133,862 research outputs found

    On Classification in Human-driven and Data-driven Systems

    Get PDF
    Classification systems are ubiquitous, and the design of effective classification algorithms has been an even more active area of research since the emergence of machine learning techniques. Despite the significant efforts devoted to training and feature selection in classification systems, misclassifications do occur and their effects can be critical in various applications. The central goal of this thesis is to analyze classification problems in human-driven and data-driven systems, with potentially unreliable components and design effective strategies to ensure reliable and effective classification algorithms in such systems. The components/agents in the system can be machines and/or humans. The system components can be unreliable due to a variety of reasons such as faulty machines, security attacks causing machines to send falsified information, unskilled human workers sending imperfect information, or human workers providing random responses. This thesis first quantifies the effect of such unreliable agents on the classification performance of the systems and then designs schemes that mitigate misclassifications and their effects by adapting the behavior of the classifier on samples from machines and/or humans and ensure an effective and reliable overall classification. In the first part of this thesis, we study the case when only humans are present in the systems, and consider crowdsourcing systems. Human workers in crowdsourcing systems observe the data and respond individually by providing label related information to a fusion center in a distributed manner. In such systems, we consider the presence of unskilled human workers where they have a reject option so that they may choose not to provide information regarding the label of the data. To maximize the classification performance at the fusion center, an optimal aggregation rule is proposed to fuse the human workers\u27 responses in a weighted majority voting manner. Next, the presence of unreliable human workers, referred to as spammers, is considered. Spammers are human workers that provide random guesses regarding the data label information to the fusion center in crowdsourcing systems. The effect of spammers on the overall classification performance is characterized when the spammers can strategically respond to maximize their reward in reward-based crowdsourcing systems. For such systems, an optimal aggregation rule is proposed by adapting the classifier based on the responses from the workers. The next line of human-driven classification is considered in the context of social networks. The classification problem is studied to classify a human whether he/she is influential or not in propagating information in social networks. Since the knowledge of social network structures is not always available, the influential agent classification problem without knowing the social network structure is studied. A multi-task low rank linear influence model is proposed to exploit the relationships between different information topics. The proposed approach can simultaneously predict the volume of information diffusion for each topic and automatically classify the influential nodes for each topic. In the third part of the thesis, a data-driven decentralized classification framework is developed where machines interact with each other to perform complex classification tasks. However, the machines in the system can be unreliable due to a variety of reasons such as noise, faults and attacks. Providing erroneous updates leads the classification process in a wrong direction, and degrades the performance of decentralized classification algorithms. First, the effect of erroneous updates on the convergence of the classification algorithm is analyzed, and it is shown that the algorithm linearly converges to a neighborhood of the optimal classification solution. Next, guidelines are provided for network design to achieve faster convergence. Finally, to mitigate the impact of unreliable machines, a robust variant of ADMM is proposed, and its resilience to unreliable machines is shown with an exact convergence to the optimal classification result. The final part of research in this thesis considers machine-only data-driven classification problems. First, the fundamentals of classification are studied in an information theoretic framework. We investigate the nonparametric classification problem for arbitrary unknown composite distributions in the asymptotic regime where both the sample size and the number of classes grow exponentially large. The notion of discrimination capacity is introduced, which captures the largest exponential growth rate of the number of classes relative to the samples size so that there exists a test with asymptotically vanishing probability of error. Error exponent analysis using the maximum mean discrepancy is provided and the discrimination rate, i.e., lower bound on the discrimination capacity is characterized. Furthermore, an upper bound on the discrimination capacity based on Fano\u27s inequality is developed

    Identifying experts and authoritative documents in social bookmarking systems

    Get PDF
    Social bookmarking systems allow people to create pointers to Web resources in a shared, Web-based environment. These services allow users to add free-text labels, or “tags”, to their bookmarks as a way to organize resources for later recall. Ease-of-use, low cognitive barriers, and a lack of controlled vocabulary have allowed social bookmaking systems to grow exponentially over time. However, these same characteristics also raise concerns. Tags lack the formality of traditional classificatory metadata and suffer from the same vocabulary problems as full-text search engines. It is unclear how many valuable resources are untagged or tagged with noisy, irrelevant tags. With few restrictions to entry, annotation spamming adds noise to public social bookmarking systems. Furthermore, many algorithms for discovering semantic relations among tags do not scale to the Web. Recognizing these problems, we develop a novel graph-based Expert and Authoritative Resource Location (EARL) algorithm to find the most authoritative documents and expert users on a given topic in a social bookmarking system. In EARL’s first phase, we reduce noise in a Delicious dataset by isolating a smaller sub-network of “candidate experts”, users whose tagging behavior shows potential domain and classification expertise. In the second phase, a HITS-based graph analysis is performed on the candidate experts’ data to rank the top experts and authoritative documents by topic. To identify topics of interest in Delicious, we develop a distributed method to find subsets of frequently co-occurring tags shared by many candidate experts. We evaluated EARL’s ability to locate authoritative resources and domain experts in Delicious by conducting two independent experiments. The first experiment relies on human judges’ n-point scale ratings of resources suggested by three graph-based algorithms and Google. The second experiment evaluated the proposed approach’s ability to identify classification expertise through human judges’ n-point scale ratings of classification terms versus expert-generated data

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions

    Fame for sale: efficient detection of fake Twitter followers

    Get PDF
    Fake followers\textit{Fake followers} are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A\textit{Class A} classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW
    • …
    corecore