other texture feature descriptors and, hence, added in the feature vectors 

(see Table 4.2). 

4.4.3.3 Feature vector formulation  

After extracting the features from 푡-domain, 푓-domain and (푡, 푓) domain, all features are 

concatenated to create the final feature, vector (퐹푉 ), expressed as:  

 퐹푉 = [퐹푉   퐹푉   퐹푉( , )] (4.5) 

where 퐹푉 ,퐹푉 ,퐹푉( , ) are the 푡,   푓 and (푡, 푓) domain features respectively. 퐹푉( , ) also contains 

features extracted from TFMP and the selected TFD. 

4.4.4 Multiclass Support Vector Machine (SVM)  

After feature extraction, prominent features need to be selected. In this study, features are selected 

according to a fitness function calculated from multiclass SVM.  

SVM is a binary classifier that can be extended to a multiclass problem. The SVM classifier has been 

widely used in many applications including EEG classification as it generalizes well and is 

computationally stable [179]. One of the popular methods is one-against-rest (OAR). There are also 

two other methods for solving multiclass problem: one-against-one (OAO) and directed acyclic 

graph-SVM (DAG-SVM). The classification accuracy across these methods (OAR, OAO and DAG-

SVM) is statistically insignificant [180]. With a 5-class problem OAR is the most efficient in terms 

of computation time and is the chosen approach for this chapter.  
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The OAR method constructs 푄 SVM models, where 푄 is the total number of classes. The 푝  SVM 

is trained with all examples in the 푝  class with positive labels, and all the other examples with 

negative labels as illustrated in  

Figure 4.5. Thus given 푙 training data (푥 ,푦 ), … , (푥 ,푦 ), where 푥 ∈ 푅 ,푖 = 1, … , 푙 and 푦 ∈

[1, … ,푄] = [seizure, burst, suppression, artifact, normal] is the class of 푥 , the 푝  SVM solves the 

following problem [180]: 

 min
풘 , 푏 ,휉    

1
2
‖풘 ‖ + 퐶 휉  

푠. 푡.

(풘 ) 휙 풙 + 푏 ≥ 1 − 휉 , if 푦 = 푝
(풘 ) 휙 풙 + 푏 ≥ −1 + 휉 , if 푦 ≠ 푝

휉 ≥ 0,                      푗 = 1, … , 푙
 

 

 

(4.6) 

 

where the training data 푥  is mapped to a higher-dimensional space by function 휙 and 퐶 is the 

regularisation parameter used to tune the classifier. When data are not linearly separable, there is a 

penalty term 퐶 ∑ 휉  which can reduce the number of training errors. The basic concept behind 

SVM is to search for a balance between the regularisation term ‖풘 ‖  and the training error (the 

second term in Eqn. (4.6). 

At the classification phase, a sample vector 풗 is classified in the class 푖 for which the decision function 

produces the largest value [180].  

 Class of 푖 = arg max
,…,

((풘 ) 휙(풗) + 푏 ) (4.7) 

 

Figure 4.5: Multiclass Classification using the OAR method. A 3-class classification problem is used as an 
example. A 3-class problem provides 3 binary class problems using the OAR method. 
 

In practice, the dual problem of Equation (4.6) is solved using quadratic programming. SVM can also 

be used in nonlinear classification tasks with the application of kernel functions. Any function that 

satisfies Mercer’s theorem [181] can be used as a specific kernel function to compute a dot product 

in feature space. There are different kernel functions used in SVMs, such as linear, polynomial and 
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RBF (radial basis function). In this chapter, the RBF kernel is used due to its widespread application. 

In addition, the number of parameters that need to be optimised is small compared to other kernels 

(e.g. polynomial kernels). The values of 퐾 풙 ,풙  are between 0 and 1 and it can avoid numerical 

issues such as values of different polarities i.e., positive and negative values, higher numerical 

differences between 풙  and 풙  [181]. It can be defined as  

 퐾 풙 , 풙 = exp −훾 풙 − 풙 ; 훾 > 0 (4.8) 

where 풙 − 풙  is the squared Euclidean distance between the two feature vectors and 훾 =  is a 

variance parameter that controls the kernel shape through the adjustment of the variance value. The 

selection of the appropriate kernel functions as well as kernel parameter(s) is very important, since 

the kernel defines the feature space in which the training examples will be classified. In the current 

context, (퐶, 훾) parameters need to optimise for the optimal use of the RBF-SVM along with the 

feature selection.  

4.4.4.1 Probabilistic estimation 

In addition to binary decision making, posterior probabilities derived from the SVM distances 

provided by each of the classifiers in the multiclass SVM are also evaluated. Probabilistic outputs are 

generally more intuitive for clinical staff and have been utilised in previous EEG analysis systems 

[148]. The probabilistic information is useful in both assigning a class to an individual EEG segment 

and plotting a continuous probabilistic output of the EEG recordings for use in the clinical 

environment.  

The output of the SVM classifier is computed for each epoch and this output is then transformed to 

posterior probabilities using a sigmoid function: 

 푃푟 푦 = 1 푑 =
1

1 + 푒푥푝(퐴푑 + 퐵) (4.9)  
 

where 푑  is the distance to the separating hyperplane [148], i.e. the output of the SVM classifier, 

퐴 and 퐵 are the parameters of the sigmoid function estimated on the training dataset using the method 

presented in [182]. 

4.4.5 Classification performance measures  
In the segment-based approach, classification performance is computed by comparing the detector 

outcome for a given segment to the neurologist marking of the same segment. The detector 

performance using segment-based classifications is evaluated in terms of: 
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 푅푒푐푎푙푙 = 푆푒푛푠푖푡푖푣푖푡푦 =  
푇푃

푇푃 + 퐹푁
× 100% 

푆푝푒푐푖푓푖푐푖푡푦 =
푇푁

퐹푃 + 푇푁
× 100% 

푃푟푒푐푖푠푖표푛 = 푃푃푉 =  
푇푃

푇푃 + 퐹푃
× 100% 

퐴퐶퐶 =
푇푃 + 푇푁

(푇푃 + 퐹푁 + 푇푁 + 퐹푃)
× 100% 

 

 

(4.10) 

 
 
 
 

where 푇푃 = true positive, 푇푁 = true negative, 퐹푃 = false positive and 퐹푁 = false negative [183]. 

In the diagnostic accuracy test, generally background data (i.e. normal voltage) is more prevalent 

(negative class (푁)) than other patterns such as burst and seizure (i.e. positive class (푃)) and hence 

the dataset is unbalanced [184]. In this situation, specificity has a tendency to take values close to 1 

[184]. With such an asymmetry, 푇푁 will generally take large values because of the size of negative 

class, i.e. 푇푃 ≤ 푃 ≪ 푁. In this context, it is expected that 푇푁 ≫ 퐹푃 and, thus, 푆푝푒푐푖푓푖푐푖푡푦 =

→ 1 should more or less always be the case. Thus, specificity has little importance compared 

to 푃푟푒푐푖푠푖표푛 [184], and hence is not included in this study. 푃푟푒푐푖푠푖표푛 and 푅푒푐푎푙푙 should take 

precedence over specificity when evaluating the performance of a classifier on an unbalanced dataset. 

One common measure to quantify the classifier performance is 퐹푚푒푎푠푢푟푒 which can be defined as  

 
퐹푚푒푎푠푢푟푒,퐹 =

(1 + 훽 )(푃푟푒푐푖푠푖표푛 × 푅푒푐푎푙푙)
훽 . (푃푟푒푐푖푠푖표푛 + 푅푒푐푎푙푙)

 
(4.11) 

where β is the weight parameter that controls weight between 푃푟푒푐푖푠푖표푛 and 푅푒푐푎푙푙, is usually set 

to 1 in the 퐹푚푒푎푠푢푟푒 calculation to provide same importance to 푃푟푒푐푖푠푖표푛 and 푅푒푐푎푙푙 [185] and 

hence used in the project. β = 2 and 0.5 can also be used. When β = 2, 퐹푚푒푎푠푢푟푒  weighs recall 

higher than precision (by placing more emphasis on false negatives); when β = 0.5, 퐹 .  weighs 

recall lower than precision (by attenuating the influence of false negatives) [183]. For this reason, this 

measure is used in the fitness function. The advantage of 퐹푚푒푎푠푢푟푒 is that it takes both the 

푃푟푒푐푖푠푖표푛 and 푅푒푐푎푙푙 classifiers into account [184].  

Furthermore, there is an equivalent relationship between statistical significant value such as p-value 

with diagnostic test statistics - sensitivity, specificity, disease prevalence and positive predictive value 

(see Appendix 4.C) [186]. Pharoah states that, “Test sensitivity is equivalent to statistical power. Test 

specificity is equivalent to the P-value. Disease prevalence in the population being tested is equivalent 

to the prior that the null hypothesis is false. What the clinician wants to know is the probability that 

the subject has the disease given that the test is positive. This is the positive predictive value and, in 

hypothesis testing, is equivalent to the probability that the alternative hypothesis is true given the 
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data. We are all comfortable with the fact that the positive predictive value depends on sensitivity, 

specificity and disease prevalence” [186]. 

Considering the above rationale, recall, precision, Fmeasure and accuracy have been used in this 

thesis. Of the total dataset, 50% has been used for testing and 50% for training. The justification 

behind this is to show the strength of the proposed algorithm in terms of classification accuracy. In 

addition, t-test (when comparing 2 groups) and analysis of variance (ANOVA) (when comparing 

more than 2 groups) have been performed to determine whether there is a statistically significant 

between results for the different methods/approaches. To accomplish this, as suggested by [187-189], 

10-fold cross-validation test is performed first. 10-fold cross-validation test is performed first. It 

reduces the variation related to data selection and allows the results to be averaged to yield a robust 

calculation of the performance of the SVM [188]. In 10-fold cross-validation, the total feature set is 

divided into 10 mutually exclusive subsets or folds (i.e. folder size is 10% of the total feature set). 

The first fold is used for testing and the other nine folds (i.e. 90% of the total feature set) are used for 

the training process and repeated until each fold has been tested. The advantage of this method is that 

each data point appears exactly once in the test set (i.e. mutually exclusive). Therefore, it minimizes 

the bias associated with the random sampling of the training and test set. However, the cross-

validation accuracy would be depended on the random assignment of data into a specific fold [189]. 

To solve this problem, a common practice is to stratify the folds themselves. Experimental studies 

show that, stratified cross-validation tends to generate comparison results with lower bias and lower 

variance when compared to regular 푘-fold cross-validation [189]. In stratified 푘-fold (푘 = 10 in this 

study) cross-validation, each fold is created in such a way that they contain approximately the same 

proportion of class/labels as the original dataset [187, 189]. The stratified 10-fold cross-validation 

(CV) has been used this chapter. The 10-fold stratified CV provides 10 results for each 

method/approach and, t-test and ANOVA have been performed on the stratified 10-fold cross-

validation results to determine whether there is a statistically significant difference or not in different 

methods/approaches. Finally, a multi-comparison of mean accuracy of different methods/approaches 

is shown graphically to visualize the comparison. 

4.4.6 Feature selection 
Learning from such a high dimensional feature set leads to high computational load and decreases 

the classification accuracy due to irrelevant and redundant features. Manual selection of the most 

relevant features is time consuming and has difficulty determining any nonlinear relationship among 

the features. Furthermore, in machine learning and artificial intelligence it is known that a feature that 
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is completely irrelevant by itself can be very relevant when taken with other features and improves 

the classification performance [190]. Therefore, it is necessary to use a prominent feature selection 

method to (a) deal with the ‘curse of dimensionality’[191], (b) improve model performance, (c) 

provide a faster and more cost-effective model [192], (d) gain a deeper insight into the underlying 

processes, and (e) select optimal tuning parameters of the classifiers simultaneously.  

Feature selection methods can be structured into three clusters: filter-based, wrapper-based and 

embedded [193]. All have some major drawbacks and we therefore propose a hybrid feature selection 

(HFS) algorithm. First, we briefly describe the background problems and then formulate an objective 

function for the HFS algorithm.  

4.4.6.1 Background problems 

Filter-based approaches, such as t-test or correlation-based feature selection (CFS), maximum 

relevance and minimum redundancy, show lower computational complexity and computational time 

than wrapper methods but ignore interaction with the classifier, i.e. they do not take the classifier 

performance into account. Wrapper-based methods are search-based methods and can be sub-

categorised into (i) deterministic search and (ii) randomised methods. Deterministic wrappers such 

as sequential selection and its variants, sequential forward selection (SFS), add or remove features 

sequentially. They are computationally intensive (‘greedy search’) and have a risk of overfitting 

[193]. On the other hand, randomised methods such as simulated annealing, genetic algorithm and 

differential evaluation incorporate randomness into their search procedure to escape local minima but 

still tend to suffer from overfitting [193]. The embedded approach is less computationally intensive 

than wrappers but provides a classifier-dependent selection. However, filter-based methods and 

deterministic wrapper-based methods cannot select the classifier tuning parameters at the same time 

as the feature selection. Simultaneous selection of an optimal feature set and optimal classifier 

parameters is important to increase the classification performance [193] and ensure the optimal use 

of a classifier. 

Although this simultaneous selection is not related to feature selection method, in the present context 

simultaneous selection of an optimal feature set and optimal classifier parameters is ultimately needed 

as we have used RBF-SVM classifier which has two tuning parameters (C,γ) that need to be 

optimised simultaneously with the feature selection process. To solve this problem, we propose a 

hybrid feature selection algorithm which combines both filter and wrapper methods. It meets the 

general requirements of a good feature selector, improving the classification rate by (i) avoiding the 
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overfitting problem, (ii) simultaneously selecting an optimal feature set and classifier parameters, and 

(iii) having less computational cost than a genetic algorithm searching the full feature space.  

4.4.6.2 Hybrid Feature Selection (HFS) algorithm  

The HFS algorithm is comprised of maximum relevance and minimum redundancy (mRMR) [194] 

and a genetic algorithm. The mRMR method is computationally fast. Peng et al. demonstrated that 

mRMR method is a useful feature selection algorithm for wide-range of feature selection problems 

[194]. In addition, classification accuracy also increases when mRMR is applied prior to wrapper-

based methods [195]. In the HFS algorithm, maximum relevance and minimum redundancy (mRMR) 

[194] is used to initially reduce the original features (let’s say, the number of original features (퐹푆표)), 

down to a more manageable 푧 most discriminative features, and a genetic algorithm is then used to 

select the most prominent feature set from this reduced set. It also selects the optimal (C, γ) 

parameters simultaneously.  

The first 푧 best features, ranked by mRMR (푧 < 퐹푆표), are selected first. The mRMR ranks the 

features using mutual information; see Appendix 4.B for details. This process eliminates redundant 

features, reducing the risk of overfitting at the GA stage. The GA then simultaneously selects the 

features and the SVM parameters according to a fitness (or objective) function. As this feature 

selection and parameter optimisation process combines mRMR and GA, we denote this proposed 

approach the hybrid feature selection (HFS) algorithm. The flow diagram of the HFS is shown in 

Figure 4.6. Unlike the GA-based approach, the salient properties of HFS are that it (a) converges 

quickly as a smaller number of generations is needed than GA, and (b) reduces the risk of overfitting, 

as mRMR is used to filter the redundant features.  

The performance of the classifier depends heavily on the fitness function. Here the fitness function 

maximises the classification rate, while weighting it against the feature set length. Mathematically 

the optimisation problem can be formulated as: 

 max
(  ,  )

(퐹푖푡푛푒푠푠퐹푢푛; 푆푉푀 푝푎푟푎푚푒푡푒푟푠,퐹푒푎푡푢푟푒 푠푢푏푠푒푡) (4.12) 

which can be interpreted as ‘maximise the FitnessFun as a function of SVM parameters, Feature 

subset’. The 퐹푚푒푎푠푢푟푒 is used as the fitness function i.e. 

 퐹푖푡푛푒푠푠퐹푢푛 = 퐹푚푒푎푠푢푟푒 (4.13) 
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The 퐹푚푒푎푠푢푟푒 is chosen as it shows more accurate classification performance indicator and widely 

used in different applications [196, 197]. In the present context, i.e. for RBF-SVM, the general 

equation of optimisation (Eq. (4.12)) can be written as: 

 max
( , ,  )

(퐹푖푡푛푒푠푠퐹푢푛;퐶,훾, 퐹푒푎푡푢푟푒 푠푢푏푠푒푡) (4.14) 
 

The following steps have been taken in order to precisely establish a HFS-based feature selection and 

parameter optimisation algorithm. Figure 4.6 represents the system architecture.  

Step 1: Normalisation: The numerical range of one feature or attribute can be different from another 

feature and normalisation is used to avoid this dominance. It can be defined as:  

 
퐹 =

퐹 − 퐹
퐹  

         (4.15) 

where 퐹 and 퐹  are the original and normalised feature value and 퐹 ,퐹  are the 

mean and standard deviation of the feature value respectively. These 퐹 ,퐹  are computed 

from all the data available. This process will also reduce the equipment-related variations 

and physiological differences from one subject to another [198].  

Step 2: Data partitioning: Data is split into training and testing sets (Figure 4.6 (a, b)). The main 

training set is further partitioned into a training set (50%) and a validation set (50%) by 

randomly splitting the main training set and repeating in every generation. This process 

reduces the bias towards a certain training set. The subdivided training set, i.e. second 

training set, is used to train the SVM and build a nonlinear model, while the validation set 

is used to evaluate the fitness function. 

Step 3: Feature ranking: Feature ranking is done using the mRMR method. Ranking of the features 

is in descending order (from best to worst feature) and takes the first z higher ranked 

features. 

Step 4: Genetic Algorithm: Selection, crossover and mutation are used to generate a population 

from (퐶, 훾) and the highest ranked features from Step 3. 

Step 5: Fitness evaluation: After genetic operation (퐶, 훾) and features subset are determined and 

RBF-SVM model is built. This model is applied to classify the validation dataset to evaluate 

the fitness function.  

Step 6: Termination criteria: Steps 4 and 5 are repeated, refining the model fitness. When the 

termination criteria, i.e. the number of generation, are satisfied the process ends. 
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Step 7: Classification: After acquiring optimal SVM parameters and an optimal feature set using 

the HFS algorithm, a SVM model is built and evaluated against the test set. Note that the 

testing set is not used in any part of the optimisation process, to ensure a fair judgement. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.6: System architectures: (a) dataset and classification process, (b) testing of SVM model and (c) System 
architectures for the HFS algorithm.  

4.4.7 Classification  

As described above, the HFS algorithm generates a reduced subset of the feature vector, containing 

only the most discriminative features among the five classes. The most common approach for 
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classification is to design the classifier to select a single set of features. We will refer to this 

classification as classification using single feature subset. Pineda-Bautista et al. [199] have proposed 

extending this method by selecting a specific feature subset for each class. This is known as 

classification using class-specific feature subsets; see Figure 4.7. 

 

Figure 4.7: Neonatal EEG classification approaches. 

4.4.7.1 Classification using class-specific feature subsets 

Class-specific features have been shown to increase the classification performance in terms of 

accuracy, as the selected features are class specific [199]. Motivated by the general framework for 

class-dependent feature selection [199], this study introduces a class-specific feature selection 

procedure and parameter optimisation method for each class. Unlike [199], this method not only 

selects prominent feature sets specific to the individual classes, but also selects the optimal classifier 

(SVM) tuning parameters. However, as there are now unique classifiers for each class, a signal 

strength-based combining (SSC) algorithm is used to combine the classifiers and obtain final decision 

and posterior probabilities [148]. 

