2,292 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 197, September 1979

    Get PDF
    This bibliography lists 193 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1979

    Identifying Functional Imaging Markers in Psychosis Using fMRI

    Get PDF
    Major types of psychotic disorders include schizophrenia (SCZ), bipolar disorder (BP) and schizoaffective disorder (SZA). These disorders have profound and overlapping symptoms with marked cognitive deficits, and their diagnosis relies on symptom clusters. The treatments for psychosis are usually focused on positive symptoms such as delusions and hallucinations. Although cognitive impairments underlie both positive and negative symptoms, functional brain imaging biomarkers that can reliably predict a patient\u27s cognitive deficits are still lacking. Therefore, this project used functional MRI to explore the feasibility of using functional connectivity (FC) to predict cognitive performance. A total of 207 subjects (BP: 79, SZ/SZA: 48, and HC: 80) with high functional MRI image (fMRI) quality (SNR\u3e 100, motion \u3c 0.3) were selected from the McLean MATRICS dataset. Subjects were divided into a discovery cohort (n=104) and an age, gender, and head motion matched validation cohort (n=103). The hypothesis was that FC could predict cognitive performance in the discovery cohort and that the prediction models could be generalized to the validation cohort. The connectomes for each subject were obtained by calculating the whole- brain connectivity using networks from the individualized functional parcellation as region of interests (ROIs). Models were trained to predict the 8 cognitive scores in the discovery cohort, respectively. The generalizability of these models was tested by applying these models to the validation cohort. The trained models were able to predict 6 out of 8 cognitive scores using a LOOCV procedure. Models for working memory, composite score and attention score could be generalized to the validation cohort. A total of 35 FC features were identified as important for predicting performance in these cognitive domains. Significant differences between patients and controls were found for 13 of these features when considered individually. In summary, this project has established a framework for biomarker discovery that may have clinical relevance for the diagnosis of psychosis early in the disease process by providing possible FC features that can be detected using fMRI and may help guide therapeutic interventions. The identified biomarkers also provide convergent evidence for network dysfunction in psychosis and suggest personalized treatment targets

    A Survey of Brain Computer Interface Using Non-Invasive Methods

    Full text link
    Research on Brain-Computer Interface (BCI) began in the 1970s and has increased in volume and diversified significantly since then. Today BCI is widely used for applications like assistive devices for physically challenged users, mental state monitoring, input devices for hands-free applications, marketing, education, security, games and entertainment. This article explores the advantages and disadvantages of invasive and non-invasive BCI technologies and focuses on use cases of several non-invasive technologies, namely electroencephalogram (EEG), functional Magnetic Resonance Imaging (fMRI), Near Infrared Spectroscopy (NIRs) and hybrid systems

    Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy

    No full text
    Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI

    NONCONTACT DIFFUSE CORRELATION TOMOGRAPHY OF BREAST TUMOR

    Get PDF
    Since aggressive cancers are frequently hypermetabolic with angiogenic vessels, quantification of blood flow (BF) can be vital for cancer diagnosis. Our laboratory has developed a noncontact diffuse correlation tomography (ncDCT) system for 3-D imaging of BF distribution in deep tissues (up to centimeters). The ncDCT system employs two sets of optical lenses to project source and detector fibers respectively onto the tissue surface, and applies finite element framework to model light transportation in complex tissue geometries. This thesis reports our first step to adapt the ncDCT system for 3-D imaging of BF contrasts in human breast tumors. A commercial 3-D camera was used to obtain breast surface geometry which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the breast mesh surface and the measured boundary data were used for 3-D image reconstruction of BF distribution. This technique was tested with computer simulations and in 28 patients with breast tumors. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor was within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor BF contrasts. In vivo ncDCT imaging results from the majority of breast tumors showed higher BF contrasts in the tumor regions compared to the surrounding tissues. Reconstructed tumor depths and dimensions matched ultrasound imaging results when the tumors were within the sensitive region of light propagation. The results demonstrate that ncDCT system has the potential to image BF distributions in soft and vulnerable tissues without distorting tissue hemodynamics. In addition to this primary study, detector fibers with different modes (i.e., single-mode, few-mode, multimode) for photon collection were experimentally explored to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Penta-Modal Imaging Platform with OCT- Guided Dynamic Focusing for Simultaneous Multimodal Imaging

