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Abstract 

 

Major types of psychotic disorders include schizophrenia (SCZ), bipolar disorder (BP) and 

schizoaffective disorder (SZA). These disorders have profound and overlapping symptoms with 

marked cognitive deficits, and their diagnosis relies on symptom clusters. The treatments for 

psychosis are usually focused on positive symptoms such as delusions and hallucinations. 

Although cognitive impairments underlie both positive and negative symptoms, functional brain 

imaging biomarkers that can reliably predict a patient's cognitive deficits are still lacking. 

Therefore, this project used functional MRI to explore the feasibility of using functional 

connectivity (FC) to predict cognitive performance.  

 

A total of 207 subjects (BP: 79, SZ/SZA: 48, and HC: 80) with high functional MRI 

image (fMRI) quality (SNR> 100, motion < 0.3) were selected from the McLean MATRICS 

dataset. Subjects were divided into a discovery cohort (n=104) and an age, gender, and head 

motion matched validation cohort (n=103). The hypothesis was that FC could predict cognitive 

performance in the discovery cohort and that the prediction models could be generalized to the 

validation cohort. The connectomes for each subject were obtained by calculating the whole-

brain connectivity using networks from the individualized functional parcellation as region of 

interests (ROIs). Models were trained to predict the 8 cognitive scores in the discovery cohort, 

respectively. The generalizability of these models was tested by applying these models to the 

validation cohort.  
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The trained models were able to predict 6 out of 8 cognitive scores using a LOOCV 

procedure. Models for working memory, composite score and attention score could be 

generalized to the validation cohort. A total of 35 FC features were identified as important for 

predicting performance in these cognitive domains. Significant differences between patients and 

controls were found for 13 of these features when considered individually.  

 

In summary, this project has established a framework for biomarker discovery that may 

have clinical relevance for the diagnosis of psychosis early in the disease process by providing 

possible FC features that can be detected using fMRI and may help guide therapeutic 

interventions. The identified biomarkers also provide convergent evidence for network 

dysfunction in psychosis and suggest personalized treatment targets. 
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Chapter 1. Introduction 

 

1.1 Definition of psychosis and bipolar disorder 

 

According to the National Institute of Mental Health, a person is considered to have 

psychosis when they have developed conditions that affect the mind and lost contact with reality. 

Major types of psychosis include SZ, BP and SZA. These disorders have profound symptoms 

with marked cognitive deficits (National Institude of Mental Health, 2019). SCZ is characterized 

by having lost contact with reality (McCutcheon et al., 2020), while BP is associated with 

extreme mood changes between mania and depression (McIntyre et al., 2020). SZA is mainly 

marked by mood disorders along with common SCZ symptoms (Miller & Black, 2019). Usually, 

the diagnosis of psychosis relies on symptom clusters and requires the use of psychological 

assessment scales. 

 

1.2 Epidemiology 

 

The prevalence of SCZ and BP in the US is around 1% (Rowland & Marwaha, 2018) and 1 

in 300 people is affected by the disease worldwide. The rate increases to 1 in 222 people for 

adults because onset usually happen during late adolescences. Men also tend to develop the 

disease earlier than women. Despite low prevalence, these disorders take a tremendous toll on 

patients, families, and society as a whole. The economic burden of SCZ in the U.S. reached $340 

billion in 2019, with BP not far behind (Moreno-Kustner et al., 2018). Many individuals with 

psychotic disorders have difficulty functioning in society due to cognitive deficits that are 
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commonly seen in psychosis. According to a meta-analysis in 2019, there is a high prevalence of 

21% in homeless people that are diagnosed with psychosis (Ayano et al., 2019).  

 

SCZ patients have reduced life expectancy around 15 to 20 years shorter than healthy people 

(Hjorthoj et al., 2017). Also, with around 5% to 10% life-time risk of death by suicide (Hjorthoj 

et al., 2017), SCZ patients are more likely to commit suicide compared with the general 

population with suicide rate less than 0.01% (U.S. Department of Health and Human Services, 

2021). SCZ is associated with risk factors in multiple dimensions including genetics, brain 

development, birth complication and environmental factors. People who have a family history of 

SCZ are more likely to develop SCZ with a heritability of around 80%. GWAS studies showed 

that over 100 loci are associated with SCZ but each with only small effect (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014). Based on this information, GWAS could 

construct a polygenic risk score and gives a genetic risk summary of the disorder. Some genetic 

variants involving some sections of DNA duplication and deletion could also increase the risk of 

SCZ but not in all cases (only 2% to 3% of SCZ cases) (Bassett & Chow, 2008). Although SCZ 

typically diagnosed in late adolescence to early thirties, there is evidence indicating that 

pathogenesis begins in neurodevelopment. Birth complication could be one of the potential 

causes that increase the risk of developing SCZ. For example, studies suggested that people with 

psychosis are more likely to have experienced utero adversity like maternal infections, starvation 

during pregnancy, preterm birth and etc. (Xu et al., 2009). However, SCZ can also be trigged by 

stress and substance abuse. Environmental factors like injury, urban living, and minority status 

could all increase the risk of developing psychosis (Lederbogen et al., 2011). Thus, even 
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identical twins could have different chances of getting psychosis (Hilker et al., 2018), suggesting 

the importance of environmental factors in psychosis development.  

 

Similarly, a combination of genetic, biological, and environmental factors may contribute to 

the development of BP. People who have a close relative with the condition have a 5% to 10% 

chance to develop BP themselves, which is much higher than healthy people (Craddock & Jones, 

1999). BP can occur at any age, but it typically develops in late adolescence or early adulthood 

(Leboyer & Kupfer, 2010; National Institude of Mental Health). Just like SCZ, BP is likely 

influenced by many different genes. Recent research has identified multiple genes that may 

contribute to BP risk. Some specific gene variations have been associated with an increased risk 

of BP. For example, the CACNA1C gene is involved in calcium signaling in the brain and has 

been linked to the disease (K. L. Bigos et al., 2010). Trauma, stress, substance abuse, and other 

environmental factors may also play a role in the development of BP  (Jiang et al., 2019) (Fass et 

al., 2014). Certain medical conditions, such as thyroid disorders, multiple sclerosis, and 

traumatic brain injury, have been linked to an increased risk of BP (Hu et al., 2013; McIntyre et 

al., 2008). Medications such as antidepressants and corticosteroids may also trigger manic 

episodes in some people (Bowers et al., 2003; Peet & Peters, 1995).  
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1.3 Symptoms 

 

1.3.1 Positive and negative symptom 

 

There are many symptoms involved in psychotic disorders, but the two primary 

symptoms are the hallucination and delusion (Larkin & Read, 2008; Whitfield et al., 2005). 