Classification using a class-specific feature subset consists of the following five steps:  

Step 1: Class binarisation: Using OAR classification, a Q-class (퐶푙 ;  푞 = 1,2, … ,푄) classification 

problem is transformed into Q binary problems. For example, all instances of class 1 are 

used as positive class, whereas instances of rest of the classes (Q − 1) are regarded as a 

negative class. This process is repeated to form Q binary problems.  

Step 2: Class Balancing: As OAR class binarisation strategy is used; the generated class could be 

imbalanced and consequently affect the feature selection and optimal SVM parameter 

selection. While there are several solutions [200], the ADASYN (ADAptive SYNthetic 

sampling) approach is used in this study due to its simple interpretation and widespread 

use [201]. It improves the machine learning with respect to the data distribution by (i) 

shifting the classification decision boundary adaptively toward the difficult instances, and 

(ii) reducing the bias introduced by the class imbalance. Note that, this balancing should 

only be applied to training and optimization process not in the testing set. 
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Step 3: Class-specific feature selection and parameter optimisation: After class balancing, the 

proposed HFS algorithm is used to select the prominent feature set specific to each 

individual class and optimise the SVM parameters; see Figure 4.8(a). 

Step 4: Classification: In the classification stage, for each class 퐶푙 ; 푞 = 1,2, … ,푄, a SVM 

classifier is trained for the original multiclass problem, using the optimal SVM parameters 

and feature indexes selected for specific class, 퐶푙 . In this way, a classifier ensemble 퐷 =

푑 ,푑 , … ,푑  is formed. Finally, a decision fusion technique called SSC is used to obtain 

the final decision value; see Figure 4.8(b). The SSC algorithm also provides a final decision 

probability [202]. Section 5.3.1 provides more details about the implementation of final 

decision probability using SSC algorithms. 

For example, the current classification problem is 푄 = 5-class problems, i.e. 퐶푙 ; 푞 =

1,2, … , 5 = [seizure, burst, suppression, artifact, normal]. For each class, previously 

selected class-specific feature subset and SVM parameters (from Step-3 (Figure 4.8 (a)), 

are selected and generate a class-specific SVM model. Five class-specific SVM models 

provide 5 output decisions, i.e. 퐷 = {푑 ,푑 , … , 푑 }. Finally, the SSC algorithm is used to 

provide a single output from this decision vector, 퐷. 

Step 5: Testing: When a test set matrix 푇 is provided, its original features must be reduced to the 

size of the feature’s index vector selected for 퐶푙  used by the class-specific SVM; see 

Step 4. This algorithm not only gives a final decision value but also provides a final 

decision probability [202].  

 

 

(a) 
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(b) 

Figure 4.8: Class specific feature selection and multiclass classification. (a) Class binarisation, class balancing, 
class-specific feature selection and parameter optimisation; (b) classification.  

4.5 Application to multichannel EEG background pattern classification 
As the EEG recordings are multichannel, a sensible fusion of the channels is necessary [29]. There 

are three general stages where the channels may be fused with respect to multichannel EEG 

classification: (a) channel averaging or channel fusion, (b) feature pooling or feature fusion and (c) 

decision fusion. These three techniques will be utilised and compared in this study.  

4.5.1 Channel fusion 

In channel fusion, multichannel EEG signals are averaged into a single average channel before 

extracting features (see Figure 4.9 (a)). System complexity and computational time are reduced as 

only a single average channel is used instead of all channels. Channel fusion can be expressed as: 

 
푦 [푛] =

1
푐ℎ

푥 [푛] 
(4.16) 

Where, 푥 [푛] is a sample of the signal recording from the 푖  channel, 퐶ℎ is the total number channels 

and 푦 [푛] is the averaged signal.  

 

(a) 
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(b) 

Figure 4.9: EEG fusion techniques: (a) channel Fusion and (b) feature Fusion. 

4.5.2 Feature fusion 
In feature fusion, the extracted features from different channels are fused. The simplest feature fusion 

technique is to average the individual channel features into single features. This feature fusion 

technique is used in this study and can be expressed as:  

 
퐹  =

1
푐ℎ

퐹  
 

(4.17) 

where 퐹  denotes the 푗  feature of the 푖  channel and 퐹  is the 푗 averaged feature across 퐶ℎ 

channels; see Figure 4.9(b).  

4.5.3 Decision fusion 

Each channel in the multichannel EEG signal can be classified individually. This process produces a 

channel-level decision or probability vector. The decision vector from each channel can be computed 

uniquely and a decision fusion algorithm (SSC algorithm) used to compute an optimal final decision 

(see Figure 4.10).  

 

Figure 4.10: EEG fusion technique: decision fusion. 

4.5.4 SSC algorithm 
The SSC algorithm effectively integrates individual votes from all the unique classifiers computed 

for each EEG channel in an ensemble learning system.  
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Figure 4.11: Multichannel EEG decision fusion using SSC algorithm. This process produces a probability 
matrix 푈 ∈ 푃푟 × ,푃푟 ∈ [0,1], where 푈  denotes the probability matrix of the 푖  channel, 푇 is the number of 
testing instances and Q is the number of classes or EEG patterns. A three-dimensional (3퐷) decision probability 
matrix 퐷푝 ∈ 푃푟 × ×  is formed by combing the probability matrix 푈 of all channels. SSC algorithm is applied 
on this 3퐷 matrix and overall decision and decision probability are found. 

This algorithm takes the classifier’s probabilistic output from different channels as input and provides 

the final combined output decision and corresponding final posterior probability. By following the 

methodology presented in [202] and Figure 4.11, the output probabilities of each classifier (or 

channel) are computed. Unlike the majority voting algorithm, this algorithm provides the output 

decision probability along with the overall decision label.  

4.6 Results 
The following settings were used in this experiment: 

1. After pre-processing, the 푡-domain multichannel neonatal EEG segments were transformed 

in 푓-domain, (푡,푓) domain. A vector of 퐹푆표 = 134 features was formed for all EEG 

channels, as well as for the averaged channel. 

2. The total feature dataset was divided into two: 50% of the dataset was used as the main 

training dataset and the remaining 50% dataset was used as the testing dataset. The main 

training dataset was used for SVM model selection, parameter optimisation and optimal 

feature subset selection using HFS algorithm. The main training dataset was again randomly 

subdivided into training (50%) and validation (50%) sets and repeated in every generation. 

Note that the testing set was completely unseen by the classifier during model selection and 
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the same testing set was used everywhere for a fair comparison of different methods and 

fusion techniques.  

3. Initially, 푧 = 20 features were selected using mRMR approach and this sub-optimised feature 

set was then refined by the genetic algorithm in order to find the optimal SVM parameters as 

well as optimal feature subsets. This process eliminates the redundant and irrelevant features 

and cuts down the high dimensional original features, 퐹푆표, to a manageable feature set for 

GA. 20 generations with 25 populations in each generation are used in the GA. The other 

parameters are: crossover rate 0.7, mutation rate 0.02, two-point crossover, roulette wheel 

selection and elitism replacement.  

4. GA can diverge from the feasible search space if the RBF-SVM tuning parameters (퐶, 훾) are 

not bounded. The lower bound and upper bound for 퐶 : 2 , 2  and for 훾 : 2  and 2  

respectively, were chosen. These larger ranges should be enough for the selection of optimal 

(퐶, 훾) parameters [180].  

5. The experiment is run with identical parameters and settings for both classification methods.  

We present the performance of the classifier for the various configurations described above. First, we 

present the relative performance of the four TFDs: EMBD, LOS, CKD and SM (Section 4.6.1.1). We 

then analyse the performance gain provided by considering the TFD in combination with the 푡-

domain an 푓-domain features (Section 4.6.1.2). This is performed on the simplest scenario, channel 

fusion and a single-feature subset. 

Next, the performance of the single-feature subset classifier is compared with the use of class-specific 

feature subsets (Section 4.6.2). Then the performance of the more complex feature fusion and decision 

fusion techniques is presented (Section 4.6.2). Finally, a comparison with other classifiers will be 

presented (Section 4.6.3). 

4.6.1 TFD performance 

To analyse the TFD performance, we have performed two experiments to answer the following 

questions. 

(a) What is the relative performance of the various TFDs? 

(b) Are (푡, 푓) features contributing to the classification accuracy when applied to neonatal EEG 

background features? 

(c) How to visualise the relative classification performance in different domains classifying different 

patterns? 
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To answer the first question, the HFS algorithm was applied to the (푡, 푓) domain features in isolation, 

and the relative performance of the four TFDs was evaluated. To answer the second question, three 

feature vectors (퐹푉) were created: 

 퐹푉   = [퐹푉   퐹푉  ] 

퐹푉( , ) =  [퐹푉( , )]  

퐹푉 = [퐹푉   퐹푉  퐹푉( , ) ] 

 

(4.18) 

where 퐹푉    consist of only 푡 -and 푓 -domain features, 퐹푉( , ) only the features derived from the 

TFD’s, and 퐹푉  consists of all the 푡,푓 and (푡,푓) -features. 

4.6.1.1 Choice of TFD 

Table 4.3 presents the classification performance for the LOS TFD in terms of seizure, burst, 

suppression, normal and artifact. The last row of Table 4.3 shows the average performance measures 

of all classes (patterns). The other TFDs had been analysed in the same way, and Table 4.4 presents 

the average values for all four TFDs. Note that, average classification performance measures5 are 

used in rest of the tables.  

Table 4.3: Classification performance (in %) using single feature subset and channel fusion technique when LOS 
was used to extract (푡,푓)  features. 

Patterns Precision Recall Fmeasure Accuracy 

Seizure 90.4 88.8 89.6 90.4 

Burst 91.0 90.7 90.8 91.1 

Suppression 89.9 89.5 89.7 89.9 

Artifact 81.6 82.6 82.1 81.6 

Normal 83.5 84.7 84.1 83.5 

Average 87.3 87.2 87.3 87.3 

 

 

 

                                                         
5 For example, average accuracy (e.g., see Table 4.4, last column) defines an average value of accuracy (in %) classifying 
all five patterns calculated by following Table 4.3. The other measures i.e. average precision, average recall, average 
Fmeasure can be defined in the same way. This is done to reduce the number of tables and to simplify the results. 
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Table 4.4: Overall average classification performance (%) using single feature subset and channel fusion 
technique when 퐹푉 = 퐹푉( , ) . 

HFS selected features 
when 

Average 
precision 

Average 
recall 

Average 
Fmeasure 

Average 
accuracy 

FV( , )  81.7 80.4 80.8 81.0 

FV( , )  87.3 87.2 87.3 87.3 

퐹푉( , )  87.3 86.9 87.1 87.1 

퐹푉( , )  84.5 83.7 84.0 84.2 

Overall average 85.2 84.6 84.8 84.9 
 

As discussed, the 퐹푚푒푎푠푢푟푒 is the most robust measure of performance for a classifier when it is 

operating on unbalanced data. LOS performed the best across all four measures, followed by CKD, 

then SM, and finally EMBD.  

ANOVA test, applied on stratified 10-fold CV accuracy, was performed to detect any difference 

between four TFD (EMBD, LOS, CKD and SM)-based features. There was a significant difference 

(p<0.001). However, difference in classification accuracy using FV( , )  and FV( , )  did not 

provide a statistically significant result (p=0.08, t-test, 10-fold CV). Figure 4.12 shows how the 

accuracy varies among different TFD-based features. 

 

Figure 4.12: Multiple comparison of classification performance using four different TFD based features.  
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4.6.1.2 (풕,풇) domain vs 풕 -and 풇-domain features 

Table 4.5 presents the performance of the classifier when operating on 퐹푉   , only on the 퐹푉( , ), 

and 퐹푉  features. The 푡- and 푓-domain feature vector operating in isolation obtains an average 

Fmeasure of 85.7% whereas (t,f) -domain feature vector provides an average Fmeasure of 84.8%. 

However, referring back to Table 4.4, the LOS TFD’s average 퐹푚푒푎푠푢푟푒 is 87.3%, better than the 

result obtained by the 푡 -and 푓 -domain feature vector in isolation. More importantly, when considered 

together, the Fmeasure performance is improved to 91.6%, higher than the classification using only 

t- and f-domain feature vector (퐹푉   ) and using only (t, f) domain feature vector (퐹푉( , )). 

Table 4.5: Overall average performance (%) using single feature subset and Channel fusion techniques when HFS 

selects the features from FV   , FV( , ) and FV . 

HFS selected features 
when 

Average 
precision 

Average 
recall 

Average 
Fmeasure 

Average 
accuracy 

퐹푉    86.4 85.4 85.7 86.0 

퐹푉( , )  85.2 84.6 84.8 84.9 

퐹푉  91.8 91.4 91.6 91.7 

 

ANOVA test, performed in stratified 10-fold CV accuracy, showed that the difference in 

classification accuracy among these three methods (퐹푉   ,퐹푉( , ) and 퐹푉  ) was statistically 

significant (p <0.001). Difference in classification using 퐹푉    and 퐹푉  as well as 

퐹푉( , ) and 퐹푉  were also statistically different (p<0.001) but the classification using 

퐹푉    and 퐹푉( , ) was equivalent (p=0.50); see Figure 4.13.  

 

Figure 4.13: Multiple comparison of classification performance in three different feature vectors. 
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Table 4.6 presents the relative performance of the four TFDs. Interestingly, when combined with the 

푡 -and 푓 -domain features, the worst performer in isolation, EMBD, obtained the highest average 

퐹푚푒푎푠푢푟푒 of 92.6%. The last row represents the average classification performance for all TFDs. 

Although it is possible to show the individual classification performance with 퐹푉  including each 

TFD, the ‘overall average’ result, comprised of 퐹푉  , 퐹푉  and all four TFDs, is calculated by following 

Table 4.6 and used in all other cases for a fair comparison. The overall average classification 

퐹푚푒푎푠푢푟푒 and accuracy using channel fusion are 91.6% and 91.7% respectively. 

Table 4.6: Overall average performance (%) using single feature subset and channel fusion techniques. 

HFS selected features 
when 

 Average 
precision 

Average 
recall 

Average 
Fmeasure 

Average 
accuracy 

퐹푉 = [퐹푉   퐹푉  FV( , ) ] 
 

 92.6 92.4 92.5 92.6 

퐹푉 = 퐹푉   퐹푉  퐹푉( , )  
 

 92.0 91.4 91.8 92.0 
퐹푉 = [퐹푉   퐹푉  퐹푉( , ) ] 

 

 91.6 91.2 91.4 91.4 

퐹푉 = 퐹푉   퐹푉  퐹푉( , )  
 

 91.0 90.6 90.8 90.9 
Overall average  91.8 91.4 91.6 91.7 

 

ANOVA test, performed in stratified 10-fold CV accuracy, showed that the difference in 

classification accuracy among these four groups was different (p <0.001); see Figure 4.14. However, 

difference in classification using 퐹푉 = [퐹푉   퐹푉  FV( , ) ] and 퐹푉 = [퐹푉   퐹푉  FV( , ) ] was not 

statistically significant (p=0.051, t-test, 10-fold CV). Classification using 퐹푉 =

[퐹푉   퐹푉  FV( , ) ] provided the highest classification accuracy among these four groups. 

 
Figure 4.14: Multiple comparison of classification performance in four different feature vectors. 
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It is clear that the use of the full feature set (퐹푉 ) consistently performs better than using either the 

푡 -and /or 푓-domain features (퐹푉   ), or the (푡, 푓) domain features (퐹푉( , ) ) in isolation. Same 

conclusion has also been found in recent studies, e.g., seizure detection and classification in 

newborns using (푡, 푓) based features [29, 203]. They have shown that the (푡,푓) signal-based 

features generally yield improved performance when compared to the corresponding 푡-domain 

and 푓-domain features. Classification accuracy using (푡,푓) image-based features further 

improves the classification performance. Considering these, rest of the analysis is provided in terms 

of the 퐹푉  result.  

4.6.1.3 Confusion matrix plot 

To visualise the classifier performance predicting different EEG patterns, the confusion matrix is also 

shown for different methods. The readers and the data analysers can easily visualise and interpret the 

overall performance of a classifier. The rows of the confusion matrix correspond to the predicted 

class (Output Class), and the columns corresponds the actual class (Target Class); see Figure 4.15. 

The diagonal elements show the correct classification information, whereas the non-diagonal 

elements show misclassification information and the bottom right element represents the overall 

accuracy. In this way, the confusion matrix for other fusion techniques can be plotted. It can be 

observed that the classification methods differentiate burst, suppression and seizure patterns better 

than normal and artifacts. This is because some artifacts look very similar to normal background and 

misclassification mainly occurs between these two classes. 

To describe the confusion matrix plot, consider Figure 4.15(a). The first upper left diagonal cell shows 

the number and percentage of correctly classified seizure patterns. For example, 2971 EEG seizure 

segments are correctly classified as seizure, which corresponds to 16.7% of the testing dataset. 16, 

11, 150 and 195 seizure segments are incorrectly classified as burst, suppression, artifact and normal 

segments respectively. Out of 3556 seizure predictions, 88.9% are correct and 11.1% are wrong. In 

this way, the performance of prediction for all other patterns can be interpreted. The last diagonal cell 

represents the overall performance: 86% of the predictions are correct and 14% are wrong 

classifications. 
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(a) 

 
(b) 

 
(c) 

Figure 4.15: Confusion matrix plot when (a) the FV consists of 푡 and 푓 domain features (i.e. 퐹푉 = 퐹푉   ); (b) 
when 퐹푉 = 퐹푉( , ) and (c) 퐹푉 = 퐹푉  with LOS using single feature subset. In this figure, FV( , ) features are 
extracted from the LOS and channel fusion techniques are used. Confusion matrix for other TFDs can be plotted 
in the same way. 

4.6.2 Classification using single vs class-specific feature subset 
The performance of two classification methods – classification using (i) single feature subset and (ii) 

class-specific feature subset – using channel fusion are presented in Table 4.7. It can be seen that the 

average 퐹푚푒푎푠푢푟푒 of classification using single feature subset (91.6%) is slightly higher than 

classification using class-specific feature subset (90%). This is because channel fusion averages all 

the channels at the channel level which has significant additive, uncorrelated noise, and is assumed 

to be observing a singular source. This is not the case with EEG and, hence, decreases the 

performance.  

Table 4.7: The overall average performance comparison (in %) between two methods. 

Classification using  Fusion Technique Average 
precision 

Average 
recall 

Average 
Fmeasure 

Single feature subset Channel Fusion 91.8 91.5 91.6 
Class specific feature subset Channel Fusion 90.7 89.6 90.0 
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Table 4.8 compares the overall average performance for both single feature subset and class-specific 

feature subset under different fusion techniques. Figure 4.16 provides a graphical representation of 

the performance of different fusion techniques. It can be observed that the overall average accuracy 

for channel fusion, feature fusion and decision fusion using single feature subset is 91.7%, 94.9% and 

96.5% respectively and, using class-specific feature subset, 90.1%, 95.4% and 98.7% respectively 

(see Figure 4.16). Therefore, it can be concluded that classification using class-specific feature subset 

is more accurate than classification using single feature subset.  

Table 4.8: The overall average performance comparison (in %) among the two methods and the three fusion 
approaches. 

Feature selection 
method 

Fusion Technique Average 
precision 

Average 
recall 

Average 
Fmeasure 

Single feature 
subset 

Channel Fusion 91.8 91.5 91.6 
Feature Fusion 95.0 94.1 94.8 

Decision Fusion 96.8 96.2 96.4 
Class specific 
feature subset 

Channel Fusion 90.7 89.6 90.0 
Feature Fusion 95.7 95.1 95.3 

Decision Fusion 98.8 98.6 98.7 
 

The improvement of feature fusion and decision fusion over channel fusion is likely due to the 

preservation of spatial information; channel fusion loses this information due to averaging. The best 

performance, with an average 퐹푚푒푎푠푢푟푒 of 98.7%, is obtained with decision fusion and class-

specific feature subsets. This result is likely due to the added modelling power these two features 

provide the classifier.  

