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There is growing interest for implementing tools to monitor cognitive performance in

naturalistic work and everyday life settings. The emerging field of research, known as

neuroergonomics, promotes the use of wearable and portable brain monitoring sensors

such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in

a variety of human tasks out of the laboratory. The objective of this study was to

implement an on-line passive fNIRS-based brain computer interface to discriminate two

levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight

recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both

cases, identical approaches and experimental stimuli were used (serial memorization

task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs.

hard). The results show pilots in the real flight condition committed more errors and had

higher anterior prefrontal cortex activation than pilots in the simulator, when completing

cognitively demanding tasks. Nevertheless, evaluation of single trial working memory

load classification showed high accuracy (> 76%) across both experimental conditions.

The contributions here are two-fold. First, we demonstrate the feasibility of passively

monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In

addition, the differences in performance and brain activity between the two experimental

conditions underscore the need for ecologically-valid investigations.

Keywords: fNIRS, BCI, working memory, prefrontal cortex, simulated and real flight, neuroergonomics

1. INTRODUCTION

Neuroergonomics is an emerging field of interdisciplinary research that promotes the
understanding of the brain in complex real-life activities. This approach merges knowledge and
methods from cognitive psychology, system engineering, and neuroscience (Parasuraman and
Wilson, 2008). Accurate and reliable mental state assessment of human operators during use of
complex systems is a prime goal of neuroergonomics that aims to measure the “brain at work”
(Parasuraman and Rizzo, 2008). Understanding the underlying neurocognitive processes of such
interaction could be used to improve safety and efficiency of the overall human-machine pairing.
This could be achieved by (i) the augmentation of human performance and its translation to
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improved functioning “at work”, (ii) informing the design of the
complex systems, or (iii) adapting the user interface and task
parameters dynamically during use.

Aviation operations constitute an ideal paradigm to
implement this approach. Pilots deal with an uncertain
environment and face complex interaction with the flightdeck
(Causse et al., 2013; Çakır et al., 2016; Reynal et al., 2016). For
instance, several studies have emphasized that pilots’ working
memory (WM) abilities are heavily recruited to handle flightpath,
to monitor the flight parameters, and to maintain an up-to-date
situation awareness (Causse et al., 2011a,b). WM is also an
important component when following air traffic control (ATC)
instructions (Morrow et al., 1993). This activity indeed requires
mentally storing flight parameters (e.g., heading, altitude, speed)
to follow the adequate flight path. However, it is well-known that
human working memory is fundamentally limited (Baddeley,
1992; Miller, 1994) and easily overwhelmed when task demand
is excessive (Durantin et al., 2014a). Human factor studies
emphasized that a variety of environmental stressors may
negatively impact pilots’ ability to execute ATC clearances
(Billings and Cheaney, 1981; Taylor et al., 1994, 2005; Scerbo
et al., 2003; Risser et al., 2006; Rome et al., 2012; Dehais et al.,
2017). Thus, the implementation of monitoring technology in
the cockpit to infer a state of cognitive limitation could represent
a promising approach to enhance flight safety (Roy et al., 2017;
Verdière et al., 2018).

Indeed, the development of brain computer interface (BCI)
technology provides interesting prospects to continuously
monitor and take advantage of the brain dynamics and the neural
mechanisms underlying cognition. Among the three categories
of BCIs (active, reactive, and passive) (Zander and Kothe,
2011; Vecchiato et al., 2016), the first two types are aimed at
transforming cerebral activity into messages or commands to
voluntarily control distant apparatus (e.g., mouse cursor). Passive
BCIs (pBCI) are of particular interest for neuroergonomic
applications (Cutrell and Tan, 2008; Frey et al., 2017; Gramann
et al., 2017). They allow the use of interpretation of unlabeled
brain activity during a task to derive various mental states
(Blankertz et al., 2010; Roy et al., 2013; Van Erp et al., 2015;
Zander et al., 2017). These mental state-inference systems offer
a unique insight into the development of the human-system
interactions to overcome cognitive limitations (Zander and
Kothe, 2011; Brouwer et al., 2013).While several pBCIs have been
successfully implemented in driving (Dijksterhuis et al., 2013)
and flight simulator (Gateau et al., 2015; Aricò et al., 2016; Çakır
et al., 2016; Callan et al., 2016; Verdière et al., 2018), few have
attempted to test these systems under more realistic settings.
However, very few studies have attempted to test these adaptive
systems under realistic settings (Callan et al., 2015).

Electroencephalography (EEG) is by far the most popular
technique (George and Lécuyer, 2010; Borghini et al., 2017) in
the BCI community as it has excellent qualities for monitoring
cognitive states (Brouwer et al., 2012; Roy et al., 2013) including
superior temporal resolution and has been used to monitor
working memory (Roy et al., 2013; Mühl et al., 2014). However,
the localization of sources from the EEG signal requires higher-
density recordings and additional computation to solve the

inverse problem that may not be amenable to critical operational
situations such as flying real aircraft. In addition, setup time
and susceptibility to motion artifacts should be considered for
minimally intrusive deployment. Thus, the use of functional
near infrared spectroscopy (fNIRS) has been gaining popularity
recently as the sensors have been miniaturized, become portable
and wireless (Ayaz et al., 2013; Strait et al., 2014; Naseer and
Hong, 2015; Schudlo and Chau, 2015).