These are positive symptoms of psychosis which refers to gain of abnormal functions. Other 

positive symptoms include disorganized speech, Examples of negative symptoms include 

reduced motivation, lack of emotion, social isolation (Lencz et al., 2004; Piskulic et al., 2012) 

where patients start to lose their normal functions of life. These symptoms usually vary in 

different patients. This is one of the most recognized barriers in the field is phenotypic 

heterogeneity, where two patients with a diagnosis of SZ can present with completely non-

overlapping symptom clusters (Chand et al., 2020). This suggests that multiple disease processes 

may exist for patients within the same diagnostic category. On the other hand, genetic, 

radiological, and neuropathological studies suggest psychotic disorders may not be biologically 

independent entities but can be considered as a continuum of overlapping syndromes (Craddock 

& Owen, 2007). The positive symptoms of SCZ are related to the recognition of "happy" faces, 

while patients with obvious negative symptoms often have negative beliefs when returning to 

society, thus affecting their social functions. 
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1.3.2 Cognitive symptoms 

 

The focus of research within the field is usually on improving the positive symptoms like 

delusions and hallucinations because there are antipsychotic medications that could manage 

these aspects affectively. However, underlying the positive and negative symptoms are the 

cognitive impairments. Cognitive deficits in multiple domains are involved in psychotic 

disorders, including processing speed (Montalvo et al., 2014), attention (Rodriguez-Blanco et al., 

2017), working memory (Brewer et al., 2005; González-Ortega et al., 2013; Niendam et al., 

2006; Rodriguez-Blanco et al., 2017), verbal learning (Niendam et al., 2006; Sommer et al., 

2001), visual learning (Niendam et al., 2006), problem solving (Chien et al., 2016) and social 

cognition (Addington & Addington, 2008).  

  

1.4 Diagnosis 

 

According to the DSM-5, a diagnosis of SCZ requires a combination of at least two 

characteristic symptoms (delusions, auditory hallucinations, speech disorders, behavioral 

disorders, negative symptoms) lasting for more than one month (symptoms must include one of 

the three). Prodromal symptoms or impaired social, occupational, or self-care function lasting for 

up to 6 months (including 1 month when symptoms are evident). The diagnosis of BP has two 

types. BP I has mainly manic episode with (at least one) along with depressive episode. A manic 

episode is defined as a distinct period of abnormally elevated mood that lasts at least one week, 

accompanied by other symptoms such as increased energy, decreased sleep, and etc. BP II has 

mainly depressive episode with at least one hypomanic episode. A hypomanic episode is similar 
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to a manic episode, but the symptoms are less severe and do not cause significant impairments in 

social or occupational functioning (American Psychiatric Association, 2013). The cognitive 

symptoms are not typically used as criterion for the diagnosis of psychosis because cognitive 

symptoms can be present in a variety of conditions and may not be specific to psychosis. 

However, cognitive symptoms are often evaluated as part of the overall assessment of a 

diagnosed patient, as they may provide important information about the severity and nature of 

the illness, as well as potential treatment targets (McCleery & Nuechterlein, 2019).  

 

1.5 Assessments 

 

There are many assessments that are commonly used in clinical diagnosis to evaluate 

symptoms of SCZ and BP. The most representative assessment is the Positive and Negative 

Syndrome Scale (PANSS) (Kay et al., 1987). It can assess the severity of SCZ and is usually 

used to assess the efficacy of antipsychotic treatments. Other scales include the young mania 

rating scale (YMRS) which assess patient’s mania symptoms, Montgomery-Asberg Depression 

Rating Scale (MADRS) (Young et al., 1978) which assess patient’s depression symptoms, and 

Multnomah Community Ability Scale (MCAS) (Barker et al., 1994) which measures patient’s 

functioning with in the community.  

 

The National Institute of Mental Health’s Measurement and Treatment Research to 

Improve Cognition in SCZ (MATRICS) together evaluated also over 90 tests and selected the 

most promising tests to discover the MATRICS Consensus Cognitive Batter (MCCB). The 

MCCB produces 7 domain scores including processing speed, attention, working memory, 
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verbal learning, visual learning, problem solving, social cognition and a composite score which 

is the average of all the scores. It is now used as a standard battery in clinical assessments for 

cognitive deficits (Nuechterlein et al., 2008).  
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1.6 Magnetic resonance imaging (MRI) 

 

There are many types of MRI techniques used in neuroscience: including diffusion MRI, 

myelin water imaging, arterial spin labeling, susceptibility weighted imaging, magnetization 

transfer, structural MRI (sMRI) and fMRI. The ones that were used in this project were sMRI 

and fMRI. Researchers usually compare the brain structure or function of subjects with certain 

types of illness to those without the illness. Differences identified by MRI can provide insight 

into their pathogenesis or identify biomarkers that can guide subsequent treatment. Changes in 

the intrinsic functional connectivity (FC) of the brain are associated with cognition in a wide 

range of psychiatric disorders. Therefore, the changes in resting state FC can be used as a method 

to explore the mechanism of the disease. 
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1.6.1 Structural MRI 

 

The mechanism of sMRI is that the scanner takes magnetic resonance values of different 

areas of the brain and combine these data into an output that produces a high-resolution T1 

image of the brain. Scientists can look at the gray matter (which mainly contains the bodies of 

nerve cells) and the white matter (which mainly contains the synapses that connect different parts 

of the brain) separately as needed. T1 images can also provide shape and size information of 

different areas of the brain. For example, the hippocampus, which is responsible for memory, is 

typically smaller in Alzheimer's patients than healthy people (Schuff et al., 2009).  

 

 

 

Figure 1. Visualization of an original T1 image. A structural T1 image view showing one slice 

each from in (a) sagittal, (b) coronal, and (c) axial plane.   
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1.6.2 Blood-Oxygen-Level-Dependent signal 

 

When a certain brain region is activated, the synaptic activity of neurons will increases. 

This will cause energy consumption and oxygen consumption of the area increase, thus causing a 

large increase in the blood supply of this brain region. The increase thus affecting the up-

regulation of oxygen metabolic rate in this brain region. As the energy generation process 

depletes the local oxygen reserves, waste products build up, causing vasodilation reactions. 

Cerebral blood flow increases, making oxygen supply greater than oxygen consumption. Thus, 

when neurons fire, the ratio of oxygenated hemoglobin to deoxygenated hemoglobin in this brain 

region increases (Bren et al., 2015).  

fMRI imaging is based on this large rebound of local tissue oxygenation. Studies have 

shown that oxygenated hemoglobin is diamagnetism and deoxygenated hemoglobin is para-

magnetism (Bren et al., 2015). This will allow the formation of the local magnetic field gradient, 

causing hydrogen protons in these different substances to feel different magnetic field intensity. 

