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Abstract

Background: Traditional data classification techniques usually divide the data space into sub-spaces, each
representing a class. Such a division is carried out considering only physical attributes of the training data (e.g.,
distance, similarity, or distribution). This approach is called low-level classification. On the other hand, network or
graph-based approach is able to capture spacial, functional, and topological relations among data, providing a
so-called high-level classification. Usually, network-based algorithms consist of two steps: network construction and
classification. Despite that complex network measures are employed in the classification to capture patterns of the
input data, the network formation step is critical and is not well explored. Some of them, such as K-nearest neighbors
algorithm (KNN) and ε-radius, consider strict local information of the data and, moreover, depend on some
parameters, which are not easy to be set.

Methods: We propose a network-based classification technique, named high-level classification on K-associated
optimal graph (HL-KAOG), combining the K-associated optimal graph and high-level prediction. In this way, the
network construction algorithm is non-parametric, and it considers both local and global information of the training
data. In addition, since the proposed technique combines low-level and high-level terms, it classifies data not only by
physical features but also by checking conformation of the test instance to formation pattern of each class
component. Computer simulations are conducted to assess the effectiveness of the proposed technique.

Results: The results show that a larger portion of the high-level term is required to get correct classification when
there is a complex-formed and well-defined pattern in the data set. In this case, we also show that traditional
classification algorithms are unable to identify those data patterns. Moreover, computer simulations on real-world
data sets show that HL-KAOG and support vector machines provide similar results and they outperform well-known
techniques, such as decision trees and K-nearest neighbors.

Conclusions: The proposed technique works with a very reduced number of parameters and it is able to obtain
good predictive performance in comparison with traditional techniques. In addition, the combination of high level
and low level algorithms based on network components can allow greater exploration of patterns in data sets.

Keywords: High-level classification; Complex network; Machine learning; Data classification

Background
Introduction
Complex networks gather concepts from statistics,
dynamical systems, and graph theory. Basically, they are
large-scale graphs with nontrivial connection patterns [1].
In addition, the ability to capture spacial, functional, and
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topological relations is one of their salient characteristics.
Nowadays, complex networks appear in many scenar-
ios [2], such as social networks [3], biological networks
[4], Internet and World Wide Web [5], electric energy
networks [6], and classification and pattern recognition
[7-11]. Thus, distinct fields of sciences, such as physics,
mathematics, biology, computer science, and engineer-
ing have contributed to the large advances in complex
network study.
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Data classification is an important task in machine
learning. It is related to construct computer programs
able to learn from labeled data sets and, subsequently,
to predict unlabeled instances [12,13]. Due to the vast
number of applications, many data classification tech-
niques have been developed. Some of the well-known
ones are decision trees [14,15], instance-based learning,
e.g., the K-nearest neighbors algorithm (KNN) [16], arti-
ficial neural networks [17], Naive-Bayes [18], and support
vector machines (SVM) [19]. Nevertheless, most of them
are highly dependent of appropriate parameter tunning.
Examples include the confidence factor and the minimum
number of cases to partition a set in C4.5 decision tree; the
K value in KNN; the stop criterion, the number of neu-
rons, the number of hidden layers, and others in artificial
neural networks; and the soft margin, the kernel function,
the kernel parameters, the stopping criterion, and others
in SVM.

Complex networks have made considerable contribu-
tions to machine learning study. However, most of the
researches related to complex networks are applied to data
clustering, dimensionality reduction and semi-supervised
learning [20-22]. Recently, some network-based tech-
niques have been proposed to solve supervised learn-
ing problems, such as data classification [8,10,11,23,24].
The obtained results show that network-based techniques
have advantages over traditional ones in many aspects,
such as the ability to detect classes of different shapes,
absence of parameters, and the ability to classify data
according to pattern formation of the training data.

In [8], the authors proposed a network-based clas-
sification algorithm, called K-associated optimal graph
(KAOG). Among other characteristics, KAOG constructs
a network through a local optimization structure based
on a index of purity, which measures the compactness of
the graph components. In the classification stage, KAOG
combines the constructed network and a Bayes optimal
classifier to compute the probability of a test instance
belonging to each of the classes. One of the noticeable
advantages of KAOG is that it is a non-parametric tech-
nique. This is a desirable feature, which will be employed
in the technique proposed in the present work. How-
ever, both KAOG and other traditional classification tech-
niques consider exclusively the physical features of the
data (e.g., distance, similarity, or distribution). This lim-
ited way to perform classification tasks is known as low-
level classification [11]. However, the human (animal)
brain performs both low and high orders of learning for
identifying patterns according to the semantic meaning
of the input data. Data classification that considers not
only physical attributes but also the pattern formation is
referred to as high-level classification [11]. Figure 1 shows
an illustrative data set in which there are two classes (black
and gray circles) and a new test instance to be classified

Figure 1 A two-class data set, in which gray class data items
form a triangle pattern. The white color instance needs to be
classified in one of the classes.

(a white circle). Applying a SVM with optimized parame-
ters and radial basis function as kernel, the test instance is
classified into the black class. The same occurs when using
optimized versions of another algorithms, such as KNN
and decision tree. However, one could consider that the
test instance belongs to the well-defined triangle pattern
formed by the gray circles. This example shows that tradi-
tional classification techniques fail to identify general data
patterns. On the other hand, in [11], the authors present
a quite different kind of classification technique that is
able to consider the pattern formation of the training
data by using the topological structure of the underlying
network, which is called high-level classification. Specifi-
cally, the data pattern is identified by using some complex
network measures. The test instance is classified by check-
ing its conformation to each class of the network. Again,
considering Figure 1, the high-level technique is able to
detect the pattern formed by gray cycle class and put the
test instance into it. Furthermore, high-level and low-level
classifications can work together in a unique framework,
as proposed in [11].