This brain activity monitoring technique uses near-infrared
light absorption properties of hemoglobin to estimate local
variations of cortical oxygenation changes (Villringer and Obrig,
2002; Ayaz et al., 2012). fNIRS has been successfully used to
detect working memory solicitation (Li et al., 2005; Schreppel
et al., 2008; Hirshfield et al., 2011; Gagnon et al., 2012; Herff
et al., 2014; McKendrick et al., 2014; León-Domínguez et al.,
2015; Unni et al., 2017). Despite its relatively low temporal
resolution, fNIRS poses several advantages compared to more
established traditional tools (Kikukawa et al., 2008; Piper et al.,
2014; McKendrick et al., 2015; Davranche et al., 2016) such a
relatively high spatial resolution (around 1 cm2 depending on
the sensor geometry) and high signal-to-noise ratio as sensors
are relatively more robust to motion artifacts (Huppert et al.,
2009), eye-blinks and facial muscles (Izzetoglu et al., 2004).
It is also possible to run experiments with active and mobile
subjects and even outdoors (Piper et al., 2014; McKendrick et al.,
2016). Specifically, it is less sensitive to noisy electromagnetic
environment in the aircraft (radio transmission, radio-navigation
beacons, GPS antenna, etc.) than EEG, making it a candidate to
measure pilot’s brain activity during real flight. As an emerging
neuroimaging technique, we believe that it is important to
investigate the capabilities of fNIRS and its utility in future
applications.

The present study aims to develop an on-line fNIRS based
pBCI for the assessment of working memory of aircraft pilot
during real flight. Earlier studies demonstrate that fNIRS based
measures BCI have been implemented. They rely on oxygenation
changes in the prefrontal cortex (PFC) and can be used for
measuring WM load (Schreppel et al., 2008; Ayaz et al., 2012;
Gagnon et al., 2012; Durantin et al., 2014a,b). Here, a pilot-
ATC interaction task, was designed with two contrasted levels
of WM load. A Support Vector Machine (SVM) based classifier
performing on-line for single trial WM load level discrimination
was implemented. This classifier was first tested in a high
fidelity flight simulator. The same machine learning approach
was then utilized to assess the WM load level in an actual
flight condition. To the authors’ knowledge, this is the first
study to monitor pilot’s brain activity on-line under such
operational settings and ecological validity. We also compared
pilot’s WM performance and related PFC activity both in high
fidelity simulator and real flight conditions. The objective was
to determine wether these two conditions simulated and real
operational settings were equivalent or not in terms of task
demand (Dahlstrom and Nahlinder, 2009; Batula et al., 2017).
As most aviation psychology experiments and pilots’ training are
conducted with flight simulators, such assessment is critical for
future design and development of such approaches (Philip et al.,
2005).
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2. MATERIALS AND METHODS

2.1. Passive BCI in Flight Simulator
2.1.1. Participants
Fourteen visual flight rules (VFR) pilots (three women; mean
group age: 29.25 ± 6.92; mean flight hours 80 ± 50) completed
the experiment. Pilots had normal or corrected-to-normal vision,
normal hearing, and no psychiatric disorders. They all had
medical clearance to fly. After providing written informed
consent, they were instructed to complete task training. The data
from two participants were rejected due to a high level of fatigue
in one case, and data collection issue for the second. Typical
total duration of a subject’s session (informed consent approval,
practice task, and real task) was about two hours. This work was
approved by the Institutional Review Board (IRB) of the Inserm
Committee of Ethics Evaluation (CEEI: Comité d’Evaluation
Ethique de l’Inserm IRB00003888). The methods were carried
out in accordance with approved guidelines and participants gave
written informed consent approved by the IRB of CEEI.

2.1.2. Neurophysiological Measurements: fNIRS
During this experiment, we recorded hemodynamics of the
prefrontal cortex using the functional near-infrared spectrometer
fNIR Device Model 100B (Biopac R©) equipped with 16 optodes
(Figure 1). On this continuous-wave system, the optode
separation was about 25 mm and two wavelengths were used,
730 and 850 nm. DPF (differential pathlength factor) value was
5.97 which is within the range used by many in literature (Kato
et al., 1993; Luo et al., 2002) and accepted by many groups. Four
regions of interest (ROI) were defined to allow for explorative
statistical comparisons with the data collected during the real
flight experiment (see section 3).