When a brain region is activated, oxygenated hemoglobin is much higher than deoxygenated 

hemoglobin, resulting in a slower dephasing of hydrogen protons. The changes can be detected 

using T2-weighted imaging sequences to locate functional brain activity (Glover, 2011). Thus, 

the BOLD functional image that we often hear about is also a T2* image.  
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1.6.3 Functional MRI 

 

Functional magnetic resonance imaging (fMRI) is a technique that used to record the BOLD 

signals of the brain related to certain tasks. It has been one of the leading methods for studying 

whole-brain function in humans since its inception in 1992. There are two primary types of 

fMRI, resting-state fMRI, and task-based fMRI. Resting-state fMRI is collected in the absence of 

any experimental task. The subject is usually asked to rest quietly with their eyes opened. Initial 

experiments suggest that various regions of the brain remain active during this process, 

expressed in low frequency BOLD fluctuations of around 0.01-0.1 Hz (Fransson, 2005; 

Kajimura et al., 2023). It is believed that temporal correlations between these fluctuations reveal 

the intrinsic functional organization of the brain (Biswal et al., 1995); thus, the most common 

method for analyzing resting-state fMRI is to measure the temporal correlation between BOLD 

signals in different brain regions. Task-based fMRI is a powerful tool to study neural activity in 

related to sensory, motor, or cognitive tasks over time. The scanning is done when the participant 

is instructed to perform tasks. The hemodynamic response is a key concept in task-based fMRI 

because it is used to identify which brain regions are activated in response to these tasks. It 

describes the time course of the changes of the BOLD signals in response to a neural stimulus. 

The BOLD response peaks around 3s to 5s after the stimulus is given, and persist before 

returning to baseline level. (West et al., 2019). In task-based fMRI analysis, researchers usually 

convolve onsets of task-specific conditions with the hemodynamic response function to generate 

statistical models (for example, the general linear model) that identify brain activations related 

with each condition (Calhoun et al., 2004). 
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Figure 2. Visualization of an original BOLD image. A functional BOLD image view showing 

one slice each from in (a) sagittal, (b) coronal, and (c) axial plane.   
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1.6.4 Individual variability in functional connectivity architecture of the human brain 

 

Our lab has investigated the individual differences in brain FC and found high levels of 

individual differences especially in the higher order association areas in the cortical networks 

(Mueller et al., 2013). The raw inter-subject variability across 23 healthy subjects was calculated 

by analyzing their functional connectivity calculated from the resting-state fMRI data. Then the 

intra-subject variability from the 5 scans of the same subject was obtained and regressed out 

from the inter-subject variability to get the pure inter-subject variability. We found large 

functional inter-subject variability in frontoparietal network, ventral attention network, default 

network and dorsal attention network. In contrast, the limbic system, motor sensory and visual 

areas demonstrated less inter-subject variability across individuals. We then compared the inter-

subject variability map with the evolutionary cortical expansion map (evolutionary cortical 

expansion compared between an adult macaque and the average human adult PALS-B12 atlas) 

(Hill et al., 2010; Van Essen, 2005) and also found a high correlation (r = 0.52, p < 0.0001). 

Then we investigated the relationship between functional and anatomical variability. Individual 

variability in functional connectivity is found to be associated with the sulcal depth variability, 

but not associated with cortical thickness. These two analyses suggest that the evolution of the 

brain is characterized by the expansion of the cortical surface but the same cortical thickness. 

Lastly, to confirm whether our individual difference map overlaps with the known brain regions 

with large individual differences, we searched the literature for studies that are related to 

personality traits, memory performance, intelligence, and perception, and quantified them on the 

brain surface. The results showed that 73% of the regions found in these studies were consistent 
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with the regions with high differences. Areas of high variance are those with differences greater 

than the overall mean, which collectively cover 51% of the cerebral cortex.  

 

1.6.5 Parcellating cortical networks in individuals 

 

Our laboratory has implemented an initial version of the homologous parcellation 

algorithm using fMRI data from a publicly available dataset consisting of 10 healthy, young adults 

(Gordon et al., 2017). We first derived a group-level atlas using these 10 subjects, which included 

213 parcels. Homologous regions of these 213 parcels in each individual’s brain were then 

identified using the iterative algorithm, lobe by lobe. To examine reliability of the results, each 

participant’s data was partitioned into two halves and assessed the within-subject overlap between 

parcellations derived from each half. The test-retest reliability, measured by the Dice coefficient, 

was 85.7% ± 1.9%. Homology of parcels between subjects was then examined using task-based 

fMRI data. The rationale is that the same task should activate homologous functional regions 

across individuals. We first tested this in the motor domain. Each participant moved different body 

parts (e.g., hand, tongue) in the scanner for a total duration of 76 min, allowing for robust mapping 

of task-activated regions. Brain regions activated by hand and tongue movements showed variable 

topographies across individuals. However, these activations fell within the same two parcels in 

every subject. Across all 10 subjects, 95.1% ± 4.0% of the top 10% most activated vertices fell 

within these two parcels. This high convergence suggests that the parcels derived from rs-fMRI 

can reflect homologous motor functions across individuals. We next examined the language 

domain. Using 3 subjects as the Discovery sample, we found 3 parcels that were significantly 

activated by the language task. We predicted that the same task would activate the same parcels in 
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a sample of new subjects. Our results showed that these parcels were indeed all activated in the 3 

previously unseen, testing subjects, supporting the homology of these parcels across individuals. 

 

1.7 Brain changes related to psychosis 

 

1.7.1 Structural change in psychosis 

 

Psychosis is often accompanied by structural brain abnormalities. However, it remains 

unclear when these structural changes occurred and how they developed over time. Thus, the 

question of SCZ as a progressive brain disorder remains unresolved. Studies from the preclinical 

phase to the regression phase of psychosis have shown that the loss of cortical gray matter is 

more significant in patients who later transitioned to SCZ. Patients with first-episode psychosis 

revealed a decrease in multiple gray-matter regions (e.g., frontal lobes and thalamus) with 

disease progression, as well as progressive cortical thinning of the superior and inferior frontal 

gyri. Also, visual hallucination was found to be associated with lower white matter integrity in 

the inferior longitudinal fasciculus in SCZ patients (Ashtari et al., 2007). Recently, a quantitative 

review of magnetic resonance imaging studies in SCZ demonstrated significantly structural 

changes in volume changes of several brain structures, such as intracranial, lateral, and third 

ventricle volumes, relative to controls. (Kuo & Pogue-Geile, 2019). There is sufficient evidence 

that SCZ is associated with abnormality in the gray matter especially in the early stages of the 

disease (Blakemore & Choudhury, 2006). Few studies investigated in white matter 

microstructure in long-term psychosis. However, the relationships between structural changes 

and the course of chronic psychosis should be concluded with caution. Prolonged treatment, 
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higher doses of antipsychotic drugs, or concomitant epiphenomena of illness may confound the 

results (Stroup & Gray, 2018).  

Structural changes in the brain have also been observed in people with BP. Studies have 

found reduced gray matter in certain regions of the brain, particularly in the prefrontal cortex, 

and this might be caused by mood state (Wang et al., 2019). The prefrontal cortex is responsible 

for decision-making and emotional regulation. Abnormality in the prefrontal cortex may result in 

disrupted communication between different parts of the brain, mood instability and other 

symptoms of BP (Fernandes et al., 2019). Studies also found that dysregulation of salience 

network is associated with reduction in grey matter thickness in insular and anterior cingulate 

cortex. amygdala, and hippocampus (Matsubara et al., 2016). These regions are involved in 

mood regulation, emotional processing, and memory. The lateral ventricle volumes were also 

larger in BP than healthy people (Hibar et al., 2016). But this is this is found to be associated 

with more hospitalization and unemployment, but not with the severity of the illness (Pearlson et 

al., 1984). 

