350 research outputs found

    Wearable feedback systems for rehabilitation

    Get PDF
    In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    Identification of Motor Symptoms Related to Parkinson Disease Using Motion-Tracking Sensors at Home (KAVELI) : Protocol for an Observational Case-Control Study

    Get PDF
    Background: Clinical characterization of motion in patients with Parkinson disease (PD) is challenging: symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments. Objective: The primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns. Methods: This paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings. Results: Data collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD. Conclusions: This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life and outside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.Peer reviewe

    Identification of diseases based on the use of inertial sensors: a systematic review

    Get PDF
    Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer for the automatic recognition of different diseases, and it may powerful the different treatments with the use of less invasive and painful techniques for patients. This paper is focused in the systematic review of the studies available in the literature for the automatic recognition of different diseases with accelerometer sensors. The disease that is the most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implements for the recognition of Parkinson’s disease reported an accuracy of 94%. Other diseases are recognized in less number that will be subject of further analysis in the future.info:eu-repo/semantics/publishedVersio

    The use of wearable/portable digital sensors in Huntington’s disease: a systematic review

    Get PDF
    In chronic neurological conditions, wearable/portable devices have potential as innovative tools to detect subtle early disease manifestations and disease fluctuations for the purpose of clinical diagnosis, care and therapeutic development. Huntington’s disease (HD) has a unique combination of motor and non-motor features which, combined with recent and anticipated therapeutic progress, gives great potential for such devices to prove useful. The present work aims to provide a comprehensive account of the use of wearable/portable devices in HD and of what they have contributed so far. We conducted a systematic review searching MEDLINE, Embase, and IEEE Xplore. Thirty references were identified. Our results revealed large variability in the types of sensors used, study design, and the measured outcomes. Digital technologies show considerable promise for therapeutic research and clinical management of HD. However, more studies with standardized devices and harmonized protocols are needed to optimize the potential applicability of wearable/portable devices in HD

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    Preliminary results of ON/OFF detection using an integrated system for Parkinson's disease monitoring

    Full text link
    This paper describes the experimental set up of a system composed by a set of wearable sensors devices for the recording of the motion signals and software algorithms for the signal analysis. This system is able to automatically detect and assess the severity of bradykinesia, tremor, dyskinesia and akinesia motor symptoms. Based on the assessment of the akinesia, the ON-OFF status of the patient is determined for each moment. The assessment performed through the automatic evaluation of the akinesia is compared with the status reported by the patients in their diaries. Preliminary results with a total recording period of 32 hours with two PD patients are presented, where a good correspondence (88.2 +/- 3.7 %) was observed. Best (93.7 por ciento) and worst (87 por ciento) correlation results are illustrated, together with the analysis of the automatic assessment of the akinesia symptom leading to the status determination. The results obtained are promising, and if confirmed with further data, this automatic assessment of PD motor symptoms will lead to a better adjustment of medication dosages and timing, cost savings and an improved quality of life of the patients

    Exploration of digital biomarkers in chronic low back pain and Parkinson’s disease

    Get PDF
    Chronic pain and Parkinson’s disease are illnesses with personal disease progression, symptoms, and the experience of these. The ability to measure and monitor the symptoms by digitally and remotely is still limited. The aim was to study the usability and feasibility of real-world data from wearables, mobile devices, and patients in exploring digital biomarkers in these diseases. The key hypothesis was that this allows us to measure, analyse and detect clinically valid digital signals in movement, heart rate and skin conductance data. The laboratory grade data in chronic pain were collected in an open feasibility study by using a program and built-in sensors in virtual reality devices. The real-world data were collected with a randomized clinical study by clinical assessments, built-in sensors, and two wearables. The laboratory grade dataset in Parkinson’s disease was obtained from Michael J. Fox Foundation. It contained sensor data from three wearables with clinical assessments. The real-world data were collected with a clinical study by clinical assessments, a wearable, and a mobile application. With both diseases the laboratory grade data were first explored, before the real-world data were analyzed. The classification of chronic pain patients with the laboratory grade movement data was possible with a high accuracy. A novel real-world digital signal that correlates with clinical outcomes was found in chronic low back pain patients. A model that was able to detect different movement states was developed with laboratory grade Parkinson’s disease data. A detection of these states followed by the quantification of symptoms was found to be a potential method for the future. The usability of data collection methods in both diseases were found promising. In the future the analyses of movement data in these diseases could be further researched and validated as a movement based digital biomarkers to be used as a surrogate or additional endpoint. Combining the data science with the optimal usability enables the exploitation of digital biomarkers in clinical trials and treatment.Digitaalisten biomarkkereiden tunnistaminen kroonisessä alaselkäkivussa ja Parkinsonin taudissa Krooninen kipu ja Parkinsonin tauti ovat oireiden, oirekokemuksen sekä taudin kehittymisen osalta yksilöllisiä sairauksia. Kyky mitata ja seurata oireita etänä on vielä alkeellista. Väitöskirjassa tutkittiin kaupallisten mobiili- ja älylaitteiden hyödyntämistä digitaalisten biomarkkereiden löytämisessä näissä taudeissa. Pääolettamus oli, että kaupallisten älylaitteiden avulla kyetään tunnistamaan kliinisesti hyödyllisiä digitaalisia signaaleja. Kroonisen kivun laboratorio-tasoinen data kerättiin tätä varten kehitettyä ohjelmistoa sekä kaupallisia antureita käyttäen. Reaaliaikainen kipudata kerättiin erillisen hoito-ohjelmiston tehoa ja turvallisuutta mitanneessa kliinisessä tutkimuksessa sekä kliinisiä arviointeja että anturidataa hyödyntäen. Laboratorio-tasoinena datana Parkinsonin taudissa käytettiin Michael J. Fox Foundationin kolmella eri älylaitteella ja kliinisin arvioinnein kerättyä dataa. Reaaliaikainen data kerättiin käyttäen kliinisia arviointeja, älyranneketta ja mobiilisovellusta. Molempien indikaatioiden kohdalla laboratoriodatalle tehtyä eksploratiivista analyysia hyödynnettiin itse reaaliaikaisen datan analysoinnissa. Kipupotilaiden tunnistaminen laboratorio-tasoisesta liikedatasta oli mahdollista korkealla tarkkuudella. Reaaliaikaisesta liikedatasta löytyi uusi kliinisten arviointien kanssa korreloiva digitaalinen signaali. Parkinsonin taudin datasta kehitettiin uusi liiketyyppien tunnistamiseen tarkoitettu koneoppimis-malli. Sen hyödyntäminen liikedatan liiketyyppien tunnistamisessa ennen varsinaista oireiden mittausta on lupaava menetelmä. Käytettävyys molempien tautien reaaliaikaisissa mittausmenetelmissä havaittiin toimivaksi. Reaaliaikaiseen, kaupallisin laittein kerättävään liikedataan pohjautuvat digitaaliset biomarkkerit ovat lupaava kohde jatkotutkimukselle. Uusien analyysimenetelmien yhdistäminen optimaaliseen käytettävyyteen mahdollistaa tulevaisuudessa digitaalisten biomarkkereiden hyödyntämisen sekä kroonisten tautien kliinisessä tutkimuksessa että itse hoidossa
    corecore