Despite the fact that high-level classification offers a
new vision on the data classification, the network for-
mation still depends on some parameters, such as the
parameter K in KNN and the parameter ε in ε-radius
technique. Moreover, there are other parameters in the
technique, which involve the weight assignment to each
network measure employed in the framework [11]. All
these parameters are problem-oriented, and the selection
of the values on these parameters is time-consuming and
has a strong influence on the quality of classification.
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In this paper, we propose a network-based classifica-
tion technique combining two techniques: KAOG and the
high-level classification. We referred to as high-level clas-
sification on K-associated optimal graph (HL-KAOG). It
considers not only the physical attributes but also the
pattern formation of the data. Specifically, the proposed
technique provides the following:

• A non-parametric way to construct the network• A high-level data classification with only one
parameter• A more sensitive high-level classification by
examining the network components instead of
classes. This is relevant because classes can consist of
several (eventually distinct) components. Thus, the
components are smaller than the networks of whole
classes. Consequently, the high-level tests are more
sensitive and good results can be obtained• An automatic way to obtain the influence coefficient
for the network measures. In addition, this coefficient
adapts itself according to each test instance• A new complex network measure adapted to
high-level classification, named component efficiency

Computer simulations have been conducted to assess
the effectiveness of the proposed technique. Interestingly,
the results show that a larger portion of the high-level
term is required to get correct classification when there
is a complex-formed and well-defined pattern in the data
set. In this case, we also show that traditional classifica-
tion algorithms are unable to identify those data patterns.
Moreover, computer simulations on real-world data sets
show that HL-KAOG and support vector machines pro-
vide similar results and they outperform well-known tech-
niques, such as decision trees and K-nearest neighbors.

The remainder of the paper is organized as follows: A
background and a brief overview about the related works
are presented in the ‘Overview’ section The proposed
technique and the contributions of this work are detailed
in the ‘Methods’ section. Empirical evaluation and dis-
cussions about the proposed algorithm on artificial and
real data sets are showed in the ‘Results and discussion’
section. Finally, the ‘Conclusions’ section concludes the
paper.

Overview
In this section, we review the most relevant classifi-
cation techniques. Firstly, we present an overview on
the network-based data classification. Then, we describe
the network construction and classification using the K-
associated optimal graph. Finally, we present the rationale
behind the high-level classification technique.

Network-based data classification
In data classification, the algorithms receive as input
a given training data set, denoted here X = {(inp1,

lab1), . . . , (inpn, labn)}, where the pair (inpi, labi) is the
i-th data instance in the data set. Here, inpi = (x1, . . . , xd)

represents the attributes of a d-dimensional data item and
labi ∈ L = {L1, . . . , LC} represents the target class or label
associated to that data item.

In network-based classification, the training data is usu-
ally represented as a network in which each instance is
a vertex and the edges (or links) represent the similarity
relations between vertices. The goal of the training phase
is to induce a classifier from inp → lab by using the
training data X.

In the prediction (classification) phase, the goal is to use
the constructed classifier to predict new input instances
unseen in training. So, there is a set of test instances
Y = {(inpn+1, labn+1), . . . , (inpz, labz)}. In this phase, the
algorithm receives only the inp and uses the constructed
network to predict the correct class lab for that inp.

K-associated optimal graph
KAOG uses a purity measure to construct and optimize
each component of the network. The resulting network
together with the Bayes optimal classifier is used for clas-
sification of new instances. Specifically, a KAOG is a final
network merging several K-associated graphs while main-
taining or improving their purity measure. For the sake
of clarity, the network construction phase can be divided
in two concepts: creating a K-associated graph (Kac) and
creating a K-associated optimal graph.

The K-associated graph builds up a network from a
given data set and a K value, which is related to the
number of neighbors to be considered for each vertex.
Basically, the algorithm only connects a vertex vi to vj if vj
is one of the K-nearest neighbors of vi and if vi and vj have
the same class label.

Algorithm 1 shows in detail how a K-associated graph is
constructed. In Kac, V denotes the set of vertices vi ∈ V ,
which represents all training instances; E provides the set
of edges ei,j ∈ E, which contains all links between vertices;
�vi,K contains the K-nearest neighbors of vertex vi; ci is

Algorithm 1 K-associated graph (Kac)
Require: K and a data set X

1: for all vi ∈ V do
2: �vi ,K ⇐ {vj|vj ∈ �vi ,K and cj = ci}
3: E ⇐ E ∪ {ei,j|vj ∈ �vi ,K }
4: end for
5: C ⇐ findComponents(V , E)

6: for all α ∈ C do
7: �α ⇐ purity(α)

8: G(K) ⇐ G(K) ∪ {(α(V ′, E′); �α)}
9: end for

10: return K-associated graph G(K)
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the class label of vertex i; findComponents(V , E) is a func-
tion that find all existing componentsa in the graph; C
is the set of all components α ∈ C; purity(α) gives the
compactness �α of each component α ∈ C; and G(K)

represents the K-associated graph. Figure 2 shows the for-
mation of the K-associated graph for (a) K = 1 and (b)
K = 2.

Also, about the K-associated graph, there are two
important characteristics that are highlighted as follows:

1. Asymmetrical property: according to Algorithm 1,
Kac returns a digraph. Digraphs provide good
representation for the asymmetric nature existing in
many data sets because many times vj ∈ �vi,K does
not imply vi ∈ �vj ,K .

2. Purity: this measure expresses the level of mixture of
a component in relation to other components of
distinct classes. Basically, the purity measure is given
by

�α = Dα

2K
, (1)

where Dα denotes the average degree of a component
α; and 2K is the maximum number of possible links
that a vertex can have. Dα can be obtained by

Dα = 1
N

N∑
i=1

ki, (2)

in which N is the total number of vertices in α and ki
is the degreeb of vertex i.

Despite the fact that K-associated graph presents good
performance on data classification, there is a drawback:
it uses the same value of K to form networks for all data
classes. However, rarely a network obtained by an unique
value of K is able to produce the best configuration of
instances in the components, in terms of the purity mea-
sure. In this way, an algorithm, which is able to adapt
itself to different classes of the data set is welcome. The
idea of KAOG is to obtain the optimal K value for each
component in order to maximize its purity [8].

