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Abstract 

Classifying Electrocardiogram with Machine Learning Techniques 

Hillal Jarrar 

 

Classifying the electrocardiogram is of clinical importance because classification can be 

used to diagnose patients with cardiac arrhythmias. Many industries utilize machine 

learning techniques that consist of feature extraction methods followed by Naive-

Bayesian classification in order to detect faults within machinery. Machine learning 

techniques that analyze vibrational machine data in a mechanical application may be used 

to analyze electrical data in a physiological application. Three of the most common 

feature extraction methods used to prepare machine vibration data for Naive-Bayesian 

classification are the Fourier transform, the Hilbert transform, and the Wavelet Packet 

transform. Each machine learning technique consists of a different feature extraction 

method to prepare the data for Naive-Bayesian classification. The effectiveness of the 

different machine learning techniques, when applied to electrocardiogram, is assessed by 

measuring the sensitivity and specificity of the classifications. Comparing the sensitivity 

and specificity of each machine learning technique to the other techniques revealed that 

the Wavelet Packet transform, followed by Naïve-Bayesian classification, is the most 

effective machine learning technique. 
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Chapter 1 
INTRODUCTION 

 
 

The human body is among the most complex machines in existence. The heart is 

among the most important organs in the human body. The human heart consists of two to 

three billion cardiac muscle cells [1]. These cells make up about 99% of the cells in the 

chambers of the heart. The cardiac muscle cells contract and pump blood throughout the 

body in response to the myocardial conducting cells. The myocardial conducting cells 

make up about 1% of the cells in the chambers of the heart [2]. The conducting cells use 

ion gradients to initiate and maintain their own electrical impulses that are propagated to 

the contractile muscle cells. The propagation of the electric signal occurs in an extremely 

coordinated manner to ensure that the different chambers of the heart contract completely 

and in the proper order. This coordinated communication occurs approximately 60 to 170 

times per minute, uninterrupted for the entirety of a human life span [3].  

The purpose of this work is to present a method of detecting faults in the electrical 

communication of the heart and to determine the most effective machine learning 

technique to obtain the most accurate results of cardiac electrophysiologic fault detection. 

 
1.1 Motivation 
 

475,000 Americans die from cardiac arrest, annually. Globally, more people die 

from cardiac arrest than from colorectal cancer, breast cancer, prostate cancer, influenza, 

pneumonia, auto accidents, HIV, firearms, and house fires combined [4].  

The feature extraction methods and classification methods used in mechanical 

industries can be applied to the field of cardiac health. These methods have successfully 

been applied to motor engines and other mechanical instruments. If the human heart is 
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treated as an intricate mechanical device, these methods can also be applied to humans. 

This creates a more effective method of diagnosing cardiac arrhythmias in a rapid and 

efficient manner. 

The feature extraction and classification methods may be applied to a hospital 

setting in which the healthcare provider will apply these methods while measuring a 

patient’s electrocardiogram (ECG). This can also be applied to the wider population. An 

ECG measuring device may be supplied in all public buildings, similar to an AED. This 

ECG measuring device can have the feature extraction and classification algorithms built 

into the device. Following a provided list of instructions, anyone can apply the device to 

an individual experiencing chest pain or other signs of cardiac arrest. The device will 

classify the patient’s ECG and alert the user if an ambulance must be called and if CPR 

must be applied. 

Without classification of ECG, a victim of cardiac arrest will not receive medical 

intervention until cardiac arrest occurs. If the patient has their ECG classified prior to 

cardiac arrest, they will be more likely to receive medical intervention. Application of 

machine learning techniques- consisting of feature extraction followed by feature 

classification- to cardiac health will save innumerable lives. 

1.2 Previous Work 

 
In the past several years, numerous studies have applied machine learning 

techniques to diagnose cardiac health. 
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In 2019, Leonardo B. Marinho et al. published a novel ECG feature extraction 

method for arrhythmia classification. This study used four feature extraction algorithms: 

Fourier transform, Goertzel Extraction, Higher Order Statistics (HOS), and Structural Co-

Occurrence Matrix (SCM). The feature extraction algorithms were trained using a 

segment of a patient’s ECG data. The patient’s ECG data was then classified using the 

trained algorithm [5].  

The process that was used in the study first filtered the raw ECG by determining a 

minimum peak prominence. The filtered signal was then segmented. Each segment was 

analyzed by the trained algorithm to determine amplitudes of each peak. Figure 1.1 

depicts the process for preparing ECG data for classification. The features were classified 

using classification algorithms. Four classification algorithms were used: Naive-Bayes 

classifier, Multi-Layer Perceptron (MLP), Optimum-Path Forest (OPF), and Support 

Vector Machine (SVM) [5]. 

 

Figure 1.1 Process for Preparing ECG Data for Classification: The process consists of 
removing noise from the raw ECG, segmenting the ECG, feature extraction, and feature 

classification [5]. 
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This study identified Naive-Bayesian classifier and HOS as the most effective 

classifiers [5]. Additionally, the Naive-Bayes classifier is the most commonly used 

classifier in machine learning techniques. Therefore, this thesis will use the Naive-

Bayesian classifier.  

1.3 Outline 

 
This document is structured as follows. A background of cardiac 

electrophysiology is provided. Then the function of three feature extraction methods is 

described. The feature extraction methods are the Fourier transform, the Hilbert 

transform, and the Wavelet Packet transform. Next, the Naive-Bayesian classifier is 

described. These three feature extraction methods, followed by Naïve-Bayesian 

classification, are the most commonly used machine learning techniques in industry. 

Therefore, these feature extraction methods will be assessed in this document. Finally, 

the document describes the results yielded by these feature extraction and classifier 

methods. 
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Chapter 2 
BACKGROUND 

 

2.1 Cardiac Anatomy 

 
The human heart consists of four chambers: the right atrium (RA), the right 

ventricle (RV), the left atrium (LA), and the left ventricle (LV). Deoxygenated blood 

from the venous system enters the RA through two veins called the superior vena cava 

(SVC) and inferior vena cava (IVC). The blood flows from the RA, through the tricuspid 

(T) valve and into the RV. The RV contracts and the blood passes through the pulmonic 

(P) valve and through the pulmonary artery (PA). The PA distributes the blood into the 

lungs to be reoxygenated. Through four pulmonary veins (PV), oxygenated blood enters 

the LA. From the LA, blood flows through the mitral (M) valve and into the LV. The left 

ventricle contracts and blood is pushed through the aortic (A) valve and into the aorta. 

The aorta delivers the oxygenated blood throughout the arterial system and the body’s 

cells are oxygenated. Figure 2.1 depicts cardiac anatomy [6]. 
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Figure 2.1 Cardiac Anatomy: The human heart consists of four chambers through which 
deoxygenated blood is delivered to the lungs to be reoxygenated and reoxygenated blood 

is delivered to the body’s muscles [6]. 
 

 
 
 
 

2.2 Cardiac Conduction System 

 
Throughout the walls of the heart’s chambers are specialized muscle cells that are 

capable of transferring electrical signals, as depicted in the figure below. These cells 

connect into an intricate system consisting of the sinoatrial (SA) node, atrioventricular 

(AV) node, the Bundle of His, Bundle branches, and the Purkinje Fibers [7]. The cardiac 

conduction system is depicted in Figure 2.2. 
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Figure 2.2 Cardiac Conduction System: The electric signal begins in the SA node and 
travels though the heart’s neurons to the AV node, Bundle of His, Bundle branches, and 

Purkinje fibers [7]. 
 

