30 research outputs found

    Classifying Electrocardiogram with Machine Learning Techniques

    Get PDF
    Classifying the electrocardiogram is of clinical importance because classification can be used to diagnose patients with cardiac arrhythmias. Many industries utilize machine learning techniques that consist of feature extraction methods followed by Naive- Bayesian classification in order to detect faults within machinery. Machine learning techniques that analyze vibrational machine data in a mechanical application may be used to analyze electrical data in a physiological application. Three of the most common feature extraction methods used to prepare machine vibration data for Naive-Bayesian classification are the Fourier transform, the Hilbert transform, and the Wavelet Packet transform. Each machine learning technique consists of a different feature extraction method to prepare the data for Naive-Bayesian classification. The effectiveness of the different machine learning techniques, when applied to electrocardiogram, is assessed by measuring the sensitivity and specificity of the classifications. Comparing the sensitivity and specificity of each machine learning technique to the other techniques revealed that the Wavelet Packet transform, followed by Naïve-Bayesian classification, is the most effective machine learning technique

    ECG analysis and classification using CSVM, MSVM and SIMCA classifiers

    Get PDF
    Reliable ECG classification can potentially lead to better detection methods and increase accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the use of two novel classification algorithms: CSVM and SIMCA, and assessed their performance in classifying ECG beats. The project aimed to introduce a new way to interactively support patient care in and out of the hospital and develop new classification algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were selected as time-frequency features in the ECG signal; these provided the input to the classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for simultaneously classifying either four or six types of cardiac conditions. Binary SVM classification with 100% accuracy was achieved when applied on feature-reduced ECG signals from well-established databases using PCA. The CSVM algorithm and MSVM were used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). Different numbers of Fourier coefficients were considered in order to identify the optimal number of features to be presented to the classifier. SMO was used to compute hyper-plane parameters and threshold values for both MSVM and CSVM during the classifier training phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained using datasets from one, two, three, and four precordial leads, respectively. In addition, using CSVM it was possible to successfully classify four types of ECG beat signals extracted from limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy achieved using the MSVM classification model. In addition, further analysis of the following four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia classification scheme consisting of PCA as a feature reduction method and a SIMCA classifier to differentiate between either four or six different types of arrhythmia. In separate studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in the feature selection phase. The average classification accuracy of the proposed scheme was 98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, using MSVM and SIMCA classifiers with four ECG beat types achieved an average classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed algorithms was finally confirmed by successfully classifying both the six beat and four beat types of signal respectively with a high accuracy ratio

    Hybrid Wavelet-Support Vector Classifiers

    Full text link
    The Support Vector Machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and SVMs for waveform classification. The adaptation of the wavelet decompositions is tailormade for SVMs with radial basis functions as kernels. It allows the optimization Of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of SVMs can significantly be improved by our adapted preprocessing step

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Signal Processing Methods for the Analysis of the Electrocardiogram

    Get PDF
    Das Elektrokardiogramm (EKG) zeichnet die elektrische Aktivität des Herzens auf der Brust- oberfläche auf. Dieses Signal kann einfach und kostengünstig aufgenommen werden und wird daher in einer Vielzahl von mobilen und stationären Anwendungen genutzt. Es ist über die letzten 100 Jahre zum Goldstandard bei der Diagnose vieler kardiologischer Krankheiten geworden. Herzerkrankungen bleiben ein relevantes Thema in unserer Gesellschaft, da sie zu 30 % aller Todesfälle weltweit führen. Allein die koronare Herzkrankheit ist die häufigste Todesursache überhaupt. Weiterhin sind 2 bis 3 % der Europäer von Herzrhythmusstörungen wie Vorhofflimmern und Vorhofflattern betroffen. Die damit verbundenen geschätzten Kosten in der Europäischen Union belaufen sich auf 26 Milliarden Euro pro Jahr. In allen diesen Fällen ist die Aufzeichnung des EKGs der erste unumgängliche Schritt für eine verlässliche Diagnose und erfolgreiche Therapie. Im Rahmen dieser Dissertation wurden eine Reihe von Algorithmen zur Signalver- arbeitung des EKG entwickelt, die automatisch die rhythmischen und morphologischen Eigenschaften aus dem EKG extrahieren und dadurch den diagnostischen Prozess und die Entscheidungsfindung des Arztes unterstützen. In einem ersten Projekt wurde das Phänomen der postextrasystolischen T-Wellen-Änderung (PEST) untersucht. Die aus der PEST ex- trahierten Biomarker haben wir als Prädiktoren für Herzversagen postuliert. Ein zweites Projekt handelte vom Entwurf eines akkuraten Algorithmus zur Detektion und Annotation der P-Welle im EKG. Als Referenz während der Entwicklung wurden intrakardial gemessene Signale verwendet. Eine dritte Untersuchg hatte das Ziel, das physiologische Phänomen der respiratorischen Sinusarrhythmie (RSA) besser zu verstehen. In diesem Projekt wurde ein Algorithmus zur Trennung der Herzratenvariabilität (HRV) in ihre atmungsabhängige und ihre atmungsunabhn ̈gige Komponente untersucht. Letzterer Anteil der HRV könnte neue Erkenntnisse über die Regulationsmechanismen des kardiovaskulären Systems liefern. In der vierten und letzten Studie wurde der Einfluss mentaler Belastung auf das EKG während der Autofahrt untersucht. Eine Vielzahl von Deskriptoren wurden gefunden, die eine gefährliche mentale Beanspruchung detektieren und somit den Fahrer vor einem möglichen Unfall schützen können. Wir schließen aus diesen Untersuchungen, dass gut entwickelte Methoden der Signalver- arbeitung des EKG das Potential haben, die Belastung der Patienten, die an Herzerkrankungen leiden, und die Anzahl der Verkehrsunfälle zu reduzieren
    corecore