644,776 research outputs found

    A Comparative Study on the Use of Classification Algorithms in Financial Forecasting

    Get PDF
    Financial forecasting is a vital area in computational finance, where several studies have taken place over the years. One way of viewing financial forecasting is as a classification problem, where the goal is to find a model that represents the predictive relationships between predictor attribute values and class attribute values. In this paper we present a comparative study between two bio-inspired classification algorithms, a genetic programming algorithm especially designed for financial forecasting, and an ant colony optimization one, which is designed for classification problems. In addition, we compare the above algorithms with two other state-of-the-art classification algorithms, namely C4.5 and RIPPER. Results show that the ant colony optimization classification algorithm is very successful, significantly outperforming all other algorithms in the given classification problems, which provides insights for improving the design of specific financial forecasting algorithms

    Soft Methodology for Cost-and-error Sensitive Classification

    Full text link
    Many real-world data mining applications need varying cost for different types of classification errors and thus call for cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account. The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1

    Random Prism: An Alternative to Random Forests.

    Get PDF
    Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting

    Pattern classification using a linear associative memory

    Get PDF
    Pattern classification is a very important image processing task. A typical pattern classification algorithm can be broken into two parts; first, the pattern features are extracted and, second, these features are compared with a stored set of reference features until a match is found. In the second part, usually one of the several clustering algorithms or similarity measures is applied. In this paper, a new application of linear associative memory (LAM) to pattern classification problems is introduced. Here, the clustering algorithms or similarity measures are replaced by a LAM matrix multiplication. With a LAM, the reference features need not be separately stored. Since the second part of most classification algorithms is similar, a LAM standardizes the many clustering algorithms and also allows for a standard digital hardware implementation. Computer simulations on regular textures using a feature extraction algorithm achieved a high percentage of successful classification. In addition, this classification is independent of topological transformations
    corecore