 

The electric current travels through neurons in the walls of the heart’s chambers. 

The sequence begins with the SA node. The electric signal from the SA node causes the 

muscle cells in the atria to contract. When the atria contract, blood is pumped into the 

ventricles. The signal then travels to the AV node, then to the Bundle of His, the Bundle 

branches, and finally to the Purkinje Fibers. The signal that passes through the Purkinje 

Fibers causes the ventricles to contract. When the ventricles contract, blood is pumped 

out of the heart and into the lungs and the rest of the body [7]. 

Contraction of the cardiac muscle cells causes the contraction of the heart’s 

chambers. Cardiac muscle cells are striated and heavily branched. They are connected 

into structures called sarcomeres. Cardiac muscle cells contain one nucleus and produce 
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energy by aerobic respiration. These cells are constantly contracting and consuming 

energy. Therefore, cardiac muscle cells contain mitochondria and myoglobin to produce 

the necessary energy in the form of Adenosine triphosphate (ATP) Figure 2.3 depicts the 

cardiac muscle cells [8].  

 

Figure 2.3 Cardiac Muscle Cells: The cardiac muscle cells are striated and heavily 
branched [8]. 

 

T cells are connected together by intercalated disks. Within each intercalated disk 

are gap junctions and desmosomes. The gap junctions allow the electrical current to 

travel between cells. Desmosomes are structures that serve as anchors between cardiac 

muscle cells and ensure that the cells do not disconnect as they contract. Figure 2.4 

depicts cardiac muscle cells connected by intercalated disks [8]. 
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Figure 2.4 Cardiac Muscle Cells Connected by Intercalated Disks: The intercalated disks 
allow the cardiac muscle cells to transmit electric signals and remain attached during 

contraction [8]. 

 
 

 Cardiac muscle cells contract as their cell walls depolarize. In a non-contracted 

resting state, cardiac muscle cells are highly polarized with a net negative charge within 

the cell membrane and a net positive charge outside of the cell membrane. Depolarization 

occurs with the opening of sodium ion channels in the cell membrane and the rapid influx 

of sodium ions into the cell. Figure 2.5 depicts ion channels in the membrane of cardiac 

muscle cells. 
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Figure 2.5 Ion Channels in the Membrane of Cardiac Muscle Cells: The ion channels 
enable the depolarization and repolarization of cardiac muscle cells [9]. 

 
 

The rapid influx of sodium ions results in a net positive charge within the cell 

relative to the outside the cell. Depolarization of the cell results in the binding of a 

molecule called myosin to ATP. Muscle fibers are attached to structures called actin 

filaments. Attached to the actin filaments are myosin molecules. The binding of myosin 

to ATP pulls the actin filaments towards the center of the sarcomere. This causes the cell 

to contract. Potassium ion channels in the cell membrane then open. A partial 

repolarization occurs as relatively small amounts of potassium ions leave the cell. Next, a 

steady state is achieved with the opening of calcium ion channels which allows for the 

influx of calcium ions as potassium ions continue to leave the cell membrane. Complete 

repolarization occurs when the calcium ion channels close and potassium ions continue to 
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leave the cell. Resting potential is achieved when both sodium and calcium ion channels 

have closed. Figure 2.6 depicts cardiac muscle cell polarization and depolarization [9].  

 

Figure 2.6 Cardiac Muscle Cell Polarization and Depolarization: Depolarization occurs 
with the inflow of sodium ions into the cell and repolarization occurs with outflow of 

potassium ions [10]. 
 
 
 
 
 

2.3 Machine Learning 

 
The current method of treating cardiac arrest involves medical intervention when 

the patient is experiencing extreme chest discomfort immediately before cardiac arrest or 
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medical intervention immediately after cardiac arrest occurs. The current method of 

treating cardiac arrest reduces the patient’s chance of survival. With machine learning, 

the patient may have their ECG classified when they first experience chest pain and will 

be more likely to receive medical intervention well before cardiac arrest. The early 

detection offered by machine learning may significantly increase the patient’s chance of 

survival. 

Machine learning is the development of systems that can analyze data and learn 

from the data. It consists of two parts: feature extraction and feature classification. The 

purpose of machine learning is to identify patterns and abnormalities within a dataset and 

make decisions based on the observations with minimal human intervention. Systems to 

identify and learn from patterns in a particular dataset are able to adapt and learn from a 

new dataset without having to be reprogrammed. Machine learning is an integral part of 

the modern economy, playing a role in online search recommendations, fault detection in 

manufacturing lines, and fraud detection in financial transactions. As datasets from all 

industries become larger, the modern economy will only rely more on machine learning 

[11]. 

In manufacturing, engineers have a very clear goal, which is to produce more 

products at a higher quality and with lower cost. Machine learning helps achieve this goal 

by serving an important role within manufacturing, which is predictive maintenance. 

Predictive maintenance is the ability to determine when a machine is likely to fail. When 

the likelihood of failure is detected to be high, the machine will be repaired. Predictive 

maintenance lowers production costs because it eliminates the need for regular scheduled 

maintenance. Regular scheduled maintenance results in repairing machines even when no 
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repair is necessary. Predictive maintenance also lowers cost by detecting faults and 

eliciting repair prior to the complete and sudden failure of a machine. Production is able 

to continue without the unexpected interruption of machine failure [12]. 

These machine learning techniques may be applied to human health. A patient’s 

physiologic data can be collected and analyzed. The detection of potential faults will 

elicit medical intervention. 

 
 

2.4 ECG Signal 

 ECG signals are measured by the placement of electrodes on the surface of the 

patient’s skin. Electrodes are conductive material that connect an electric circuit to a non-

metallic material. When measuring ECG, the electrodes typically consist of silver and 

silver-chloride half-cells. The difference in electric potential between the half-cells 

enables electrons to flow between the patient’s skin and the electrodes. Twelve electrodes 

are placed throughout the patient’s body to measure the electric current of the heart [6].  

 A healthy ECG produces a PQRST wave when measuring millivolts as a function 

of time. The P portion of the wave is produced when the SA node emits a current and is 

indicative of atrial depolarization. The QRS portion of the wave is produced by the AV 

node and is indicative of ventricular depolarization. The T portion of the wave is 

indicative of atrial repolarization. Figure 2.7 depicts the PQRST wave of a normal ECG 

[6].  
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Figure 2.7 PQRST Wave of a Normal ECG: The wave produced by a healthy ECG 
consists of 5 prominent features: The P, R, and T crests and the Q and S troughs [6]. 

 

 Discrepancies from the normal waveform of the PQRST wave are referred to as 

arrhythmias. The most common forms of arrhythmia are bradycardias, tachycardia, 

supraventricular arrhythmias, and ventricular arrhythmias. Bradycardia occurs when the 

PQRST wave occurs at a frequency that is too low. Tachycardia occurs when the PQRST 

wave occurs at a frequency that is too high. Supraventricular arrhythmias are arrhythmias 

that occur in the atria. Ventricular arrhythmias are arrhythmias that occur in the ventricles 

[6]. 
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 Machine learning algorithms do not diagnose a patient with a specific arrhythmia. 

Rather, machine learning algorithms detect when any form of arrhythmia occurs and 

labels the segment of the ECG at which the arrhythmia occurs as a fault.  