Each optode of the device records hemodynamics at a
frequency of 2 Hz in terms of oxygenation level variations
in comparison to an initial baseline performed prior to the
experiment. Changes in the concentrations of oxygenated
(1[HbO2]) and deoxygenated hemoglobin (1[hHb]) relative
to the baseline can be calculated from changes in detected
light intensity using the modified Beer-Lambert Law (Delpy
et al., 1988). Cognitive Optical Brain Imaging (COBI) Studio R©

software (Ayaz and Onaral, 2005; Ayaz et al., 2011) was used to
collect data. The data stream was available on-line from a TCP/IP
interface. Before recording, signals for each optode were carefully
checked for saturation with COBI Studio which provides signal
quality visual representation. COBI studio was also used to check
signal quality and to adjust consequently the headband on the
participant’s forehead. After this check, a baseline was established,
which simply consists of letting the participant rest for 10 s.

2.1.3. Experimental Environment: Flight Simulator
We used the ISAE-SUPAERO (Institut Supérieur de
l’Aéronautique et de l’Espace - French Aeronautical University
in Toulouse, France) flight simulator to conduct the experiment
in an ecological situation. Its user interface is composed of a
Primary Flight Display, a Navigation Display, and an Electronic
Central Aircraft Monitoring Display (Figure 2).

2.1.4. Task Description
This protocol was adapted from a previous study (Gateau et al.,
2015). As in real flight operations, pilots heard ATC instructions
(pre-recorded for this experiment) to vector them and were asked
to read back the instructions. Their answers were recorded for
off-line behavioral analysis. The ATC messages were delivered at
78 dB through a Sennheiser R© headset. Two levels of difficulty
were defined based on the flight parameters that the participant
had to read back during the experiment:

• LowWM load: The two first digits were the same for each flight
parameter (e.g., 14 for “speed 140, heading 140, altitude 1400,
vertical speed+1400”).

• High WM load: each flight parameter value was different
from the previous one and composed of different number to
increase task difficulty (e.g., “speed 172, heading 238, altitude
6400, vertical speed−2800”).

The task consisted of 10 repetitions of each difficulty for a total of
20 trials. The task difficulty order was randomly distributed with
two constraints:

• the first 10 trials contained both 5 trials of high difficulty, and 5
trials of low difficulty (which is necessary for machine learning
purposes, see section 2.1.5);

• the difficulty cannot be the same for more than two successive
trials.

Each ATC message started with the airplane call sign (i.e.,
“Supaero 32”), immediately followed by a sequence of flight
parameters and ended with the message “over” (Figure 3).
Thereafter, pilots had a 18 s response window to repeat
the instruction. A practice session was conducted prior to
the experiment runs to familiarize them with the experiment
protocol and the interface.

During the experiment, the experimenter was collecting the
volunteer’s ability to read back each message so as to compute the
total number of correct responses in the low and hard conditions.

2.1.5. Experimental Time Course
For machine learning purposes, the experiment was split into
three successive phases (Figure 4):

• Phase A – data gathering phase: 10 instructions with two
levels of difficulty were successively presented to the pilot
in a random order. During phase A, the correctness of the
pilot’s response was also checked for further pilot performance
analysis. The fNIRS’s data were processed and recorded for
each trial’s response window. The levels of difficulty of the
message were also recorded.

• Phase B – classifier training phase: the classifier training
process was activated, based on the data gathered during
phase A. This phase was not perceived by the pilot and
allowed further classification actions. At the end of this phase,
the pilot’s classifier - the pilot’s specific classification model,
correctly trained - was available for classification requests.

• Phase C – classifier testing phase: 10 instructions with random
levels of difficulty (high WM load or low WM load) were
successively presented. The aim of the classification process
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FIGURE 1 | fNIR Device® Model 1200S headband and associated optode numbering. Only the four closest detectors to an emitter constituted optodes. Optodes are

represented in red with their associated number. Four regions of interest (ROI) were defined for statistical analyses purposes (#1, #2, #3, #4).

FIGURE 2 | (Left) ISAE-Supaero flight simulator; the closed cabin is visible from rear, and eight screens are used to visualize external environment. (Right) The pilot

subject with the fNIRS headband.

FIGURE 3 | ATC span task trial design (High Load message).

was to discriminate the difficulty of the trial. After each
response window of trials, the classifier returned WM load
estimation of the trial.

Note that the transition (phase B) from phase A to phase C was
not perceptible to the participants.

2.1.6. MACD Filter
Raw fNIRS data were real-time filtered using a MACD filter,
commonly used in economic market analysis (Appel, 2005).
This filter, based on the difference between a short-term
EMA (Exponential Moving Average) and a long-term EMA,
implements a second order band-pass filtering to eliminate

low-frequency (<0.02Hz) and high-frequency (>0.33Hz)
components from the raw fNIRS signal (Utsugi et al., 2007). This
low order filter has a quasi linear phase in its bandwith and is
particularly suited for real-time applications. For the experiment,
we proceeded to an on-line filtering of 1[HbO2] and 1[hHb] on
16 optodes.