 
Figure 4.16: Effect of different fusion techniques. 
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4.6.3 10-fold cross-validation results 
All results presented above are based on the fixed testing dataset. The testing dataset, comprising 

17,771 epochs (50% of the total database), is independent, not being included in the training and 

validation process. This approach was used to show how strongly the optimised SVM classifier can 

classify the pattern with only 50% of the training data. However, the whole dataset cannot be utilised 

for testing by this approach. To address this, an N-fold cross-validation can be used to test the whole 

database. In the N-fold cross-validation, the ith fold is used for testing and (N-1) folds (i.e., all except 

the ith fold), are used for training and optimisation; this is repeated until all folds are tested. Finally, 

test results for each fold are averaged. This method ‘reduces the variation related to data selection, 

and allows the results to be averaged to yield a robust calculation of the performance of the SVM’ 

[188]. A 10-fold cross-validation6 was also used, and the 10 results from 10 folds were then averaged 

to produce a single estimation. Table 4.9 shows the overall average 10-fold cross-validation 

performance among two feature selection methods and the two feature fusion approaches. This table 

was calculated by applying the same procedure producing Table 4.8 in 10-fold cross-validation case. 

As with previous results, it can be observed that the overall average 10-fold cross-validation accuracy 

for channel fusion and feature fusion using a single feature subset is 94.1% and 94.3% respectively 

and, using a class-specific feature subset, 95.0% and 97.1% respectively. In addition, compared to 

previous results as presented in Table 4.8, the 10-fold cross-validation performance is increased by 

more than 2%. This is due to the fact that a higher ratio (90% in this case) of the total data is used for 

training than testing (10%, in this case) in each fold. The method can classify difficult examples 

correctly and hence increases the classification rate.     

Table 4.9: The overall average 10-fold cross-validation performance comparison (in %) among the two methods 
and the two fusion approaches. 

Feature selection 
method 

Fusion Technique Average 
precision 

Average 
recall 

Average 
Fmeasure 

Average 
Accuracy 

Single feature 
subset 

Channel Fusion 94.2 94.0 94.1 94.1 
Feature Fusion 94.5 94.1 94.2 94.3 

Class specific 
feature subset 

Channel Fusion 95.1 94.9 95.0 95.0 
Feature Fusion 97.2 97.1 97.1 97.1 

                                                         
6 In 10-fold cross-validation, the total feature set is divided into 10 folds (i.e. folder size is 10% of the total feature set). 
The first fold is used for training and the other nine folds (i.e. 90% of the total feature set) are used for the training process 
and repeated until each fold has been tested. 
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4.6.4 Comparison with other classifiers 
The results are compared with other well-known classifiers such as linear discriminant analysis 

(LDA)7, naive Bayes, logistic regression, neural network, and Bayesian network. These classifiers 

are also used in neonatal EEG background patterns such as burst-suppression classification [162]. In 

all cases the overall average performance is generated following Table 4.6 and compared with other 

classifiers; see Table 4.10. The optimal parameters of these classifiers are chosen by an experimental 

search that provide the highest accuracy. The HFS selected features are still useful for these classifiers 

and used for a fair judgement. However, the classification performance of the other classifiers is lower 

than the RBF-SVM (see Table 4.5 and Table 4.10). These results suggest that the optimal RBF-SVM 

is more useful predicting different EEG background patterns. Therefore, this study uses optimal RBF-

SVM in all other cases.  

Table 4.10: Overall average performance (%) of different classifiers when FV = FV  and fusion =channel 
fusion. 

Classifier Average 
precision 

Average 
recall 

Average 
Fmeasure 

Average 
accuracy 

Linear Discriminant Analysis (LDA) 74.2 72.9 71.3 72.2 
Naive Bayes 66.3 67.8 62.5 65.7 

Logistic Regression (Ridge 10 ) 74.1 73.1 73.3 73.8 
Neural Network: (Learning rate 0.3, momentum 0.2) 

(Multilayer Perceptron) 
82.8 79.0 79.2 80.7 

Optimized SVM 91.8 91.5 91.6 92.6 

4.7 Discussion 
This study proposes a new methodology to select single and class-specific feature subsets and 

presents results from applying this methodology to multichannel neonatal EEG classification. This 

contribution involves the characterisation of neonatal EEG signal in 푡-domain, 푓-domain and 

(푡,푓) domain; simultaneous selection optimal features and classifier parameters using HFS 

algorithm.  

This study also investigates various feature fusion techniques as well as single and class-specific 

feature selection. To the best of our knowledge, no study has attempted to discriminate patterns we 

have analysed. Reference [162] used burst-suppression patterns using spectral edge frequency 

(SEF95), 3 Hz power, median, variance and Shannon entropy and has shown an average area under 

the curve (AUC) of 94% using SVM on a database consisting of six term infants. Reference [176] 

used burst and normal patterns in the presence of artifact using wavelet-based statistics, 푓 -domain 

                                                         
7 LDA may not be a relevant or optimal classifier for a nonlinear problem. This classifier is chosen for to show that linear 
classifier like LDA is not suitable for the present complex nonlinear problem.  
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and nonlinear features and has shown 78% sensitivity on a database consisting of sixteen term 

newborns.  

Several studies collapse the patterns and grade the patterns as mild, moderate or severe abnormal 

background trace using voltage amplitude definition. For example, Matic et al. [204] use a tensor-

based classification method to grade background EEG abnormalities and achieve 89% accuracy on a 

database consisting of 34 term newborns. Ahmed et al. use a supervector approach and achieve 87% 

accuracy to grade EEG on a database consists of 54 term newborns [148]. 

The performance of the proposed methodology compares extremely well with contemporary 

techniques. The methodology achieves an accuracy of 98.7% for the second method (class-specific 

feature subset) when decision fusion is used, significantly improving on past works. We posit that 

part of this improvement is due to the inclusion of (푡, 푓) features in classification, which is not present 

in the prior studies mentioned above. We show a significant improvement can be made, from 

approximately 85% to 90% accuracy, when (푡, 푓)-features are combined with 푡 -domain and 푓 -

domain features. Additionally, some studies do not use feature selection and the redundant features 

could be causing overfitting and degrading classification accuracy. The proposed HFS algorithm not 

only selects prominent features but also selects the optimal classifier parameters simultaneously. This 

provides a substantial advantage over alternative feature selection algorithms in terms of 

classification accuracy and computational complexity.  

The prominent features selected by the various configurations of fusion techniques and classification 

methods are different. Describing every feature that appears would be excessive. The most consistent 

features that appear across the various configurations will be discussed. They are: Higuichi fractal 

dimension, Renyi entropy, approximate entropy, sample entropy, Hurst exponential, SVD entropy; 

number of atom and mean and variance of TFMP modulation; statistics of band specific (푡,푓) 

features, ECM, aspect ratio, and GLCM Information measure of correlation. 

Neonatal EEG background, as well as seizure signal, can be characterised as a nonlinear dynamical 

system [163] and different nonlinear dynamics such as Higuichi fractal dimension, Renyi entropy, 

Hurst Exponential and SVD entropy measure the change of brain signal complexity. Burst, normal 

and seizure states often exhibit significantly more complex nonlinear patterns when compared to 

artifact and suppressed states, explaining the prominence of features quantifying these traits. These 

features have been consistently used in various studies [148, 205] to characterise neonatal EEG and 

prediction of neurodevelopmental outcome.  
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 (푡,푓) features focused on a specific band are regularly included, particularly the delta band. It can 

be seen from Figure 4.4 that a large proportion of EEG power lies in this band, and is noted as a more 

dominant pattern in infants, reducing in prominence with maturity [205]. It follows that these features 

would be useful in discriminating normal and abnormal patterns. The (푡, 푓)-based image processing 

features, such as aspect ratio and GLCM Information measure of correlation, are also seen to be good 

candidate features, possibly because they characterise the TFD signatures of different EEG patterns. 

TFMP also provides promising results in detecting seizure [171]. Finally, the statistics computed from 

the modulation of Gabor atoms and the number of atoms is regularly seen. 

Selection of SVM tuning parameters is also important. In this study, we have shown how one can 

simultaneously select the optimal features as well as optimal classifier parameters, enhancing the 

classification accuracy using an HFS algorithm. Although RBF-SVM is optimised in this chapter, the 

general framework provided in Equation (4.12) can be used to optimise other SVM kernel parameters. 

To summarise the content of this chapter: 

 The channel fusion technique is computationally efficient when compared to other fusion 

techniques but decreases the classification performance, as useful information, particularly 

spatial information, is lost.  

 Feature fusion is more computationally demanding than channel fusion. This is because the 

technique must extract features for every channel before averaging. However, this increases 

the classification accuracy.  

 The decision fusion technique is significantly more computationally demanding than the other 

two techniques, as it not only extracts all the features but must search the much larger feature 

space occupied by all the independent channels. However, it also shows the highest 

classification accuracy, improving on prior works.  

 Classification using class-specific feature subset is more accurate than classification using 

single feature subset. Interestingly, the computation time for the both methods is the same. 

The reason for this is that classification using single feature subset utilises all the EEG patterns 

simultaneously, whereas classification using class-specific feature subset utilises only two 

patterns at a time in a one-against-rest iterative fashion (see Figure 4.8). 

 

Feature extraction techniques also play a key role, as a good candidate feature choice enhances 

classification accuracy. This study shows the usefulness of (푡,푓) features when they are combined 

with 푡 -and 푓 -domain features and it is therefore beneficial to consider (푡, 푓) features when 

performing neonatal EEG classification.  
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One of the disadvantages of the proposed classification method is computational load. This is due to 

the multichannel nature of EEG and effort required to build an optimal SVM model. Once the model 

has been built the classification task is significantly faster. The number of features to be computed is 

significantly reduced, and the task of classification for an SVM is computationally efficient. On a 

modern PC, a 4-s segment of recording could be analysed in less than a second; consequently, real-

time classification is possible once a model has been obtained. Further strengths and weaknesses have 

been discussed in section 4.7.1. 

This proposed system classifies neonatal EEG into the five proposed patterns with improved 

performance over contemporary work. These patterns are frequently observed in term neonates with 

HIE and are also associated with a range of adverse neurodevelopmental outcomes. In addition, the 

duration and occurrence of certain patterns are also very important in clinical settings, as they are 

predictive of neurodevelopmental outcome: for example, burst density, defined as the number of min 

spent in the burst state per hour. Also, Menache et al. [86] observed that neonates exhibiting an inter-

burst interval (IBI) (length of suppression between two burst patterns) duration > 30 s have 100% 

probability of experiencing severe neurologic disabilities or death and an 86% chance of developing 

epilepsy. The output from the classifier can be used to calculate both these indicators. However, direct 

prediction of neurodevelopmental outcome is beyond the scope of this chapter. To produce a robust 

classifier of abnormal vs normal patterns, the age of the subject must also be taken into account. 

Certain patterns that are quite normal in preterm neonates are considered abnormal in term neonates. 

For example, the maximum normal duration of IBIs allowable at 26–27 weeks gestational age (GA) 

is about 9 s, versus about 3 s in 38–40 weeks GA [23].  

4.7.1 Strengths and weaknesses  

 Features selected by GA-based feature selection could be overfitting in the case of high 

dimensional feature space. In contrast, HFS algorithm minimises the risk of overfitting 

because the HFS algorithm comprises maximum relevance and minimum redundancy 

(mRMR) and a genetic algorithm.  

 Most of the studies select the features first and then optimise the SVM tuning parameters 

using grid search algorithm. However, this search algorithm performs poorly. In addition, 

extra time is needed as the feature selection and parameter optimisation are done separately. 

In contrast, the HFS algorithm simultaneously selects the SVM tuning parameters and optimal 

feature set. It reduces computation time and complexity compared to separate optimisation.  
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 The (푡, 푓)-features used in this chapter show that HFS can improve the classification accuracy 

when combined t- and f-features. This demonstrates that (푡, 푓)-features take the non-

stationary property of real EEG signals and improve the classification accuracy. 

 This chapter also discusses a wide range of options or strategies for the users classifying multi-

channel signals, e.g., multi-channel EEG signal classification: from channel fusion to decision 

fusion, from single feature selection to class-specific feature selection. There is a trade-off 

between computational complexity and accuracy. Users can select the option, presented in 

this chapter, according to their need and available hardware resources, HPC facilities etc.  

Weaknesses: 

 Although the HFS algorithm requires less time than a GA-based approach, the computational 

cost is higher than filter-based approaches as it requires more time in the training and 

optimisation process, especially in the high-dimensional features space. However, once the 

optimised SVM is built, the testing process is less complex and faster as fewer features are 

generally selected than in the original feature set during the training and optimisation process. 

 The results are based on 50% of the total data and on 10-fold cross-validation. Validation as 

well as calculation of p-value on a separate database from different babies would be useful. 

This limitation is largely due to data collection constraints, and especially the marking of data 

by a neurologist, which is a complex and time-consuming procedure. 

4.8 Applications of the proposed method  
A decision support system (DSS) can be built to support clinical staff. We have created a program 

that visually presents the probable patient state in terms of posterior probabilities. The RBF-SVM can 

provide output probabilities of different patterns which can be used to identify different patterns. For 

example, Figure 4.17 builds a probabilistic output of 60 epochs consisting of seizure, burst and 

suppression. The corresponding actual output marked by the neurologist is also shown in Figure 4.17 

to visualise the classification probability. The classification probability > 0.5 indicates the presence 

of a background pattern.   
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Figure 4.17: Probabilistic output for the DSS. The ‘1’s in the solid line represent the presence of the actual patterns 
and ‘0’s the absence of that pattern. The dotted line represents the probabilistic output between 0 and 1. The red 
marks represent the misclassification segments. Note the individual segments are randomly selected from the source 
dataset for illustration; they do not represent a continuous recording. 

Like seizure probability plot, a probabilistic plot for artifact class can also be created. The probability 

of artifact close to ≈ 1 can be treated as highly contaminated (artifact) EEG, whereas probability ≈ 0 

can be treated as artifact-free EEG. This probabilistic plot, i.e. ‘EEG quality’ plot, can be used for 

continuous quality monitoring of EEG (see Figure 4.18). 

Figure 4.18:‘EEG quality’ plot.  
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4.9 Overall summary  
In this chapter, multichannel neonatal EEG background patterns such as burst, suppression and 

normal patterns in the presence of seizure and artifact are classified using six different possible 

approaches; two classification methods (classification using single and class-specific feature subset) 

and three fusion techniques (channel fusion, feature fusion and decision fusion). We show how 

different approaches and their combinations enhance classification accuracy. In addition, we have 

shown the importance of (푡,푓)-features when they are combined with the 푡 -domain and 푓 -domain 

features. For example, a feature vector containing only 푡 -domain and 푓 -domain n features (i. e.퐹푉 =

퐹푉   ) using the channel fusion technique achieves an overall average accuracy of 86% in this 

study, which is increased to an overall average accuracy of 91.7% when features from all domains 

are taken into account.  

Feature fusion and decision fusion can increase the classification accuracy to 94.8% and 96.4% 

respectively. Furthermore, classification using class-specific feature subset improves decision 

fusion’s overall average accuracy to 98.7% when compared to a single-feature subset. The system 

could provide a significant reduction in workload for physicians or allow for monitoring in situations 

where a specialist is not available. Translation of these findings, especially the DSS or ‘EEG quality’ 

plot, into an EEG monitoring system would be very useful for end users. The increases in 

classification accuracy also increase the computational complexity, particularly in the learning stage. 

There is a trade-off between computational resources and accuracy among different approaches and 

users can choose the approach according to their needs and available computational resources. 

Furthermore, the HFS simultaneously selects the optimal feature subset as well as optimal classifier 

parameters that increase the classification accuracy. Finally, the feature extraction routine, HFS 

algorithm and the different fusion techniques and classification methods presented in this study are 

applicable to many other classification problems such as brain-computer interface, machine condition 

monitoring and fault detection.  
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Chapter 5 Testing of EEG signal features that best predict 
neurodevelopmental outcome in term neonates with HIE 

5.1 Introduction  
Neonatal HIE is a major cause of morbidity and 

mortality in newborns [148, 149]. With the 

advent of potential neuroprotective and neuro-

restorative therapies, early and accurate 

diagnosis of HIE has become increasingly 

important. At the same time, reliable prognostic 

information is essential for counselling parents 

and caregivers [205]. 

To date, several different types of monitoring 

have been studied for outcome prediction. 

Laptook et al. [206] and Mirsa et al. [207] 

reported that Apgar score, based on simple 

clinical characteristics in the first 5 min after 

birth, provides useful prognostic information. 

However, the American Academy of Paediatrics 

and the American College of Obstetrics and 

Gynaecology have drawn attention to the fact 

that it should not be used alone to predict 

outcome [208]. The meta-analysis of 

biochemical markers of injury severity or of 

outcome, in serum, urine and/or cerebrospinal fluid in neonates with encephalopathy, by Ramaswamy 

et al. [209] concluded that no biomarker had yet been sufficiently validated to warrant routine clinical 

use.  

Recently, Alderliesten et al. correlated MRI-apparent diffusion coefficient (ADC) of the basal ganglia 

and thalamus, lactate/N-acetylaspartate (LAC/NAA) and N-acetylaspartate/choline (NAA/Cho) 

ratios extracted from diffusion-weighted MRI (DW-MRI) and proton magnetic resonance 

spectroscopy (H-MRS) with neurodevelopmental outcome [210]. The optimal timing of an MRI 

examination for prognosis of outcome in newborns with HIE is the second week of life and therefore 

its use for early prognostication may be limited [205]. 

 
What is already known on this topic? 
 
 

 
Different features extracted from EEG are 

associated with adverse neurodevelopmental 

outcomes in term neonates with HIE. 
 
 

 

 
What is the contribution of this study? 
 
 

 
 A prominent feature set, extracted from 

EEG close to 24h, has been selected by a 

HFS algorithm and validated using a 

LOSO cross-validation method. 
 

 An optimised SVM model has been built 

to test the model on a test database.  
 

 A decision support system has been 

created for continuous monitoring of EEG 

to predict neurodevelopmental outcome. 
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On the other hand, EEG has been shown in many studies to be a robust predictor of 

neurodevelopmental outcome. Conventional and amplitude-integrated EEG both perform well in the 

prediction of outcome [44] and in the early diagnosis and classification of HIE severity [12]. The 

benefits of EEG are that it can easily be implemented at the cot-side soon after birth, and it provides 

a real-time measure of cerebral function and its dynamic changes across time [12].  

A normal EEG is highly predictive of a normal outcome, and various abnormal EEG features have 

been consistently associated with neurological adverse outcomes or death [47]. For evidence, Shany 

et al. investigated 39 newborns with burst-suppression (BS) and found that 8 died within 3 years [15]. 

Roij et al. [16] showed that 60 of 160 newborns with flat trace (FT) or continuous low voltage (CLV) 

died or had major handicap. Horst et al. [17] studied 30 newborns with CLV patterns and found that 

6 died or had major handicap, while Douglass et. al. [18] assessed 22 newborns with only BS and 

found that 16 died or had major handicap. These abnormal outcomes are broadly supported by 

findings reported by others (see Chapter 2). 

