2,043 research outputs found

    Classification of human hand movements using surface EMG for myoelectric control

    Get PDF
    © Springer International Publishing AG 2017.Surface electromyogram (sEMG) is a bioelectric signal that can be captured non-invasively by placing electrodes on the human skin. The sEMG is capable of representing the action intent of nearby muscles. The research of myoelectric control using sEMG has been primarily driven by the potential to create humanmachine interfaces which respond to users intentions intuitively. However, it is one of the major gaps between research and commercial applications that there are rarely robust simultaneous control schemes. This paper proposes one classification method and a potential real-time control scheme. Four machine learning classifiers have been tested and compared to find the best configuration for different potential applications, and non-negative matrix factorisation has been used as a pre-processing tool for performance improvement. This control scheme achieves its highest accuracy when it is adapted to a single user at a time. It can identify intact subjects hand movements with above 98% precision and 91% upwards for amputees but takes double the amount of time for decision-making

    Myoelectric forearm prostheses: State of the art from a user-centered perspective

    Get PDF
    User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop was organized involving clinicians (representing end users), academics, and engineers. The resulting needs included an increased number of functions, lower reaction and execution times, and intuitiveness of both control and feedback systems. Reviewing the state of the art of research in the main prosthetic subsystems (electromyographic [EMG] sensing, control, and feedback) showed that modern research prototypes only partly fulfill the requirements. We found that focus should be on validating EMG-sensing results with patients, improving simultaneous control of wrist movements and grasps, deriving optimal parameters for force and position feedback, and taking into account the psychophysical aspects of feedback, such as intensity perception and spatial acuity

    Pattern recognition-based real-time myoelectric control for anthropomorphic robotic systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatū, New Zealand

    Get PDF
    All copyrighted Figures have been removed but may be accessed via their source cited in their respective captions.Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help humans interact with computers smartly. Biosignal-based technology is one of the most promising approaches in developing intelligent HCI systems. As a means of convenient and non-invasive biosignal-based intelligent control, myoelectric control identifies human movement intentions from electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. Although the history of myoelectric control research has been more than half a century, commercial myoelectric-controlled devices are still mostly based on those early threshold-based methods. The emerging pattern recognition-based myoelectric control has remained an active research topic in laboratories because of insufficient reliability and robustness. This research focuses on pattern recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based myoelectric control research has been invested in improving EMG pattern classification accuracy. However, high classification accuracy cannot directly lead to high controllability and usability for EMG-driven systems. This suggests that a complete system that is composed of relevant modules, including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its controller, is desirable and helpful as a developing and validating platform that is able to closely emulate real-world situations to promote research in myoelectric control. This research aims at investigating feasible and effective EMG signal processing and pattern recognition methods to extract useful information contained in EMG signals to establish an intelligent, compact and economical biosignal-based robotic control system. The research work includes in-depth study on existing pattern recognition-based methodologies, investigation on effective EMG signal capturing and data processing, EMG-based control system development, and anthropomorphic robotic hand design. The contributions of this research are mainly in following three aspects: Developed precision electronic surface EMG (sEMG) acquisition methods that are able to collect high quality sEMG signals. The first method was designed in a single-ended signalling manner by using monolithic instrumentation amplifiers to determine and evaluate the analog sEMG signal processing chain architecture and circuit parameters. This method was then evolved into a fully differential analog sEMG detection and collection method that uses common commercial electronic components to implement all analog sEMG amplification and filtering stages in a fully differential way. The proposed fully differential sEMG detection and collection method is capable of offering a higher signal-to-noise ratio in noisy environments than the single-ended method by making full use of inherent common-mode noise rejection capability of balanced signalling. To the best of my knowledge, the literature study has not found similar methods that implement the entire analog sEMG amplification and filtering chain in a fully differential way by using common commercial electronic components. Investigated and developed a reliable EMG pattern recognition-based real-time gesture discrimination approach. Necessary functional modules for real-time gesture discrimination were identified and implemented using appropriate algorithms. Special attention was paid to the investigation and comparison of representative features and classifiers for improving accuracy and robustness. A novel EMG feature set was proposed to improve the performance of EMG pattern recognition. Designed an anthropomorphic robotic hand construction methodology for myoelectric control validation on a physical platform similar to in real-world situations. The natural anatomical structure of the human hand was imitated to kinematically model the robotic hand. The proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom and three degrees of actuation. This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern recognition. A series of experiments were conducted in EMG signal processing and system development. The final myoelectric-controlled robotic hand system and the system testing confirmed the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest state. With more motion patterns added in, this system has the potential to identify more hand movements. The research has generated a few journal and international conference publications

    Stable Electromyographic Sequence Prediction During Movement Transitions using Temporal Convolutional Networks