N represents the number of time points defining the EMA
window:

y = EMAN(x) ⇔ yn =
2

N + 1
xn +

N − 1

N + 1
yn−1 (1)

MACDNshort ,Nlong
(x) = EMANshort

(x)− EMANlong
(x) (2)
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FIGURE 4 | The experiment was split into three successive phases. Data gathering (phase A) and classifier testing (phase C) consisted of 10 ATC instructions each.

The pilot’s classifier was trained between these two phases (phase B). The time scale of the figure is illustrative.

We chose a 6 s short-term EMA and a 13 s long-term EMA
according to previous work (Durantin et al., 2014b) for MACD
filtering, to get the desired bandwidth.

2.1.7. Single Trial SVM-Based WM Load Estimation
The classification’s goal was to discriminate on-line whether the
last trial was a high WM load trial or a low WM load trial. For
each pilot, we used the first 10 trials to train the pilot’s classifier
(phase A and B, see section 2.1.5). From trial 11 to 20, we used
the pilot’s classifier to discriminate trial difficulty, without any
further training. An accuracy score (sum of correct predictions
divided by total number of predictions) of the pilot’s classifier was
provided at the end of the experimental session.

Sixteen optodes of 1[HbO2] and 1[hHb] filtered signals
were segmented into trials, in real-time, according to the task
synchronization module (Figure 5). Each trial starts when an
ATC message is played, and lasts 30 s. All data points of a
trial – 2 different inputs per optode, 16 optodes, 30 s of data
with a 2 Hz sampling corresponding to 1920 features – were
considered as the input of the machine learning process. A 30
s sliding window was chosen to be consistent with literature
regarding inter-subject variability (Jasdzewski et al., 2003; Sato
et al., 2005). Note that the transition from the “Response”
phase to the “Rest” one was unnoticeable, as it was anticipated
that participants started to rest as soon as they completed the
instruction.

As our number of features was large compared to the
training sample, we used a linear Support Vector Machine
(SVM) (Cortes and Vapnik, 1995). The principle of the SVM is
to find the separating hyperplane that maximizes the distance
between the hyperplane and the closest training points in
each class. To avoid over-fitting, we chose to customize the
SVM regularization parameter for each pilot’s classifier. In
a linear SVM, the regularization parameter C controls the
trade-off between errors of the SVM on training data and
margin maximization. During the training process of each
participant, the parameter C is incrementally changed over a
large range of values (from 10−3 to 104) with a 10-step factor.

Hence, a five-fold cross-validation on the first 10 trials with
scikit-learn (Pedregosa et al., 2011) packages (sklearn.svm and
sklearn.cross_validation) was ran to select the C parameter with
the highest performance in terms of accuracy. The classifier
training (phase B) was performed as soon as the data of the
first 10 trials were available for online purposes (Aricò et al.,
2016).

2.1.8. Experimental Components’ Architecture
We implemented a WM load estimator that integrated different
components (Figure 5):

• a simulated ATC which broadcasts a list of chosen messages to
the pilot;

• the ISAE flight simulator (Figure 2);
• a fNIR sensor which measures the prefrontal oxygenation

(Figure 1);
• a MACD filter for artifact removal (see section 2.1.6);
• a synchronization module that also formats filtered data

for the classification process: filtered fNIRS output must be
synchronized with the pilot’s state, according to the instant
of the arrival of that incoming message and according to the
pilot’s response window;

• a classifier (see section 2.1.7) which evaluates in real-time
whether the last ATC instruction was a highWM load trial or a
low WM load trial. Results were logged into a file, while a real
time feedback is provided through a system terminal.

Task monitoring, data acquisition, and computation were
conducted on the same computer (core i5-3210M, 2.50 GHz, 4
GB RAM). During the experiment, the classifier training (phase
B) duration was short (800 ms) and remained unnoticeable for
the participant. The classifier testing phase lasted 10 ms and was
also unnoticeable for the participant” (Figure 6).

2.2. Passive BCI in Real Flight
2.2.1. Participants
Fourteen VFR pilots (1 women; mean group age: 23.07
± 5.35; mean flight hours 44.07 ± 37.52), completed the
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FIGURE 5 | Illustration of the fNIRS based inference system. Pre-recorded ATC messages were sent to the pilot (1). The pilot’s prefrontal activity was measured with a

fNIRS device (2). Output measures (3) were MACD-filtered and synchronized with the temporal design of the trial (4). When all of the required data were available for

the trial, a request was sent to the pilot’s classifier to assess the WM load of the trial (5).

