6 research outputs found

    Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules

    Get PDF
    A pulmonary nodule is a small round or oval-shaped growth in the lung. Pulmonary nodules are detected in Computed Tomography (CT) lung scans. Early and accurate detection of such nodules could help in successful diagnosis and treatment of lung cancer. In recent years, the demand for CT scans has increased substantially, thus increasing the workload on radiologists who need to spend hours reading through CT-scanned images. Computer-Aided Detection (CAD) systems are designed to assist radiologists in the reading process and thus making the screening more effective. Recently, applying deep learning to medical images has gained attraction due to its high potential. In this paper, inspired by the successful use of deep convolutional neural networks (DCNNs) in natural image recognition, we propose a detection system based on DCNNs which is able to detect pulmonary nodules in CT images. In addition, this system does not use image segmentation or post-classification false-positive reduction techniques which are commonly used in other detection systems. The system achieved an accuracy of 63.49% on the publicly available Lung Image Database Consortium (LIDC) dataset which contains 1018 thoracic CT scans with pulmonary nodules of different shapes and sizes

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    Classification of malignant and benign lung nodule and prediction of image label class using multi-deep model

    Get PDF
    Lung cancer has been listed as one of the world’s leading causes of death. Early diagnosis of lung nodules has great significance for the prevention of lung cancer. Despite major improvements in modern diagnosis and treatment, the five-year survival rate is only 18%. Before diagnosis, the classification of lung nodules is one important step, in particular, because automatic classification may help doctors with a valuable opinion. Although deep learning has shown improvement in the image classifications over traditional approaches, which focus on handcraft features, due to a large number of intra-class variational images and the inter-class similar images due to various imaging modalities, it remains challenging to classify lung nodule. In this paper, a multi-deep model (MD model) is proposed for lung nodule classification as well as to predict the image label class. This model is based on three phases that include multi-scale dilated convolutional blocks (MsDc), dual deep convolutional neural networks (DCNN A/B), and multi-task learning component (MTLc). Initially, the multi-scale features are derived through the MsDc process by using different dilated rates to enlarge the respective area. This technique is applied to a pair of images. Such images are accepted by dual DCNNs, and both models can learn mutually from each other in order to enhance the model accuracy. To further improve the performance of the proposed model, the output from both DCNNs split into two portions. The multi-task learning part is used to evaluate whether the input image pair is in the same group or not and also helps to classify them between benign and malignant. Furthermore, it can provide positive guidance if there is an error. Both the intra-class and inter-class (variation and similarity) of a dataset itself increase the efficiency of single DCNN. The effectiveness of mentioned technique is tested empirically by using the popular Lung Image Consortium Database (LIDC) dataset. The results show that the strategy is highly efficient in the form of sensitivity of 90.67%, specificity 90.80%, and accuracy of 90.73%

    Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method

    No full text
    Abstract Background Accurately detecting and examining lung nodules early is key in diagnosing lung cancers and thus one of the best ways to prevent lung cancer deaths. Radiologists spend countless hours detecting small spherical-shaped nodules in computed tomography (CT) images. In addition, even after detecting nodule candidates, a considerable amount of effort and time is required for them to determine whether they are real nodules. The aim of this paper is to introduce a high performance nodule classification method that uses three dimensional deep convolutional neural networks (DCNNs) and an ensemble method to distinguish nodules between non-nodules. Methods In this paper, we use a three dimensional deep convolutional neural network (3D DCNN) with shortcut connections and a 3D DCNN with dense connections for lung nodule classification. The shortcut connections and dense connections successfully alleviate the gradient vanishing problem by allowing the gradient to pass quickly and directly. Connections help deep structured networks to obtain general as well as distinctive features of lung nodules. Moreover, we increased the dimension of DCNNs from two to three to capture 3D features. Compared with shallow 3D CNNs used in previous studies, deep 3D CNNs more effectively capture the features of spherical-shaped nodules. In addition, we use an alternative ensemble method called the checkpoint ensemble method to boost performance. Results The performance of our nodule classification method is compared with that of the state-of-the-art methods which were used in the LUng Nodule Analysis 2016 Challenge. Our method achieves higher competition performance metric (CPM) scores than the state-of-the-art methods using deep learning. In the experimental setup ESB-ALL, the 3D DCNN with shortcut connections and the 3D DCNN with dense connections using the checkpoint ensemble method achieved the highest CPM score of 0.910. Conclusion The result demonstrates that our method of using a 3D DCNN with shortcut connections, a 3D DCNN with dense connections, and the checkpoint ensemble method is effective for capturing 3D features of nodules and distinguishing nodules between non-nodules
    corecore