    Full text link
    Transient muscle movements influence the temporal structure of myoelectric signal patterns, often leading to unstable prediction behavior from movement-pattern classification methods. We show that temporal convolutional network sequential models leverage the myoelectric signal's history to discover contextual temporal features that aid in correctly predicting movement intentions, especially during interclass transitions. We demonstrate myoelectric classification using temporal convolutional networks to effect 3 simultaneous hand and wrist degrees-of-freedom in an experiment involving nine human-subjects. Temporal convolutional networks yield significant (p<0.001)(p<0.001) performance improvements over other state-of-the-art methods in terms of both classification accuracy and stability.Comment: 4 pages, 5 figures, accepted for Neural Engineering (NER) 2019 Conferenc

    A quantitative taxonomy of human hand grasps

    Get PDF
    Background: A proper modeling of human grasping and of hand movements is fundamental for robotics, prosthetics, physiology and rehabilitation. The taxonomies of hand grasps that have been proposed in scientific literature so far are based on qualitative analyses of the movements and thus they are usually not quantitatively justified. Methods: This paper presents to the best of our knowledge the first quantitative taxonomy of hand grasps based on biomedical data measurements. The taxonomy is based on electromyography and kinematic data recorded from 40 healthy subjects performing 20 unique hand grasps. For each subject, a set of hierarchical trees are computed for several signal features. Afterwards, the trees are combined, first into modality-specific (i.e. muscular and kinematic) taxonomies of hand grasps and then into a general quantitative taxonomy of hand movements. The modality-specific taxonomies provide similar results despite describing different parameters of hand movements, one being muscular and the other kinematic. Results: The general taxonomy merges the kinematic and muscular description into a comprehensive hierarchical structure. The obtained results clarify what has been proposed in the literature so far and they partially confirm the qualitative parameters used to create previous taxonomies of hand grasps. According to the results, hand movements can be divided into five movement categories defined based on the overall grasp shape, finger positioning and muscular activation. Part of the results appears qualitatively in accordance with previous results describing kinematic hand grasping synergies. Conclusions: The taxonomy of hand grasps proposed in this paper clarifies with quantitative measurements what has been proposed in the field on a qualitative basis, thus having a potential impact on several scientific fields

    Feature Analysis for Classification of Physical Actions using surface EMG Data

    Full text link
    Based on recent health statistics, there are several thousands of people with limb disability and gait disorders that require a medical assistance. A robot assisted rehabilitation therapy can help them recover and return to a normal life. In this scenario, a successful methodology is to use the EMG signal based information to control the support robotics. For this mechanism to function properly, the EMG signal from the muscles has to be sensed and then the biological motor intention has to be decoded and finally the resulting information has to be communicated to the controller of the robot. An accurate detection of the motor intention requires a pattern recognition based categorical identification. Hence in this paper, we propose an improved classification framework by identification of the relevant features that drive the pattern recognition algorithm. Major contributions include a set of modified spectral moment based features and another relevant inter-channel correlation feature that contribute to an improved classification performance. Next, we conducted a sensitivity analysis of the classification algorithm to different EMG channels. Finally, the classifier performance is compared to that of the other state-of the art algorithm

    Towards electrodeless EMG linear envelope signal recording for myo-activated prostheses control

    Get PDF
    After amputation, the residual muscles of the limb may function in a normal way, enabling the electromyogram (EMG) signals recorded from them to be used to drive a replacement limb. These replacement limbs are called myoelectric prosthesis. The prostheses that use EMG have always been the first choice for both clinicians and engineers. Unfortunately, due to the many drawbacks of EMG (e.g. skin preparation, electromagnetic interferences, high sample rate, etc.); researchers have aspired to find suitable alternatives. One proposes the dry-contact, low-cost sensor based on a force-sensitive resistor (FSR) as a valid alternative which instead of detecting electrical events, detects mechanical events of muscle. FSR sensor is placed on the skin through a hard, circular base to sense the muscle contraction and to acquire the signal. Similarly, to reduce the output drift (resistance) caused by FSR edges (creep) and to maintain the FSR sensitivity over a wide input force range, signal conditioning (Voltage output proportional to force) is implemented. This FSR signal acquired using FSR sensor can be used directly to replace the EMG linear envelope (an important control signal in prosthetics applications). To find the best FSR position(s) to replace a single EMG lead, the simultaneous recording of EMG and FSR output is performed. Three FSRs are placed directly over the EMG electrodes, in the middle of the targeted muscle and then the individual (FSR1, FSR2 and FSR3) and combination of FSR (e.g. FSR1+FSR2, FSR2-FSR3) is evaluated. The experiment is performed on a small sample of five volunteer subjects. The result shows a high correlation (up to 0.94) between FSR output and EMG linear envelope. Consequently, the usage of the best FSR sensor position shows the ability of electrode less FSR-LE to proportionally control the prosthesis (3-D claw). Furthermore, FSR can be used to develop a universal programmable muscle signal sensor that can be suitable to control the myo-activated prosthesis
    corecore