A few studies, not included in the meta-analysis because of insufficient papers, have related EEG 

frequency, power, coherence [84, 106, 211-213], complexity and entropy [214] to outcome. Scher et 

al. related power analysis and spectral correlation with neurodevelopmental outcome in both preterm 

and term infants [213], especially lower power spectral measures in the higher frequency band during 

sleep. Quentin et al. correlated higher approximate entropy (ApEn) with lower burst suppression ratio 

(BSR) and low ApEn correlates with poor outcome [214]. Iyer et al. used different burst dynamics 

such as area under burst, scaling slope, burst symmetry and burst sharpness in preterm infants [215]. 

Like burst dynamics, Dereymaeker et al. proposed ‘suppression curve’, a measure of discontinuity of 

preterm EEG [216]. However, in the case of term infants, not only burst-suppression patterns but 

other abnormal patterns exist. Hence, building a model using only those features may be very limited 

for term infants.  

Most of the studies using the more sophisticated analytic methods mentioned above assume EEG is 

a stationary signal. However, EEG is a non-stationary signal, i.e. statistical properties of the frequency 

and amplitude content change over time, resulting from the relatively random firing of neurons. Joint 

time-frequency (푡, 푓) techniques are well suited to analysis of non-stationary signals. To the best of 

our knowledge, JTF-based features have not been explored in relation to predicting 

neurodevelopmental outcome. Previous studies suggest that dynamic features extracted from JTF 

show outstanding performance in detecting newborn seizures [29] and automatic grading of EEG 

background patterns [155]. We propose that JTF-based dynamic features may also be useful in 

predicting outcome. In addition, most of the cited works were limited to linear methods that consider 
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a single feature at a time. A nonlinear and complex relationship between these predictors has not been 

explored, and in fact may improve accuracy considerably, with each parameter providing 

complementary information.  

In this study, various temporal, spatial and (푡, 푓) based dynamic features are extracted and selected 

to build a nonlinear support vector machine (SVM) model to predict the neurodevelopmental outcome 

using EEG collected during the first 24 h after birth. This proposed method provides a promising 

extension of the field of neonatal neurophysiology with this decision support system.  

The major aspects and key contributions of this study are as follows:  

 First, a novel pre-processing step is used to remove the unwanted noise and artifacts. This 

process uses a robust artifact removal (RAR) method (Section 5.3.1). 

 Various time domain, frequency domain and (푡, 푓) -domain features are extracted from the 

neonatal EEG recorded within the first 24 h after birth to seek associations with the 

neurodevelopmental outcome in term neonates with HIE (Section 5.3.2). 

 A novel hybrid feature selection algorithm (HFS) is used to select a prominent feature set and 

optimise the SVM tuning parameters. This HFS algorithm is used in the statistically least-

biased leave-one-subject-out (LOSO) cross-validation process to ascertain the most consistent 

feature set (Section 5.3.4). 

 A nonlinear SVM model is built based on the most consistent feature subset found by the 

LOSO system, and a neonatal EEG database is used to test the predictive capability of the 

model (Section 5.4.2). 

 Finally, a probabilistic decision support system is derived as a potential application of the 

proposed system (Section 5.5). 

5.2 Materials  
Two datasets of term infants with HIE have been used: (i) the BEES study dataset (collected at the 

Royal Brisbane and Women’s Hospital (RBWH) in a prospective, longitudinal, observational cohort 

study, with both continuous 2-channel and shorter recordings of multichannel EEG), and (ii) the 

NEST study dataset (collected from RBWH and other NICUs in a multicentre RCT, with continuous 

2-channel EEG).  
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Figure 5.1: Diagram of subject numbers as included in the study. 

 

Table 5.1: Demographics of the term data set with EEG and clinical outcome information 

Information Value Range 
(Min−max) 

Standard 
deviation 

Clinical details    
Subjects, n 67   
Sex, male/female, n 38/29   
Gestational age, Weeks (mean) 39.3 34 − 42 1.89 
5-min Apgar score (mean) 4 0 − 9 2.54 
    
EEG information    
Recording duration (close to 24 
hours after birth) 

2 h   

    
Neurodevelopmental outcome 
(BSITD) 

   

Cognitive (composite score) 
(mean) 

84 54 − 154 26.2 

Language (Composite score) 
(mean) 

81 47 − 150 25.9 

Motor (Composite score) 
(mean) 

82 46 − 127 25.1 

CB-III (Composite score)  
(mean) 

83 51 − 147 25.7 

D1, good/poor, n 42/25   
D2, optimal/suboptimal, n 40/27   
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Parental written informed consent was obtained for all subjects. The study had ethical approval from 

the human research ethics committees at the Royal Brisbane and Women’s Hospital, Brisbane, 

Australia (BEES) and the Royal Children’s Hospital, Melbourne, Australia (NEST). This trial is 

registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), number 

ACTRN12611000327987. Subject names were encrypted before analysis.  

As mentioned in Chapter 1, HIE is defined as the presence of two of the following three features in 

the presence of a known perinatal event [3]: need for respiratory support shortly after birth, an Apgar 

score at 5 min of < 5, or evidence of acidosis (pH< 7) [3]. A total of 127 term infants were available 

and 67 infants were included in the analysis (see Table 5.1). EEG data from 40 babies were randomly 

selected from the 67 infants for feature selection, parameter optimisation and finally for optimised 

model generation. The remaining 27 infants’ EEGs were used to test and validate the model. 

5.2.1 aEEG/ EEG monitoring  

 

Figure 5.2: The 2-channel aEEG/EEG screen of a subject with abnormal outcome. The top 2 rows show the 3-h 
condensed amplitude integrated EEG (aEEG) background for the left and right channels. The bottom two rows 
are the 10-s windows of EEG tracing over the central parietal regions of the left and right hemispheres. This 
aEEG/EEG pattern shows a flat trace pattern over both hemispheres. 

All infants were monitored with a 2-channel EEG (퐶3− 푃3 and 퐶4 − 푃4) using hydrogel electrodes 

with a BRM 2/3 or OBM monitor (BrainZ Instruments, Natus Medical, San Carlos, California, USA) 

[3, 39]. Figure 5.2 illustrates EEG recorded using an OBM monitor, which samples with a frequency 

of 200퐻푧. EEG data were then exported to Matlab for pre-processing and all other analyses.  
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5.2.2 Neurodevelopmental outcome 

A standardised neurodevelopmental test at 24 months corrected age with the Bayley scales of infant 

development, versions II and III (BSID-II and BSITD-III), was performed by an independent 

psychologist blind to the clinical history. BSID-II provides Mental Developmental Index (MDI) and 

Psychomotor Developmental Index (PDI) sub-scores, whereas BSITD-III splits the original MDI 

scores into cognitive, receptive language, and expressive language scores, and the PDI into fine and 

gross motor scores. BSITD-III also provides a social-emotional score and an adaptive behaviour 

score. BSID-II tests were performed on 9 babies and all other cases were tested using BSITD-III. 

BSID-II scores have been converted to BSID-III using a published recommended approach [217, 218] 

(see Table 5.2) to unify the analysis. In addition, a combined BSITD-III score (CB-III) was calculated 

by averaging BSITD-III’s cognitive and Language scores [31]. Newborns unable to be tested with 

the BSITD-III, due to severe cerebral palsy (CP), severe developmental delay or death prior to testing, 

were assigned a score of 54 for the BSITD-III composite score [30].  

Table 5.2: Conversion table for (a) BSID-II MDI and (b) PDI scores to BSID-III composite cognitive/language 
and motor scores, respectively. 

BSID-II MDI 60 65 70 75 80 85 90 95 100 105 110 
BSID-III Combined Cognitive  
/Language Scores [217, 218] 

80 83 87 90 93 96 100 103 106 109 113 

 
 

           

BSID-II PDI 60 65 70 75 80 85 90 95 100 105 110 
BSID-III Combined Motor Scores 
[217, 218] 

78 82 86 90 94 98 102 106 110 114 118 

 

Two dichotomous outcome groupings of neurodevelopmental outcome have been used [215]:  

I. Dichotomous-1 (D1): classifies the neurodevelopmental outcome as ‘good’ by grouping 

normal/mildly abnormal outcome and ‘poor’ by grouping Vs moderate/severe abnormality. 

Poor outcome was defined by a score <85 in all subscales or <70 in any subscale; otherwise 

the outcome was classified as ‘good’.  

II. Dichotomous-2 (D2): Newborns are considered as optimal or suboptimal based on a cut-off 

CB-III score of 85, 1 standard deviation below the mean standardised combined score of 100. 

5.3 Methods 
In Chapter 2, the EEG patterns that best predict the neurodevelopmental outcome were identified. In 

Chapter 4, various signal features have been extracted to classify these identified EEG patterns. The 

findings suggest a strong relationship between EEG signal features and neurodevelopmental outcome 
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(Figure 5.3). In this chapter, this relationship will be thoroughly explored using state-of-the-art signal 

processing and machine learning approaches.  

The general approach is shown in Figure 5.4. Various features are extracted and selected from the 

neonatal EEG record soon after birth in term neonates with HIE to seek association with the 

neurodevelopmental outcome obtained at two years. 

 

Figure 5.3:  Relationship between EEG signal features and outcome. 

 

 

Figure 5.4: Study overview. 

5.3.1 EEG pre-processing 
EEG pre-processing is an important step before analysis as the inclusion of different types of artifact 

can produce misleading results. Recordings with an impedance > 10 kΩ or EEG amplitude exceeding 

+100 휇푉 or −100 휇푉 were excluded first [39, 219]. EEG signals were then high-pass filtered with 

a cut-off frequency of 0.5 Hz, de-trended to remove linear trend using Matlab function, 푑푒푡푟푒푛푑, and 

finally a robust artifact removal (RAR) method was applied [220]. This method also obeys the recent 

EEG artifact removal guidelines [221], which recommend combining ‘more than one algorithm to 

correct the signal using multiple processing stages’ [221]. In the RAR method, independent 

component analysis (ICA) and wavelet denoising (WD) are combined to remove artifacts [220]. EEG 

is processed in multiple frames three times, each time with a different partitioning of the signal. The 

number of frames are calculated from the signal length [220]. Finally, an adaptive folding and low-
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pass filter are used to obtain a clean EEG signal. This method has been tested on neonatal EEG signal 

[220] and shown to not significantly affect the signal, and so was used in this research. Figure 5.5 

shows the block diagram of the RAR method and details of the RAR method can be found in [220]. 

A 2-h data segment was then chosen for each subject as close as possible, but prior, to 24 h after birth. 

 

Figure 5.5: Different steps of the RAR method [220]. Firstly, artifacts with high amplitudes are removed (first 
blue block) and after that wavelet-based ICA (wICA) (green blocks) is used to remove short duration artifacts. 
This figure is reproduced from [220] with permission. [Permission was obtained from Physiological Measurement 
(http://iopscience.iop.org/journal/0967-3334), an IOPScience journal].  

5.3.2 EEG feature extraction  

After pre-processing, all EEG datasets were down-sampled to 64 Hz and segmented into 60 s epochs 

with no overlapping. The segment length of 60 s was chosen arbitrarily but has been previously used 

in clinical studies predicting neurodevelopmental outcome [41, 205] and is a convenient sample 

length for use in JTF calculation. 

Limited prior knowledge is available on what signal processing features most accurately predict 

outcome, so an exploratory large set of features was extracted in the time (푡) domain, frequency (푓) 

domain and joint (푡, 푓) domain. We chose to describe the signal from as many perspectives as 

possible to provide a systematic, efficient and exhaustive characterisation of neonatal EEG 

background activity. All analyses were performed using the high-performance computing system at 

the Research Computing Centre at the University of Queensland. Table 5.3 lists the features used in 

this study. Describing all the features in detail would be trivial and we have therefore provided 

references (see Table 5.3) for their mathematical derivations and/or code implementations. Features 

were mainly extracted from 1-min epochs and these were denoted local or short-term features. Some 

http://iopscience.iop.org/journal/0967-3334
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features are also extracted from the entire 2-h EEG dataset and these are denoted global or long-term 

features.   

5.3.2.1 Local features extraction 

5.3.2.1.1 Time domain features extraction 

Different time-domain features such as mean, variance and mean inter-burst interval (IBI) provide 

the temporal evaluation of the EEG signal. For example, the variance corresponds to the energy of 

the signal, skewness is a measure of the symmetry of the amplitude distribution and kurtosis is a 

measure of the relative peakiness or flatness of the amplitude distribution [222]. During the pre-ictal 

period, a decrease in variance and an increase in kurtosis were observed [222]. Similarly, time 

between two burst periods provides a promising indicator of neurodevelopmental outcome [86]. In 

addition, EEG is the electrical activity of brain taking place at higher hierarchic levels of the central 

nervous system, which is a suitable area for entropy and nonlinear time series analysis techniques 

[223] and normal and abnormal EEG provides distinguishable entropy and nonlinear information. 

For this reason, different nonlinear features were also extracted from neonatal EEG signals. Table 5.3 

includes all the time-domain features used in this study. These features have also been shown to be 

useful and have been consistently used for outcome prediction [205] and neonatal seizure detection 

[148].  

5.3.2.1.2 Frequency domain features extraction  

The frequency content in EEG is of great importance, as different physiological and cognitive 

processes are reflected in activity in different frequency ranges of EEG [224, 225]. Moreover, 

neonatal HIE is a low-frequency, high-impact condition that poses specific challenges [226]. An EEG 

with normal outcome may provide different information compared to an EEG with poor outcome in 

different frequency bands. Therefore, the power in different frequency bands such as 

delta(0.5 − 4 Hz), theta (4 − 8 Hz), alpha (8− 12 Hz), beta (12− 30 Hz) and their ratios, such as 

delta-to-theta power ratio (DTR) and delta-to-alpha power ratio (DAR) may also useful. In addition, 

the ‘spectral edge frequency’ is a quantification of the power distribution along the spectral range of 

a given signal [222]. These features have been frequently used in neonatal EEG [225, 227]. Table 5.3 

lists the frequency domain features used in this study.  

5.3.2.1.3 Time-frequency domain features extraction  

JTF analysis takes the time-varying spectral contents of the EEG into account. The (푡, 푓) can be 

represented by the signal’s energy distribution simultaneously as a function of both time and 

frequency called time-frequency distribution (TFD). The QTFD is one of the most useful classes of 
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TFD and has shown promising results for non-stationary signal analysis and EEG classification [29, 

33]. Therefore, the QTFD was chosen for this study. The Wigner-Ville distribution (WVD) is a highly 

concentrated and sharply localised QTFD, but the resolution is very poor due the quadratic nature of 

the transform and it produces cross-term interferences in a multicomponent signal such as EEG. These 

cross-terms can be reduced (or smoothed) by applying a data-dependent kernel. Chapter 3 provides a 

Hybrid Genetic Algorithm (HGA) to obtain a fully-optimised and high-resolution QTFD for a non-

stationary signal like EEG.  

The epoch size of the 60 s segment of EEG signal was 3840 (i.e. 60 s × 64 Hz = 3840 sample 

points). Currently, standard QTFD implementation algorithms cannot handle such a large EEG epoch 

using a standard standalone computer because TFDs are two dimensional (2D) functions and require 

푁 log 푁 numerical operations (a basic FFT element requires 푁푙표푔 푁 operations; 푁 is the signal 

length). To deal with this, a fast, memory-efficient and optimised QTFD is needed (see Chapter 3). 

We have implemented a fast and optimised QTFD (see previous chapter) called extended modified 

B distribution (Fast EMBD) (see Chapter 3). This TFD was used to extract (푡, 푓) features. For 

example, instantaneous frequency (IF) and EEG band-specific instantaneous spectral power ratio 

(ISPR) are the unique features of a TFD and can be treated as dynamic features. Different statistical 

features such as mean, variance etc. are extracted from the IF and ISPR and used (see Table 5.3) with 

their derivation found in the previous chapter.  

5.3.2.2 Composite features extraction 

The inter-relationship between two hemispheres can provide useful information about functional 

connectivity and has been shown to be associated with the cognitive outcome [228]. This inter-

hemispheric dependence can be measured by EEG coherence, phase-locking value (PLV) and brain 

symmetry index. Table 5.3 provides a list of composite features used.  

Table 5.3: EEG feature extraction from different domains. 

Features Domain Feature based on Features Name 

L
oc

al
 fe

at
ur

es
 

Ti
m

e(
푡)

 

Statistical features 
(퐹푉 ) 

First four (mean, variance, skewness, kurtosis) statistical 
moments [35] 
Coefficient of variation, RMS power, Max, Min [35] 
Mean of the lower and upper envelope ([33],pp 944-945) 
Number of zero-crossing in first and second 
derivatives[205] 
Mean and median of IBI (inter-burst interval) [229]  

Entropy based 
features 

(Nonlinear 
features) 

(퐹푉 ) 

Hjorth moments, Hjorth complexity [148, 195] 
Higuchi fractal dimension, algorithmic entropy [163] 
Renyi, Shannon and Tsaillis entropy [164, 230] 
Approximate and Sample entropy [166] 
Hurst exponent [168, 230] 
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Fr
eq

ue
nc

y(
푓)

 

Spectral and 
relative power-
based features 

(퐹푉 ) 

Spectral Flatness, Flux and Entropy [35] 
Spectral Edge frequency at 80, 90 and 95% [169, 195, 
222] 
Spectral Edge power at 80, 90 and 95% [169, 195, 222] 
Total power in delta, theta and alpha bands [222] 
Relative power in delta, theta and alpha bands w.r.t total 
EEG power [170, 222]  
Delta to theta power ratio (DTR) [231] 
Delta to alpha power ratio (DAR) [222, 232] 
Mean bout in delta, alpha and theta band [229]  
Bout percentage in delta, alpha and theta band[229] 
 

Ti
m

e-
fre

qu
en

cy
 (푡

,푓
) 

(푡,푓) -signal based 
features 
퐹푉( , )  

First four statistical moments of the TFD [29] 
TF Entropy, Entropy, Flatness and Flux [29] 
Instantaneous Frequency mean and range [29] 
Maximum and Entropy of the singular values  
Gini Index [172], ECM  

(푡,푓)-band specific 
features 

퐹푉( , ) _  
 

[in Delta, Theta, 
Alpha, Beta bands] 

 

 
 
First four statistical moments of the 퐼푆푃푅 [161] 
Coefficient of Variation of the 퐼푆푃푅 [161] 

푡,
푓,

ph
as

e Composite features 
Between two 

channels 
퐹푉  

Mean, variance and max of magnitude squared coherence 
Brain symmetry index (BSI) [205, 233] 
Mean, variance and max of phase-locking value (PLV) 
[234] 

G
lo

ba
l 

fe
at

ur
es

 

−
 Global features 

퐹푉  

Low activity duration and Low activity density  
High activity duration and High activity density 
Global mean (IBI) [229] 
Global median (IBI) [229] 

5.3.2.3 Global features extraction  

All the features extracted above are from a 1-min epoch. However, we hypothesise that not only features 
extracted from the 1-min EEG epoch, but also features extracted from long duration EEG signal may 
be useful in predicting neurodevelopmental outcome. Several features have been extracted from the 
whole 2-h EEG signal and these features are denoted global features. The longer-term evolution of the 
EEG may provide discriminative information that might be useful in predicting neurodevelopmental 
outcome. Low activity duration and low activity density, high activity duration and high activity 
density, global mean and median of (IBI) are proposed as global features in this study.  

Low activity duration is defined as the amount of time (in min) the EEG amplitude lies between 
+5 휇푉  and−5 휇푉. The low activity duration density is defined as the low activity duration per hour. 
These features are the indication of low voltage and our structured review and meta-analysis (see 
Chapter 2) shows that low voltage is one of the robust predictors of neurodevelopmental outcome (see 
Chapter 2). Like low voltage duration, high activity duration is defined as the amount of time EEG 
amplitude exceeds +60 휇푉  or −60 휇푉. Similarly, high activity duration density is defined as the high 
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activity duration per hour. Global IBI is the IBI calculated from the whole 2-h EEG signal [229]. Like 
low voltage, IBI is also one of the predictors of outcome [86].  