FIGURE 6 | Trial timeline and computing latencies. Upper timeline shows ATC span task trial events duration (see Figure 3). Bottom timeline illustrates duration

constraints to get pilot’s estimated WM load: classifier’s response is available in the worst case less than 10 ms after pilot’s response window.

experiment. Please note that these volunteers were different
from the ones who participated to the flight simulator
experiment. The data from two participants were rejected due
to light saturation issues and a device synchronization issue.
After providing informed consent, they were instructed to
complete task training on the ground. None of the recruited
subjects had neurological or psychiatric history or was on

medication. Each of them gave written informed consent
for the experiment. The experimental protocol was approved
by the committee of the European Aviation Safety Agency
(EASA permit to fly approval number : 60049235). The methods
were carried out in accordance with approved guidelines and
participants gave written informed consent approved by the
EASA.
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2.2.2. Neurophysiological Measurements: Mini-fNIRS
We used the miniaturized and wireless fNIR Device Model
1200W (Biopac R©) portable system (Ayaz et al., 2013) to record
the pilots’ hemodynamics of the prefrontal cortex (Figure 7).
This device was chosen as it was wireless (i.e., the pilot’s head
was not attached to any cables) and did not require external
power supply as the Model 1200S. This was a prerequisite to
facilitate its implementation and use in the aircraft for our
experiment. This device had the same hardware design, and
exactly same LED light source components and detectors than
the fNIRS Model 1200S used in the flight simulator. Consistent
with the previous device, on this continuous-wave system, the
optode separation was about 25 mm and two wavelengths were
used, 730 and 850 nm. The DPF value was 5.97. This four-
optode device records hemodynamics at a frequency of 4 Hz
in terms of oxygenation level variations in comparison to a
baseline same as the 1200S desktop version. With flexible circuit
board and separation-adjustable split pads, the sensors were
positioned to aim monitoring brain areas similar to the ROIs
extracted from 1200S sensor. Changes in the concentrations of
oxygenated (1[HbO2]) and deoxygenated hemoglobin (1[hHb])
can be calculated from changes in detected light intensity using
the modified Beer-Lambert Law (Delpy et al., 1988).

Cognitive Optical Brain Imaging (COBI) Studio R© software
(Ayaz and Onaral, 2005; Ayaz et al., 2011) was used to collect
data. The data stream was available on-line from a TCP/IP
interface. Before recording, signals for each optode was carefully
checked for saturation with COBI Studio which provided a visual
representation of signal quality. An aluminum foil attached to a
dark ski band band and a cap were placed over the mini-fNIRS to
shield against ambient sunlight infrared.

Data was MACD filtered and we used a similar on-line
Experimental Components’ Architecture with the exception that
we used a real plane instead of the flight simulator.

2.2.3. Experimental Environment: DR400 Aircraft
The ISAE Supaero DR400 light aircraft was used for the purpose
of the experiment (Figure 8). It was powered by a 180HP
Lycoming engine and was equipped with classical gauges, radio
and radio navigation equipment, and actuators such as rudder,
stick, thrust, and switches to control the flight. The participant
was placed on the left seat and was equipped with the mini fnirs
system. The participant wore a Clarify Aloft R© that was used
to trigger task-related auditory stimuli from a PC via an audio
cable. The participant could still communicate with the other
crew members, real ATC and when he received auditory stimuli
(emulated ATC).The safety pilot was an ISAE flight instructor. He
was right seated and had the authority to stopping the experiment
and taking over the control of the aircraft for any safety reason.
The backseater was the experimenter: his role was to set the
sensor, to trigger the experimental scenario and to supervise data
collection.

2.2.4. Task Description
The experimental task and audio messages were similar to the
previous protocol (see section 2.1), with the same experimental
time course and the same instructions for the participant.

A practice session on the ground was conducted prior to
the experiment runs to familiarize them with the experiment
protocol and the interface. After training was completed on the
ground, the mini-fNIRS system was placed over the participants
forehead. The participant then took off from Lasbordes (LFCL,
Toulouse, France) airfield and began a local flight. The
experimental task per se started when the pilot left the Lasbordes
traffic pattern and was stabilized at an altitude of 2500 feet. The
participant was asked to fly as straight and stable as possible and
to only perform slight avoidance maneuvers as necessary. Once
stabilized, the baseline of ten seconds was recorded. After the
completion of the WM task, the participant was heading back
to land at Lasbordes airfield. The total flight lasted one hour
including the WM task.

As in simulated condition, the backseater was collecting the
volunteer’s ability to read back each message in order to compute
the total number of correct responses in the low and hard
conditions. These data allowed to compare the WM peformance
accross the conditions (i.e., low vs. high; simulated vs. real flight).

2.2.5. Experimental Components’ Architecture and

WM Load Estimation
We implemented a similar WM load estimator in the airplane
as in the flight simulator. Machine learning inputs were lightly
adjusted to fit the data flow available with themini-fNIRS wireless
portable device. The four (instead of 16) available optodes of
1[HbO2] and 1[hHb] filtered signals were segmented into trials,
in real-time, according to the task synchronization module (see
section 2.1.8). Each trial starts when an ATC message is played,
and lasts 30 s. All data points of a trial - two different inputs
per optode (i.e., 1[HbO2] and 1[hHb]), four optodes, 30 s of
data with a 4 Hz sampling corresponding to 960 features - were
considered as the input of the machine learning process.