 Common clinical metrics, such as elongated QRS time and ST elevation are two 

symptoms that may be detected by machine learning. A longer QRS interval indicates a 

decreased distance between the QRS segment and the P segment preceding it or the T 

segment proceeding it. ST elevation indicates a peak amplitude that is higher than what is 

normal. When extracting features from an ECG with these symptoms, the elongated QRS 

segment will result in a greater instance of extracted features at high frequencies because 

of the decreased distance between peaks. For example, a Fourier transform plot will 

display greater peak amplitudes at lower frequencies as compared to a healthy ECG. In 

the case of ST elevation, there will be a greater instance of extracted features with high 

amplitudes.  

 However, if the patient is displaying elongated QRS time and ST elevation in 

every heart contraction cycle, the machine learning algorithm will not detect these 

symptoms as faults. The machine learning algorithm will only detect these symptoms as 

faults if they occur in a portion of the patient’s ECG or if it was trained with the patient’s 

ECG at an earlier point in time in which the ECG was healthy. 

 Machine learning may display similar accuracy when applied to males and 

females. On average, males and females display different ECG features. Females tend to 

display a shorter PR interval and shorter QRS duration as compared to males. The Naïve-

Bayesian classifier is trained using the patient’s own ECG. Machine learning will test the 
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patient’s ECG based on the patterns it learned from a prior portion of the ECG. 

Therefore, the shorter PR interval and QRS duration in a female patient will be detected 

as the regular pattern and will not be classified as faults during testing. 
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Chapter 3 
METHODS 

 

3.1 Data Acquisition 

 
The ECG datasets used for this thesis were obtained from Physionet.org, an open 

source forum that offers large physiologic datasets. The ECG datasets were collected 

from 1975 to 1979, at the Beth Israel Hospital in Boston, Massachusetts (currently known 

as the Beth Israel Deaconess Medical Center) and at the Massachusetts Institute of 

Technology. Data from 47 patients at the Beth Israel Hospital Arrhythmia Laboratory 

were compiled and published in 1980 as the BIH-MIT Arrhythmia Database. Twenty-

three patients’ datasets were randomly chosen from a set of 4000 24-hour ambulatory 

ECG recordings. Of the 4000 recordings, 60% were measured from inpatients at the Beth 

Israel Hospital and 40% were measured from outpatients. Twenty-five patients’ datasets 

were chosen at random from smaller samples characterized by specific arrhythmias. 

These patients were separately sampled because their arrhythmias would not have been 

appropriately represented within a random sample of the 4000 24-hour ambulatory ECG 

recordings. 

The ECGs were measured in 48 half hour excerpts. The measurements were 

digitized at 360 samples per second over a range of 10 millivolts with 11-bit resolution. 

The ECG data was published on Physionet.org in two comma-separated value files. One 

file contains healthy ECG data and the other file contains abnormal ECG data 

[13]. Figure 3.1 depicts a sample segment of the normal ECG and Figure 3.2 depicts a 

sample segment of the abnormal ECG. 
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The abnormal ECG dataset was shrunk to be the same size as the normal ECG 

dataset because the algorithms in MATLAB required consistent dataset structure and 

size.  

 

 

Figure 3.1 Sample Segment of the Normal ECG: The normal ECG displays a clear 
PQRST wave. 
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Figure 3.2 Sample Segment of the Abnormal ECG: The abnormal ECG consists of 
waves that do not display a clear PQRST wave. 

 

 

3.2 Fourier Transform 

 
The Fourier transform is among the most common tools in engineering. The 

Fourier transform is a method to break down and analyze any waveform. Almost any 

measurement in electrophysiology, mechanics, and nature may be represented as a 

waveform. The Fourier transform describes any of these measurements as a sum of 

sinusoidal functions. Figure 3.3 depicts a Fourier transform of a signal [14]. The time 

required for a waveform to repeat itself is the period (P) and the inverse of the period is 

the frequency (𝑓). The definition of the continuous Fourier transform is given in equation 

(3.1). 
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𝐹(𝑡) = ∫ 𝑒)*+,-.𝑥(𝑡)𝑑𝑡1
)1        (3.1) 

 

Where F(t) is the Fourier transform function and x(t) is the waveform function in 

the time domain. Applying the Euler formula to the above equation yields equation (3.2). 

𝐹(𝑡) = ∫ 𝑥(𝑡)(cos(2𝑘𝑡) − 𝑖𝑠𝑖𝑛(2𝑘𝑡))𝑑𝑡1
)1       (3.2) 

 
 

With these equations, it is possible to decompose a raw signal into its component 

signals, each with a unique frequency. The resulting Fourier transform function is in the 

frequency domain, rather than the original time domain [15]. 

 

Figure 3.3 Fourier Transform of a Signal: The Fourier transform describes signals as a 
sum of sinusoidal functions [15]. 
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After measuring the frequencies of the signal components, the signal can then be 

classified. Classification begins with measuring two characteristics of each of the signal 

components. The two characteristics are the signal component frequency and the signal 

component amplitude. With the frequency and amplitude of each signal component, we 

have the necessary data to begin classification of the raw signal. Figure 3.4 depicts 

frequency and amplitude of signal components [15]. In the case of this thesis, the phase 

of the component signals is not necessary for feature extraction of the raw signal. 

 

Figure 3.4 Frequency and Amplitude of Signal Components: Frequency and amplitude 
are the necessary features for classifying the raw signal [15]. 

 
 

3.3 Hilbert Transform 

 
The Hilbert transform is another popular transform. The Hilbert transform is 

unique from the other feature extraction methods discussed in this document. It does not 

convert the domain of the raw signal [16]. When the Hilbert transform is applied to a 
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signal in the time domain, the output is also a waveform in the time domain. The Hilbert 

transform of a signal, y(t), is defined by equation (3.3). 

𝑢(𝑡) = − <
+ ∫

=(>)
>).

𝑑𝜂 =1
)1

<
+ ∫

=(>)
.)>

𝑑𝜂1
)1       (3.3) 

Where 𝜂 is the domain of the transformed function. In machine learning and 

electronic signals, it is often useful to convert from the Hilbert transform function to an 

original function, as described by equation (3.4). 

𝑦(𝑡) = − <
+ ∫

A(>)
>).

𝑑𝜂 =1
)1

<
+ ∫

A(>)
.)>

𝑑𝜂1
)1       (3.4) 

Figure 3.5 illustrates the Hilbert transform of a signal. The raw signal in the time 

domain is depicted by the black line. The Hilbert transform deconstructs the raw signal 

into real and complex (labeled as imaginary in Figure 3.5) components. Both components 

of the Hilbert transform are in the time domain. 

 

Figure 3.5 Hilbert Transform of a Signal: The Hilbert transform contains both real and 
complex components [17]. 



23 
 

3.4 Wavelet Packet Transform 

 
The Wavelet Packet transform is another popular feature extraction method. This 

transform is capable of detecting very high frequencies in the time domains. This high 

resolution makes it particularly useful in decomposing raw signals whose component 

signals vary in frequency over time [15].  