 

1.7.2 Functional change in psychosis 

 

Previous research has shown that patients with BP have cognitive impairments involving 

multiple areas of attention, verbal learning and memory, executive function, and social cognition 

during the acute phase of depressive or manic episodes, which persist even in remission (Sanches 

et al., 2015). For example, imaging studies have shown that certain areas of the brain may exhibit 

functional abnormalities in people with BP. For example, the amygdala, which is involved in 

emotional processing, may be more active in people with BP, particularly during manic episodes 
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(Altshuler et al., 2005). Other studies have found reduced amygdala-prefrontal connectivity, 

particularly during episodes of depression (Dannlowski et al., 2009). In the default mode 

network, Decreased connectivity were found between the medial prefrontal cortex (mPFC) and 

PCC in BP compared with healthy controls, and this was found to be associated with decreased 

processing speed (Nguyen et al., 2017; Zhang et al., 2022). The connectivity between ACC and 

PCC were found to be decreased in BP patients and this is associated with disrupted mood (Gong 

et al., 2019; Rey et al., 2016). The decrease connectivity between the salience and limbic 

network were related with greater severity of mood dysregulation (Anand et al., 2009). In frontal 

parietal network, increased activity was found in DLPFC, and decreased activity was found in 

dorsal medial prefrontal cortex (DMPFC), mPFC and precuneus in a n-back working memory 

task. These abnormalities are associated with the working memory function, difficulty in 

regulating emotions and dysregulation in response to emotional stimuli (Rodríguez-Cano et al., 

2017).  

 

 

Patients with SCZ have extensive cognitive impairment which is related to the 

progression of SCZ and the stage of the disease. They usually show obvious negative symptoms 

and beliefs when returning to society, thus affecting their social functions. Researchers have 

found that the ability of emotional face recognition and emotion management in SCZ patients 

was lower than that in healthy control group (Hargreaves et al., 2016). In a study where 

participants were asked to perform a visual oddball task, SCZ patients showed reduced activity 

in dorsal and ventral attention networks compared with healthy controls (HCs). Visual oddball 

task is a common task used to evaluate participant’s cognitive and attention functions (Wynn et 
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al., 2015). Studies have also found hypoactivation in dorsolateral prefrontal cortex (DLPFC) 

(Carter et al., 1998) and hyperactivation in the ventrolateral prefrontal cortex compared with 

HCs during verbal working memory tasks. The tasks involved memory encoding and 

manipulation of the information (Tan et al., 2005). In addition, BOLD activity in posterior 

cingulate cortex (PCC) was found to be  positively correlated with regions within the default 

mode network including surrounding regions, precuneus, anterior cingulate cortex, and medial 

prefrontal cortex in general population. However, SCZ patients had less correlation between 

those regions comparing with HCs. Positive symptoms in SCZ were found to be positively 

correlated with connectivity between PCC and regions including the bilateral premotor and 

bilateral temporal gyrus. Negative symptoms were found to be positively correlated with 

connectivity between PCC and right fusiform gyrus, and negatively correlated with connectivity 

between PCC and right premotor region, right middle and left superior temporal gyri, left inferior 

frontal gyrus and right dorsal anterior cingulate gyrus. Dysfunction in dorsal lateral prefrontal 

cortex is associated with cognitive disorganization, but not associated with positive or negative 

symptoms (Perlstein et al., 2001). Decreased activation in dorsal lateral prefrontal cortex is 

associated with abnormal working memory function (Callicott et al., 2000).  

 

However, we still could not gather a unified understanding of network dysfunction in 

psychosis. Many studies that examine functional networks in psychotic patients have produced 

inconsistent findings, suggesting increases or decreases in FC at rest, and hyper- and hypo-

activity across a variety of brain regions during task performance. For example, sustained 

attention tasks were designed to test patients’ ability to focus and respond to specific cognitive 

command or stimuli. Several studies reported increased activation in anterior cingulate cortex 
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(ACC) and PCC in SCZ patients during sustained attention tasks comparing with HCs (Honey et 

al., 2005; Wolf et al., 2008), while others reported decreased activation (Gur et al., 2007; Liddle 

et al., 2006; Morey et al., 2005). In another study, researchers found larger deactivation in PCC 

in SCZ patients when performing attention tasks with respect to HCs (Harrison et al., 2007). 

Lesh et al. in 2013 have found reduced activation in DLPFC and inferior parietal cortex in first 

episodic psychotic patients (FEP) (Lesh et al., 2013), while Keedy et al. in 2015 found increased 

activation in DLPFC in FEP patients (Keedy et al., 2015). Similarly, insular cortex was found to 

have increased (Wolf et al., 2008) and decreased (Liddle et al., 2006) activation bilaterally, 

showing how inconsistent results have been. In fact, abnormal functional activity and 

connectivity have been reported in almost every major network, rendering an extremely complex 

and obscure picture of “network dysfunction”.  

 

Overall, these studies all provide valuable insights into the cognitive impairments 

observed in psychosis. The cognitive impairments observed in these disorders are complex and 

multifaceted, affecting various cognitive domains and functional networks. Understanding the 

network dysfunction underlying these deficits is necessary for the treatment of psychosis.  

 

1.8 Commonalities between SCZ and BP 

 

The classification of SCZ and BP originates from Kraepelin’s classification of psychoses 

(Kendler, 2020). However, research has shown that there are commonalities between the two 

disorders, which has led some studies to suggest a disease continuum between the two (Craddock 

et al., 2006; de Sousa et al., 2023). Studies have shown that both SCZ and BP have similar 



 26 

genetic factors and share some overlapping genes (Kristin L. Bigos et al., 2010; Chumakov et al., 

2002; Hattori et al., 2003). Brain imaging studies have also found similar abnormalities in white 

matter (Anderson et al., 2013; Cui et al., 2011; Ellison-Wright & Bullmore, 2010) and brain 

connectivity patterns between the two disorders (Wagner et al., 2015). Dysfunctional features in 

neurotransmitter systems, such as dopamine (Jauhar et al., 2017), serotonin (Patrick & Ames, 

2015), GABA (Fatemi et al., 2017), and glutamate (Fiorentino et al., 2015), are present in both 

disorders. These findings suggest that there may be underlying mechanisms that contribute to 

both SCZ and BP. Understanding the relationship between the two disorders may lead to 

improved diagnosis, treatments, and managements of these common conditions.  
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Chapter 2. Methods 

2.1 Datasets 

 

The MATRICS dataset has been acquired at McLean hospital in Belmont, Massachusetts. 

The dataset includes imaging, clinical and cognitive data from 232 subjects. Cognition scores 

comprised of 7 domain scores (Processing Speed, Attention, Working Memory, Verbal Learning, 

Visual Learning, Reasoning/Problem Solving, Social Cognition) and a composite score were 

measured using the MATRICS Consensus Cognitive Battery (Nuechterlein et al., 2008) in all 

patients and HCs. Clinical symptoms were measured in patients include the Positive and 

Negative Syndrome Scale (PANSS), the Young Mania Rating Scale (YMRS), Montgomery-

Asberg Depression Rating Scale (MADRS), and the Multnomah Community Ability Scale 

(MCAS).  