5.3.3 Feature vector formulation  
All the features mentioned in Table 5.3 have been extracted from 2-channel EEG and concatenated to 
create the final feature vector (퐹푉 ). The following steps were used to create the final feature 
vector, 퐹푉 .  

1. Firstly, all the features extracted from the left EEG channel are used to create the left EEG feature 
vector (퐹푉 ) by concatenation. This can be written mathematically as:  

퐹푉

= 퐹푉    퐹푉    퐹푉     퐹푉( , )   퐹푉( , ) _  
 퐹푉  

(5.1) 

 

where subscript ‘퐿’ represents the left-channel EEG. Note that 퐹푉  is a one-dimensional (1퐷) 

matrix as it is extracted from entire 2-h left channel-EEG signal whereas all other feature vectors are 
2퐷 matrix consisting of 푃 rows: each row represents the features extracted from 1-min epoch. The 
퐹푉  is repeated 푃 times (using Matlab 푟푒푝푚푎푡 function) to form a 2퐷 matrix to meet the 

requirement of matrix concatenation. 

2. The feature vector (퐹푉 ) from the right EEG channel is also created by following step 1. This can 

also be expressed as: 

퐹푉 = 퐹푉    퐹푉    퐹푉     퐹푉( , )   퐹푉( , ) _  
 퐹푉  (5.2) 

where subscript ‘푅’ represents the right-channel EEG. 

3. Both feature vectors extracted from the left and right-channel EEG i.e. 퐹푉  and 퐹푉  are fused 

together. The mean and absolute difference between 퐹푉  and 퐹푉  are used to form 퐹푉  and 퐹푉  

vectors. These can be expressed as: 

 퐹푉 =
퐹푉 + 퐹푉

2
 (5.3) 

 퐹푉 = |퐹푉 − 퐹푉 | (5.4) 

4. Finally 퐹푉 , 퐹푉  and 퐹푉  features vectors are concatenated to form the high 

dimensional final feature vector (퐹푉 ). This can be expressed as:  

 퐹푉 = (퐹푉 )   퐹푉   퐹푉   (5.5) 
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5. By following steps 1–4, 퐹푉  is created for all subjects. These final feature vectors are used for 

feature selection and neurodevelopmental outcome prediction.  

5.3.4 Feature selection  

The 퐹푉  generates a high dimensional feature set. Learning from such a high dimensional feature 

set leads to high computational load and decreases the classification accuracy due to irrelevant and 

redundant features. Therefore, the most-discriminative and non-redundant feature subset needs to be 

selected. This is known as ‘feature subset selection’ or ‘feature selection’.  

The support vector machine (SVM) classifier is used as it is computationally stable and has been 

successfully applied to EEG signal classification [29]. The SVM classifier finds a hyperplane by 

maximising the margin between the classes using the data instances (support vectors) close to the 

hyperplane and it has a regularisation parameter (퐶). A detailed description of the SVM has been 

provided in the previous chapter. The Gaussian radial basis kernel (RBF) is used in this study as it 

requires only one parameter (훾) to be optimised [29]. Conversely, other popular kernels, e.g. 

polynomial kernel, require several parameters to be optimised.  

In the current context, (퐶, 훾) parameters need to optimise for the optimal use of the RBF-SVM along 
with the feature subset selection. In the previous chapter, a hybrid feature selection (HFS) algorithm 
was proposed to simultaneously select prominent feature subset and SVM tuning parameters (퐶, 훾). 
The HFS algorithm comprises a maximum relevance and minimum redundancy (mRMR) [194] 
method and a genetic algorithm (see previous chapter for details). 

 
(a) 
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(b) 

Figure 5.6: (a) Workflow in the LOSO performance assessment, and (b) the HFS algorithm used in the LOSO 
cross-validation system.  
 

Note that the feature is normalised before applying the HFS algorithm because the numerical range 

of one feature or attribute can be different from another feature and normalisation is used to avoid the 

dominance of the feature which has a higher numerical range over the feature which has the lower 

numerical range. Each feature is normalised by the following equation. 

 
퐹 =

퐹 − 퐹
퐹

 
(5.6) 

where 퐹 and 퐹  are the original and normalised feature value and 퐹 ,퐹  are the mean and 

standard deviation of the feature value respectively. These 퐹 ,퐹  are also stored to normalise the test 

instances. 

The HFS algorithm is adapted to a leave-one-subject-out (LOSO) cross-validation system. Figure 

5.6(a) shows a schematic workflow of the LOSO cross-validation system. Figure 5.6(b) shows the 

HFS algorithm used in the feature selection and parameter optimisation part of Figure 5.6(a). In the 

HFS algorithm, the maximum relevance and minimum redundancy (mRMR) method [194] is used to 

initially reduce the original features, (let’s say, the number of original features (퐹푆 )), down to a 

more manageable 푧 most discriminative features, and a genetic algorithm(GA) is then used to select 

the most prominent feature set, from this reduced set. It also selects the optimal (C, γ) parameters 
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simultaneously. Note that GA can diverge from the feasible search space if the RBF-SVM tuning 

parameters (퐶,훾) are not bounded. The lower bound and upper bound for 퐶 : 2 , 2   and for 훾 : 

2  and 2  are chosen. These larger range should be enough for the selection of optimal (퐶, 훾) 

parameters [180]. Details of the HFS algorithm can be found in the previous chapter.  

In the LOSO system, the feature set extracted from one subject is used for testing while the features 

extracted from all other (푁 − 1) subjects are used for training and optimisation. A model is built using 

this optimal feature subset and optimal SVM parameters. This optimised and nonlinear model is used 

to predict neurodevelopmental outcome on the test data. Importantly, the testing data is unseen or 

unused in the optimisation process. This process is iterated until all subjects are tested. Note that the 

selected feature subset may not be consistent for all iterations or subjects. To identify features that 

appear to be consistently useful in most of the LOSO iterations, the top N features, after applying the 

HFS algorithm, are identified by using a majority voting system. The majority voting algorithm was 

performed by counting the number of times a feature appears in LOSO iterations and then sorting 

(higher to lower counts) to find the most consistent features. This process will offer better feature 

subset selection that correlates best with neurodevelopmental outcome in most subjects. These most 

consistent features will be used to build the final SVM model. An averaged value of the SVM tuning 

parameters across all LOSO iterations will be used in the final model. This final optimised SVM 

model will be used to test a completely unseen test database.  

To determine the number of features that provides the highest accuracy in predicting good/poor and 

optimal/suboptimal outcome, we repeated the procedures with different number feature sets, i.e. 푧 =

10, 15 and 20 features. The prediction performance is measured in terms of 

Sensitivity, PPV,퐹푚푒푎푠푢푟푒 and accuracy as defined below. 

5.3.5 Performance assessment matrices  
The prediction performance can be assessed using the following standard quality measures: 

 푅푒푐푎푙푙 = 푆푒푛푠푖푡푖푣푖푡푦 =  
푇푃

푇푃 + 퐹푁
× 100% 

푆푝푒푐푖푓푖푐푖푡푦 =
푇푁

퐹푃 + 푇푁
× 100% 

푃푟푒푐푖푠푖표푛 = 푃푃푉 =  
푇푃

푇푃 + 퐹푃
× 100% 

퐴퐶퐶 =
푇푃 + 푇푁

(푇푃 + 퐹푁 + 푇푁 + 퐹푃)
× 100% 

 

 

 

(5.7) 

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative, PPV= 

positive predictive value. Specificity is less important than Precision [184], and hence is not included 
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in this study (see previous chapter for a more detailed explanation). A more robust measure is 

퐹푚푒푎푠푢푟푒 as it takes the classifier’s Precision and Recall into account. 퐹푚푒푎푠푢푟푒 is defined as: 

 
퐹푚푒푎푠푢푟푒,퐹 =

(1 + 훽 )(푃푟푒푐푖푠푖표푛 × 푅푒푐푎푙푙)
훽 . (푃푟푒푐푖푠푖표푛 + 푅푒푐푎푙푙)

 
(5.8) 

Note that β is usually set to 1 in the 퐹푚푒푎푠푢푟푒 calculation; see section 4.4.5 for detail justifications. 

5.4 Results  
Prediction results for good/poor outcome and then for optimal/suboptimal outcome will be described. 

The LOSO cross-validation was used in both cases.  

For each subject, Sensitivity, PPV, 퐹푚푒푎푠푢푟푒 and accuracy were calculated along with an average 

value of these performance measures across all subjects (Table 5.4). A feature set comprising 15 

features shows the highest average accuracy of 88.4% and average 퐹푚푒푎푠푢푟푒 of 90.8% compared 

to a feature set of 10 or 20 features.  

For the optimal/sub-optimal outcome classification, as in Table 5.4, an average prediction 

(optimal/sub-optimal) result across all the subjects was calculated and is presented in Table 5.5. The 

prediction result using 10 features shows an average accuracy of 85.6% and the accuracy decreases 

when more features are added; for example, prediction results using 15 features shows a mean 

accuracy of  82.5%. Although a feature set comprising 20 features increases the average accuracy of 

89.6%, a model using 20 features may overfit the system and decrease the classification performance 

for the new testing instances. 

Table 5.4: The average performance (%) of the LOSO system predicting good and poor outcome. 

Good and poor outcome 
Result using Sensitivity PPV Fmeasure Accuracy 
10 Features 87.5 95.0 88.8 87.5 
15 Features 88.4 95.0 90.8 88.4 
20 Features 83.6 97.5 86.4 83.6 

 

Table 5.5: The average performance (%) of the LOSO system predicting optimal and sub-optimal outcome. 

Optimal and sub-optimal outcome 
Result using Sensitivity PPV Fmeasure Accuracy 
10 Features 85.6 97.5 88.9 85.6 
15 Features 82.5 95.0 86.6 82.5 
20 Features 89.6 97.5 92.2 89.6 
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5.4.1 Selection of the most consistent features  
Attention has already been drawn to the fact that the selected feature subset may not be consistent for 

all LOSO iterations or subjects. A majority voting algorithm was used to obtain the most consistent 

features.  

Table 5.6:  The most consistent 15 features for the prediction of good/poor outcome. 

Selected 15 features   
Bout percentage in Delta band  
Bout percentage in Theta band  
(푡,푓) Singular Values entropy  
Mean bout in Alpha band  
Low activity duration density  
Low activity duration  
(푡,푓) Shannon entropy  
IBI Median  
kurtosis of ISPR in Delta band  
Global Mean IBI  
(푡,푓) variance ISPR in Delta band  
kurtosis  
DAR  
Mean of lower envelope  
(푡,푓) Skewness ISPR in Alpha band  

 

As can be seen from Table 5.4, a SVM model comprising 15 features provides the highest average 

cross-validation accuracy in predicting good/poor outcome and, therefore, the most consistent 15 

features were selected from LOSO iterations. Table 5.6 lists the most consistent 15 features for the 

prediction of good and poor outcome. 

Similarly, it can be seen from Table 5.5 that a model comprising 10 features provides higher cross-

validation accuracy for predicting optimal/suboptimal outcome than a model comprising 15 features 

and, therefore, the most consistent 10 features were selected from LOSO iterations. Table 5.7 lists 

the most consistent 10 features for the prediction of optimal/suboptimal outcome. 

Table 5.7: The most consistent 10 features for the prediction of optimal/suboptimal outcomes. 

Selected 10 features  
    Bout percentage in Theta band 
    Low activity duration density 
    Low activity duration 
    Global median IBI  
    (푡,푓) ISPR in Theta band 
    Mean bout in Alpha band 
    Bout percentage in Delta band 
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    (푡,푓) Shannon entropy 
    Difference in kurtosis 
    Skewness 

5.4.2 Testing of the model on a test database 

Although the LOSO cross-validation has been shown to be the most unbiased estimator, validation 

of the proposed model developed by the selected features would be useful to show the robustness of 

the model. To validate the model, we have used a completely separate database recorded from 27 

term neonates with HIE. This database was not used in either the model or the LOSO cross-validation 

system. The performance of the proposed model is shown for individual subjects. Table 5.8 lists the 

prediction performance of good and poor neurodevelopmental outcome, while Table 5.9 lists the 

prediction performance of optimal and suboptimal outcome. Table 5.8 and Table 5.9 also provide 

gold standard binary neurodevelopmental outcome at two years, assessed by the neurologists to 

compare between gold standard neurodevelopmental outcomes and the results predicted by the model 

in terms of Fmeasure and accuracy. To illustrate, Subject 1 can be chosen. The gold standard binary 

neurodevelopmental outcome for Subject 1 is defined as ‘good’ and ‘optimal’. The model predicted 

the outcome as ‘good’ with Fmeasure and accuracy of 100% and 100% (see Table 5.8); and ‘optimal’ 

with Fmeasure and accuracy of 97.4% and 95% (see Table 5.9), respectively. Other subjects stated in 

Table 5.8 and Table 5.9 can be interpreted in the same way. 

The model lacked accuracy in predicting the neurodevelopmental outcome of subjects 11 and 17. 

The neurodevelopmental outcome for subject 11 is defined as ‘good’ and ‘optimal’ but the model 

predicts ‘poor’ and ‘suboptimal’, whereas for subject 17 the opposite phenomenon occurred. In 

the case of subject 11, a moderately abnormal EEG trace was observed at 24 h but improved after 

that. The 2-year BSID-III cognitive and language scores of this subject were 130 and 115 

respectively, well above the average value, but the motor score was 82, which is below the average. 

Although this subject had a lower than average motor score, the neurodevelopmental outcome was 

thresholded to ‘good’ outcome (see Section 5.2.2). In the case of subject 17, a mildly abnormal 

EEG trace was observed at 24 h but the HI severity increased after that and the baby died prior to 

2 years of age. The EEG features extracted at that time point predicted a ‘good’ outcome using the 

model, but the patient died which was classified as a bad outcome. Table 5.10 summarises the results 

of Table 5.8 and Table 5.9 by showing the mean value of the all subjects. Note that the 퐹푚푒푎푠푢푟푒 is 

derived from Sensitivity, PPV and, therefore, this redundant information, i.e. Sensitivity, PPV are not 

presented in Table 5.8 and Table 5.9. 
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Table 5.8: Prediction of good and poor outcome on the test dataset 

Subject No 
Neurologist 
‘Gold standard’*  

Model prediction 
Fmeasure Accuracy 

Subject 1 Good 100 100 

Subject 2 Good 97.9 95.83 

Subject 3 Good 97.0 94.17 

Subject 4 Good 68.1 51.67 

Subject 5 Good 99.6 99.17 

Subject 6 Good 100 100 

Subject 7 Good 100 100 

Subject 8 Good 100 100 

Subject 9 Good 100 100 

Subject 10 Good 99.6 99.17 

Subject 11 Good 0 0 

Subject 12 Good 100 100 

Subject 13 Good 91.9 85 

Subject 14 Good 100 100 

Subject 15 Good 100 100 

Subject 16 Good 100 100 

Subject 17 Poor 0 0 

Subject 18 Poor 100 100 

Subject 19 Poor 91.4 84.2 

Subject 20 Poor 90.9 83.3 

Subject 21 Poor 6.45 3.33 

Subject 22 Poor 100 100 

Subject 23 Poor 100 100 

Subject 24 Poor 100 100 

Subject 25 Poor 94.3 89.2 

Subject 26 Good 100 100 

Subject 27 Poor 85.7 75 
*This is gold standard binary neurodevelopmental outcome at 2 years 
assessed by neurologists. 
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Table 5.9: Prediction of optimal and suboptimal outcome on the test dataset 

Subject No 
 

Neurologist 
‘Gold standard’* 

Model prediction 

Fmeasure Accuracy 

Subject 1 Optimal 97.4 95 

Subject 2 Optimal 67.4 50.8 

Subject 3 Optimal 66.7 50 

Subject 4 Optimal 34.5 20.8 

Subject 5 Optimal 87.3 77.5 

Subject 6 Optimal 100 100 

Subject 7 Optimal 100 100 

Subject 8 Optimal 100 100 

Subject 9 Optimal 45.2 29.2 

Subject 10 Optimal 97 94.2 

Subject 11 Optimal 0 0 

Subject 12 Optimal 96.1 92.5 

Subject 13 Optimal 100 100 

Subject 14 Optimal 100 100 

Subject 15 Optimal 100 100 

Subject 16 Optimal 98.3 96.7 

Subject 17 Sub-optimal 0 0 

Subject 18 Sub-optimal 100 100 

Subject 19 Sub-optimal 100 100 

Subject 20 Sub-optimal 100 100 

Subject 21 Sub-optimal 66.7 50 

Subject 22 Sub-optimal 100 100 

Subject 23 Sub-optimal 88.4 79.2 

Subject 24 Sub-optimal 100 100 

Subject 25 Sub-optimal 99.6 99.2 

Subject 26 Optimal 15.4 8.33 

Subject 27 Sub-optimal 100 100 
*This is gold standard binary neurodevelopmental outcome at 2 years 
assessed by neurologists. 

 

Table 5.10: The average performance (%) on the test database**.  

Outcomes Optimal Features Fmeasure Accuracy 

Good/Poor Using 15 Features 85.8 83.8 

Optimal/Suboptimal Using 10 Features 78.0 75.4 

** This average performance was calculated from Table 5.8 and Table 5.9. 
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5.4.3 Comparison with other studies/ approaches 

The proposed method was derived from wide range of features, ranging from 푡-domain to joint (푡,푓)-

domain features, and from local to global features. Studies also used entropy-based features such as 

approximate entropy (ApEn) [235, 236] and sample entropy (SpEn) [237] with outcome. 

Approximate entropy and sample entropy with optimal parameters were applied in our database for 

a fair comparison with our results. Table 5.11 presents a quantitative comparison predicting good and 

poor outcome, while Table 5.12 presents a quantitative comparative study predicting optimal and 

suboptimal outcome for different studies/approaches. It can be seen that accuracy is about 69.3% and 

67.5% predicting good and poor outcome using ApEn and SpEn based studies respectively, and about 

67.4% and 67.1% respectively predicting optimal and suboptimal outcome. The accuracy is more 

than 12% lower than our proposed method. The classification result of our proposed method is 

significantly better (i.e. p<0.001, ANOVA test) than ApEn, and SpEn based studies in terms of 

predicting good/poor and optimal/suboptimal outcome. However, ApEn and SpEn-based studies are 

simpler than our proposed method, as only entropy-based features are used. Therefore, only ApEn 

and SpEn need be calculated, whereas in our proposed method 15 features must be calculated. The 

prediction accuracy is more important than system complexity, especially in the case of 

neurodevelopmental outcome prediction.   

Table 5.11: The average performance (%) on the test database for different studies/approaches in predicting good 
and poor outcome. 

Features Fmeasure Accuracy 

Using ApEn 70.3 69.3 

Using SpEn 68.8 67.5 

Using HFS selected 15 푡- and 푓- features 80.6 79.0 

Results from this study i.e. using HFS selected 15 
(푡-, 푓- and (푡,푓)) features 

85.8 83.8 

 

Table 5.12: The average performance (%) on the test database for different studies/approaches in predicting 
optimal and suboptimal outcome.  