While the Fourier transform deconstructs a raw signal into component frequencies 

with constant amplitudes, the Wavelet Packet transform deconstructs a raw signal into 

component frequencies that vary in amplitude. This variation in amplitude is 

representative of the change in frequency of the component signals over time. The 

Wavelet Packet transform also differs from the Fourier transform in the domain of its 

output. While the output of the Fourier transform ranges from negative infinity to positive 

infinity, the output of the Wavelet Packet transform is finite. Figure 3.6 depicts the output 

signal of a Wavelet Packet transform. Its domain only ranges in time values at which the 

raw signal’s component frequencies vary. The Wavelet Packet transform outputs signals 

in both the frequency and time domains, making it a powerful tool for decomposing 

signals whose component frequencies vary over time [15].  
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Figure 3.6 Output Signal of a Wavelet Packet Transform: The output of the Wavelet 
Packet transform is finite in the time domain [15]. 

 
 

The Wavelet Packet transform converts 1-dimensional signals in the time domain 

into a two-dimensional signal in the frequency domain. a is representative of the output’s 

bandwidth parameter and b is representative of the central frequency parameter. The 

central frequency parameter is an array of frequencies that are centered around a base 

frequency of the Wavelet Packet transform output. The bandwidth parameter determines 

how much the output signal varies in response to the frequencies around the central 

frequency parameter. The Wavelet Packet signal is defined by equation (3.5). 

𝑆(𝑎, 𝑏) = <
√G
∫ 𝑥(𝑡)𝜙(.)I

G
)𝑑𝑡1

)1        (3.5) 

The Wavelet Packet transform differs from the Fourier transform in the variety of 

functions that can appear in its output. While the Fourier transform outputs signals that 
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only consist of sine and cosine functions, the Wavelet Packet transform can output many: 

Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Reverse biorthogonal, Discrete 

Meyer (FIR Approximation), Gaussian, Mexican hat wavelet, Morlet wavelet, Complex 

Gaussian wavelets, Shannon wavelets, Frequency B-Spline wavelets, and Complex 

Morlet wavelets [15].  

Figure 3.7 illustrates the high resolution of the Wavelet Packet transform of a 

signal in the levels of decomposition of the raw signal. The raw signal is broken down 

into component frequencies. Each component frequency is defined by scalar and wavelet 

components. The wavelet component consists of eigenvalues. In MATLAB, the scalar 

and wavelet components are referred to as the approximation and detail coefficients, 

respectively. The Wavelet Packet transform then detects even higher frequencies in the 

component frequencies and breaks the component frequencies down. The Wavelet Packet 

transform is capable of breaking down component frequencies several times. 
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Figure 3.7 Wavelet Packet Transform of a Signal: The component frequencies are in the 
time domain and the scalar and wavelet coefficients refer to the approximation and detail 

coefficients, respectively [15]. 
 
 

3.5 Data Preparation 

 
The raw ECG data was prepared prior to being analyzed by each feature 

extraction function. The Excel files of the normal and abnormal ECGs consisted of 1048 

columns. Each column represented a complete heart contraction cycle. The Excel files of 

the normal and abnormal ECGs consisted of 186 rows. The voltage of the myocardium 

was measured at intervals of 3.1 milliseconds. Each value in the columns represents the 

voltage of the myocardium in millivolts at a specific point in time. Each row represented 

a point in time at which the voltage of the patients’ myocardium was measured with 

electrodes. The rows had units of milliseconds. The title of the Excel files for the normal 

and abnormal ECGs were “ptbdb_normal_switched_1.xlsx” and 
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“ptbdb_abnormal_switched_1.xlsx,” respectively. These file names were used when 

importing the datasets into MATLAB. 

The Excel files were imported into MATLAB using MATLAB’s “readtable” 

function. The Excel files were then converted into matrices using MATLAB’s 

“table2array” function. The resulting matrices for the normal and abnormal ECGs in 

MATLAB had dimensions of 186 rows by 1048 columns. 

To create placeholders for the extracted features, five empty datasets were defined 

in MATLAB by creating five empty numeric arrays. Four of the empty numeric arrays 

will consist of the four extracted features and one empty numeric array will consist of the 

faults identified from Naïve-Bayesian classification. This will segment the transformed 

output into short time intervals consisting of four features: the amplitudes of two 

consecutive peaks and the locations of the two peaks. Peak amplitudes and peak locations 

are important because they are the most easily identifiable features of a transformed 

signal. The five empty numeric arrays were then combined into one matrix using 

MATLAB’s “repmat” function with a defined matrix structure of one column by one 

row. It was necessary to add a sixth empty numeric array when performing the Wavelet-

Packet transform to account for the approximation coefficient. 

 Next, the transformation functions were applied to the matrices of the normal and 

abnormal ECG datasets. For the Fourier transform, transformation was applied using 

MATLAB’s built-in “fft” function. The Hilbert transform was conducted in three steps: 

First, MATLAB’s built-in “hilbert” function was applied to the matrices of the ECGs. 

Then, the Fourier transform of the absolute value of the transformed matrices was taken. 
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Finally, the absolute value of the matrices was taken again. The process for Hilbert 

transformation is depicted in equation 3.6. 

𝐻(𝑡) = |𝑓𝑓𝑡(|𝐻(𝑡)|)|         3.6 

The matrices created to contain the four extracted features from the normal and 

abnormal ECG datasets were filled with the appropriate data using MATLAB’s 

“findpeaks” function, with a minimum peak prominence of zero. The first two features 

were defined as the peak amplitudes. The last two features were defined as the locations 

of the peaks. The column for potential faults was assigned values of zero for the entirety 

of the column. This column will store any faults detected during classification. The 

extracted features were organized into matrices with four columns for the two peaks and 

two locations and the fifth column for the faults. The columns of the matrices had the 

following organization: 

 

The resulting matrices had 37 rows, because 37 features were extracted from each 

column of the matrices of the normal and abnormal ECGs. This process was embedded 

within a for loop that extracted the features for every column in the normal and abnormal 

ECG matrices.  

The Wavelet-Packet transform also required a “for” loop statement to carry out 

the transformation for every column in the normal and abnormal ECG matrices. 

MATLAB’s “wavedec” function was embedded within the “for” loop and was applied to 

the normal and abnormal ECG matrices with fourth level decomposition. MATLAB’s 
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“wavedec” function carries out 1-dimensional Wavelet Packet transformation on the ECG 

signal. The detail and approximation coefficients were extracted from the resulting 

decomposed matrix using MATLAB’s “detcoef” function. The coefficients consisted of 

four detail coefficients and one approximation coefficient. Next, the percentage energy 

corresponding to the approximation coefficient and the percentage energy corresponding 

to the detail coefficients was measured using MATLAB’s “wenergy” function. 

Calculating the percentage energy of the approximation and detail coefficients is 

necessary for determining the size approximation and detail portions of each level of 

decomposition. The five empty numeric arrays were set equal to the percentage energy of 

the approximation coefficient and the detail coefficients. The first four features were 

defined as the four values of the percentage energy corresponding to the detail 

coefficients and the fifth feature was defined as the percentage energy corresponding to 

the approximation coefficient. A sixth column was created and assigned values of zero 

for the entirety of the column. The sixth column was created to store any detected faults 

during classification. The resulting matrices had 37 rows by six columns. 

Prior to classification, the transformed matrices of the normal and abnormal ECG 

datasets were converted into tables using MATLAB’s “struct2table” function. The table 

of the extracted features of the abnormal ECG was vertically concatenated to the end of 

the extracted features of the normal ECG using MATLAB’s “vertcat” function. Naive-

Bayesian classification was conducted three times: once for each of the feature extraction 

methods.  