2.3. Statistical Analyses
Off-line statistical analyses were performed with “R” (R Core
Team, 2013) software and the “EzANOVA” (Anderson, 2001)
package to compare WM performance and prefrontal cortex
activations in the flight simulator and in the real flight conditions
during the 20 trials. Two-tailed unpaired t-tests were performed
to compare the WM performance in the high and low load
conditions across the two flight conditions (simulator and real
flight). As the number of optodes was not equivalent between
the two fNIRS devices (16 vs. 4), we defined four regions of
interests (ROIs) for the fNIR100 device that was used in the
simulator condition to allow for explorative comparisons with
the real flight condition. ROI1, ROI2, ROI3, and ROI4 were
derived respectively from the spatial averaging of optodes 1 to
4, 5 to 8, 9 to 12, and 13 to 16 (see Figure 1). The mean
frontal 1[HbO2] peak response and the mean frontal 1[hHb]
peak response (peak value within 30 s post-trial onset minus
2 s average pre-trial onset) over the four ROIs of the PFC for
each trial and each pilot using the MACD-filtered data in both
flight conditions (i.e., simulator and real flight) were computed.
A multivariate analyses for repeated measures (MANOVA) was
conducted over the mean 1[HbO2] data with between factor
flight condition (simulator vs. real flight) and within subject
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FIGURE 7 | Miniaturized and wireless fNIR Device® Model 1200W headband and associated regions of interest (optodes). Optodes are represented in yellow with

their associated number.

FIGURE 8 | (Left) ISAE Supaero DR400 plane used for the experiment. (Right) The pilot subject with the mini-fNIRS headband (on the left) and the safety pilot (on

the right).

factors WM Load (High vs. Low) and ROI (#1, #2, #3 & #4); see
Figure 1 was led. A similar MANOVA over the mean 1[hHb]
was then conducted. We then ran a two-tailed unpaired t-test
to compare the classification accuracy in the two experimental
conditions. The Tukey’s Honestly Significant Difference (HSD)
test was used for all post-hoc comparisons.

3. RESULTS

3.1. Real Flight vs. Flight Simulator:
Off-Line Behavioral and
Neurophysiological Analyses
Participants committed on average 5.33 errors (SD= 1.95) in the
WM task in the simulator condition and on average 8.25 (SD =

2.42) errors in the real flight condition, all occurring during the
high load trials (see Figure 9). As no error was committed in the
low WM load condition, we performed a statistical analysis to
compare the effect of the flight conditions on WM performance
in the high load conditions. An unpaired t-test revealed that
the real flight condition led to significantly higher number of
errors on the WM task in the high load condition (p < 0.001,
Cohen′s d = 1.34). The MANOVA over the mean 1[HbO2]
data disclosed a significant WM load × Flight condition ×

ROI interaction [F(3,66) = 3.36; p = 0.039; see Figure 10].
Post- hoc analyses revealed that high load trials performed in
real flight condition led to higher 1[HbO2] in ROI #2 than
their counterparts performed in simulator (p = 0.0001). The
MANOVA over the mean 1[hHb] data did not disclose any
significant WM load × Flight condition × ROI interaction
[F(3,66) = 0.69; p = 0.56].

3.2. Single Trial SVM-Based WM Load
Estimation Results
3.2.1. Simulator
During the testing phase, a mean of 76.66% (SD : 16.14%) of
the trials were accurately classified (discriminated into on-line
low WM load trials and high WM load trials). We obtained a
85.60% mean precision (SD : 19.36%) and a 73.33% mean recall
(SD = 24.62%). Individual classifiers’ accuracies are shown in
Table 1.

3.2.2. Real Flight
During the testing phase, a mean of 78.33% (SD : 11.93%) of
the trials were accurately classified (discriminated into on-line
low WM load trials and high WM load trials). We obtained a
84.14% mean precision (SD : 18.56%) and a 76.67% mean recall
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(SD = 22.29%). Individual classifiers’ accuracies are shown in
Table 2.

3.2.3. Real Flight vs. Flight Simulator: Statistical

Analysis
A t-test disclosed no statistical differences of the classification
accuracy in the two experimental conditions (p = 0.67,
Cohen′s d = 0.17).

FIGURE 9 | Behavioral performance in the high load WM condition. No errors

occurred during the low load WM condition.

4. DISCUSSION

The motivation of this study was to develop on-line tools to
monitor pilots’ cognitive performance under realistic settings.
We followed a two-step methodological approach as we first
implemented and tested an inference system in a flight simulator
and then in a real aircraft. We designed a task known to elicit
WM (Durantin et al., 2015; Gateau et al., 2015) as this executive
function is particularly engaged when operating aircraft (Causse
et al., 2011a,b).