Features Fmeasure Accuracy 

Using ApEn 69.1 67.4 

Using SpEn 68.4 67.1 

Using HFS selected 10 푡- and 푓- features 72.8 70.4 

Results from this study i.e. using HFS selected 15 
(푡-, 푓- and joint (푡, 푓)) features  

78.0 75.4 
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From Table 5.6 and Table 5.7, it can be seen that several (푡,푓)-features have been selected by the 

HFS algorithm, which shows the effectiveness of (푡, 푓) features in predicting neurodevelopmental 

outcome. To prove this, whole analysis was re-run independently, on the same test database, with 

only 푡- and 푓-based features. The accuracy in predicting good and poor outcome is 79%, whereas it 

is 70.4% in predicting optimal and sub-optimal outcome. Thus, (푡, 푓)-features can improve the 

prediction of neurodevelopmental outcome when they combine with 푡- and 푓-domain features; in our 

test database, this improvement is about 5% and the result is statistically significant (p<0.001, t-test). 

The HFS selected 푡- and 푓-domain features have been provided in Appendices 5.A and 5.B. 

5.5 Application of the proposed model 
It is possible to build a decision support system (DSS), a computer-based system to assist decision-

making from the proposed model. We have created a program that visually represents the probable 

neurodevelopmental outcome in terms of posterior probabilities. The RBF-SVM can be employed to 

obtain output probabilities. These probabilistic outputs are generally more intuitive for clinical staff 

[148].  

In the present context, the SVM model provides a binary decision output, i.e. good/poor or 

optimal/sub-optimal. These binary decisions can be converted into posterior probabilities using a 

sigmoid function. This function can be expressed as [148]: 

 푃푟 푦 = 1 푑 =
1

1 + 푒푥푝(퐴푑 + 퐵) 
 

(5.9) 

where 푑  is the distance to the separating hyperplane [148], i.e. the output of the SVM classifier, 

and 퐴 and 퐵 are the parameters of the sigmoid function estimated on the training dataset using the 

method presented in [182].  
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(a) 

 

 
 

(b) 
Figure 5.7: An example of the DSS: (a) probabilistic trend for good poor outcome and, (b) optimal and 
suboptimal outcome.  

Using this method, the probabilistic output for each EEG epoch can be produced and a series 

concatenation of probabilistic outputs calculated from all the EEG epochs provides a continuous trace 

of probable neurodevelopmental outcome. Figure 5.7(a) shows an example of the raw (unsmoothed) 

probabilistic trace for a newborn with good outcome and a newborn with poor outcome, whereas 

Figure 5.7(b) shows an example of the raw (unsmoothed) probabilistic trace for a newborn with 
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optimal outcome and a newborn with suboptimal outcome. Smoothing filters such as Savitzky–Golay 

smoothing filter [238] can be used to improve and smooth the probabilistic output. 

5.6 Discussion 

Early prediction of long-term neurodevelopmental outcome is still a major challenge in infants. EEG 

is a useful method of assessment in asphyxiated infants and has been shown to be a robust predictor 

of neurodevelopmental outcome (see Chapter 2). We have selected and extracted features from 

neonatal EEG to seek association with the cognitive and psychomotor, i.e. neurodevelopmental, 

outcome by applying state-of-the-art signal processing and machine learning approaches.  

The key findings can be summarised as: 

 Different features extracted from EEG predict neurodevelopmental outcome in term neonates 

with HIE.  

 Both local and global features contribute to outcome prediction.  

 Several (푡, 푓) features (see Table 5.6 and Table 5.7) have been selected by the HFS algorithm 

suggesting that joint time-frequency analysis, i.e. optimised TFD, improves prediction of 

neurodevelopmental outcome.  

 Joint optimisation of features and SVM classifier parameters is needed to build an optimised 

model for outcome prediction.  

 The DSS developed would be very useful to clinicians to counsel parents and to guide early 

clinical management decisions including the efficacy of anti-epileptic drugs. 

It is unlikely that only one feature will serve as a robust predictor of neurodevelopmental outcome. 

A set of features may generalise the process and one of the important aspects of this study was to 

establish the most prominent set of features that best predict neurodevelopmental outcome. The 

LOSO cross-validation has been applied to a high dimensional feature set extracted from 40 infants.   

Looking at the features list, it can be seen that features in certain frequency bands may contain more 

information than others. For example, the proportion of oscillation in the delta and theta band (called 

‘bout percentage’) provides significant and discriminative information. Lower values of delta-to-

alpha power ratio (DAR) and higher values of the mean of the lower envelope of the signal are 

observed in more severely affected babies, suggesting that these measures are valuable in outcome 

prediction. Abnormal babies usually have low voltage activity. This is clearer from the global 

features: a higher value in low activity duration and low activity density predict abnormal 
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neurodevelopmental outcome. In addition, TFD-based features in certain frequency bands provide 

better prediction than others. This is because TFD can be considered as a bi-dimensional energy 

density function and TFD of normal and abnormal EEG generate different distributions. A normal 

EEG is highly predictive of a normal outcome, whereas various abnormal EEG features have been 

consistently associated with neurological abnormalities or death (see Chapter 2); therefore, features 

extracted from TFD offer significant and discriminative information to predict neurodevelopmental 

outcome. Moreover, ISPR, which is one of the salient features of TFD, describes the signal non-

stationarities. Different statistics of this feature in different bands also provide significant and distinct 

information.  

A nonlinear model is built-up by the selected features and, although it is possible to provide a sensible 

rationale for the individual features, they are only important when considered together. In machine 

learning and artificial intelligence it is known that ‘a feature that is completely useless by itself can 

provide a significant performance improvement when taken with others’ [190]. Therefore, in 

statistical analyses using Spearman correlation tests, Pearson correlation tests etc. as commonly used 

in clinical studies, seeking relationships between features and outcomes, different conclusions may 

be reached. These approaches cannot take into account the influence of other features simultaneously 

nor determine any nonlinear relationship among the features. 

Another important issue is the validity of the use of limited channel (i.e. 2-channel) EEG or amplitude 

integrated EEG (aEEG). A recent meta-analysis reported that the sensitivity and specificity of a 

number of simple features from limited channel EEG or aEEG are 93% and 90% in predicting 

neurodevelopmental outcome, whereas in the case of full-channel EEG – i.e. continuous EEG (cEEG) 

– it is 92% and 83% respectively [44]. These statistics suggest the prediction of neurodevelopmental 

outcome using limited channel EEG or aEEG is good. However, in other research applications such 

as detection and classification [29], source localisation [239], or focal activity detection, a  cEEG or 

even dense electrode array EEG (64-channel EEG) [239] is required   

The structured review and meta-analysis presented in Chapter 2 showed that different EEG 

background patterns can predict neurodevelopmental outcome. It is also possible to use seizure 

detection algorithms and correlate seizure burden with outcome. However, a recent study showed that 

aEEG background patterns exhibit superior prediction of poor neurodevelopmental outcome 

(sensitivity of 91.7%, PPV of 78.6%) compared to seizure burden detected using aEEG (sensitivity 

of 94%, PPV of 57%) [240]. 
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5.6.1 Limitations of the study and proposed recommendations 

The accuracy of this system falls short of 100%, at 83.8% in predicting good/poor outcome and 

75.4% in predicting optimal/suboptimal outcome. The following approaches may be useful and 

should be explored to improve the prediction accuracy: 

 Multimodal approaches, i.e. the addition of other modalities such as HRV (heart rate 

variability), and MRI might be very useful to increase the accuracy. 

o HRV provides a non-invasive assessment of both the parasympathetic and sympathetic 

control of heart rate (HR) [241, 242]. There is evidence of alternation of HR following 

HIE and HR is also associated with EEG grade of HIE and neurodevelopmental 

outcome [242]. Therefore, different features extracted from HR and HRV could be 

very useful along with EEG-based features.  

 

o The features extracted from diffusion-weighted MRI (DW-MRI) and proton magnetic 

resonance spectroscopy (H-MRS), such as apparent diffusion coefficient (ADC) of the 

basal ganglia and thalamus, lactate/N-acetylaspartate (LAC/NAA) and N-

acetylaspartate/choline (NAA/Cho) [210], brain volume [243] and white and grey 

matter lesions [244], could be useful. However, the best time to undertake MRI is 7–

10 days and earlier imaging may under- or over-estimate the degree of brain injury 

[205]. 

o Clinical features including blood pH, base deficit and Apgar score are also associated 

with outcome after HIE [245]. It would be useful to explore these additional features 

along with EEG features.  

 The use of ensembles of classifiers, i.e. a combination of different classifiers [246], may 

improve accuracy. However, this would increase the computational load significantly as well 

as increasing the complexity of ascertaining the process leading to a decision. 

5.7 Overall summary  

EEG allows a robust and early prediction of neurodevelopmental outcome and can be implemented 

safely and at relatively low cost at the cot-side soon after birth. In this study, we applied state-of-the-

art signal processing techniques to extract a high dimensional feature set. A highly discriminative and 
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non-redundant feature subset as well as classifier (SVM) parameters have been selected from this 

high dimensional feature set by a HFS algorithm. This algorithm is applied to the statistically most 

unbiased LOSO cross-validation system and an optimised model is created using the most consistent 

feature subset. This model has been tested on a separate dataset and a DSS has been built as a potential 

application of the model to visualise the probable neurodevelopmental outcome in a continuous 

probabilistic fashion. This work could provide a promising step toward building an objective decision 

support tool in term neonates with HIE for the early prediction of neurodevelopmental outcome. The 

present methodology could also be adapted for the prediction of outcome of other high-risk groups, 

such as very preterm infants. Translation of these findings into an EEG monitoring system would be 

very useful for end users. Further development and testing is also necessary and some suggested 

research directions have been provided. Ultimately, an optimised system needs to be evaluated in 

further clinical trials.   
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Chapter 6 Conclusion and future directions 

6.1 General summary  
HIE is one of the major causes of morbidity and mortality in newborns and EEG is a useful diagnostic 

and prognostic tool for the analysis of these asphyxiated newborns. Different specific background 

patterns of EEG have been shown to be robust predictors of neurodevelopmental outcome. 

Characterisation of these patterns is very useful for exploring brain activity under different conditions, 

such as severity of HIE. Further, accurate and automatic detection of these EEG patterns is significant 

in practice, as EEG is usually monitored in babies with HIE in the NICU. EEG analysis can provide 

a useful tool to support early and appropriate clinical management for those newborns who are at risk 

of HI cerebral injury. Automated analysis has the potential to both reduce the workload of clinicians 

and provide a more uniform and accurate analysis. Prediction of neurodevelopmental outcome using 

EEG features at an early stage would be very useful in guiding therapy and discussing options with 

parents as well as providing opportunities for improved health outcomes.  

Motivated by this, this thesis (i) identifies those specific EEG background patterns that have been 

described to best predict neurodevelopmental outcome in term neonates with HIE (Chapter 2); (ii) 

designs and optimises signal processing tools for the characterisation of these EEG patterns (Chapter 

3), (iii) develops methods for the accurate and automatic detection and classification of these patterns 

(Chapter 4) and, finally (iv) tests a model using the identified features in a patient dataset to establish 

its test characteristics in predicting 2-year developmental outcome (Chapter 5). 

Different EEG background patterns in multichannel neonatal EEG have been used for analysis 

(characterisation and classification) and prediction of neurodevelopmental prediction. To take the 

EEG non-stationarity into account and obtain time and frequency information simultaneously, high-

resolution quadratic time-frequency distributions have been designed and optimised. Different 

features from the high resolution QTFDs and in the time and frequency domain have been selected 

using a hybrid feature selection method. State-of-the-art feature selection and classification method(s) 

have been designed and optimised for the automatic classification of EEG background patterns that 

predict neurodevelopmental outcome.  

The research question posed was: ‘How can optimised high-resolution QTFDs, and optimised 

classification method(s), be developed to provide better characterisation and classification for 

multichannel neonatal EEG signals for the purpose of accurately predicting neurodevelopmental 

outcome?’  
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This thesis makes several novel contributions, comprising both theoretical and application-specific 

contributions, in addressing the research question. These are highlighted below on a chapter-by 

chapter-basis within the overall concept map described in Section 1.6. 

In Chapter 2, a systematic review was conducted, and meta-analysis of the literature undertaken to 

determine which specific background features of the EEG, in term neonates with HIE, best predict 

outcome. A literature search was conducted using the PubMed, EMBASE and CINAHL databases 

from January 1960 to April 2014. Studies included in the review described recorded EEG background 

features and neurodevelopmental outcomes at a minimum age of 12 months and were published in 

English. Pooled sensitivities and specificities of EEG background features were calculated, and meta-

analyses performed for each background feature. 

In Chapter 3, two optimisation methods were presented for the optimal use of TFD. Section 3.2 

presented a global optimisation method that uses a hybrid genetic algorithm (HGA). This ‘black box’ 

approach automatically adjusts the QTFD kernel parameters by HGA, which results in the optimal 

use of QTFDs for non-specialist users without requiring any additional input beyond the signal itself. 

This method is suitable for multicomponent and non-stationary signals without a priori signal 

information (such as, for example, the EEG signal). 

Section 3.3 presented a local optimisation method based on LOS. LOS utilises short-time fractional 

Fourier transform (STFrFT). The key strength of the LOS is that it automatically determines the 

locally optimal window parameters and fractional order (angle) for all signal components, leading to 

a high resolution, cross-term free time-frequency representation. This method is also suitable for 

multicomponent and non-stationary signals without a priori signal information such as the EEG 

signal. 

In Chapter 4, two classification methods were presented and validated for classifying multichannel 

EEG background patterns including: burst, suppression, normal, seizure and artifact. These patterns 

are the predictors of a range of neurodevelopmental outcomes. Classification method-1 uses a single-

feature subset for all classes (patterns) whereas classification method-2 uses class-specific features. 

Method-2 is expected to increase the classification performance as the selected feature subset is class-

specific. 

Various time domain, frequency domain and joint time-frequency domain features have been first 

extracted and then concatenated to produce a long feature set. A hybrid feature selection (HFS) 

algorithm, comprising an mRMR and a genetic algorithm, is proposed to simultaneously select the 

prominent feature subset and the classifier parameters. A state-of-the-art machine learning algorithm, 
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the support vector machine (SVM), was optimised and used to classify different neonatal EEG 

patterns using the feature subset selected by the HFS algorithm. This HFS algorithm not only selects 

the prominent feature subset but also selects the SVM tuning parameters simultaneously to ensure the 

optimal use of the SVM classifier. Three fusion techniques, channel fusion, feature fusion and 

decision fusion, were used and compared for the multichannel classification. The decision fusion 

technique provided the best classification performance. 

In Chapter 5, various time domain, frequency domain and (푡,푓) domain features were extracted from 

the neonatal EEG recorded within the first 24 h after birth to seek associations with the 

neurodevelopmental outcome in term neonates with HIE assessed using the industry-standard Bayley 

Scales of Infant Development, version III (BSID-III). The BSID-III provides developmental scores 

for cognitive, language and motor domains and a combined score. The hybrid feature selection (HFS) 

algorithm developed in Chapter 4 was used in the statistically least biased leave-one-subject-out 

(LOSO) cross-validation process to ascertain the most consistent feature set associated most strongly 

with outcome. A nonlinear SVM model was built based on the most consistent feature subset found 

by the LOSO system and a neonatal EEG database was used to test the predictive capability of the 

model. Finally, a probabilistic decision support system was derived as a potential application of the 

proposed system. 

6.2 Key conclusions and perspectives 
Based on the results presented in this thesis, the following key conclusions can be made and are 

presented here chapter by chapter.  

From Chapter 2: 

 Different specific EEG background patterns in babies with HIE can predict 

neurodevelopmental outcome: Different EEG background patterns such as burst suppression, 

low voltage, flat trace, trace alternant, asynchrony and asymmetry predict 

neurodevelopmental outcome in term neonates with HIE. Based on a systematic review of the 

literature, the pooled sensitivity and specificity of these EEG background features are: burst 

suppression (Sensitivity 0.87 [95% CI (0.78–0.92)]; Specificity 0.82 [95% CI (0.72–0.88)], 

low voltage (Sensitivity 0.92 [95% CI (0.72–0.97)]; Specificity 0.99 [95% CI (0.88–1.0)], and 

flat trace (Sensitivity 0.78 [95% CI (0.58–0.91)]; Specificity 0.99 [95% CI (0.88–1.0)]). Some 

other background patterns, including trace alternant, asynchrony and, asymmetry, have also 

been proposed as important in terms of prognosis but, because they are less prevalent, have 

been reported only in a small number of babies. 
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 Variability in the definitions of amplitude, phase, frequency and duration is present in the 

published literature; this highlights the need for agreement on the definitions.  

 A unique definition for EEG background patterns is needed: An agreement on definitions for 

EEG background patterns is necessary for the effective implementation and use of EEG in 

NICUs, and some definitions have been suggested. 

From Chapter 3: 

 Automatic optimisation is important to characterise the non-stationary signal using QTFDs 

that provides a high resolution (푡, 푓) signature: The statistical properties of non-stationary 

signals, including neonatal EEG, change over time. Therefore, analysis window and window 

size (for spectrogram) and kernel parameter(s) of QTFDs need to be chosen either by visual 

inspection or by automatic optimisation to obtain high resolution (푡,푓) signatures. The 

optimal window, window size and kernel parameter(s) for a non-stationary signal, even a 

segment (or epoch) of a long non-stationary signal, is signal dependant. Choosing optimal 

parameters by visual inspection is time consuming and not applicable in certain situations, 

such as automatic detection and classification. Therefore, automatic optimisation is necessary.  

 The (푡, 푓) optimisation problem needs a simple but effective objective function and the 

‘Energy Concentration Measure (ECM)’ index can satisfy this requirement: By minimising 

(or maximising) an objective, a suitable algorithm can provide high resolution QTFDs. The 

ECM can be used for this purpose as it is a simple but effective objective function. Unlike 

norm-based concentration measures, this measure does not discriminate low concentrated 

components compared to the highly concentrated ones within the same TFD. 

 The kernel parameter(s) of QTFDs need to be optimised in order to obtain a high resolution 

(푡, 푓) signature and the proposed novel hybrid genetic algorithm (HGA) offers a fully 

automatic optimisation of QTFDs: The optimal kernel parameter(s) of QTFDs can enhance 

the (푡, 푓) resolution by reducing cross-terms. An automatic optimisation method called hybrid 

genetic algorithm (HGA) is proposed and applied for a fully automatic optimisation of 

QTFDs. The HGA comprises a genetic algorithm and Nelder-Mead algorithm.  

 HGA offers a ‘black box’ approach that needs no extra input from the user except the signal 

itself: One of the salient features of the proposed HGA is that the optimal kernel parameter(s) 

for producing a high resolution (푡,푓) signature can be obtained by using the HGA algorithm 

based only on the signal itself, without need for any additional user input.  
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 The fully automatic optimisation of QTFDs is useful for the non-specialist user to optimally 

use QTFDs in many disciplines: The HGA can automatically choose the optimal kernel 

parameter(s). It can be useful for all types of non-stationary signals from different areas 

including communications, radar, sonar and acoustics, and machine condition monitoring. 

However, the performance of different QTFDs is different and users need to decide which 

QTFD is the most useful for them. This indicates that, although this study automatically 

optimises the TFDs in terms of balancing concentration, resolution, cross-terms and 

computation, it still requires specialist knowledge in terms of correct interpretation of the 

results. 

 Fast and memory-efficient implementation of TFDs is advantageous in ‘big data’ science: 

The fast and optimised implementation of TFDs provides another contribution by which 

computation time is reduced significantly, e.g. computation time reduces from 104.6 ±  1.95 

s to 3.97 ± 0.15 s for a signal length of 512. This process not only optimises TFD in terms 

of optimising the TFD parameters but also in terms of computational time. This contribution 

can be advantageous in optimising the use of TFDs in ‘big data’ science, as in the case of 

multichannel EEG signal. 