To use the Naive-Bayesian classifier, an empty data table was created with four 

columns: iteration number, sensitivity, specificity, and time. This table will contain the 
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results after running the classifier. The order of the rows of the transformed data tables 

from the Fourier, Hilbert, and Wavelet-Packet transforms were randomized using 

MATLAB’s “randperm” function. Randomizing the rows of the data tables provides a 

different training set for every time that the Naive-Bayesian classifier is run and expands 

the opportunity to assess the effectiveness of the extraction methods. The four extracted 

features were defined as independent variables. The potential faults were defined as 

dependent variables. In the case of the Wavelet-Packet transform, the five extracted 

features were defined as independent variables and the potential faults were defined as 

dependent variables. 

80% of the independent and dependent variables were defined as the training 

portion of the feature extraction data and 20% of the independent and dependent 

variables were defined as the testing portion of the feature extraction data. Both the 

training and testing portions of the feature extraction data consist of normal and abnormal 

ECG features. The repetitiveness of the normal features provides the Naïve-Bayesian 

classifier with a regular pattern that it can learn. The irregularity of the abnormal features 

has no regular pattern that the Naïve-Bayesian classifier can learn and are therefore 

labeled as faults.  

Then the Naive-Bayesian model was applied using MATLAB’s “fitcnb” training 

function. 80% of the variables were used to train the model and 20% of the variables 

were tested. To predict the number of faults in the data, MATLAB’s “predict” function 

was applied using the results from the “fitcnb” function as the regression model object 

and the testing portion of the independent variables as the predictor input values. Finally, 

the accuracy of the fault detection was assessed using MATLAB’s “confusionmat” 
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function. The predicted number of faults was compared to the number of faults in the 

testing portion of the dependent variables. 

The randomization of the extracted feature datasets and the Naive-Bayesian 

classifier was embedded in a for loop and run for ten iterations for each feature extraction 

method. Running the Naive-Bayesian classifier for ten iterations with a new dataset in 

every iteration increased the opportunity to assess the effectiveness of the classifier 

model. Sensitivity and specificity were calculated with each iteration. The data 

preparation process is illustrated in Figure 3.8. 

 

Figure 3.8 Data Preparation Process: Classifying the ECG data consisted of importing 
the Excel files of the ECG data into MATLAB, transforming the ECG data sets, and then 

classifying the data sets. 
 
 
 

3.6 Naive-Bayesian Classification 

 
The Naive-Bayesian classifier is among the most common classification methods 

in machine learning. It is a probabilistic classifier that is based on Bayes Theorem. Bayes 

Theorem describes the probability of an outcome contingent on a previous outcome. The 
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contingency of an outcome based on another is what distinguishes Bayes Theorem from 

other probabilistic classifiers. Other probabilistic classifiers describe marginal probability 

or joint probability. Marginal probability is the probability that an event will occur, 

regardless of previous events. The marginal probability that event A will occur is defined 

as P(A).  

Joint probability is the probability that two events will occur simultaneously. The 

joint probability that both event A and event B will occur together is defined as P(A,B). 

The conditional probability of Bayes Theorem is described by equation (3.7).  

𝑃(𝐴|𝐵) = O(P|Q)O(Q)
O(P)

         (3.7) 

This equation describes the probability that event A will occur given that event B 

has already occurred. This probability is calculated by using the reversed conditional 

probability. The probability that event B will occur given that event A has already 

occurred. The reverse conditional probability is multiplied by the marginal probability 

that event A will occur and divided by the marginal probability that event B will occur. 

The probability of event A contingent on event B may also be calculated by dividing the 

joint probability of event A and event B by the marginal probability of event B. The 

Bayes Theorem is a method to calculate conditional probability without the joint 

probability.  

The reverse probability can be calculated in the same way. The probability that 

event B will occur given that event A has already occurred is given by rearranging 

equation (3.7): 
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𝑃(𝐵|𝐴) = O(Q|P)O(P)
O(Q)

  

In machine learning, P(B|A) is referred to as the posterior probability and P(B) is 

referred to as the prior probability. When calculating the probability of event B, 

contingent on event A, P(A|B) is referred to as the likelihood and P(A) is the evidence. 

Therefore, we can describe the probability with the following equation: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒  

For example, Bayes theorem can be used to determine the probability that 

children will play outdoors if it is a weekend. The probability that children will play 

outdoors if it is a weekend is the posterior probability. The likelihood probability is the 

probability that it is a weekend day if children are playing outdoors. The probability that 

it is a weekend is the evidence. The probability that children will play outdoors is the 

prior probability. This results in the following equation:  

𝑃(𝑜𝑢𝑡𝑑𝑜𝑜𝑟𝑠|𝑤𝑒𝑒𝑘𝑒𝑛𝑑) = O(\]]-]^_|`A._``a)O(`A._``ab)
O(\]]-]^_)

. Each probability has a unique 

value. 

P(weekend) = 2/7 = 0.286 

P(outdoors) = 1/2 = 0.5 

P(weekend|outdoors) = 3/9 = 0.333 

Calculating posterior probability,  

𝑃(𝑜𝑢𝑡𝑑𝑜𝑜𝑟𝑠|𝑤𝑒𝑒𝑘𝑒𝑛𝑑) = (c.eee)∗(c.f)
(c.*gh)

= 0.582. 
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Bayes Theorem classifies data based on conditional probability and is a useful 

tool in diagnosing faults in a system. If a feature in a data set is determined to have low 

probability of occurring based on previous patterns, it will be classified as a fault. 

Sensitivity is the rate at which the Naive-Bayesian classifier accurately detects faults and 

specificity is the rate at which the classifier accurately detects the absence of faults [18]. 

The feature extraction methods prepare the ECG signal for Naive-Bayesian 

classification. In MATLAB, the feature extraction methods were applied to the normal 

and abnormal datasets individually. The resulting normal and abnormal datasets were 

combined into a single dataset before being analyzed by the Naive-Bayesian classifier. 

The Naive-Bayesian classifier operates in the same manner despite the differences in 

output between the feature extraction methods. The Naive-Bayesian classifier algorithm 

consists of two phases: the training phase and the testing phase. The first 80% of the 

output of a feature extraction method is used to train the Naive-Bayesian classifier 

algorithm. The algorithm measures two characteristics of the feature extraction output: 

peaks and locations. The regular pattern of peak amplitudes and the frequency at which 

peaks occur is measured and “learned” by the algorithm. This system of classification is 

the same for all feature extraction methods.  

The final segment of the feature extraction output is tested by the algorithm. 

Based on the pattern of peak amplitudes and peak locations that the algorithm learned 

during training, the final 20% of the output is tested for irregularities. Each segment of 

the feature extraction output is classified individually. During testing, the classifier may 

detect a peak amplitude significantly higher or lower than the average amplitude detected 

during the training phase. When this occurs, it will classify the segment as a fault.  
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During testing, the Naive-Bayesian classifier will also measure the distances 

between peaks in the feature extraction output. The distance between peaks is compared 

to the average distances detected during the training phase. When the classifier detects 

the distance between two peaks to be significantly larger or smaller in comparison to the 

average distance calculated during the training phase, it will classify the segment as a 

fault.  
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Chapter 4 
Results 

 
 
4.1 Fourier Transform 
 
 

When the Fourier transform was applied to the normal and abnormal ECG 

datasets, the ECG signals were converted into the frequency domain. Figure 4.1 depicts a  

sample Fourier transform of the ECG signals. 