 

2.1.1 Participants 

 

Participants included HCs, BP, SCZ and SZA patients. After quality control, data from 

207 subjects (77 women; age: 18 ~ 68 yrs; BP: 79, SCZ/SZA: 48, HC: 80) with high fMRI 

imaging quality were retained for analysis (SNR> 100, mean motion < 0.3mm). These 

participants’ demographic characteristics are summarized in Tables 1. The purpose of having 

cross-diagnostic groups in the analysis was to see how cognitive scores from different groups 

would fit into the overall distribution and to compare cognitive deficits in those groups with 

respect to healthy controls. 

 



 28 

Subjects were divided into two group: a Discovery cohort (n =104, 41 women, age: 18 ~ 

68 yrs, BP: 40, SCZ/SZA: 24, and HC: 40 ) and a Validation cohort (n =103, 36 women, age: 18 

~ 68 yrs, BP: 39, SCZ/SZA: 24, and HC: 40) to test the generalizability of the models. Subjects 

within each dataset were matched in age, gender, and head motion across BP, SZC/SZA, and 

HCs to ensure the results were not driven by differences in demographics and head motion. 

 

 

 

Table 1. Demographics. (Top) Discovery Cohort: n=104. (Bottom) Validation Cohort: n=103. 

Subjects within each dataset were matched in age, gender, and head motion across BP, SZ/SZA, 

and HCs (one-way ANOVA test, p > 0.2) to ensure the results were not driven by differences in 

demographics and head motion in scanner.  FD: framewise displacement.  
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2.2 Imaging data analysis 

 

2.2.1 MRI data acquisition and preprocessing 

 

MRI data were acquired using a 3T Siemens scanner with 12-channel head coil. The T2-

weighted imaging of TR = 2500 msec, flip angle = 82.00 degrees, voxel size = 3.5x3.5x3.5 mm3, 

nframes = 240, FOV = 64, orientation = LPS, were used for BOLD fMRI. Participants were 

instructed to remain still with eye their open and perform two 6-mins resting-state scanning.  

 

Structural MRI data were processed via the FreeSurfer software environment (Dale et al., 

1999; Fischl, 2012) using the recon-all command. Recon-all stands for reconstruction, like the 

reconstruction of a two-dimensional cortical surface from a three-dimensional volume. The 

images we collected from the MRI scanner were 3D blocks, which were converted by recon-all 

into smooth, continuous two-dimensional surfaces. In brief, the following steps was applied to 

each subject: 1) Motion correction and conform. Small movements were corrected and the 

images were averaged if the same subject has multiple images. 2) multiple intensity 

normalization. Scale the intensity of all voxels. 3) Skull strip. 4) White matter segmentation. 

Separating white matter from everything else. 5) Creating original cortical and subcortical mass. 

The midbrain is cut off from the brain, and the two hemispheres of the brain were cut off from 

each other. 6) Tessellation. Creating the original surface, which is created by filling hemispheres 

with triangles. The point where the points of a triangle meet is called a vertex. 7) Smooth. After 

tessellation, vertex position needs to be adjusted to smooth the jagged surface filled by the 
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triangles. 8) Spherical inflation and registration. This step is for registering the surface to the 

spherical template atlas. 9) Contralateral surface registration. Registering to the contralateral 

atlas for comparing the corresponding regions in both hemisphere of the brain and studying 

functional connectivity and asymmetry between the two hemispheres. 10) Cortical parcellation 

and statistics. Create anatomical labels for each location on the cortical surface, and a statistical 

table for anatomical information including structure name, number of vertices, surface area, gray 

and white volume, cortical thickness, and curvature information. Reconstruction would allow 

individual’s resting-state fMRI data to be projected onto their cortical surface anatomy.  

 

Resting-state fMRI data were preprocessed using a series of steps developed in a 

previously published pipeline (Mueller et al., 2015; Mueller et al., 2013; Wang et al., 2015; 

Wang et al., 2013; Wang et al., 2014) from our laboratory. In brief, the following preprocessing 

was applied for each subject: 1) The first 4 volumes of the BOLD scans was discarded to account 

for magnetization stabilization. 2) Motion correction. In the scanner, participants moved their 

bodies as they acquired the images, which led to mismatches in the subsequent images over time. 

This type of motion artifact could be partially corrected by a simple rigid body transformation. 

The transformation estimates six correction parameters by three translations in the X, Y, and Z 

directions and three rotations around the X, Y, and Z axes, aligning each individual image with a 

reference image. 3) Slice-timing correction. In a TR (Repetition time) of scanning, several brain 

slices were usually scanned.  Since only one brain slice could be scanned at a time, there will be 

some difference in scanning time between each brain slice. Interpolation was used to align brain 

slices scanned at different time points within the same TR. 4) Spatial smoothing was used to 

eliminate interference signals generated by the hardware instability and physiological motion. It 
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was achieved by applying a Gaussian kernel to the data, which weights the intensity values of 

surrounding voxels to reduce noise. The number of voxels that were smoothed or blurred is 

determined by the size of the kernel, defined by the half-valued full width (FWHM) of the 

Gaussian kernel. The FWHM is defined as the width of the pick at half of its maximum value. A 

larger FWHM corresponds to a larger kernel and a greater degree of smoothing. 

 

2.2.2 Quality control 
 

BOLD signal is known to be highly sensitive to motion-related artifacts and physiological 

noise, as well as equipment instability due to random processes. Therefore, fMRI data denoising 

is not only essential for improving data quality, but also helps to improve the repeatability and 

reliability of the study. The quality control involves a series of steps: 1) Exclusion for subjects 

that have mean head motion > 1 mm and SNR < 100, 2) Visual inspection for T1, BOLD raw 

images to look for possible motion-related artifacts such as blurring or ghosting that might affect 

the quality of the data and the FC maps in the next step. 3) Check whole-brain FC maps for ROIs 

in ACC, PCC of the default network, and motor cortex. These seeds were commonly used in 

fMRI quality control because they provide consistent and robust connectivity maps that can seve 

as a reference for brain activity (Andrews-Hanna et al., 2014; Buckner et al., 2008). These steps 

increased the likelihood that the data included in the analysis were of good quality and that the 

results would not be affected by head motion and imaging artifacts.  
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2.2.2 Individualized fine-grained parcellation 

 

Our laboratory has established a series of technologies to localize fine-grained cortical 

functional networks at the single-subject level using rs-fMRI (Brennan et al., 2019; Langs et al., 

2016; Li et al., 2019; Wang et al., 2015; Wang et al., 2018; Wang et al., 2020). These methods 

show high within-subject reproducibility and can be validated using invasive cortical stimulation 

mapping in surgical patients. These novel techniques were used in this project to map the 

homologous, fine-grained functional regions in the discovery dataset. 