4.1. Summary of Findings
The behavioral results confirmed that these two levels of WM
load were well contrasted, as the participants exhibited lower
performance during the higher difficulty level. This result is in
line with Taylor et al. study (Taylor et al., 2005; Durantin et al.,
2015) and previous experiments (Gateau et al., 2015) showing
that pilots’ WM performance decline when four different ATC
instructions have to be read back. Moreover, this drop in
performance was most significant for the participants under
actual flight conditions. Consistent with this finding, the real
flight condition yielded to higher PFC activation than the
simulated one only when the pilots had to execute the difficult
WM load task. Taken together, these findings suggest that the
mental demand was higher when operating the actual aircraft as
the participants had not only to perform the WM task but also to
monitor the flight path, the aircraft status and the airspace in a
much more careful fashion than in the simulated condition.

Whereas this multitasking aspect of the real flight was not
detrimental from a behavioral and neurophysiological point
of view when performing the low WM stimuli it became

FIGURE 10 | The mean frontal 1[HbO2] peak response (peak value within 30 s post-trial onset minus 2 s average pre-trial onset) over the four ROIs of the PFC (from

1 - left to 4 - right) across WM loads and flight conditions.
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TABLE 1 | Simulator experiment: machine learning results.

Subject Accuracy

training

Accuracy

testing

Precision Recall f1 score

01 90.00 100.00 100.00 100.00 100.00

02 100.00 60.00 66.67 40.00 50.00

03 100.00 70.00 100.00 40.00 57.14

04 100.00 100.00 100.00 100.00 100.00

05 100.00 70.00 75.00 60.00 66.67

06 100.00 80.00 100.00 60.00 75.00

07 100.00 90.00 100.00 80.00 88.89

08 100.00 80.00 80.00 80.00 80.00

09 100.00 90.00 100.00 80.00 88.89

10 80.00 70.00 100.00 40.00 57.14

11 70.00 50.00 50.00 100.00 66.67

12 90.00 60.00 55.56 100.00 71.43

TABLE 2 | Real flight experiment: machine learning results.

Subject Accuracy

training

Accuracy

testing

Precision Recall f1 score

01 70.0 80.0 71.4 100 83.3

02 100 90.0 100 80.0 88.9

03 100 70.0 62.5 100 76.9

04 100 80.0 100 60.0 75.0

05 100 90.0 100 80.0 88.9

06 100 90.0 100 80.0 88.9

07 90.0 50.0 50.0 40.0 44.4

08 100 70.0 62.5 100 76.9

09 100 70.0 100 40.0 57.1

10 100 80.0 100 60.0 75.0

11 80.0 80.0 80.0 80.0 80.0

12 100 90.0 83.3 100 90.9

critical when engaged in the high WM one. One could suspect
prioritization issue leading the pilots to focus more on flying the
aircraft thus leaving few resources available to face the demand
of the high WM stimuli. This could be one explanation for the
higher levels of activation observed in fNIRS measurements that
reflect the higher load of concurrent cognitive tasks induced by
the real flying task compared to the simulated. Unfortunately, our
aircraft was not equipped with a flight data recorder preventing
us from analyzing the flight performance and investigating these
prioritization and multi-tasking issues. Despite this limit, our
study is consistent with Dahlstrom and Nahlinder (2009) who
found evidence of higher cardiac activity when flying under
realistic settings than in flight simulator. These results raise the
question of the ecological validity of simulators. Their use is of
undeniable interest (e.g., understanding cognitive performance,
training pilots, assessing cockpit design) and they present several
advantages in terms of economical costs and reproducibility
issues. However, our findings and others (Philip et al., 2005;
Dahlstrom and Nahlinder, 2009) suggest that the simulators may

need to be calibrated against real flying conditions to be more
engaging.

Several field studies have demonstrated the potential of fNIRS
to measure cortical activity while walking outdoors (McKendrick
et al., 2016), facing prolonged stay at high altitude (Davranche
et al., 2016), riding bikes (Piper et al., 2014), motorcycles
(Kawashima et al., 2014), and flying helicopters (Kikukawa et al.,
2008). Our study was conducted in accordance with the recent
neuroergonomics approach to measure brain activity out of the
laboratory. Indeed, beyond the offline analyses, we used machine
learning techniques to perform single trial discrimination of the
low WM load versus high WM load trials. The results of the
classification process were available and displayed in a terminal
to the experimenter after each: as soon as data of the trial were
available, SVM discrimination process never required more than
10 ms to provide its result. The mean accuracy to classify low vs.
high WM trials in the two experimental conditions exceeded the
threshold of 70%, defined as a sufficient rate for pBCI (Kubler
et al., 2006; Tai and Chau, 2009). These results compare well to
the rare on-line studies such as the ones conducted by Naseer
et al. (2014) (14 participants: 82.14% accuracy), Girouard et al.
(2013) (9 participants: 83.5% accuracy), and (Schudlo and Chau,
2014) (10 participants: 77.4% accuracy). However, these and
other (Kanoh et al., 2009; Hu et al., 2012; Power et al., 2012;
Robinson et al., 2016) fNIRS-based BCI were not implemented
under realistic settings and describe experiments in controlled lab
settings.