 
 
 

 
Figure 4.1: Sample Fourier Transform of the ECG Signals: The graph on the left depicts 

a transformed heart contraction cycle from the normal ECG and the graph on the right 
depicts a transformed heart contraction cycle from the abnormal ECG. 

 

When the Naïve-Bayesian classifier was applied to the transformed ECG data, 

MATLAB outputted four values for each iteration: true positives, true negatives, false 

positives, and false negatives. The MATLAB output differs between each iteration of the 

Naive-Bayesian classifier. The MATLAB output is used to determine the most effective 

iteration for each feature extraction method. Table 4.1 depicts the classification results 

with Fourier transform. 
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Table 4.1: Classification Results with Fourier Transform 

 
 
 

Each value was compared against other values in the same column. In the True 

Positives and the True Negatives columns, the red color indicates that the value is below 

the average value of the column. The green color indicates that the value is above the 

average value of the column. In the False Positives and False Negatives columns, the red 

color indicates that the value is above the average value of the column. The green color 
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indicates that the value is below the average value of the column. Table 4.2 depicts the 

sensitivity and specificity of classification with Fourier transform. 

 

Table 4.2: Sensitivity and Specificity of Classification with Fourier Transform 

 
 
 
 

Each value was compared against other values in the same column. The red color 

indicates that the value is below the average value of the column. The green color 

indicates that the value is above the average value of the column. Higher values are 

preferable in both the sensitivity and specificity columns. 
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4.2 Hilbert Transform 

When the Hilbert transform was applied to the normal and abnormal ECG 

datasets, the ECG signals remained in the time domain. Figure 4.2 depicts a sample 

Hilbert transform of the ECG signals. 

 

 

Figure 4.2: Sample Hilbert Transform of the ECG Signals: The graph on the left depicts 
a transformed heart contraction cycle from the normal ECG and the graph on the right 

depicts a transformed heart contraction cycle from the abnormal ECG. 
 
 
 

When the Naïve-Bayesian classifier was applied to the transformed ECG data, 

MATLAB outputted four values for each iteration: true positives, true negatives, false 

positives, and false negatives. The MATLAB output differs between each iteration of the 

Naive-Bayesian classifier. Table 4.3 depicts the classification results with Hilbert 

transform. 
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Table 4.3: Classification Results with Hilbert Transform 

 
 
 
 

 After Naïve-Bayesian Classification, each value of the MATLAB output was 

compared against other values in the same column. Table 4.4 depicts the sensitivity and 

specificity of classification with Hilbert transform. 
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Table 4.4: Sensitivity and Specificity of Classification with Hilbert Transform 

 
 

 
 Sensitivity and specificity were also compared to the values of their respective 

columns. 

4.3 Wavelet Packet Transform 

When the Wavelet Packet transform was applied to the normal and abnormal 

ECG datasets, the ECG signals were decomposed into scalar and wavelet portions. 
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MATLAB did not produce graphs of this transformation. Therefore, sample graphs of the 

Wavelet Packet transforms are not provided. 

When the Naïve-Bayesian classifier was applied to the transformed ECG data, 

MATLAB outputted four values for each iteration: true positives, true negatives, false 

positives, and false negatives. The MATLAB output differs between each iteration of the 

Naive-Bayesian classifier. Table 4.5 depicts the classification results with Wavelet Packet 

transform. 
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Table 4.5: Classification Results with Wavelet Packet Transform 

 

 
 

After Naïve-Bayesian classification, each value of the MATLAB output was 

compared against other values in the same column. Table 4.6 depicts the sensitivity and 

specificity of classification with Wavelet Packet transform. 
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Table 4.6: Sensitivity and Specificity of Classification with Wavelet Packet Transform 

 
 

 

 Sensitivity and specificity were also compared to the values of their respective 

columns. 
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4.4 Comparison of the Three Feature Extraction Methods 

 
For the final comparison of the effectiveness of each machine learning technique, 

the most successful iterations of each feature extraction method were compared against 

each other. Higher values are preferable in both columns. The red color indicates that the 

value is low compared to other values in the same column. The green color indicates that 

the value is high compared to other values in the same column. Table 4.7 depicts the 

comparison of the three machine learning techniques. 

 

Table 4.7: Comparison of the Three Machine Learning Techniques 

Feature Extraction Method Most Successful Iteration Sensitivity Specificity 

Fourier Transform 5 0.8424 0.4782 

Hilbert Transform 1 0.8409 0.595 

Wavelet Packet Transform 7 0.8901 0.8536 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



46 
 

Chapter 5 
Discussion 

 
 

The results reveal that the Wavelet Packet transform is the most effective feature 

extraction method to prepare data for Naive-Bayesian classification. When the Fourier, 

Hilbert, and Wavelet Packet transforms, followed by Naïve-Bayesian classification, were 

applied to engine data, all three feature extraction methods yielded results with relatively 

equal accuracy [19].  

 

5.1 Implications 

 
The three feature extraction methods, followed by Naïve-Bayesian classification, 

display relatively equal accuracy in classifying engine vibration data. These same 

machine learning techniques display very unequal accuracy when classifying ECG data. 

These results indicate a fundamental difference between cardiac physiology and 

mechanical engines. The fundamental assumption when testing machine learning 

techniques on ECG data is that the human cardiac system is similar to a mechanical 

system.  

The results of classifying ECG data with machine learning techniques indicate 

that this fundamental assumption is invalid. ECG data and data from mechanical systems 

display different results when applied to machine learning. This difference may be a 

result of the higher resolution of ECG. The Wavelet Packet transform may be more 

successful in detecting the regular pattern of the PQRST wave than the more sporadic 

vibrational engine data. 
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5.2 Limitations and Future Work 

 
This study compares the effectiveness of the three prominent machine learning 

techniques in classifying ECG data. The human ECG differs significantly in how 

effectively it can be classified by different machine learning techniques. Further analysis 

is required to understand why some machine learning techniques are more effective in 

classifying ECG. This understanding is vital in optimizing ECG classification and 

predicting which other feature extraction methods may be effective. Further analysis may 

also uncover the variables that make physiologic systems unique from man-made 

systems. 

 

5.3 Conclusion 

 
Heart disease is the leading cause of death in the United States. Early detection of 

heart disease is vital to providing patients with proper care and increasing patients’ 

chance of survival. After obtaining a patient’s ECG, feature extraction with Naïve-

Bayesian classification will classify the ECG after about 60 seconds. Quickly and 

effectively diagnosing patients who display symptoms of cardiac arrest may alleviate the 

catastrophic effect of heart disease on our society. Early detection may be achievable 

with a design of a device that utilizes effective machine learning techniques. This device 

may measure the ECG of a patient experiencing chest discomfort and then quickly 

prepare the ECG data for Naive-Bayesian classification with the effective feature 
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extraction method. The machine will then determine if the patient requires urgent care. 