 

 The goal is to parcellate an individual subject’s brain into 92 functional clusters based on rs-

fMRI. The following constraints were applied in the individualized functional network 

parcellation to maximize between-subject homology of the resulted parcels. First, the iterative 

parcellation procedure is initially guided by a group-level, fine-grained functional network atlas 

from the fMRI data of 10 healthy, young adults (Gordon et al., 2017). The group-level atlas was 

projected to each individual’s brain and then an iterative algorithm gradually adjusted the 

network boundaries, allowing individual-specific information to replace the group information. 

To maximize homology between subjects, the iterative parcellation was performed within each 

lobe of the cortex. This constraint ensured that for a functional region in a given lobe, its 

homologous region in a different subject will be located in the same lobe. The Desikan Killiany 

atlas (Desikan et al., 2006) was used to segment each hemisphere into the frontal, temporal, 

parietal, and occipital lobes. A fifth “lobe” which consists of regions surrounding the central 

sulcus (i.e., pre-, post-, and para-central regions) was also included. After each lobe was 

parcellated into multiple functional regions, the regions at the borders of the lobes were merged 
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based on functional correlation. During the subject-level parcellation, for each cluster, I used the 

group-level FC signature of that cluster as a potential indicator for determining inclusiveness. In 

other words, a voxel is more likely to be assigned to a cluster if its connectivity to the rest of the 

brain resembles the cluster’s connectivity signature observed at the group-level. 

 

The reliability of parcellation was evaluated using Dice’s coefficient. We partitioned the 

rs-fMRI data of each subject into two halves. Test-retest reliability was calculated as the 

similarity of the network parcellation derived from the two halves of the data. Specifically, we 

compared the dice similarity of the parcellation between two segments in each subject (intra-

subject reliability) and variability across different subjects (inter-subject variability).   
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2.2.3 Resting-state connectomes 
 

The 92 functional networks generated above were analyzed as 92 ROIs. The time courses 

for each network were extracted, and the correlation between any two ROIs was calculated to 

obtain a unique 92×92 functional connectomes for each subject. 

 

2.3 Prediction models 

 

Support Vector Machine for Regression (SVR) and Leave-One-Out cross validation 

(LOOCV) was used to construct prediction models. Permutation tests were also be applied to 

avoid overfitting. These analyses were done through MATLAB and Python. A trans-diagnostic 

approach was used, by combining all the groups to construct prediction models, as there is often 

overlap in clinical symptoms and cognitive impairments in psychosis. In the case of SCZ and 

BP, both are associated with similar cognitive impairments, which makes it reasonable to 

combine the patient groups for prediction. Including healthy controls in the prediction model 

allowed us to compare between psychotic patients and general population. This can help 

distinguish cognitive impairments that are associated with the disorders themselves versus those 

that are within the range of normal cognitive functioning. Additionally, it could also provide a 

larger sample size and increase the statistical power to draw more definitive conclusions for the 

findings.  
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2.3.1 Support Vector Machine (SVR) and Leave-One-Out Cross Validation (LOOCV) 

 

Cross-validation is widely used to assess the validation performance of the 

models/biomarkers. However, internal LOOCV accuracy is not equivalent to an assessment of 

how the model will perform on new data, as excellent models obtained by internal cross-

validation may perform substantially worse on held-out datasets. Therefore, to assess 

biomarkers’ generalizability, other than test them with internal cross-validation, it is crucial to 

additionally test the final model on a completely held-out dataset. 

 

Support Vector Machine is a supervised learning model that is widely used for fMRI data 

classification (Song et al., 2011) and regression analysis (Vergun et al., 2013).  The LOOCV 

procedure will also be adapted in the training process to estimate the prediction performance of 

the model. 

 

Specifically, I constructed the model with a set of labelled training data that consists of 

the input data (resting-state connectomes) and a selected output (a specific cognitive score). The 

machine learning algorithm adjusted the weights for features that contribute to prediction in the 

input data based on the desired output. For the LOOCV procedure, n-1 subjects were used to 

train the model and then the resulting model was applied to the 1 subject to predict the subject’s 

cognitive score. The correlation between the observed scores and the predicted scores were 

evaluated with Pearson correlation.  
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2.3.2 Permutation test 

 

The cognition scores of all the subjects in the Discovery cohort were randomly reshuffled 

1000 times, and correlation between predicted cognition scores and observed cognitive scores 

were rerun. The permutation p value was estimated by calculating the percentage of permutations 

that yielded a predicted-observed score absolute correlation value higher than the real predicted-

observed score absolute correlation. 
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Chapter 3. Results  

3.1 Score Prediction 

 

3.1.1 Parcellation Reliability 

 

The intra-subject similarity was 0.67±0.05 ranged from 0.48 to 0.78. The inter-subject 

variability was 0.52±0.02 ranged from 0.43 to 0.56.  

 

3.1.2 Internal validation - Cognitive Score prediction on discovery dataset 

 

Using the Discovery cohort, we constructed prediction models based on the resting-state 

functional connectomes and the 8 cognitive scores. Correlations between the predicted cognitive 

scores and observed cognitive scores are shown in Figure 1. FC could predict six ouf of eight 

cognitive scores using LOOCV within the discovery sample. The correlation values for the 

successful models were verbal learning score (r = 0.29, p = 0.002), working memory score (r = 

0.42, p < 0.001), attention score (r = 0.24, p = 0.011), processing score (r = 0.27, p = 0.004), 

social cognition score (r = 0.26, p = 0.006) and composite score (r = 0.33, p < 0.001). Visual 

score (r = 0.17, p = 0.081) had a lower correlation value and problem-solving score (r = -0.27, p 

= 0.005) had a negative correlation value.  
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Figure 3. Cognitive score prediction based on FC from the discovery cohort. Models were 

trained to predict the eight cognitive scores using FC data of 104 subjects from the discovery 

cohort.  The models were validated within the discovery data using the LOOCV approach. The 

scatter plots showed the correlation between the predicted cognitive score and observed 

cognitive score. Each dot represents one subject. Three subject groups (SCZ/SA, BP, and HC) 

were color-coded. The line and shadow indicated the linearly fitted value with a 95% confidence 

interval for the mean. Six out of eight cognitive scores could be predicted from FC.  
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3.1.3 External validation 

 

The performance of the prediction models was then evaluated with the validation cohort 

to estimate the generalization performance of the models to independent populations. These 

models could successfully predict working memory (r = 0.23, p = 0.016), composite score (r = 

0.25, p = 0.008) and attention score (r = 0.24, p = 0.014) in the validation dataset. Three of the 

prediction models constructed using the discovery sample can be generalized to the validation 

sample. The correlations for the other models were verbal learning (r = 0.20, p = 0.041), visual 

learning (r = 0.17, p = 0.076), processing speed (r = 0.011, p = 0.233), problem solving (r = -

0.10, p = 0.272), and social cognition (r = 0.10, p = 0.302) 
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Figure 4. Model validation using the validation cohort. Prediction models trained from the 

discovery cohort were directly applied to 103 subjects in the validation cohort to predict eight 

cognitive scores. The scatter plots showed the correlation between the predicted cognitive score 

and observed cognitive score. Each dot represents one subject. Three subject groups 

(SCZ/schizoaffective disorder, BP, and HC) were color-coded. The line and shadow indicated 

the linearly fitted value with a 95% confidence interval for the mean. Three models trained in the 

discovery cohort can be generalized to predict cognitive scores in previously unseen data.  
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3.2 Analysis on selected features 

 

3.2.1 FC features involved in the prediction of three cognitive scores 

 

Using the LOOCV, we predicted one subject’s score using the rest of the subjects and 

generated a prediction model for each subject in the discovery dataset. This allow us to compare 

between the models and extract functional connections (features) that were frequently selected 

during the training. The 1137 positive functional connections from all the connections that were 

related to working memory score, attention score and composite score were shown in Figure 2. 