 Fractional Fourier transform (FrFT) provides a generalisation of the classical FT and offers 

improved flexibility when designing high resolution time-frequency signatures: The FrFT is 

the generalisation of the classical Fourier transform (FT). It can be regarded as a rotation by 

an arbitrary angle α in the (푡, 푓) plane. This approach provides improved flexibility when 

designing high resolution time-frequency signatures as the signal chirp rate (i.e. angle) can be 

adapted using this approach. 

 The Locally Optimised Spectrogram (LOS) defines a novel method for obtaining a high-

resolution (푡,푓) representation based on the short-time fractional Fourier transform 

(STFrFT): The proposed LOS defines a novel method for obtaining a high-resolution (푡, 푓) 

representation based on the short-time fractional Fourier transform (STFrFT). The key novelty 

and strength of the LOS is that it automatically determines the locally optimal window 

parameters and fractional order (angle) for all signal components, leading to a high resolution 

and cross-term free time-frequency representation. This method is applicable to 

multicomponent and non-stationary signals without any a priori signal information. 

 The LOS is one of the most effective and robust QTFDs for non-stationary signal 

characterisation and classification: The efficiency of the LOS has been tested under various 

SNR values by comparing the accuracy of IF estimation with other TFDs; the logarithmic 
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MSE of the proposed method is −4 at SNR = −3dB when determining the IF of a 

multicomponent noisy (AWGN) signal, whereas at the same SNR the WVD and ordinal 

spectrogram provide −2.9 and −2.3 respectively. These results indicate that local adaptation 

and optimisation by the LOS can not only enhance the resolution and concentration but also 

shows the robustness under different noise conditions. The LOS also increases the detection 

and accuracy rate of different non-stationary signals. For example, the LOS achieves an 

average AUC of 0.887 in detecting burst and suppression patterns of a multichannel neonatal 

EEG dataset. 

From Chapter 4: 

 Neonatal EEG background patterns can be well-characterised using state-of-the-art 

optimised and high-resolution QTFDs: Optimised and high resolution QTFDs, developed in 

Chapter 4, were used to characterise neonatal EEG background patterns in the (푡, 푓) domain. 

Different background patterns show different (푡, 푓) characteristics in the (푡, 푓) plane. In this 

way, different background patterns were classified manually by visual inspection.  

 High-resolution QTFDs are not only useful for non-stationary signal representation but also 

useful to extract information for classification: High-resolution QTFDs are rich in information 

and take the signal’s non-stationarity into account. Therefore, various dynamic features such 

as instantaneous frequency and instantaneous spectral ratio (ISPR), as well as (푡,푓) image-

related features, were extracted for classification purpose. These dynamic features are 

expected to increase the classification accuracy rate. 

 Simultaneous selection of feature subset and classifier parameter(s) ensures optimal use of a 

classifier and provides better accuracy: Classification using visual inspection is both time-

consuming and subjective; therefore, automatic classification is needed. Feature and classifier 

parameter selection is one of the mandatory tasks. A feature selection technique is able to 

simplify the models to make them easier to interpret by researchers or users, to shorten 

training times and to enhance generalisation by reducing overfitting. In addition, tuning 

parameter(s) of a classifier plays an important role and needs to be optimised simultaneously 

with feature selection. A novel algorithm called hybrid feature selection (HFS) was proposed 

for this purpose.  

 The proposed novel hybrid feature selection (HFS) algorithm, comprising mRMR and genetic 

algorithm, can simultaneously select prominent feature subset and tuning parameter(s) of a 

classifier: Feature selection and classifier tuning parameter selection are application-
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dependent, meaning that the feature(s) and parameter(s) that are dominant in one application 

may be different in another. The proposed HFS algorithm simultaneously selects prominent 

feature subset and tuning parameter(s) of a classifier for the specific application. The mRMR 

method is used as a pre-processing stage in the HFS algorithm, whereas the genetic algorithm 

is used as wrapper-based feature selection algorithm. This has the advantage of reducing the 

computation load and the severity of the search operations involved in the genetic algorithm.  

 Optimised RBF-SVM can provide better classification performance in neonatal EEG 

background pattern classification compared to optimal linear discriminant analysis (LDA), 

naive Bayes, logistic regression, neural network, and Bayesian network: The RBF-SVM 

optimised by HFS algorithm shows better classification accuracy in neonatal EEG 

background pattern classification than optimal linear discriminant analysis (LDA), naive 

Bayes, logistic regression, neural network, and Bayesian network. For example, the 

multichannel EEG with channel fusion techniques achieved 91.7% accuracy using optimised 

RBF-SVM classifier, versus 72.2%, 65.7%, 73.7%, 80.7%, and 73.9% in case of optimal 

LDA, naive Bayes, logistic regression, neural network, and Bayesian network respectively. 

 Multichannel neonatal EEG can increase the classification accuracy and different fusion 

techniques such as channel fusion, feature fusion, decision fusion can be used for combining 

multichannel information: Multichannel information increases the classification accuracy. In 

this thesis, three different fusion techniques – channel fusion, feature fusion, and decision 

fusion – are considered to combine information extracted from newborn multichannel EEG. 

There is a trade-off between computational load and accuracy. The channel fusion technique 

is more computationally efficient than other fusion techniques as all the channels are 

combined before analysis. However, classification accuracy is lower (91.7%) than feature 

fusion (94.8%) and decision fusion (96.4%). On the other hand, the decision fusion technique 

is more computationally demanding than all other fusion techniques as it classifies the signal 

channel-by-channel and then utilises a decision fusion technique such as the Signal Strength 

Combination (SSC) algorithm. However, it shows the highest classification accuracy (96.4%).  

 Class-specific feature subset (method-2) is more accurate than single feature subset (method-

1) for neonatal EEG background classification: Method-2 is more accurate than method-1 in 

terms of classification accuracy. This is because method-1 selects a global features subset for 

all classes (or patterns), whereas method-2 selects a class-specific feature subset. 

Interestingly, the computation time for both methods is the same because method-1 utilises 
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all the EEG patterns (or classes) at the same time while method-2 utilises only two patterns at 

a time in a one-against-rest iterative fashion. 

 A decision support system can be built based on the methodology presented in Chapter 4 

which can be helpful in clinical settings. The methodology presented in this chapter (Chapter 

4) could be used to implement a computer-based decision support system to monitor EEG 

patterns.  

From Chapter 5: 

 EEG signal-based features can predict the neurodevelopmental outcome in term neonates 

with HIE: Both local and global features contribute to accurate outcome prediction. In 

addition, several (푡,푓) features have been selected by the HFS algorithm, suggesting that joint 

time-frequency analysis, i.e. optimised TFD, can improve the prediction of 

neurodevelopmental outcome. The cross-validation accuracy of this system is 88.4% in 

predicting good/poor outcome and 89.6% in predicting optimal/suboptimal outcome. 

 An early decision support system could be a very effective tool for clinicians both to counsel 

parents about likely future outcome and to guide early clinical management decisions such as 

the treatment of hypotension or seizures: A decision support system (DSS) has been created 

that provides a continuous output of probable neurodevelopmental outcome that, within the 

first 24 h after birth, predicts the neurodevelopmental outcome at 2 years.   

6.3 Future directions 

There are few firm end-points in science; rather it is constantly modified, updated and applied to new 

applications with the aim of hopefully making the world a better place, or simply reducing the 

unknowns. With this in mind, I propose this short list of the most useful work to implement or extend 

the approaches described in this project.  

 Applications of the proposed optimised QTFDs to other problems: The proposed optimised 

QTFDs could be applied to characterise and classify different non-stationary signal analyses 

in various settings or industries such as HRV analysis, fetal movement analysis, machine 

condition monitoring etc.   

 Validation of the proposed approach using a larger database: Further study should be carried 

out to further validate the proposed methods on a different and larger clinical dataset. 



 
 

157

 Implementation of a computer-based decision support system for EEG monitoring: This 

possible application of the EEG background patterns classification system is briefly described 

in Chapter 4. This could be implemented in a standalone computer for bed-side monitoring in 

NICUs. 

 Implementation of an outcome prediction model in the clinical setting: An early prediction of 

neurodevelopmental outcome would be beneficial to guide early clinical management of 

newborns with HIE and at risk of cerebral injury. This could reduce morbidity and mortality 

rates and improve health outcomes.  

 Improvement of the accuracy of neurodevelopmental outcome prediction: As mentioned in 

section 5.6.1, the accuracy of neurodevelopmental outcome prediction could be further 

improved by fusing the EEG-based features with the features extracted from HRV, MRI, 

perinatal events, Apgar score and blood biochemistry. In addition, ordinal (4-level) rather 

than binary outcome prediction could be used. Furthermore, separate outcomes for 

‘motor’ and ‘cognitive’ as well as statistical comparison could strengthen the analysis.  

 Packaging: Integrating and packaging the proposed methods, and any future modifications, 

in a user-friendly graphical user interface (GUI) would be very useful in future research. 

 The use of a ‘deep learning’ approach: Recently ‘deep learning’ has gained popularity due to 

its potential for superior classification performance. One of the advantages of deep learning 

is that, unlike other machine learning approaches (e.g. SVM), users do not need to extract 

features (called ‘Feature Engineering’), which is one of the time-consuming elements of 

machine learning. The deep learning approach automatically extracts features from the data 

itself and provides decision output. In a sense, this approach is ‘optimal’, i.e. it is end-to-

end from data to decision. However, it requires a large amount of data and many hyper-

parameters need to be optimised. This approach is computationally expensive and, unlike 

SVM, does not yet have a strong theoretical background. In addition, the features created by 

its deep hidden networks are often clinically non-interpretable and it can be difficult to 

determine the underlying reasoning process leading to a decision. Therefore, this approach is 

not clinical-friendly. However, it could be a useful engineering contribution to explore this 

approach and compare it with the methods developed in this project.  

 The use of an ‘online learning’ approach:  Online learning might be very useful if the research 

is conducted in multiple sites where a continuous stream of data is generated and available. In 

such settings, the learning model could be updated with the incoming data. Such a dynamic 
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model would be more adapted to classify difficult examples than a fixed model and increase 

the classification accuracy. Finally, such an optimised system would need to be evaluated in 

further clinical trials.  
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Appendices  
 

Appendix 3.A: Computer codes used in this study  
 
All analyses have been done in Matlab environment and the TFSAP toolbox has been used to generate 

the QTFDs. The TFSAP toolbox can be downloaded from the link: http://time-frequency.net/tf/ .  

Appendix 3.B: FrSM calculation (Pseudocode) 
 
Function FrSM=FrSM_calculation (STFrFT, L, LOS) 

Calculate total time index (N) of STFrFT i.e. N=size (STFrFT, 1). 

Calculate STFrFT and LOS using Eqn. (3.20) and (3.21). respectively. LOS is the initial distribution i.e. 

퐹푟푆푀 (푛, 푘) = 퐿푂푆. 

Assign 퐹푟푆푀(푛,푘) = 퐹푟푆푀 (푛,푘). 

Define L 

Iterate 푗 = 1 to 퐿 

Calculate 퐹푟푆푀(1 + 푗:푁 − 푗, : ) =  퐹푟푆푀(1 + 푗:푁 − 푗, : ) + 2푅푒[푆푇퐹푟퐹푇(1:푁 − 2 ∗ 푗, : ).∗

푐표푛푗(푆푇퐹푟퐹푇(1 + 2 ∗ 푗:푁, : ))] 

end of the loop.  

end of the function. 

 

Appendix 3.C: IF estimation method 
 

The main algorithm of the components extraction method are given below [129, 247]: 

1. Initialise 푘 = 1, 푘 ∈ 퐾, where 퐾 is the number of components. 

2. Find the maximum energy location,(푡 , 푓 ) in the 푇퐹퐷(푡, 푓) plane. The IF of the 푘th 

component at 푡  is computed 퐼퐹 (푡 ) = 푓 . For predetermined 푙, assign zero around this 

maximum point, i.e., 푇퐹퐷(푡 , 푓) = 0 for 푓 ∈ [푓 − 푙, 푓 + 푙].  

3. For sampling frequency 푓 , assign 푡 = 푡 + (1/푓 ), 푡 = 푡 − (1/푓 ), 푓 = 푓  and 푓 = 푓 . IF 

of the signal component confined by the TFD area 푡 < 푡  and 푡 > 푡  is computed by the 

following procedures:  

a) Find the frequency 푓  around this maximum point in 푇퐹퐷(푡 ,푓) for 푓 ∈ [푓 − 푙, 푓 +

푙] and 푓  around the maximum point in 푇퐹퐷(푡 ,푓) for 푓 ∈ [푓 − 푙, 푓 + 푙]. IF at 푡  and 

푡  are calculated to be 퐼퐹 (푡 ) = 푓  and 퐼퐹 (푡 ) = 푓 . 

http://time-frequency.net/tf/
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b) Assign zero around the maximum point, i.e.,푇퐹퐷(푡 , 푓)=0 for 푓 ∈ [푓 − 푙,푓 + 푙] and 

푇퐹퐷(푡 , 푓)=0 for 푓 ∈ [푓 − 푙, 푓 + 푙] and then assign 푡 = 푡 + (1/푓 ), 푡 = 푡 −

(1/푓 ). 

c) Repeat step (a) and (b) until the TFD boundary is reached.  

4. Increment 푘 from step 2 untill all the components have been extracted.  

Appendix 3.D: EEG pre-processing and feature extraction  
 
Pre-processing and channels combination 

Firstly, the DC component was removed from EEG signals. Then, following the approach presented 

in [248], multichannel signals were combined into one to reduce the overall runtime and 

computational complexity using: 

y[n] =
1
C

x [n] 

where x [n]; i = 1, 2, … , C is the signal acquired from the i  channel and C = 12 is the number of 

channels. Finally, y[n] is band pass filtered within the frequency band of [0.5 −  16] Hz as most of 

the signal energies of B-S signals are within this frequency bands.  

T-F Feature Extraction 

TFDs seek to act as a bi-dimensional energy density in the time-frequency domain [138]. Therefore, 

the main advantage of (푡, 푓) domain-based classification is the flexibility to form features from a 2D 

representation. Seven features were extracted from TFDs and these features have already been 

justified and used in several studies [249]. They are discussed below.  

Singular Value Decomposition (SVD)-based features are extracted from the singular values 

of ρ[n, k], i.e. s , i = 1,2, … . . N, which has been shown to be useful in EEG signal classification [250]. 

The maximum of the singular values was also used as first feature, F . The second feature was defined 

as the Shannon entropy of the singular values given by:  

퐹 = − 푠 푙표푔 푠  

푠  is the normalised value of the singular values. The energy concentration measure is used as a 

feature, F . 
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The IF of the signal can be estimated using the first order moment of its TFD as [249]:  

푓 [푛] =
푓

2푀
∑ 푘.휌[푛,푘]
∑ 휌[푛, 푘]

 

The deviation of IF was used as a feature, i.e.  

퐹 = 푚푎푥(푓 [푛])−푚푖푛 (푓 [푛]) 

(푡,푓) Renyi entropy is used as the feature, F . 

Two time-domain signal features (mean and standard deviation) were extended to (푡, 푓) domain and 

used in this study. The feature 퐹  and 퐹  can be expressed as: 

퐹 = 푚( , ) =
1
푁푀

푇퐹퐷[푛, 푘] 

퐹 = 휎( , ) =
1
푁푀 푇퐹퐷[푛, 푘] −푚( , )  

Appendix 4. A Time-frequency matching pursuit (TFMP) 
The TFMP is the matching pursuit (MP) method equipped with a TF dictionary. MP is a greedy 

iterative atomic decomposition technique which represents a signal 푥 using an over-complete 

dictionary 퐷. This can be mathematically expressed as [171] : 

푥 = 훼 푑 + 푅 = 푥 +푅  

where  R = x − x  denotes the residual of the signal after m iterations, x  is signal approximation 

and α  is the expansion coefficient associated with decomposed atom 푑 ∈ D.  

Assuming 푅 = 푥 and x = 0, the MP algorithm computes all inner products of the signal with atoms 

in dictionary D. The atom 푑  for which the largest magnitude of the inner product is selected as the 

first element with the following criteria: 

〈푥,푑 〉 ≥ 〈푥, 푑 ( )〉  

After the first iteration, the selected atom is subtracted from x to yield residual R . At each 

iteration (푘, k = 1,2, … … . m), the MP algorithm identifies the atom that best correlates with the signal 

residual and then adds the scalar multiple of that atom to the current approximation.  
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Appendix 4. B Maximum relevance minimum redundancy (mRMR) 
The mRMR method uses mutual information for calculating the correlation/dependency between 

variables (or features) and target classes, and among features. The dependency 퐼(푥,푦) between any 

two features 푥 and 푦 is defined as [194, 251]: 

퐼(푥,푦) = 푝(푥,푦) log
푝(푥,푦)
푝(푥)푝(푦)

푑푥푑푦 

where 푝(푥), 푝(푦) and 푝(푥,푦) represent the probability density functions of 푥 ,푦 and joint (푥,푦) 

respectively. Thus, the maximum relevance between feature 푥 and target class 퐶 =

 (1,2, … ,푄) represented by 퐷 =  퐼(푥, 푐) is used to rank the features. Minimum redundancy selects 

the maximally dissimilar features and can be represented by 푅 = ∑ 퐼(푥,푥 ) between candidate 

features 푥 and ranked features 푥 (푖 =  1, … ,푚). Both constraints formulate the following 

optimisation problem [194]: 

maxΦ(퐷,푅) = 퐷 − 푅 

A search method is used to find the optimal feature subset defined by Φ(. ) operator. The mRMR 

implementation can be downloaded at: http://penglab.janelia.org/proj/mRMR/.  

Appendix 4. C The equivalency between diagnostic tests and clinical research 
Introduction 

In Chapter 4 and 5, results are mainly represented in terms of sensitivity, specificity and PPV (positive 

predictive value), Fmeasure8 and accuracy. These are the standard quality measures used in machine 

learning and classification problems [29]. While machine learning researchers use these measures to 

assess a test (classification) performance, clinical researchers are interested to know how significant 

a test is in terms of p-value, power etc. Sensitivity, specificity and PPV are related to diagnostic test 

(DT), whereas power and p-value are related to research studies i.e. statistical hypothesis testing 

(SHT). DT and SHT are two scenarios of making conditional decision. There exists an equivalent 

relationship between them and the purpose of this appendix is to show this relationship [252]. Finally, 

                                                         
8 Fmeasure is defined as  

퐹푚푒푎푠푢푟푒,퐹 =
(1 + 훽 )(푃푃푉 × 푆푒푛푠푖푡푖푣푖푡푦)
훽 . (푃푃푉 + 푆푒푛푠푖푡푖푣푖푡푦)  

where 훽 is the weight parameter that controls weight between 푃푃푉 and 푆푒푛푠푖푡푖푣푖푡푦. It is usually set to 1 in the 퐹푚푒푎푠푢푟푒 
calculation to provide same importance to 푃푃푉and 푆푒푛푠푖푡푖푣푖푡푦 and hence used in the thesis. 

http://penglab.janelia.org/proj/mRMR/.
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this appendix provides the justification of choosing sensitivity, specificity and PPV, Fmeasure and 

accuracy used in Chapter 4 and 5.  Note that, since DT and SHT are two different scenarios, we cannot 

equalize them directly. We can provide an equivalent relationship between them. For example, there 

exists an equivalent relationship between specificity and p-value which is descried below: 

Definitions 

Specificity is the (conditional) probability that a healthy person tests negative: 

푃푟표푏(푁푒푔푎푡푖푣푒 | 퐻푒푎푙푡ℎ푦) [253]. Specificity is also known as true negative rate (TNR). 