4.2. Limitations and Avenues for Future
Research
Despite the promising results presented in this paper for
development of fNIRS based pBCI in ecologically valid
environment, one could argue that the translation of the fNIRS-
based pBCI in real cockpit to day-to-day flight operations might
not be applicable. First, the addition of machine learning and this
on-line classifier approach to standard procedures of aviation still
remains a challenge as the reliability of the classifier does notmeet
aviation certification criteria (10−3 allowable failure probability).
One approach to overcome this reliability problem would be to
integrate complementary measurements such as EEG that could
significantly enhance classification performance when combined
with fNIRS as suggested by Khan et al. (2014).

Also, the accuracy score per subject must be interpreted with
caution. In a two classes and five testing trials per class to fit with
experimental constraints, classification performance should be
higher than 75% to be statistically significant (p < 0.05) (Müller-
Putz et al., 2008; Combrisson and Jerbi, 2015). Considering both
groups in this study, 17 of 24 subjects were already above this
threshold with our online classifier. Further improvements with
machine learning methodologies would be needed to improve
and optimize the classifier performance.

Secondly, availability of the information about WM level
estimation is a key preoccupation. One criteria to evaluate on-line
inference system is related to the delay of single trial classification.
In our study, the diagnosis of the WM lasted less than 1.01 s
after each pilot’s response window. It could allow, for instance,
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to automatically give a feedback to ATC that the pilot is currently
facing a high workload situation and may have misinterpreted
the last communication. This timing was comparable with results
from other on-line fNIRS-based BCI latency (for a review of
on-line fNIRS-based BCI latency, please see Strait et al., 2014).
However, solutions have to be explored to speed up response
detection on fNIRS signal that can drastically reduce latency in
detecting change in a mental state (Cui et al., 2010; Hong and
Naseer, 2016). Thirdly, our study was limited to monitor WM
load in a binary and discrete fashion. Further studies have to
be conducted to continuously discriminate a gradient of WM
levels from underload to overload (Unni et al., 2017). Eventually,
lingering issues remain regarding the effect of accelerations and
headband motion on fNIRS signal (Mackey et al., 2013). In other
scenarios accelerometer data with special processing could be
used to eliminate any systemic effect of blood pooling.

Also, one should consider that fNIRS based pBCI could be first
used for civilian application as highly automated modern aircraft
prevents pilots from exceeding 1g maneuvers for passenger
comfort and to avoid going against the flight envelope protection.
Despite these limits, one can propose a progressive framework
for the introduction of fNIRS in aviation. A first step is to
consider the use of fNIRS based BCI to improve training via
neurofeedback (Pope et al., 2014) and to tailor the flight sessions
to the trainee (Chad et al., 2018). A second step is to use
such inference system to monitor pilot’s brain activity during
each operational flight for quantified self purpose. These daily
measures can be used to assess pilot’s cognitive workload state
and mental fatigue thus providing airlines with analyses tools
for crew rostering. A third step is to stream the fNIRS data
to the flight data recorder for accident analyses. These logged
neurophysiological data would provide additional insights on the
crew’s cognition during these critical events and help accident
investigators. A last step, when the reliability of the fNIRS-based
inference system will meet the standard, would be to adapt the
flight deck depending on the crew’s changing WM load level.
As previously demonstrated, stochastic decisional systems could
be implemented to infer that human operators are engaged
in demanding WM task and dynamically adapt interactions to
prevent them from distraction (Gateau et al., 2016). The objective
is to improve task allocation to enable better task switching,
interruption management, and multi-tasking (Kohlmorgen et al.,
2007; Solovey et al., 2011). Eventually, one should consider that
such fNIRS based system could be applied to variety of contexts

whereby human operators interact with complex and critical
systems (e.g., nuclear powerplant, train).

In summary, this study is the first report of the use of an
online fNIRS based pBCI both in simulation (in silico) and
in aircraft during flight (over the clouds) to measure pilot’s
WM . The implementation of this pBCI led to address several
technical constraints, adapting and testing for instance a new
wireless fNIRS that can be used by pilots and that has been
approved for use during real flight. It also led to identify
solutions to address potential sources of noise in signals such
as the sunlight infrared shielding using aluminum based cover.
Moreover, it provides important albeit preliminary information
about fNIRS measures of the PFC hemodynamic response and
its relationship to working memory workload, and in both
simulation and actual flight environment. Level of immersion or
realistic aspect of flight environment does appear to influence
the performance as well as hemodynamic response in the
anterior prefrontal cortex, at least for the air traffic control
related working memory task. The measurements in simulator
had larger fNIRS sensor coverage and future studies may
compare simulation vs. actual flight or level of realistic aspect
of environment with larger cortical coverage within the actual
flight environment, for a more granular detailed comparison.
Since fNIRS technology allows the development of mobile, non-
intrusive and miniaturized devices, it has the potential to be
deployed in future operational environments to monitor the
pilot, adapt the complex system interface, and/or to assess the
training of operators.
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