Algorithm 2 shows in detail the construction of KAOG
from K-associated graphs. In the algorithm, G(Ot) denotes
the K-associated optimal graph and lastAvgDegree is the
average degree of the network before incrementing the
value of K ; note that no parameter is introduced in the
algorithm. In the following, we describe Algorithm 2. In
the first lines, K starts with the value 1 and, thus, the 1-
associated graph is considered as the optimal graph (Gopt)
at this moment. After the initial setting, a loop starts to
merge the subsequent K-associated graphs by increasing
K , while improving the purity of the network encoun-
tered so far, until the optimal network measured by the
purity degree [8] is reached. Between lines 7 and 12, the

algorithm verifies for each component of the K-associated
graph (C(K)

β ) whether the condition given by line eight is
satisfied. In affirmative case, an operation to remove the
components that compose C(K)

β from the optimal graph is
performed (line 9). In line 10, the new component is added
to Gopt . At the end, the algorithm returns the obtained
components with their respective values of K and purities.

Algorithm 2 K-associated optimal graph
Require: data set X

1: K ⇐ 1
2: G(Ot) ⇐ Kac(K , X)

3: repeat
4: lastAvgDegree ⇐ D(K)

5: K ⇐ K + 1
6: G(K) ⇐ Kac(K , X)

7: for all C(K)
β ⊂ G(K) do

8: if �
(K)
β ≥ �

(Ot)
α for all C(Ot)

α ⊆ C(K)
β then

9: G(Ot) ⇐ G(Ot) − ∪C(Ot)
α ⊆C(K)

β

C(Ot)
α

10: G(Ot) ⇐ G(Ot) ∪ {C(K)
β }

11: end if
12: end for
13: until D(K) − lastAvgDegree < D(K)/K
14: return K-associated optimal graph G(Ot)

About the time complexity of the KAOG network con-
struction, given a training set with N instances and d
attributes, the complexity for generating the correspond-
ing distance matrix is N(N − 1) ∗ d which yields the
complexity order of O(N2). Another functions such as
find the graph components and compute the purity mea-
sure of the graph components yield the complexity order
of O(N). Therefore, the time complexity to build up the
network is O(N2) [8].

After the construction of the KAOG network, a Bayes
optimal classifier (BayesOC) performs the classification of
new instances using the constructed network. Let us con-
sider a new instance y to be classified. KAOG performs the
classification computing the probability of y belonging to
each component. Thus, from the Bayes theory, the a pos-
teriori probability of y to belong to a component α taking
the Kα-nearest neighbors of this new case (�y) is given by

P(y ∈ α|�y) = P(�y|y ∈ α)P(y ∈ α)

P(�y)
. (3)

According to [8], the probability of the neighborhood �y
given that y belongs to α is given by

P(�y|y ∈ α) = |�y,Kα ∩ α|
Kα

. (4)
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Figure 2 Network formation using K-associated graph algorithm.

The normalization term P(�y) is obtained by

P(�y) =
∑

Ny,β �=0
P(�y|y ∈ α)P(y ∈ α). (5)

Also, the a priori probability P(y ∈ α) is given by

P(y ∈ α) = �α∑
Ny,β �=0

�β

. (6)

In addition, if the number of components in the net-
work is bigger than the number of classes in the data set,
BayesOC sums up the probabilities associated to the each
class j, as follows:

P(j)
y =

∑
α∈j

P(y ∈ α|�y). (7)

At the end, BayesOC chooses the class with the largest
a posteriori probability.

About the time complexity, the BayesOC classification
yields the complexity order of O(N) that is related to the
calculation of the distance matrix between the training set
and the test case [8].

High-level classification
High-level prediction considers not only physical
attributes but also global semantic characteristics of the
data [11]. This is due to the use of complex network mea-
sures, which are able to capture the pattern formation of
the input data. The next sections provide more details
about high-level classification.

Network construction As all other network-based
learning techniques, here, the first step is the network
construction from the vector-based input data. In fact, the
way how the network is constructed influences to a large
extent the classification results of the high-level predic-
tion. In [11], the authors propose a network construction

method combining the ε-radius and KNN algorithms,
which is given by

Net(i) =
{

ε−radius(inpi, labi), if |ε − radius (inpi, labi)| > K
KNN(inpi, labi), otherwise

(8)

where KNN and ε-radius return, respectively, the set
containing the K-nearest vertices of the same class of ver-
tex i and the set of vertices of the same class of i, in
which the distance from i is smaller than ε. Note that K
and ε are user-controllable parameters. In addition, the
algorithm connects the vertex i to other vertices using
ε-radius when the condition is satisfied and using KNN,
otherwise.

As shown in Equation 8, the network formation algo-
rithm depends on some parameters. Different parameter
values produce very distinct results. Moreover, the model
selection of the parameters is time-consuming. For this
reason, we propose a non-parametric network formation
method based on the KAOG to work together with the
high-level technique. The ‘Methods’ section describes our
proposal.

Hybrid classification technique In [11], the authors
propose a hybrid classification technique combining a
low-level term and a high-level term, which is given by

M(J)
y = (1 − λ)P(J)

y + λH(J)
y . (9)

Considering a test instance y ∈ Y , M(J)
y denotes the asso-

ciation produced by low- and high-level algorithms when
evaluating instance y for the class J . Also in the equation,
the variable P(J)

y ∈[0, 1] establishes the association pro-
duced by low-level classifier between the instance y and
the class J . On the other hand, the variable H(J)

y ∈ [0, 1]
points to an association produced by the high-level tech-
nique (composed by complex network measures, such as
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assortativity and clustering coefficient [1]) between y and
the class J . Finally, λ ∈ [0, 1] is a user-controllable variable
and it defines a weight assigned to each produced classi-
fication. Note that λ just defines the contribution of low-
and high-level classifications. For example, if λ = 0, only
low-level algorithm works.