P-value is the conditional probability of observing a value of the test statistic at least as extreme as 

that observed in the study, if in fact the null hypothesis is true [253]. SHT is performed on the null 

hypothesis9, and DT is performed on the alternative hypothesis. An example of null hypothesis is 

given below:  

Hypothesis (퐻): “Support vector Machine (SVM) can classify seizure pattern in newborn EEG” 

Null hypothesis (퐻 ): “SVM cannot classify seizure pattern in newborn EEG” 

Example: Let us take an example from this thesis i.e., classification of seizure/non-seizure EEG 

pattern in newborns. In the 2 × 2 confusion matrix, seizure is a positive class while non-seizure is a 

negative class. In this case, specificity is defined as the proportion of non-seizure EEG that correctly 

classified as non-seizure by a classifier. However, misclassification can occur by a classifier, e.g., a 

proportion of non-seizure EEG can incorrectly classify as seizure. In terms of DT, this error is called 

false-positive rate (FPR) and equals to (1 − 푠푝푒푐푖푓푖푐푖푡푦)  or (0.05 in the case of 95% specificity). 

Mathematically,  

퐹푃푅 = (1 − 푠푝푒푐푖푓푖푐푖푡푦) 

Equivalently, in terms of SHT, this error is called the probability of type-I error [253]. So, judging 

the evidence by rejecting the null hypothesis (declaring statistical significance) based on p = 0.05 

alone is analogous to accepting a positive diagnostic test result based on its 95% specificity alone 

[253]. In this way, we can relate p-value with Type-I error or false positive rate (1 −

푆푝푒푐푖푓푖푐푖푡푦) or 훼 value. Here, 훼 = (1− 푆푝푒푐푖푓푖푐푖푡푦)  would be a maximum allowed false positive 

rate. This is called “cut-off” value or statistical significant level and the common choice of 훼 is 0.01 

                                                         
9 A null hypothesis is a hypothesis that says there is no statistical significance between the two variables in the hypothesis. 
The null hypothesis (퐻 ) is a hypothesis which the researcher tries to disprove, reject or nullify. On the other hand, an 
alternative hypothesis simply is the inverse, or opposite, of the null hypothesis. 
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or 0.05 i.e. 1% or 5% significant level.  We can relate the other measures in the same way as shown 

in the table below: 

Table Appendix 4.C:  The equivalency between diagnostic tests and statistical hypothesis testing (SHT) in 
research studies (Adapted from [252]) 

Diagnostic Tests Statistical Hypothesis Testing (SHT) 
Absence of disease Truth of null hypothesis 

Presence of disease Truth of research (alternative) 
Hypothesis Positive result (outside normal 
limits) 

Positive result (reject null hypothesis) 

Negative result (within normal limits) Negative result (fall to reject null hypothesis) 
Sensitivity Power 
False-positive rate (1 -specificity) p value 
Prior probability of disease  Prior probability of research hypothesis 
Predictive value of a positive (or negative) test 
result 

Predictive value of a positive or negative 
study 

 

Discussion 

A study with a very low P value is like a test with very high specificity: both give few false-positive 

results, but may require careful consideration of other possible explanations such as power and sample 

size etc. [252]. Despite the wide use of p-value in research study, there are certain limitations such as, 

it ignores the concept of prior probability and power of the study [254]. Likewise, specificity only 

provides the true negative rate, e.g., proportion of non-seizure EEG that correctly classified as non-

seizure. It does not tell about any other aspect of a classifier; e.g., true positive rate, total accuracy 

etc. Therefore, one should not solely rely on p-value or specificity. Different performance measures 

such as sensitivity, PPV, accuracy etc. describe a classifier from different perspectives. Moreover, 

what the clinician wants to know is the probability that the subject (e.g. newborn) has the disease 

given that the test is positive. This is the PPV [186].  

Conclusion 

For the above rationale, several quality measures such as sensitivity, precision (=PPV), Fmeasure and 

accuracy have been used in Chapter 4 and Chapter 5 to describe the classification performance from 

different perspectives. A detailed definition of the above quality measures has already been provided 

in Section 4.4.5.  



 
 

165

Appendix 5. A: The HFS selected t- and f- features predicting good and poor 
outcome 

Selected t- and f- features for the prediction of 
good and poor outcome 
Kurtosis 
Bout percentage in delta band 
Bout percentage in theta band 
Peak Coherence index 
Shannon entropy 
Mean bout in alpha band 
Mean PLV 
Hurst Exponential 
Mean IBI 
Mean bout in theta band 
Bout percentage in alpha band 
SEF 90 
Mean of lower envelope 
Difference in Spectral Flatness between left and 
right channel 
RMS 

 

Appendix 5. B: The HFS selected t- and f- features predicting optimal and 
suboptimal outcome. 

Selected t- and f- features for the prediction of 
optimal and suboptimal outcome  
Kurtosis 
Bout percentage in delta  
Bout percentage in theta  
Bout mean alpha  
PLV mean 
Peak coherence index  
Skewness 
Spectral Flatness 
SEF 80 
Shannon entropy 
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class-specific feature selection," Expert Systems with Applications, vol. 38 (8), pp. 10018-10024, 2011. 

https://au.mathworks.com/matlabcentral/fileexchange/37933-alceufc-sfta


 
 

175

[200] H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Transactions on Knowledge and 
Data Engineering, vol. 21 (9), pp. 1263-1284, 2009. 

[201] H. He, Y. Bai, E. A. Garcia, and L. Shutao, "ADASYN: Adaptive synthetic sampling approach for 
imbalanced learning," in IEEE Conference on Neural Networks, 2008, pp. 1322-1328. 

[202] H. He and Y. Cao, "SSC: A classifier combination method based on signal strength," IEEE 
Transactions on Neural Networks and Learning Systems, vol. 23 (7), pp. 1100-1117, 2012. 

[203] B. Boashash, H. Barki, and S. Ouelha, "Performance evaluation of time-frequency image feature sets 
for improved classification and analysis of non-stationary signals: Application to newborn EEG 
seizure detection," Knowledge-Based Systems, vol. 132 pp. 188-203, 2017. 

[204] V. Matic, P. J. Cherian, N. Koolen, G. Naulaers, R. M. Swarte, P. Govaert, et al., "Holistic approach 
for automated background EEG assessment in asphyxiated full-term infants," Journal of Neural 
Engineering, vol. 11 (6), p. 066007, 2014. 

[205] A. Temko, O. Doyle, D. Murray, G. Lightbody, G. Boylan, and W. Marnane, "Multimodal predictor 
of neurodevelopmental outcome in newborns with hypoxic-ischaemic encephalopathy," Computers in 
Biology and Medicine, vol. 63 pp. 169-177, 2015. 

[206] A. R. Laptook, S. Shankaran, N. Ambalavanan, W. A. Carlo, S. A. McDonald, R. D. Higgins, et al., 
"Outcome of Term Infants Using Apgar Scores at 10 Minutes Following Hypoxic-Ischemic 
Encephalopathy," Pediatrics, vol. 124 (6), pp. 1619-1626, 2009. 

[207] P. K. Misra, N. Srivastava, G. K. Malik, R. K. Kapoor, K. L. Srivastava, and S. Rastogi, "Outcome in 
relation to Apgar score in term neonates," Indian Pediatrics, vol. 31 (10), pp. 1215-8, 1994. 

[208] "The Apgar Score," Pediatrics, vol. 117 (4), pp. 1444-1447, 2006. 
[209] V. Ramaswamy, J. Horton, B. Vandermeer, N. Buscemi, S. Miller, and J. Yager, "Systematic review 

of biomarkers of brain injury in term neonatal encephalopathy," Pediatric Neurology, vol. 40 (3), pp. 
215-26, 2009. 

[210] T. Alderliesten, L. S. de Vries, L. Staats, I. C. van Haastert, L. Weeke, M. J. N. L. Benders, et al., 
"MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia," 
Archives of Disease in Childhood - Fetal and Neonatal Edition, 2016. 

[211] L. Hellström-Westas, I. Rosen, and N. W. Svenningsen, "Predictive value of early continuous 
amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants," 
Archives of Disease in Childhood-Fetal and Neonatal Edition, vol. 72 (1), pp. F34-F38, 1995. 

[212] D. A. Pizzagalli, "Electroencephalography and high-density electrophysiological source localization," 
Handbook of psychophysiology, vol. 3 pp. 56-84, 2007. 

[213] M. S. Scher, D. A. Steppe, R. J. Sclabassi, and D. L. Banks, "Regional differences in spectral EEG 
measures between healthy term and preterm infants," Pediatric Neurology, vol. 17 (3), pp. 218-223, 
1997. 

[214] Q. Noirhomme, R. Lehembre, Z. del Rosario Lugo, D. Lesenfants, A. Luxen, S. Laureys, et al., 
"Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose 
patients after cardiac arrest," Clinical EEG and Neuroscience, p. 1550059413509616, 2014. 

[215] K. K. Iyer, J. A. Roberts, L. Hellstrom-Westas, S. Wikstrom, I. Hansen Pupp, D. Ley, et al., "Cortical 
burst dynamics predict clinical outcome early in extremely preterm infants," Brain, vol. 138 (Pt 8), 
pp. 2206-18, 2015. 

[216] A. Dereymaeker, N. Koolen, K. Jansen, J. Vervisch, E. Ortibus, M. De Vos, et al., "The Suppression 
Curve as a quantitative approach for measuring brain maturation in preterm infants," Clinical 
Neurophysiology, vol. 127 (8), pp. 2760-65, 2016. 

[217] A. F. Bos, "Bayley-II or Bayley-III: what do the scores tell us?," Developmental Medicine and Child 
Neurology, vol. 55 (11), pp. 978-979, 2013. 

[218] S. Jary, A. Whitelaw, L. Walloe, and M. Thoresen, "Comparison of Bayley-2 and Bayley-3 scores at 
18 months in term infants following neonatal encephalopathy and therapeutic hypothermia," 
Developmental Medicine and Child Neurology, vol. 55 (11), pp. 1053-9, 2013. 

[219] I. Daly, F. Pichiorri, J. Faller, V. Kaiser, A. Kreilinger, R. Scherer, et al., "What does clean EEG look 
like?," in IEEE Engineering  in Medicine and Biology Society (EMBS) Conference, 2012, pp. 3963-6. 

[220] M. Zima, P. Tichavský, K. Paul, and V. Krajča, "Robust removal of short-duration artifacts in long 
neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative 
reconstructions," Physiological Measurement, vol. 33 (8), p. N39, 2012. 

[221] U. Jose Antonio and G.-Z. Begoña, "EEG artifact removal—state-of-the-art and guidelines," Journal 
of Neural Engineering, vol. 12 (3), p. 031001, 2015. 



 
 

176

[222] C. A. Teixeira, B. Direito, H. Feldwisch-Drentrup, M. Valderrama, R. P. Costa, C. Alvarado-Rojas, et 
al., "EPILAB: A software package for studies on the prediction of epileptic seizures," Journal of 
Neuroscience Methods, vol. 200 (2), pp. 257-271, 2011. 

[223] B. Yao, J. Z. Liu, R. W. Brown, V. Sahgal, and G. H. Yue, "Nonlinear features of surface EEG showing 
systematic brain signal adaptations with muscle force and fatigue," Brain Research, vol. 1272 pp. 89-
98, 2009. 

[224] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, et al., "On the predictability 
of epileptic seizures," Clinical Neurophysiology, vol. 116 (3), pp. 569-587. 

[225] A. Suppiej, I. Festa, L. Bartolini, A. Cappellari, E. Cainelli, M. Ermani, et al., "Power spectral analysis 
of two-channel EEG in very premature infants undergoing heat loss prevention," Neurophysiologie 
Clinique/Clinical Neurophysiology, vol. 44 (3), pp. 239-244, 2014. 

[226] S. L. Olsen, M. DeJonge, A. Kline, E. Liptsen, D. Song, B. Anderson, et al., "Optimizing Therapeutic 
Hypothermia for Neonatal Encephalopathy," Pediatrics, vol. 131 (2), pp. e591-e603, 2013. 

[227] K. Murphy, N. J. Stevenson, R. M. Goulding, R. O. Lloyd, I. Korotchikova, V. Livingstone, et al., 
"Automated analysis of multi-channel EEG in preterm infants," Clinical Neurophysiology, vol. 126 
(9), pp. 1692-1702, 2015. 

[228] I. A. Williams, A. R. Tarullo, P. G. Grieve, A. Wilpers, E. F. Vignola, M. M. Myers, et al., "Fetal 
Cerebrovascular Resistance and Neonatal EEG Predict 18-month Neurodevelopmental Outcome in 
Infants with Congenital Heart Disease," Ultrasound in Obstetrics and Gynecology, vol. 40 (3), pp. 
304-309, 2012. 

[229] M. Videman, A. Tokariev, S. Stjerna, R. Roivainen, E. Gaily, and S. Vanhatalo, "Effects of prenatal 
antiepileptic drug exposure on newborn brain activity," Epilepsia, vol. 57 (2), pp. 252-262, 2016. 

[230] C. Vidaurre, T. H. Sander, and A. Schlögl, "BioSig: The Free and Open Source Software Library for 
Biomedical Signal Processing," Computational Intelligence and Neuroscience, vol. 2011 p. 12, 2011. 

[231] Y. Wang, E. M. Sokhadze, A. S. El-Baz, X. Li, L. Sears, M. F. Casanova, et al., "Relative Power of 
Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism 
Spectrum Disorder," Frontiers in Human Neuroscience, vol. 9 p. 723, 2015. 

[232] S. Finnigan, A. Wong, and S. Read, "Defining abnormal slow EEG activity in acute ischaemic stroke: 
Delta/alpha ratio as an optimal QEEG index," Clinical Neurophysiology, vol. 127 (2), pp. 1452-1459, 
2016. 

[233] M. J. A. M. van Putten, J. M. Peters, S. M. Mulder, J. A. M. de Haas, C. M.A. Bruijninckx, and D. L. 
J. Tavy, "A brain symmetry index (BSI) for online EEG monitoring in carotid endarterectomy," 
Clinical Neurophysiology, vol. 115 (5), pp. 1189-1194, 2004. 

[234] J.-P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, "Measuring phase synchrony in brain 
signals," Human Brain Mapping, vol. 8 (4), pp. 194-208, 1999. 

[235] L. Li, W. Chen, X. Shao, and Z. Wang, "Analysis of Amplitude-Integrated EEG in the Newborn Based 
on Approximate Entropy," IEEE Transactions on Biomedical Engineering, vol. 57 (10), pp. 2459-
2466, 2010. 

[236] G. Lee, S. Fattinger, A.-L. Mouthon, Q. Noirhomme, and R. Huber, "Electroencephalogram 
approximate entropy influenced by both age and sleep," Frontiers in Neuroinformatics, vol. 7 (33), 
2013. 

[237] D. Zhang, H. Ding, Y. Liu, C. Zhou, H. Ding, and D. Ye, "Neurodevelopment in newborns: a sample 
entropy analysis of electroencephalogram," Physiological Measurement, vol. 30 (5), pp. 491-504, 
2009. 

[238] M. A. Awal, S. S. Mostafa, and M. Ahmad, "Performance analysis of Savitzky-Golay smoothing filter 
using ECG signal," International Journal of Computer and Information Technology, vol. 1 (02), 2011. 

[239] M. Odabaee, W. J. Freeman, P. B. Colditz, C. Ramon, and S. Vanhatalo, "Spatial patterning of the 
neonatal EEG suggests a need for a high number of electrodes," NeuroImage . vol. 68 pp. 229-35, 
2013. 

[240] B. Vasiljevic, S. Maglajlic-Djukic, and M. Gojnic, "The prognostic value of amplitude-integrated 
electroencephalography in neonates with hypoxic-ischemic encephalopathy," Vojnosanitetski 
Pregled, vol. 69 (6), pp. 492-9, 2012. 

[241] S. Dong, B. Boashash, G. Azemi, B. E. Lingwood, and P. B. Colditz, "Automated detection of perinatal 
hypoxia using time–frequency-based heart rate variability features," Medical and Biological 
Engineering and Computing, vol. 52 (2), pp. 183-191, 2014. 



 
 

177

[242] R. M. Goulding, N. J. Stevenson, D. M. Murray, V. Livingstone, P. M. Filan, and G. B. Boylan, "Heart 
rate variability in hypoxic ischemic encephalopathy: correlation with EEG grade and 2-y 
neurodevelopmental outcome," Pediatric Research, vol. 77 (5), pp. 681-7, 2015. 

[243] J. L. Y. Cheong, D. K. Thompson, A. J. Spittle, C. R. Potter, J. M. Walsh, A. C. Burnett, et al., "Brain 
Volumes at Term-Equivalent Age Are Associated with 2-Year Neurodevelopment in Moderate and 
Late Preterm Children," The Journal of Pediatrics, vol. 174 pp. 91-97.e1, 2016. 

[244] A. M. Pagnozzi, N. Dowson, J. Doecke, S. Fiori, A. P. Bradley, R. N. Boyd, et al., "Automated, 
quantitative measures of grey and white matter lesion burden correlates with motor and cognitive 
function in children with unilateral cerebral palsy," NeuroImage : Clinical, vol. 11 pp. 751-759, 2016. 

[245] N. Wiberg, K. Kallen, A. Herbst, and P. Olofsson, "Relation between umbilical cord blood pH, base 
deficit, lactate, 5-minute Apgar score and development of hypoxic ischemic encephalopathy," Acta 
Obstetricia et Gynecologica Scandinavica, vol. 89 (10), pp. 1263-9, 2010. 

[246] S. S. D. P. Ayyagari, R. D. Jones, and S. J. Weddell, "Optimized echo state networks with leaky 
integrator neurons for EEG-based microsleep detection," in IEEE Engineering in Medicine and 
Biology Society (EMBC) Conference, 2015, pp. 3775-3778. 

[247] N. A. Khan and B. Boashash, "Instantaneous Frequency Estimation of Multicomponent Nonstationary 
Signals Using Multiview Time-Frequency Distributions Based on the Adaptive Fractional 
Spectrogram," IEEE Signal Processing Letters, vol. 20 (2), pp. 157-160, 2013. 

[248] Y. Wang and R. Agarwal, "Automatic detection of burst suppression," in IEEE Engineering in 
Medicine and Biology Society (EMBS) Conference 2007, pp. 553-556. 

[249] B. Boashash, G. Azemi, and J. M. O'Toole, "Time-Frequency Processing of Nonstationary Signals: 
Advanced TFD Design to Aid Diagnosis with Highlights from Medical Applications," IEEE Signal 
Processing Magazine, vol. 30 (6), pp. 108-119, 2013. 

[250] H. Hassanpour, M. Mesbah, and B. Boashash, "Time-frequency feature extraction of newborn EEG 
seizure using SVD-based techniques," EURASIP  Journal on Applied Signal Processing, vol. 2004 pp. 
2544-2554, 2004. 

[251] Z. Cai, D. Xu, Q. Zhang, J. Zhang, S.-M. Ngai, and J. Shao, "Classification of lung cancer using 
ensemble-based feature selection and machine learning methods," Molecular BioSystems, vol. 11 (3), 
pp. 791-800, 2015. 

[252] W. S. Browner and T. B. Newman, "Are all significant p values created equal?: The analogy between 
diagnostic tests and clinical research," JAMA, vol. 257 (18), pp. 2459-2463, 1987. 

[253] G. L. Grunkemeier, Y. Wu, and A. P. Furnary, "What is the Value of a p Value?," The Annals of 
Thoracic Surgery, vol. 87 (5), pp. 1337-1343, 2009. 

[254] N. G. Adams and G. O'Reilly, "A likelihood-based approach to P-value interpretation provided a 
novel, plausible, and clinically useful research study metric," Journal of Clinical Epidemiology, 2017. 

 

 


