404,015 research outputs found

    Network-based data classification: combining k-associated optimal graphs and high-level prediction

    Get PDF
    Background: Traditional data classification techniques usually divide the data space into sub-spaces, each representing a class. Such a division is carried out considering only physical attributes of the training data (e.g., distance, similarity, or distribution). This approach is called low-level classification. On the other hand, network or graph-based approach is able to capture spacial, functional, and topological relations among data, providing a so-called high-level classification. Usually, network-based algorithms consist of two steps: network construction and classification. Despite that complex network measures are employed in the classification to capture patterns of the input data, the network formation step is critical and is not well explored. Some of them, such as K-nearest neighbors algorithm (KNN) and -radius, consider strict local information of the data and, moreover, depend on some parameters, which are not easy to be set. \ud Methods: We propose a network-based classification technique, named high-level classification on K-associated optimal graph (HL-KAOG), combining the K-associated optimal graph and high-level prediction. In this way, the network construction algorithm is non-parametric, and it considers both local and global information of the training data. In addition, since the proposed technique combines low-level and high-level terms, it classifies data not only by physical features but also by checking conformation of the test instance to formation pattern of each class component. Computer simulations are conducted to assess the effectiveness of the proposed technique.\ud Results: The results show that a larger portion of the high-level term is required to get correct classification when there is a complex-formed and well-defined pattern in the data set. In this case, we also show that traditional classification algorithms are unable to identify those data patterns. Moreover, computer simulations on real-world data sets show that HL-KAOG and support vector machines provide similar results and they outperform well-known techniques, such as decision trees and K-nearest neighbors. \ud Conclusions: The proposed technique works with a very reduced number of parameters and it is able to obtain good predictive performance in comparison with traditional techniques. In addition, the combination of high level and low level algorithms based on network components can allow greater exploration of patterns in data sets.São Paulo State Research Foundation (FAPESP)Brazilian National Council for Scientific and Technological Development (CNPq

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund
    corecore