The high-level classification of a new instance y for a
given class J is given by

H(J)
y =

∑Z
u=1 δ(u)[1 − f (J)

y (u)]∑
g∈L

∑Z
u=1 δ(u)[1 − f (g)

y (u)]
, (10)

where H(J)
y ∈ [0, 1], u is related to the network measures

employed in the high-level algorithm, δ(u) ∈ [0, 1], ∀u ∈
{1, . . . , Z} is a user-controllable variable that indicates the
influence of each network measure in the classification
process and f (J)

y (u) provides an answer whether the test
instance y presents the same patterns of the class J or
not, considering the u-th network measure applied. The
denominator term is only for normalization. There is also
a constraint about δ(u); (10) is valid only if

∑K
u=1 δ(u) = 1.

About f (J)
y (u), it is given by

f (J)
y (u) = �G(J)

y (u) p(J), (11)

in which �G(J)
y (u) ∈ [0, 1] represents the variation that

occurs in a complex network measure whenever a new
instance y ∈ Y is inserted and p(J) ∈ [0, 1] is the propor-
tion of instances that belongs to the class J .

Complex network measures In fact, complex network
measures are used to provide a high-level analysis on the
data [25]. So, when a new instance y needs to be classified,
the technique computes the impact by inserting this new
vertex for each class in an isolated way. Basically, the vari-
ation of the results in network measures indicates which
is the class that y belongs to. In other words, if there is a
little variation in the formation pattern of that class when
connecting y to it, high-level prediction returns a big value
indicating that y is in conformity with this pattern. In the
opposite, if there is a great variation when linking y to
a class, it returns a small value denoting that y is not in
conformity with this pattern.

In [11], three network measures are employed to check
the pattern formation of the input data: assortativity,
average degree, and clustering coefficient [26]. A more
detailed view about the network measures employed in
HL-KAOG is provided in the next section.

Methods
Most machine learning algorithms perform the classi-
fication exclusively based on physical attributes of the
data. They are called low-level algorithms. One example

includes the BayesOC algorithm showed in the pre-
vious section. On the other hand, complex network-
based techniques provide a different kind of classification
that is able to capture formation patterns in the data
sets.

Actually, the principal drawback in the use of com-
plex network measures for the data classification is the
network formation. Some techniques have been largely
used in the literature, such as KNN and ε-radius, but
they depend on parameters. This means that the tech-
nique is not able to detect information in the data, so
different parameters produce very distinct results. In
HL-KAOG, we exploit the KAOG ability to produce
an efficient and nonparametric network to address this
problem. In addition, other contributions are presented
here.

This section describes the principal contributions of
this investigation. The ‘Component efficiency measure’
section shows a new complex network measure for high-
level classification: the component efficiency. The ‘Linking
high-level prediction and KAOG algorithm’ section pro-
vides details about how KAOG network and high-level
classifier work together. The ‘High-level classification
on network components’ section denotes an important
conceptual modification in our high-level approach: com-
plex network measures are employed on graph com-
ponents. The ‘Non-parametric influence coefficient for
the network measures’ section shows an automatic
way to obtain the influence coefficient of the network
measures. The ‘Complex network measures per com-
ponent’ section provides the adaptation of the complex
network measures to work on components instead of
classes.

Component efficiency measure
The component efficiency measure quantifies the effi-
ciency of the component in sending information between
its vertices. The component efficiency is a new network
measure incorporated into the high-level classification
technique. Its development is motivated by the concept of
efficiency of a network [27], which measures how efficient
the network exchanges information. Once our high-level
algorithm is based on the component level, we named our
measure as component efficiency.

Initially, consider a vertex i in a component α. The local
efficiency of i is given by

E(α)
i = 1

Vi

∑
j∈�i

qij, (12)

where Vi denotes the number of links from i, �i repre-
sents the vertex that receives links from i, and qij is related
to the geodesic distance between i and j.
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We define the efficiency of a component α as the average
of the local efficiency of the nodes that belong to α. So, we
have

E(α) = 1
Vα

Vα∑
i=1

E(α)
i , (13)

in which Vα is the number of vertices in the component α.

Linking high-level prediction and KAOG algorithm
We adapted the concepts of K-associated optimal graph
and high-level algorithm to permit that they work
together. Firstly, K-associated optimal graph divides the
network in components according to purity measure.
Thus, the high-level technique proposed here considers
components instead of classes. In addition, different from
BayesOC that considers only those components in which
at least one vertex belongs to the nearest neighbors of
the test instance, the high-level algorithm employs com-
plex network measures to examine if the insertion of the
test instance in a component is in conformity with the
formation pattern of that component.

Figure 1 shows an illustrative example in which the net-
work topology cannot be detected by the original KAOG.
So, if we employ KAOG directly to our model, it would not
be able to classify the new instance into gray cycle class.
Instead, it will be classified into black cycle class. On the
other hand, our model permits the correct classification
because it uses available information in each component
constructed by KAOG in a different way.

Suppose a test instance y will be classified. The clas-
sification stage of our network-based technique can be
divided in two steps according to [23]:

1. Firstly, the proposed technique uses the component
efficiency measure to verify what are the components
where y can be inserted. This information is
important especially because it considers the local
features of the components and establishes a
heuristic that excludes components that are not in
conformity with the insertion of y into them.

In a more formal definition, let us consider a component
α and a set F related to the components in which the varia-
tions of complex network measures will be computed. For
each new instance y, Fy is given by

Fy ⇐ Fy ∪ {α | min e(α)
y ≤ E(α)}, (14)

where e(α)
y denotes the local efficiency of y to each vertex

that belongs to component α and E(α) is the component
efficiency of α.

