8,650 research outputs found

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    TransVCL: Attention-enhanced Video Copy Localization Network with Flexible Supervision

    Full text link
    Video copy localization aims to precisely localize all the copied segments within a pair of untrimmed videos in video retrieval applications. Previous methods typically start from frame-to-frame similarity matrix generated by cosine similarity between frame-level features of the input video pair, and then detect and refine the boundaries of copied segments on similarity matrix under temporal constraints. In this paper, we propose TransVCL: an attention-enhanced video copy localization network, which is optimized directly from initial frame-level features and trained end-to-end with three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for similarity matrix generation, and a temporal alignment module for copied segments localization. In contrast to previous methods demanding the handcrafted similarity matrix, TransVCL incorporates long-range temporal information between feature sequence pair using self- and cross- attention layers. With the joint design and optimization of three components, the similarity matrix can be learned to present more discriminative copied patterns, leading to significant improvements over previous methods on segment-level labeled datasets (VCSL and VCDB). Besides the state-of-the-art performance in fully supervised setting, the attention architecture facilitates TransVCL to further exploit unlabeled or simply video-level labeled data. Additional experiments of supplementing video-level labeled datasets including SVD and FIVR reveal the high flexibility of TransVCL from full supervision to semi-supervision (with or without video-level annotation). Code is publicly available at https://github.com/transvcl/TransVCL.Comment: Accepted by the Thirty-Seventh AAAI Conference on Artificial Intelligence(AAAI2023

    Unsupervised mining of audiovisually consistent segments in videos with application to structure analysis

    Get PDF
    International audienceIn this paper, a multimodal event mining technique is proposed to discover repeating video segments exhibiting audio and visual consistency in a totally unsupervised manner. The mining strategy first exploits independent audio and visual cluster analysis to provide segments which are consistent in both their visual and audio modalities, thus likely corresponding to a unique underlying event. A subsequent modeling stage using discriminative models enables accurate detection of the underlying event throughout the video. Event mining is applied to unsupervised video structure analysis, using simple heuristics on occurrence patterns of the events discovered to select those relevant to the video structure. Results on TV programs ranging from news to talk shows and games, show that structurally relevant events are discovered with precisions ranging from 87% to 98% and recalls from 59% to 94%

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Pedestrian Crossing Action Recognition and Trajectory Prediction with 3D Human Keypoints

    Full text link
    Accurate understanding and prediction of human behaviors are critical prerequisites for autonomous vehicles, especially in highly dynamic and interactive scenarios such as intersections in dense urban areas. In this work, we aim at identifying crossing pedestrians and predicting their future trajectories. To achieve these goals, we not only need the context information of road geometry and other traffic participants but also need fine-grained information of the human pose, motion and activity, which can be inferred from human keypoints. In this paper, we propose a novel multi-task learning framework for pedestrian crossing action recognition and trajectory prediction, which utilizes 3D human keypoints extracted from raw sensor data to capture rich information on human pose and activity. Moreover, we propose to apply two auxiliary tasks and contrastive learning to enable auxiliary supervisions to improve the learned keypoints representation, which further enhances the performance of major tasks. We validate our approach on a large-scale in-house dataset, as well as a public benchmark dataset, and show that our approach achieves state-of-the-art performance on a wide range of evaluation metrics. The effectiveness of each model component is validated in a detailed ablation study.Comment: ICRA 202
    corecore