This new technique may save innumerable lives. 
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APPENDIX A 

 

A.1 FourierTransform_NaiveBayesianClassification.m 

 
clc; 
clear; 
close all; 
  
data = readtable(['ptbdb_normal_switched_1.xlsx']); 
% making table into a matrix 
data = table2array(data); 
   
  
%% feature extract w/ fft for normal ECG 
  
%empty_Dataset1.Index = []; 
empty_Dataset1.feature1 = []; 
empty_Dataset1.feature2 = []; 
empty_Dataset1.feature3 = []; 
empty_Dataset1.feature4 = []; 
empty_Dataset1.fault = []; 
  
  
Dataset1 = repmat(empty_Dataset1,[1,1]); 
   
[m,n] = size(data); 
  
% making the FFT of each heartbeat 
fft1 = abs(fft(data,[],1)); 
% removing the first row because it seems to be an outlier 
fft1(1, :) = zeros(1, n); 
  
%creating the final matrix of the 4 features w/ a column fault = 0 
for i=1:n 
   %Dataset1(i).Index = i; 
  
   [peaks1,locs1] = findpeaks(fft1(:,i),'MinPeakProminence',0); 
   Dataset1(i).feature1 = peaks1(1,1); 
   Dataset1(i).feature2 = peaks1(2,1); 
   Dataset1(i).feature3 = locs1(1,1); 
   Dataset1(i).feature4 = locs1(2,1); 
    
   Dataset1(i).fault = 0; 
end 
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%% Data with faults 
  
data = readtable('ptbdb_abnormal_switched_1.xlsx'); 
data = table2array(data); 
  
  
%% feature extract w/ fft for abnormal heartbeats 
  
  
% empty_Dataset3.Index = []; 
empty_Dataset2.feature1 = []; 
empty_Dataset2.feature2 = []; 
empty_Dataset2.feature3 = []; 
empty_Dataset2.feature4 = []; 
empty_Dataset2.fault = []; 
  
Dataset2 = repmat(empty_Dataset2,[1,1]); 
   
[m,n] = size(data); 
  
fft2 = abs(fft(data,[],1)); 
fft2(1, :) = zeros(1, n); 
  
for i=1:n 
   %Dataset3(i).Index = i; 
  
   [peaks2,locs2] = findpeaks(fft2(:,i),'MinPeakProminence',0); 
   Dataset2(i).feature1 = peaks2(1,1); 
   Dataset2(i).feature2 = peaks2(2,1); 
   Dataset2(i).feature3 = locs2(1,1); 
   Dataset2(i).feature4 = locs2(2,1); 
    
   Dataset2(i).fault = 1; 
end 
  
  
%% combine datasets 
  
% converting matrix into tables 
Dataset1 = struct2table(Dataset1); 
Dataset2 = struct2table(Dataset2); 
  
%combining the tables into one 
DatasetA = vertcat(Dataset1, Dataset2); 
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%removing a row because when we split the data into 80%/20% we have to have an 
%odd number of rows 
DatasetA([1],:) = []; 
  
%saving the table into a new file 
filename = "dataset1TEST.xlsx"; 
writetable(DatasetA,filename); 
  
%% Naive Bayesian Predict Results 
clc; 
clear; 
close all; 
  
% Read Excel into a table, loading the final dataset 
data = readtable('dataset1TEST.xlsx'); 
  
%creating empty data table  
empty_Result.Index = []; 
empty_Result.Sensitivity = []; 
empty_Result.Specificity = []; 
empty_Result.Time = []; 
  
  
% this is the NB algorithm code 
% I am running it 10 times to find the best model out of the 10 
for i = 1:10 
  
%randomize the rows of the dataset 
data = data(randperm(size(data, 1)), :); 
  
%Ind_Vs is for the 4 features in my dataset 
Ind_Vs = data(:,1:4); 
%Dep_V is the Fault or no Fault column in my dataset 
Dep_V = data(:,5); 
  
[m,n] = size(data); 
  
%train set is 80% of the data 
Train_Ind_Vs = Ind_Vs(1:end-(m*.2),:); 
%test set is 20% of the data 
Test_Ind_Vs = Ind_Vs(end-(m*.2)+1:end,:); 
  
Train_Dep_V = Dep_V(1:end-(m*.2),:); 
Test_Dep_V = Dep_V(end-(m*.2)+1:end,:); 
  
Test_Dep_V = table2array(Test_Dep_V); 
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Result(i).Index = i; 
  
% the NB model 
NB_Mdl = fitcnb(Ind_Vs,Dep_V); 
  
[Predict_Test,Posterior] = predict(NB_Mdl,Test_Ind_Vs); 
  
  
C = confusionmat(Test_Dep_V,Predict_Test) 
  
TN = C(2,2); 
FN = C(1,2); 
FP = C(2,1); 
TP = C(1,1); 
  
%Dataset1(i).feature1 = peak_loc1(1,1); 
Result(i).Sensitivity = TP / (TP+FN); 
Result(i).Specificity = TN / (TN+FP); 
  
     
end 
 

A.2 HilbertTransform_NaiveBayesianClassification.m 

 
clc; 
clear; 
close all; 
  
data = readtable(['ptbdb_normal_switched_1.xlsx']); 
% making table into a matrix 
data = table2array(data);  
  
%% feature extract w/ hilbert for normal heart beats 
  
%extracting the four features from the healthy ECG data 
  
  
%empty_Dataset1.Index = []; 
empty_Dataset1.feature1 = []; 
empty_Dataset1.feature2 = []; 
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empty_Dataset1.feature3 = []; 
empty_Dataset1.feature4 = []; 
empty_Dataset1.fault = []; 
  
  
Dataset1 = repmat(empty_Dataset1,[1,1]); 
   
 
[m,n] = size(data); 
  
% Taking the Hilbert transform of each heartbeat 
%fft1 = abs(fft(data,[],1)); 
y= hilbert(data); 
env = abs(y); 
fft1 = abs(fft(env,[],1)); 
  
% removing the first row because it seems to be an outlier 
fft1(1, :) = zeros(1, n); 
  
  
%creating the final matrix of the 4 features w/ a column fault = 0 
for i=1:n 
   %Dataset1(i).Index = i; 
  
   [peaks1,locs1] = findpeaks(fft1(:,i),'MinPeakProminence',0); 
   Dataset1(i).feature1 = peaks1(1,1); 
   Dataset1(i).feature2 = peaks1(2,1); 
   Dataset1(i).feature3 = locs1(1,1); 
   Dataset1(i).feature4 = locs1(2,1); 
    
   Dataset1(i).fault = 0; 
end 
  
%% Data with fault 
  
data = readtable('ptbdb_abnormal_switched_1.xlsx'); 
data = table2array(data); 
  
%% feature extract w/ hilbert for abnormal heartbeats 
  
  
% empty_Dataset3.Index = []; 
empty_Dataset2.feature1 = []; 
empty_Dataset2.feature2 = []; 
empty_Dataset2.feature3 = []; 
empty_Dataset2.feature4 = []; 
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empty_Dataset2.fault = []; 
  
Dataset2 = repmat(empty_Dataset2,[1,1]); 
  
  
[m,n] = size(data); 
  
%fft2 = abs(fft(data,[],1)); 
y= hilbert(data); 
env = abs(y); 
fft2 = abs(fft(env,[],1)); 
  
fft2(1, :) = zeros(1, n); 
  
for i=1:n 
  
   [peaks2,locs2] = findpeaks(fft2(:,i),'MinPeakProminence',0); 
   Dataset2(i).feature1 = peaks2(1,1); 
   Dataset2(i).feature2 = peaks2(2,1); 
   Dataset2(i).feature3 = locs2(1,1); 
   Dataset2(i).feature4 = locs2(2,1); 
    
   Dataset2(i).fault = 1; 
end 
  
  
%% combine datasets 
  
% converting matrix into tables 
Dataset1 = struct2table(Dataset1); 
Dataset2 = struct2table(Dataset2); 
  