2. The next step is the insertion of y in each α ∈ Fy.
According to our technique, y makes connections
with each vertex i ∈ α following the equation given by

αy ⇐ α ∪ {i | e(i)
y ≤ E(α)}, (15)

where αy includes component α and the connections
between y and their vertices, e(i)

y is the local efficiency
in exchanging information between y and i, and
e(i)

y ≤ E(α) is the condition to be satisfied to assure a
link between y and i.

Note that if Fy = ∅ in (14) (very unusual situation), the
algorithm employs the Kα value associated with each com-
ponent α ∈ � and verifies that the vertices in α are one of
the Kα-nearest neighbors of y. If there is at least one ver-
tex that satisfies this condition in component α, then the
complex network measures are applied to this component;
otherwise, α is not considered in the classification phase.

High-level classification on network components
Once the network is obtained by KAOG, the high-level
algorithm can be applied to classify new instances by
checking the variation of complex network measures in
each component before and after the insertion of the new
instance. Thus, the proposed high-level technique works
on the components instead of whole classes. This is an
important feature introduced in this work. Since each
class can encompass more than one component, each
component is smaller or equal to the corresponding whole
class. In this way, the insertion of a test instance can gen-
erate more precise variations on the network measures.
Consequently, it is easier to check the conformity of a test
instance to the pattern formation of each class compo-
nent. On the other hand, the previous work of high-level
classification considers the network of a whole class of
data items. In this case, the variations are weaker and
sometimes it is difficult to distinguish the conformity lev-
els of the test instance to each class. Therefore, taking (9),
the high-level classification of a new instance y for a given
component α, is given by

M(αJ )
y = (1 − λ)P(αJ )

y + λH(αJ )
y . (16)

where αJ denotes a component α in which its instances
belong to class J , P(αJ )

y establishes the association pro-
duced by a low-level classifier between the instance y
and the component α, and H(αJ )

y points to an association
produced by the high-level technique between y and the
component α. The general idea behind H(αJ )

y is very sim-
ple: (i) KAOG network finds a set of components based
on the purity measure, (ii) high-level technique examines
these components in relation to the insertion of a test
instance y, and (iii) the probabilities for each component
α are obtained.
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Also about H(α)
y , it represents the compatibility of each

component α with the new instance y and is given by

H(αJ )
y =

∑Z
u=1 δy(u)[ 1 − f (α)

y (u)]∑
g∈L

∑Z
u=1 δy(u)[ 1 − f (g)

y (u)]
, (17)

in which u is related to the network measures employed
in the high-level algorithm, δy(u) ∈ [0, 1], ∀u ∈ {1, . . . , Z}
indicates the influence of each network measure in the
classification process, and f (α)

y (u) provides an answer
whether the test instance y presents the same patterns
of the component α or not, considering the u-th net-
work measure. The denominator term in (17) is only
for normalization. Details about δy(u) are provided in
the ‘Non-parametric influence coefficient for the network
measures’ section.

From (17), a simple modification is performed in (11)
to obtain a high-level classification on components (α)
instead classes (J). So, we have

f (α)
y (u) = �G(α)

y (u) p(α)

∑
α

�G(α)
y (u) p(α)

, (18)

where the denominator term in (18) is only for normal-
ization and p(α) ∈ [0, 1] is the proportion of instances that
belong to the component α.

Non-parametric influence coefficient for the network
measures
Differently of the previous works, the high-level tech-
nique proposed in this work is non-parametric not only
at the network construction phase but also at the classi-
fication phase. We have developed an automatic way for
the weight assignment among the employed network mea-
sures, i.e., the δ term in Equation 17 is determined by

δy(u) =
1 − (max

α
�G(α)

y (u) − min
α

�G(α)
y (u))

∑K
u=1 1 − (max

α
�G(α)

y (u) − min
α

�G(α)
y (u))

,

(19)

in which �G(α)
y (u) ∈[0, 1] represents the variation that

occurs in a complex network measure whenever a new
instance y ∈ Y is inserted. Therefore, δy(u) is based on
the opposite of the difference between the biggest and
the smallest u-th network measure variation on all com-
ponents α. The idea of determining δy(u) in this way
is to balance all the employed network measures in the
decision process and not permit only one network mea-
sure to dominate the classification decision. Note that this
equation is valid only if

∑K
u=1 δy(u) = 1.

Complex network measures per component
The complex network measures presented in the previ-
ous section work on classes. Differently of the approach
proposed in [11], the approach proposed in this work
considers pattern formation per component. This fea-
ture makes the algorithm more sensitive to the network
measure variations. In addition, the components are con-
structed regarding the purity measure, which gives more
precise information about the data set.

In this section, we adapted assortativity and clustering
coefficient to work on components. Also, as the time com-
plexity of the high-level classification is directly related to
the network measures employed, we present the complex-
ity order of each measure.

Assortativity (�G(J)
y (1))

The assortativity measure quantifies the tendency of con-
nections between vertices [26] in a complex network.
This measure analyzes whether a link occurs preferentially
between vertices with similar degree or not. The assorta-
tivity with regard to each component α of the data set is
given by

r(α) =
L−1 ∑

u∈UJ

iuku − [ L−1 ∑
u∈UJ

1
2 (iu + ku)]2

L−1 ∑
u∈UJ

1
2 (i2

u + k2
u) − [ L−1 ∑

u∈UJ

1
2 (iu + ku)]2

(20)

where r(α) ∈ [−1, 1], Uα = {u : iu ∈ α ∧ ku ∈ α} encom-
passes all the edges within the component α, u represents
an edge, and iu, ku indicate the vertices at each end of the
edge u.

Therefore, the membership value of a test instance y ∈
Y with respect to the component α is given by

�G(α)
y (1) = | r ′(α) − r(α) |∑

u∈U
| r ′(u) − r(u) | . (21)

The assortativity measure yields the complexity order of
O(|E| + |V |), where |E| and |V | denote, respectively, the
number of edges and the number of vertices in the graph.