    Get PDF
    Complex diseases, such as Alzheimer’s disease, are associated with sequences of changes in multiple disease-specific biomarkers. These biomarkers may show dynamic changes at specific stages of disease progression. Thus, testing/monitoring each biomarker may provide insight into specific disease-related processes, which can result in early diagnosis or even development of preventive measures. Obtaining a comprehensive information of biological tissues requires imaging of multiple optical contrasts, which is not typically offered by a single imaging modality. Thus, combining different contrast mechanisms to achieve simultaneous multimodal imaging is desirable. However, this process is highly challenging due to specific optical and hardware requirements for each optical imaging system. The objective of this dissertation is to develop a novel Penta-modal optical imaging system integrating photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT), OCT angiography (OCTA) and confocal fluorescence microscopy (CFM) in one platform providing comprehensive structural, functional, and molecular information of living biological tissues. The system can simultaneously image different biomarkers with a large field-of-view (FOV) and high-speed imaging. The large FOV and the high imaging speed is achieved by combining optical and mechanical scanning mechanisms. To compensate for an uneven surface of biological samples, which result in images with non-uniform resolution and low signal to noise ratio (SNR), we further develop a novel OCT-guided surface contour scanning methodology, a technique for adjusting objective lens focus to follow the contour of the sample surface, to provide a uniform spatial resolution and SNR across the region of interest (ROI). The imaging system was tested by imaging phantoms, ex vivo biological samples, and in vivo. The OCT-guided surface contour scanning methodology was utilized for imaging a leaf of purple queen plant, which resulted in a significant contrast improvement of 41% and 38% across a large imaging area for CFM and PAM, respectively. The nuclei and cells walls were also clearly observed in both images. In an in vivo imaging of the Swiss Webster mouse ear, our multimodal imaging system was able to provide images with uniform resolution in an FOV of 10 mm x 10 mm with an imaging time of around 5 minutes. In addition to measuring the blood flow in the mouse ear, the system also successfully imaged mouse ear blood vessels, sebaceous glands, as well as several tissue structures. We further conducted a comparative study of OCTA for rodent retinal imaging by evaluating the performance of three OCTA algorithms, namely the phase variance (PV), improved speckle contrast (ISC), and optical microangiography (OMAG). It was concluded that the OMAG algorithm provided statistically significant higher mean values of BVD and VPI compared to the ISC algorithm (0.27±0.07 vs. 0.24±0.05 for BVD; 0.09±0.04 and 0.08±0.04 for VPI), while no statistically significant difference was observed for VDI and VCI among the algorithms. Results showed that both the ISC and OMAG algorithms are more robust than PV, and they can reveal similar vasculature features. Lastly, we utilized the proposed imaging system to monitor, for the first time, the invasion process of malaria parasites in the mosquito midgut. The system shows a promising potential to detect parasite motion as well as structural changes inside the mosquito midgut. The multimodal imaging system outlined in this dissertation can be useful in a variety of applications thanks to the specific optical contrast offered by each employed modality, including retinal and brain imaging

    In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI

    Get PDF
    There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations

    Cerebral Hemodynamics in High-Risk Neonates Probed by Diffuse Optical Spectroscopies

    Get PDF
    Advances in medical and surgical care of the critically ill neonates have decreasedmortality, yet a significant number of these neonates suffer from neurodevelopmentaldelays and failure in school. Thus, clinicians are now focusing on prevention ofneurologic injury and improvement of neurocognitive outcome in these high-risk infants. Assessment of cerebral oxygenation, cerebral blood volume, and the regulation of cerebral blood flow (CBF) during the neonatal period is vital for evaluating brain health. Traditional CBF imaging methods fail, however, for both ethical and logistical reasons. In this dissertation, I demonstrate the use of non-invasive optical modalities, i.e., diffuse optical spectroscopy and diffuse correlation spectroscopy, to study cerebral oxygenation and cerebral blood flow in the critically ill neonatal population. The optical techniques utilize near-infrared (NIR) light to probe the static and dynamic physiological properties of deep tissues. Diffuse correlation spectroscopy (DCS) employs the transport of temporal correlation functions of diffusing light to extract relative changes in blood flow in biological tissues. Diffuse optical spectroscopy (DOS) employs the wavelength-dependent attenuation of NIR light to assess the concentrations of the primary chromophores in the tissue, namely oxy- and deoxy-hemoglobin. This dissertation presents both validation and clinical applications of novel diffuse optical spectroscopies in two specific critically ill neonatal populations: very-low birth weight preterm infants,and infants born with complex congenital heart defects. For validation of DCS in neonates, the blood flow index quantified by DCS is shown to correlate well with velocity measurements in the middle cerebral artery acquired by transcranial Doppler ultrasound. In patients with congenital heart defects DCS-measured relative changes in CBF due to hypercapnia agree strongly with relative changes in blood flow in the jugular veins as measured by phase-encoded velocity mapping magnetic resonance. For applications in the clinic, CO2 reactivity in patients with congenital heart defects prior to various stages of reconstructive surgery was quantified; our initial results suggest that CO2 reactivity is not systematically related to brain injury in this population. Additionally, the cerebral effects of various interventions, such as blood transfusion and sodium bicarbonate infusion, were investigated. In preterm infants, monitoring with DCS reveals a resilience of these patients to maintain constant CBF during a small postural manipulation

    A study of movement detection in functional echo-planar imaging of the brain

    Get PDF
    • …
    corecore