Out of all the positive connections, 27 connections for working memory score, 16 connections 

for composite score, and 6 for attention score trained from the discovery sample were the 

frequently selected features in LOOCV (orange). Figure also shows an important subset of 

features that were selected at least once in all LOOCVs (black) but were not considered features 

due to low weight of the connection during the training, suggesting the stability of the selected 

features across cross-validations in discovery.  
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Figure 5. Brain connections involved in the prediction of three cognitive scores were 

reliable (a). The histogram plots show brain connections that were involved in the prediction 

models during model training. Connections that were frequently selected during LOOCVs and 

remained in the final model were shown in orange. Connections that were selected at least once 

in all LOOCVs but didn’t reach the significant feature weights for prediction to be included in 

the final models were marked grey. The plots show that connections in the final models (orange 

bars) were reliably selected in LOOCVs in the discovery data. (b). Brain regions involved in the 

prediction models for working memory score, composite score and attention score were 

visualized on brain surface. The regions involved in the prediction of working memory include 
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regions in the left frontal parietal control network, whereas regions involved in the prediction of 

attention include regions in the right dorsal attention network.   
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3.2.2 Identification of cognitive related brain features 

 

The Connections related to working memory score, composite score and attention scores 

based on the entire discovery sample were shown in Figure 6. Yeo’s 7-network parcellation, 

which divides the brain into 7 large-scale functional networks, was used for visualization 

purpose to illustrate the overall connectivity patterns between different brain regions and 

networks (Yeo et al., 2011). The large-scale networks could provide a more accessible and 

interpretable way of presenting the results. There were cross-hemisphere connections for 

working memory score and composite score. There were also several connections that connect to 

the default, motor, attention, and the visual network. For composite score, connections related to 

default, motor, visual, attention and frontal parietal networks were found at similar regions but 

with different connection patterns. Connections for attention scores were mainly located in the 

right hemisphere. Two of them connected to the left hemisphere (Figure 6 top). For all three 

scores, selected connections were mainly between networks. Connections related to working 

memory were mainly involved in left frontal parietal networks, whereas connections identified 

by the attention score model were mostly involved in the attention network. Importantly, frontal 

parietal networks showed many within-network connections for working memory scores only.  
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Figure 6. Within- and between- network connections involved in the prediction models. (a, 

upper). Connections selected by the prediction model were illustrated in the brain. Colors 

indicated brain regions in visual network (VIS, purple), somatomotor network (MOT, blue), 

attention network (ATN, green), salience network (SAL, violet) and frontoparietal network 

(FPN, orange), according to Yeo’s 7-network parcellation of the human cerebral cortex. The size 

of the sphere represented how many connections are involved in this region, while the thickness 

of the connecting lines represented the feature weight of each connection in the prediction 

models. (b, lower). Selected connections were shown in the chord graph. The brain regions of the 

seven networks were represented on a circle. The weights of connections were represented by the 

thickness of the line. The connectivity markers include both within- and between- network 

connections.  
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3.2.3 Feature comparison between patients and HCs 

 

The identified FCs that track cognitive performance of working memory (27 FCs), 

attention score (6 FCs) and composite scores (22 FCs) were then combined into 35 non-

overlapping FCs. They were considered as the trustworthy biomarkers in characterizing 

cognition in this project. We next investigated whether these cognitive FCs were changed in 

patients based on the whole dataset.  

These 35 FCs were then compared between patients vs. HC. 13 FCs were found to be 

significantly different in patients (p < 0.05) as compared to controls. The connected functional 

regions of the changed FCs were shown in the chord graph in Figure 4. Compared to the HCs, 

patients have decreased FC in frontal parietal network, salience network, attention network, 

visual network, and default network. Our results also show that there was increased FC 

especially in frontal parietal network and attention network in patients. Connections in patients 

were still mainly between networks except that there was one increased connection in frontal 

parietal network, one increased connection in default network, and one decreased connection in 

limbic system. Because the identified FCs related to the working memory, attention, and 

composite scores were effectively generalized to the independent cohort, these 13 FCs were 

considered as a marker for cognitive impairment.  
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Figure 7. Connections involved in the cognitive markers were altered in patients. a) 35 non-

overlapping FCs that track cognitive performance of working memory score (27 FCs), composite 

score (22 FCs) and attention scores (6 FCs) were identified and compared. Chord graph showed 

13 FCs selected from the three prediction models that were significantly changed in patients. 

These 13 FCs track working memory score, attention score and composite score. Red lines 

represented the positive connections and blue lines represented the negative connections. b) 

Brain regions involved in these 13 connections were shown on the brain surface. c) These 13 

connections were compared between patients and controls (127 patients vs. 80 HCs) and shown 

in bar plots. All 13 FCs were significantly changed in patients (all p < 0.05). These connections 

mainly involved in attention and salience networks. There were four connections that were 

stronger in patients and nine connections that were stronger in HC.   
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Chapter 4. Discussion 

 

4.1 Summary of results 

 

This project revealed a method for predicting cognitive performance using fMRI and 

found FC markers that contributes to cognitive deficits in psychosis. fMRI data were separated 

into discovery cohort and validation cohort. First, an individualized approach was used to 

construct resting-state functional connectomes for each subject. LOOCV and SVR algorithms 

were then applied to train prediction models for MCCB cognitive scores the discovery dataset. 

Within the eight cognitive domains, models for could be successfully predicted using the 

LOOCV during the internal validation. For external validation, we applied the same prediction 

models on the validation dataset. Results showed that models for working memory score, 

composite score and attention score could predict the cognitive scores in independent datasets. 