Clustering coefficient (�G(J)
y (2))

Clustering coefficient is a measure that quantifies the
degree to which local nodes in a network tend to clus-
ter together [28]. The clustering coefficient with regard to
each component α of the data set is given by

CC(α)
i = | eus |

ki(ki − 1)
, (22)

CC(α) = 1
Vα

Vα∑
i=1

CC(α)
i , (23)

in which CC(α)
i ∈ [0, 1] and Vα denotes the number of ver-

tices in the component α. The membership value of a test
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instance y ∈ Y with respect to the component α is given
by:

�G(α)
y (2) = | CC′(α) − CC(α) |∑

u∈U
| CC′(u) − CC(u) | . (24)

The clustering coefficient measure yields the complexity
order of O(|V | ∗ p2), where |V | and p denote, respectively,
the number of vertices in the graph and the average node
degree.

Average degree (�G(J)
y (3))

The average degree is a very simple measure. It quantifies,
statistically, the average degree of the vertices in a compo-
nent. The average degree with regard to each component
α is given by

〈k(α)〉 = 1
Vα

Vα∑
i=1

k(α)
i , (25)

in which k(α) ∈ [0, 1] and Vα denotes the number of ver-
tices in component α. Regarding the membership value of
a test instance y ∈ Y with respect to component α, it is
given by

�G(α)
y (3) = | 〈k′(α)〉 − 〈k(α)〉 |∑

u∈


| 〈k′(u)〉 − 〈k(u)〉 | . (26)

The average degree measure yields the complexity order
of O(|V |), where |V | denotes the number of vertices in the
graph.

Results and discussion
In this section, we present a set of computer simula-
tions to assess the effectiveness of HL-KAOG technique.
The ‘Experiments on artificial data sets’ section supplies
results obtained on artificial data sets, which emphasize
the key features of the HL-KAOG. The ‘Experiments on
real data sets’ section provides simulations on real-world
data sets, which highlight a great ability of HL-KAOG to
perform data classification. Note that the Euclidean dis-
tance is used as similarity measure in all the experiments.

Experiments on artificial data sets
Initially, we use some artificial data sets presenting strong
patterns to evaluate the proposed technique. These exam-
ples provide particular situations where low-level classi-
fiers by themselves have trouble to correctly classify the
data items in the test set. Thus, this section serves as a tool
for better motivating the usage of the proposed model.

The first step of HL-KAOG is the construction of
the KAOG network. Different from other techniques
of network construction, KAOG is non-parametric and
it builds up the network considering the purity mea-
sure (1). In the second step, HL-KAOG employs the

hybrid low- and high-level techniques to classify the test
instances. The low-level classification here uses Bayes
optimal classifier (3) and the high-level term uses the
complex network measures given by (17) to capture the
pattern formation of each component. Finally, the general
framework given by (16) combines low- and high-level
techniques.

Triangle data set
Figure 3 shows the KAOG network on a two-class data
set. One can see that the gray class data items exhibit a
strong pattern (similar to a triangle). Since the traditional
machine learning techniques are not able to consider the
pattern formation of classes, they cannot classify the new
instance y (white color vertex) correctly. In addition, these
techniques consider only the physical distance among the
data items, which contributes to classify y as belonging to
class black. So, as the use of the Bayes optimal classifier,
the same thing happens if we use other traditional tech-
niques, such as decision tree, K-nearest neighbors, and
support vector machine (SVM classifiers consider trans-
formed feature space through a kernel function, but it
is essentially based on the physical distance among the
data), i.e., they are not able to identify the triangle pattern
formed by the gray component.

Table 1 provides a detailed view about how the high-
level classification is performed in HL-KAOG. Consid-
ering the new instance y and the network showed in
Figure 3, the classification process starts by computing
each network measure on each component that satisfies
(14). Then, HL-KAOG inserts y temporally in these com-
ponents, according to (15), and computes the network

Figure 3 KAOG network obtained from the Triangle data set.
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Table 1 Employed complex network measures in high-level classification on the Triangle data set

Cα Complex network measures

Assortativity Clustering coefficient Average degree

r(.) r
′(.) �G(.)

y (1) f (.)
y (1) CC(.) CC

′(.) �G(.)
y (2) f (.)

y (2) E(.) E(.)
y �G(.)

y (3) f (.)
y (3)

Cgray 0.977 0.968 0.930 0.869 0.118 0.101 0.408 0.256 6.000 5.667 0.657 0.489

Cblack 0.850 0.851 0.070 0.131 0.188 0.212 0.592 0.744 8.000 7.826 0.343 0.511

The calculated assortativity, clustering coefficient, and component efficiency measures for each component.

measure on each of them again. So, the variation of each
network measure before and after the insertion of the
new instance can be obtained and (17) can be computed.
Remember that the objective of the proposed function
(19) is to balance the membership results obtained by the
complex network measures in a way that the classifica-
tion process is performed considering all of the applied
network measures.

Table 2 presents the performance of the proposed tech-
nique on the artificial data sets. The ‘Classification result’
column shows the final probability of classification when
λ = 0.2 and λ = 0.6 (high-level algorithms gets a higher
contribution to the classification). The results showed in
Table 2 emphasize some interesting properties of HL-
KAOG. Firstly, one see that, combining a larger portion
of the high-level classification (λ = 0.6), the technique is
able to correctly classify the test instance when consider-
ing a very clear pattern. However, using a larger portion
of the KAOG classification (λ = 0.2), the pattern for-
mation is not detected because Bayes optimal classifier
considers only physical attributes to perform the predic-
tion. Secondly, we employ a non-parametric technique
to build up the network and to assign a weight to each

Table 2 Classification results (in terms of probability)
obtained for each artificial data set when λ = 0.2 and
λ = 0.6

Data set Class Classification result

λ = 0.2 λ = 0.6

Triangle data set gray 0.439 0.516

black 0.561 0.483

Line I data set gray 0.481 0.586

black 0.519 0.414

Line II data set gray1 0.000 0.000

gray2 0.200 0.600

black1 0.400 0.200

black2 0.400 0.200

Multi-class data set black 0.800 0.400

gray 0.000 0.000

green 0.200 0.600

Italic values denote the final classification result.

network measure. So, HL-KAOG has only the λ value
to set. Thirdly, HL-KAOG does not work on classes, but
on the components. This is an important difference in
relation to previous work about high level because the
insertion of one vertex in a whole class of data items can
seem very weak to present big network measures vari-
ations. Thus, the variation at the component level can
highlight better the variation when y is inserted in that
component.