%combining the tables into one 
DatasetA = vertcat(Dataset1, Dataset2); 
  
%removing a row because when we split the data into 80%/20% we have to have an 
%odd number of rows 
DatasetA([1],:) = []; 
  
%saving the table into a new file 
filename = "dataset1TEST.xlsx"; 
writetable(DatasetA,filename); 
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%% Naive Bayesian Predict Results 
clc; 
clear; 
close all; 
  
% Read Excel into a table, loading the final dataset 
data = readtable('dataset1TEST.xlsx'); 
  
%creating empty data table  
empty_Result.Index = []; 
empty_Result.Sensitivity = []; 
empty_Result.Specificity = []; 
empty_Result.Time = []; 
  
  
% this is the NB algorith code 
% I am running it 10 times to find the best model out of the 10 
for i = 1:10 
  
%randomize the rows of the dataset 
data = data(randperm(size(data, 1)), :); 
  
%Ind_Vs is for the 4 features in my dataset 
Ind_Vs = data(:,1:4); 
%Dep_V is the Fault or no Fault column in my dataset 
Dep_V = data(:,5); 
  
[m,n] = size(data); 
  
%train set is 80% of the data 
Train_Ind_Vs = Ind_Vs(1:end-(m*.2),:); 
%test set is 20% of the data 
Test_Ind_Vs = Ind_Vs(end-(m*.2)+1:end,:); 
  
Train_Dep_V = Dep_V(1:end-(m*.2),:); 
Test_Dep_V = Dep_V(end-(m*.2)+1:end,:); 
  
Test_Dep_V = table2array(Test_Dep_V); 
  
  
  
     
Result(i).Index = i; 
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% the NB model 
NB_Mdl = fitcnb(Ind_Vs,Dep_V); 
  
[Predict_Test,Posterior] = predict(NB_Mdl,Test_Ind_Vs); 
  
  
C = confusionmat(Test_Dep_V,Predict_Test) 
  
TN = C(2,2); 
FN = C(1,2); 
FP = C(2,1); 
TP = C(1,1); 
  
%Dataset1(i).feature1 = peak_loc1(1,1); 
Result(i).Sensitivity = TP / (TP+FN); 
Result(i).Specificity = TN / (TN+FP); 
  
     
end 
 
 

A.3 WaveletPacketTransform_NaiveBayesianClassification.m 

 
clc; 
clear; 
close all; 
  
data = readtable(['ptbdb_normal_switched_1.xlsx']); 
 
% making table into a matrix 
data = table2array(data); 
  
  
%% feature extract w/ wavelet-packet for normal heart beats 
  
%extracting the four features from the healthy ECG data 
  
  
%empty_Dataset1.Index = []; 
empty_Dataset1.feature1 = []; 
empty_Dataset1.feature2 = []; 
empty_Dataset1.feature3 = []; 
empty_Dataset1.feature4 = []; 
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empty_Dataset1.feature5 = []; 
empty_Dataset1.fault = []; 
  
  
Dataset1 = repmat(empty_Dataset1,[1,1]); 
  
  
[m,n] = size(data); 
  
  
for i=1:n 
   %Dataset1(i).Index = i; 
    [c,l] = wavedec(data(:,i),4,'db2'); 
    [cd1,cd2,cd3,cd4] = detcoef(c,l,[1 2 3 4]); 
    [Ea,Ed] = wenergy(c,l); 
     
   Dataset1(i).feature1 = Ed(1,1); 
   Dataset1(i).feature2 = Ed(1,2); 
   Dataset1(i).feature3 = Ed(1,3); 
   Dataset1(i).feature4 = Ed(1,4); 
   Dataset1(i).feature5 = Ea(1,1); 
    
   Dataset1(i).fault = 0; 
end 
%% Data with fault 
  
data = readtable('ptbdb_abnormal_switched_1.xlsx'); 
data = table2array(data); 
  
%% feature extract w/ wavelet-packet for abnormal heartbeats 
  
  
empty_Dataset2.feature1 = []; 
empty_Dataset2.feature2 = []; 
empty_Dataset2.feature3 = []; 
empty_Dataset2.feature4 = []; 
empty_Dataset2.feature5 = []; 
empty_Dataset2.fault = []; 
  
Dataset2 = repmat(empty_Dataset2,[1,1]); 
  
  
[m,n] = size(data); 
  
for i=1:n 
   %Dataset1(i).Index = i; 
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    [c,l] = wavedec(data(:,i),4,'db2'); 
    [cd1,cd2,cd3,cd4] = detcoef(c,l,[1 2 3 4]); 
    [Ea,Ed] = wenergy(c,l); 
     
   Dataset2(i).feature1 = Ed(1,1); 
   Dataset2(i).feature2 = Ed(1,2); 
   Dataset2(i).feature3 = Ed(1,3); 
   Dataset2(i).feature4 = Ed(1,4); 
   Dataset2(i).feature5 = Ea(1,1); 
    
   Dataset2(i).fault = 1; 
end 
  
%% combine datasets 
  
% converting matrix into tables 
Dataset1 = struct2table(Dataset1); 
Dataset2 = struct2table(Dataset2); 
  
%combining the tables into one 
DatasetA = vertcat(Dataset1, Dataset2); 
  
%removing a row because when we split the data into 80%/20% we have to have an 
%odd number of rows 
DatasetA([1],:) = []; 
  
%saving the table into a new file 
filename = "dataset1TESTB.xlsx"; 
writetable(DatasetA,filename); 
  
  
  
  
  
  
  
%% Naive Bayesian Predict Results 
clc; 
clear; 
close all; 
  
% Read Excel into a table, loading the final dataset 
data = readtable('dataset1TESTB.xlsx'); 
  
%creating empty data table  
empty_Result.Index = []; 
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empty_Result.Sensitivity = []; 
empty_Result.Specificity = []; 
empty_Result.Time = []; 
  
   
% this is the NB algorith code 
% I am running it 10 times to find the best model out of the 10 
for i = 1:10 
  
%randomize the rows of the dataset 
data = data(randperm(size(data, 1)), :); 
  
%Ind_Vs is for the 4 features in my dataset 
Ind_Vs = data(:,1:5); 
%Dep_V is the Fault or no Fault column in my dataset 
Dep_V = data(:,6); 
  
[m,n] = size(data); 
  
%train set is 80% of the data 
Train_Ind_Vs = Ind_Vs(1:end-(m*.2),:); 
%test set is 20% of the data 
Test_Ind_Vs = Ind_Vs(end-(m*.2)+1:end,:); 
  
Train_Dep_V = Dep_V(1:end-(m*.2),:); 
Test_Dep_V = Dep_V(end-(m*.2)+1:end,:); 
  
Test_Dep_V = table2array(Test_Dep_V); 
  
  
  
     
Result(i).Index = i; 
  
% the NB model 
NB_Mdl = fitcnb(Ind_Vs,Dep_V); 
  
[Predict_Test,Posterior] = predict(NB_Mdl,Test_Ind_Vs); 
  
  
C = confusionmat(Test_Dep_V,Predict_Test) 
  
TN = C(2,2); 
FN = C(1,2); 
FP = C(2,1); 
TP = C(1,1); 
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%Dataset1(i).feature1 = peak_loc1(1,1); 
Result(i).Sensitivity = TP / (TP+FN); 
Result(i).Specificity = TN / (TN+FP); 
  
     
end 
 
 