Then we compared the models developed during each LOOCV and selected multiple brain 

connections that were predictive to these cognitive scores. By visualizing the connections 

(working memory score: 27; composite score: 22; attention score: 6) on the brain, we found that 

these frequently selected features were mainly located in the frontal parietal network, dorsal 

attention network and ventral attention network. To investigate how those connections differ 

between patients and HC, we combined the FCs into 35 non-overlapping FCs. Within the 35 

FCs, 13 FCs were significantly changed in patients. Four connections were significantly 

increased in patients and nine connections were significantly decreased. 
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4.2 Results interpretation 

 

Within the three cognitive prediction models that were able to be generalized to 

independent datasets, the working memory network was known to be the most complicated and 

required the coordination of multiple brain regions. This was shown in our results were multiple 

brain regions were shown to be related to working memory scores. Many of the FCs in the 

selected features were associated with prefrontal cortex as this region is involved in the selection, 

maintenance, and manipulation of information in working memory. Regions like medial frontal 

gyrus, inferior and middle frontal gyrus were all highly weighted in the working memory 

prediction model. These were all consistent with previous research related to working memory 

(Chen et al., 2021; Emch et al., 2019). Studies have also shown that damage to the DLPFC could 

impair working memory performance (Perlstein et al., 2002).  
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Figure 8. Comparing between selected features for working memory scores and working 

memory task-related activation. (a, upper left) Activated brain regions in both hemisphere 

from a n-back working memory task including frontal pole, middle frontal gyrus, frontal eye 

field, superior parietal lobule, insular, precuneus and anterior cingulate cortex. (b, upper right) 

Significant activation of superior frontal gyrus and anterior cingulate cortex. (c, bottom) Selected 

features from our working memory model showing consistent regions with related studies.  

 

The selected features for attention scores were mainly located in frontal and parietal 

cortex. This is consistent with previous research as frontal cortex is responsible for attention 

control and parietal cortex is responsible for visual attention and integrating sensory information 

from multiple modalities. Additionally, ACC was also known to be involved in attention. These 

features were also consistent with an attention related task as shown in Figure 6 In this study, 
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researchers have found that frontal parietal regions were mainly involved in alerting, while 

parietal cortex were associated with alerting and orienting (Fan et al., 2005). Executive controls 

were associated with frontal areas as well as ACC (Fan et al., 2005). Most features selected were 

located on the right hemisphere. There could be explained by lateralization of attentional 

processes such as language processing or spatial attention which were mainly lateralized toward 

the right hemisphere (Petit et al., 2015).  

 

 

 

Figure 9. Comparing between selected features for attention scores and attention task-

related activation. (a, upper left) Frontal-parietal cortical regions were activated during the 

alerting cues in the attention task. (b, upper right) Frontal area and ACC (shown in a separate 

cross-section view in the paper) were activated for the executive cues. (c, bottom left) Regions 

involved the left and right superior parietal lobe were found to be associated with orienting 

during the attention task. (d, bottom right) Selected features from our attention model showing 

consistent regions with related studies.   
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4.3 Significance of findings 

 

4.3.1 Why is this work important and novel 

 

It is known that many neuroimaging findings are poorly reproducible (Button et al., 2013; 

Marek et al., 2022) and that many imaging biomarkers have low generalizability (Dukart et al., 

2021). This is an important issue that needs to be addressed in the field. If a biomarker is not 

generalizable, then it will be of limited utility. One of the main reasons is the low reliability of 

results derived from group templates. There was growing evidence that the functional brain 

networks vary greatly among individuals, particularly in higher order regions (Mueller et al., 

2013). Using group templates to analyze data could neglect important individual features that 

might affect the findings. At the same time, many of the clinical symptom scores that used to 

analyze fMRI data were based on patients' subjective judgment (Charpentier et al., 2021). More 

inaccurate results will be produced when analyzing group results with individual’s subjective 

symptom scores. To address these issues, we used the individualized parcellation approach to 

construct the functional connectomes. This individualized approach has a higher reliability and 

could better capture individual differences in brain networks than a traditional group atlas 

approach. 
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4.3.2 Clinical benefits 

 

The findings of this project have the potential to be applied in clinical treatment in 

several ways. The first is to find targets for transcranial magnetic stimulation (TMS). TMS is a 

non-invasive brain stimulation technique used to treat many neurological diseases (Hallett, 

2007). By providing potential targets for TMS using the identified biomarkers and locating 

individualized target with the individualized parcellation approach, this could help improve the 

precision and efficacy of TMS treatment. Second, the biomarkers identified in the project may 

help researchers gain a better understanding of the underlying mechanism of psychosis. This 

could lead to the development of better therapies or interventions that could improve patient 

outcomes.  

 

 

4.4 Limitation and future work 

 

Although all eight cognitive scores were successfully predicted using the discovery 

dataset, not all models could be generalized to the validation dataset. Models for verbal learning 

score, visual learning score could still predict scores but with less significant correlation and p 

values. Scores for processing speed, problem solving and social cognition could not be 

successfully predicted at all. Many studies in the field have discovered the related brain areas for 

these cognitive functions. For example, social cognition has been proved to be associated with 

temporal-parietal junction and the medial prefrontal cortex (Van Overwalle, 2009). One possible 

explanation was that our individualized parcellation approach focused only on cortical regions, 
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while sub-cortical structures also play critical roles in many cognitive processes. For example, 

hippocampus is important in the formation and retrieval of new memories (Wiltgen et al., 2010). 

Thalamus acts as a relay station for sensory information to enter the brain and is involved in a 

wide range of cognitive processes including attention, memory, and learning (Fama & Sullivan, 

2015). Amygdala is important in emotional processing, but also plays a role in learning and 

memory (Baxter & Croxson, 2012; Tyng et al., 2017). Basal ganglia, a group of subcortical 

structures that involved in motor control, have also been linked to working memory processes 

such as maintenance and updating of information (Lanciego et al., 2012; McNab & Klingberg, 

2008). However, parcellating sub-cortical regions could be challenging with our current 

technology, especially since they are small and located deep within the brain. Their omission 

from the parcellation could limit the ability of using functional connectivity to predict cognitive 

scores. Alternative approaches such as combining data from multiple imaging modalities or 

using machine learning algorithms to identify subcortical regions should be considered as a 

future step of this study.  

 

Another important limitation came from data selection. The scanning time of each subject 

in the MATRICS data was only around twelve minutes. Although many analyses can be done 

with this scanning length, it is not enough to calculate the test-retest reliability where the data 

should be segmented into two halves and be compared. If the scanning time could be extended to 

thirty minutes, the reliability of the research would be greatly improved. Recent research has also 

demonstrated that a large sample of dataset might be needed to get an accurate prediction result 

(Marek et al., 2022). The future plan for these issue is to enroll more fMRI data with longer 

scanning time and replicate the analysis with a larger group of subjects. Increasing scanning time 
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could improve the quality of the data, while increasing sample size and using independent data 

sets for validation could ensure that the biomarker is not specific to a particular sample but could 

also be generalized to other populations. While the imaging features for psychosis identified in 

half of the dataset could be validated to the other half, would this framework still work when 

testing with independent datasets? Another future plan could be enrolling an independent dataset 

to see if models could be generalized to those new data.  
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4.4 Conclusion  

 

In this project, multiple prediction models were constructed to estimate cognitive scores 

using resting-state fMRI. Models for working memory score, composite score and attention score 

could be successfully applied to independent datasets with a significant correlation between the 

predicted score and observed score. Based on the models, thirteen FCs were found to be different 

between psychotic patients and HC. These connections were seen as imaging markers for 

psychosis and were mainly located in frontoparietal, dorsal attention and ventral attention 

networks.. However, the size of the dataset and the length of the scanning might limit the 

accuracy of the prediction. More data might be needed and more research is necessary to have a 

more accurate imaging biomarker for psychosis.  
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