Line I data set
Figure 4 shows the KAOG network on a two-class data set,
in which gray class presents a clear pattern of a straight
line. Note that the three nearest neighbors of the new
instance y belong to the following classes: gray, black and
black, respectively. In this way, KAOG classification is
not able to detect the pattern presented by the gray com-
ponent. The whole classification process performed by
the Bayes optimal classifier on the KAOG is described
as follows: Firstly, the algorithm computes the probability

Figure 4 KAOG network obtained from Line I data set, in which
gray class data items form a straight line. Line I data set is
composed of two-class data items (gray and black). White data item
needs to be classified. Obviously, gray data items form a straight line.



Carneiro et al. Journal of the Brazilian Computer Society 2014, 20:14 Page 11 of 14
http://www.journal-bcs.com/content/20/1/14

a priori of y to belong to each component as described
in (6):

P(y ∈ Cgray) = 0.5
P(y ∈ Cblack) = 0.5

where the normalized purity measure of the components
is used as a priori probability (�gray = 1 and �black = 1).
Then, the probability of the neighborhood �y given that
y ∈ Cgray and y ∈ Cblack is calculated as in(4):

P(�y|y ∈ Cgray) = 1/2
P(�y|y ∈ Cblack) = 2/3.

Then, the normalization term can be computed through
(5):

P(�y) ≈ 0.583.

Finally, the final result of the KAOG classification on
Line 1 data set can be obtained with (3) and (7):

P(gray)
y = P(y ∈ Cgray|�y) ≈ 0.43

P(black)
y = P(y ∈ Cblack|�y) ≈ 0.57.

Note that other low-level algorithms classify y as belong-
ing to black class too. On the other hand, Table 2 shows
that, with a high contribution of the high-level term (λ =
0.6), the technique can produce a correct label for y,
according to the pattern formation presented in Figure 4.

Line II data set
Figure 5 shows an interesting situation by two reasons.
Firstly, because the new instance is very close to the black

Figure 5 KAOG network generated from Line II data set. This data
set is composed of two-class data items (gray and black). White data
item needs to be classified.

components, it implies that the traditional techniques
classify the new instance to the black class. Secondly, the
big distances between the new instance and gray class
data items make it difficult to be classified to the gray
class. However, HL-KAOG can provide a correct classifi-
cation due to its robustness to detect pattern formation,
as shown in Table 2.

Multi-class data set
Figure 6 shows the KAOG network on a data set with
three classes. There is a test instance (white color) that
will be classified. Figure 6a presents a dubious case where
there is no pattern formation related to the test instance.
In this way, the technique (independent of the λ value)
classifies the test instance as belonging to the black class.
On the other hand, Figure 6b shows a more representa-
tive information about the pattern formation related to the
test instance. So, considering this clear pattern formation,
the test instance is correctly classified when using a com-
bination between low- and high-level algorithms where
λ = 0.6 (Table 2).

Experiments on real data sets
We also conducted simulations on real-world data sets
available in UCI repository [29] and KEEL data sets [30].
Table 3 provides details about the data sets used here.

The proposed technique is compared to decision tree,
K-nearest neighbors, and support vector machine. All
these traditional techniques are available in the python
machine learning module named scikit-learn [31]. Grid
search algorithm is employed to perform parameter selec-
tion for these techniques. For decision tree, scikit-learn
provides an optimized version of the classification and
regression tree (CART) algorithm [14]. In these exper-
iments, two parameters are configured: the minimum
density over the set {0,0.1,0.25,0.5,0.8,1}, which controls
a trade-off in an optimization heuristic, and the mini-
mum number of samples required to be at a leaf node,
here denoted as ms, which is optimized over the set ms ∈
{0,1,2,3, 4,5,10,15,20,30,50}. Based on the previous works
applying the KNN on real-world data sets [8], a K value
is optimized over the set K ∈ {1,3,5,. . . ,31}, which is suf-
ficient to provide the best results for this algorithm. In
SVM simulations, we reduce the search space for the opti-
mization process by fixing a single well-known kernel,
namely the radial basis function (RBF) kernel. The stop-
ping criterion for the optimization method is defined as
the Karush-Kuhn-Tucker violation to be less than 10−3.
For each data set, the model selection is performed by
considering the kernel parameter γ ∈ {24, 23, . . . , 2−10

and the cost parameter C ∈ 212, 211, . . . , 2−2. Finally, the
results obtained by each algorithm are averaged over 30
runs using the stratified 10-fold cross-validation process.
Parameters were tuned using only the training data.
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Figure 6 KAOG network found from different Multi-class data sets scenarious: (a) dubious case in detection of some pattern formation
related to the test instance; (b) a clear pattern formation related to the test instance.

On the other hand, selection of parameters is unnec-
essary for our technique when building up a network.
Differently of the parameters in traditional machine learn-
ing (such as K in KNN, kernel function in SVM, and so
on), λ variable does not influence the training phase. In
this way, we fix λ1 = 0.2 (due to good values found in [11])
and λ2 = 0.6 (to provide a very larger portion of the high-
level classification). In the previous section, artificial data
sets provided particular situations where low-level tech-
niques have trouble to perform the classification. Here, we
evaluate (i) the linear combination between K-associated
optimal graph and high-level algorithm, and (ii) the λ

influence in a context of real-world data sets. Once most
techniques are essentially based on low-level character-
istics, it is sure that these information contribute for a
good classification. Consequently, when working together
with low-level characteristics, high-level characteristics
can improve the classification results by considering more
than the physical attributes.

Table 3 Brief description of the data sets

Name #Inst. #Attr. #Classes Maj. class (%)

Iris 150 4 3 33.33

Glass 214 9 7 35.51

Balance 625 4 3 46.08

Monks-2 601 6 2 65.72

Ecoli 336 7 8 42.56

Append. 106 7 2 80.19

Thyroid 215 5 3 69.77

Sonar 208 60 2 53.37

Digits 5,620 64 10 10.18

SPECTF 267 44 2 79.40

Name, the data set name; #Inst., the number of instances; #Attr., the number of
attributes; #Classes, the number of classes; Maj. class, the percentage of
instances in the majority class.

Table 4 shows the predictive performance of the algo-
rithms on real-world data sets presented in Table 3. In
this table, ‘Acc’. denotes the average of accuracy for each
technique and ‘Std.’ represents the standard deviation
of this accuracies. In order to analyze statistically the
results, we adopted a statistical test that compares multi-
ple classifier over multiple data sets [32]. Firstly, Friedman
test is calculated to check whether the performance of
the classifiers are significantly different. Using a signif-
icance level of 5%, the null hypothesis is rejected. This
means that the algorithms under study are not equiva-
lent. Following a post hoc test, Nemenyi test is employed
(also considering a significance level of 5%). The results
of this test indicate that HL-KAOG and SVM provide
similar results and they outperform CART and KNN.
This result is quite attractive because HL-KAOG, dif-
ferent from other traditional techniques, is able to cap-
ture spacial, functional, and topological relations in the
data. In addition, the computer simulations show that a
very larger portion of high-level classification (λ2) can
improve the final prediction in some real-world data
sets. This means that these data sets present well-defined
patterns, which can be detected considering mainly the
topological structure of the data, instead of their physical
attributes.

Conclusions
HL-KAOG takes advantages provided by the K-associated
optimal graph and the high-level technique for data
classification. Specifically, the former provides a non-
parametric construction of the network based on the
purity measure, while the latter is able to capture pattern
formation of the training data. Thus, some contributions
of HL-KAOG includes the following:

• The technique does not work on classes, but on the
network components, i.e., each class can have more
than one component. In this way, the insertion of a
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Table 4 Comparative results obtained by HL-KAOG, CART, KNN, and SVM on ten real-world data sets

HL-KAOG CART KNN SVM

Data set Acc. ± Std. Acc. ± Std. Acc. ± Std. Acc. ± Std.

Iris 97.33 ± 3.52 (λ1) 93.60 ± 5.59 96.37 ± 4.63 96.28 ± 4.02

Glass 70.78 ± 9.16 (λ1) 64.12 ± 9.33 72.64 ± 8.09 68.61 ± 7.78

Balance 95.71 ± 2.40 (λ1) 88.20 ± 4.25 89.77 ± 1.96 99.97 ± 0.08

Monks-2 96.53 ± 2.43 (λ1) 95.67 ± 2.48 81.26 ± 5.02 93.79 ± 3.22

Ecoli 84.90 ± 5.73 (λ2) 80.78 ± 5.55 85.99 ± 5.11 87.23 ± 5.22

Append. 83.54 ± 7.27 (λ1) 77.24 ± 9.95 86.99 ± 8.71 85.72 ± 8.15

Thyroid 97.30 ± 3.16 (λ1) 96.64 ± 2.95 93.58 ± 4.74 97.19 ± 2.59

Sonar 83.75 ± 8.07 (λ1) 74.14 ± 9.69 81.78 ± 8.08 86.06 ± 7.43

Digits 98.75 ± 0.35 (λ1) 90.27 ± 1.27 98.79 ± 0.37 99.26 ± 0.33

SPECTF 80.07 ± 5.42 (λ2) 75.41 ± 6.20 77.90 ± 6.78 78.01 ± 3.92

‘Acc’ and ‘Std’. denote, respectively, the average of accuracy and the standard deviation over 30 runs using the stratified 10-fold cross-validation process. In HL-KAOG,
the classification result is obtained from the best value between λ1 = 0.2 and λ2 = 0.6. Italic values denote the best predictive performance among the techniques for
each data set.

test instance can generate bigger variations on the
network measures. Consequently, it is much easier to
check the conformation of a test instance to the
pattern formation of each class component. On the
other hand, the previous work of high level considers
the network of a whole class of data items. In this
case, the variations are very weak and sometimes it is
difficult to distinguish the conformation levels of the
test instance to each class.

• The use of K-associated optimal graph to obtain a
non-parametric network.

• An automatic way to obtain the influence coefficient
for the network measures. In addition, this coefficient
adapts itself according to each test instance.

• Development of a new network measure named
component efficiency to perform the high-level
classification.

Computer simulations and statistic tests show that HL-
KAOG presents good performance on both artificial and
real data sets. In comparison with traditional machine
learning techniques, computer simulations on real-world
data sets showed that HL-KAOG and support vector
machines provide similar results and they outperform
very well-known techniques, such as decision trees and
K-nearest neighbors. On the other hand, experiments per-
formed with artificial data sets emphasized some draw-
backs of the traditional machine learning that, differently
from HL-KAOG, are unable to consider the formation
pattern of the data.

Forthcoming works include the incorporation of
dynamical complex network measures, such as random
walk and tourist walk, to the high-level classification
algorithm, which can give a combined local and global
vision in a natural way on the networks under analysis.

Future researches include also a complete analysis of the
high-level classification when dealing with imbalanced
data sets and the investigation of complex network mea-
sures able to prevent the risk of overfitting in the data
classification.

Endnotes
aA component is a sub-graph α where any vertices

vi ∈ C can be reached by other vj ∈ C and cannot be
reached by any other vertices vt /∈ C.

bThe degree of a vertex v, denoted by kv, is the total
number of vertices adjacent to v.
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