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ABSTRACT

Classification systems are ubiquitous, and the design of effective classification algorithms has

been an even more active area of research since the emergence of machine learning techniques.

Despite the significant efforts devoted to training and feature selection in classification systems,

misclassifications do occur and their effects can be critical in various applications. The central

goal of this thesis is to analyze classification problems in human-driven and data-driven systems,

with potentially unreliable components and design effective strategies to ensure reliable and ef-

fective classification algorithms in such systems. The components/agents in the system can be

machines and/or humans. The system components can be unreliable due to a variety of reasons

such as faulty machines, security attacks causing machines to send falsified information, unskilled

human workers sending imperfect information, or human workers providing random responses.

This thesis first quantifies the effect of such unreliable agents on the classification performance of

the systems and then designs schemes that mitigate misclassifications and their effects by adapting

the behavior of the classifier on samples from machines and/or humans and ensure an effective and

reliable overall classification.

In the first part of this thesis, we study the case when only humans are present in the systems,

and consider crowdsourcing systems. Human workers in crowdsourcing systems observe the data

and respond individually by providing label related information to a fusion center in a distributed

manner. In such systems, we consider the presence of unskilled human workers where they have

a reject option so that they may choose not to provide information regarding the label of the data.

To maximize the classification performance at the fusion center, an optimal aggregation rule is

proposed to fuse the human workers’ responses in a weighted majority voting manner. Next, the

presence of unreliable human workers, referred to as spammers, is considered. Spammers are

human workers that provide random guesses regarding the data label information to the fusion

center in crowdsourcing systems. The effect of spammers on the overall classification perfor-



mance is characterized when the spammers can strategically respond to maximize their reward in

reward-based crowdsourcing systems. For such systems, an optimal aggregation rule is proposed

by adapting the classifier based on the responses from the workers.

The next line of human-driven classification is considered in the context of social networks.

The classification problem is studied to classify a human whether he/she is influential or not in

propagating information in social networks. Since the knowledge of social network structures

is not always available, the influential agent classification problem without knowing the social

network structure is studied. A multi-task low rank linear influence model is proposed to exploit

the relationships between different information topics. The proposed approach can simultaneously

predict the volume of information diffusion for each topic and automatically classify the influential

nodes for each topic.

In the third part of the thesis, a data-driven decentralized classification framework is developed

where machines interact with each other to perform complex classification tasks. However, the ma-

chines in the system can be unreliable due to a variety of reasons such as noise, faults and attacks.

Providing erroneous updates leads the classification process in a wrong direction, and degrades

the performance of decentralized classification algorithms. First, the effect of erroneous updates

on the convergence of the classification algorithm is analyzed, and it is shown that the algorithm

linearly converges to a neighborhood of the optimal classification solution. Next, guidelines are

provided for network design to achieve faster convergence. Finally, to mitigate the impact of unre-

liable machines, a robust variant of ADMM is proposed, and its resilience to unreliable machines

is shown with an exact convergence to the optimal classification result.

The final part of research in this thesis considers machine-only data-driven classification prob-

lems. First, the fundamentals of classification are studied in an information theoretic framework.

We investigate the nonparametric classification problem for arbitrary unknown composite distri-

butions in the asymptotic regime where both the sample size and the number of classes grow ex-

ponentially large. The notion of discrimination capacity is introduced, which captures the largest

exponential growth rate of the number of classes relative to the samples size so that there exists a



test with asymptotically vanishing probability of error. Error exponent analysis using the maximum

mean discrepancy is provided and the discrimination rate, i.e., lower bound on the discrimination

capacity is characterized. Furthermore, an upper bound on the discrimination capacity based on

Fano’s inequality is developed.
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1

CHAPTER 1

INTRODUCTION

The classification problem is one of the most important problems in statistical signal processing

and learning theory. It has received much attention in different fields for many applications since it

was formulated in the late 1950s. Various classification algorithms have been designed and some

theoretical studies have been conducted to find the fundamental performance limits. In particu-

lar, significant progress has been made within the last decade: new powerful algorithms such as

logistic regression and support vector machines were invented, and the idea of regularization was

introduced in the learning theory framework. The main goal of this thesis is to make novel contri-

butions to the analysis of the classification problem in learning theory in both human-driven and

data-driven systems, with potentially unreliable components and design of effective strategies to

ensure reliable and effective classification algorithms in such systems.

1.1 General Architecture

The general notional diagram of the problems considered in this thesis, where an unknown phe-

nomenon is observed by multiple agents, both humans and machines, is presented in Fig. 1.1.

Depending on the problem, the agents may or may not communicate with each other to reach a

classification decision. The phenomenon is classified using the observations by the agents. How-
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ever, some of the agents can be unreliable while some others may provide false information due to

malicious intent. For example, some honest humans do not intentionally provide false information

but due to their lack of specific expertise and unclear observation (for example, under foggy con-

ditions the human may not see clearly), honest humans end up providing unreliable information.

Moreover, there can be dishonest humans providing false information. On the other hand, some

machines can also send erroneous information for classification, due to various reasons like being

hacked, transmission noise, and computation failure.

As is shown in Fig. 1.1, the classification system is human-driven if only human agents are

involved, and is data-driven if only machine agents are involved. While we do not consider it in

this thesis, systems may involve both human-driven and data-driven components.

Fig. 1.1: Human-driven and data-driven classification with potentially unreliable agents.

1.1.1 Classification

In classification, based on the observations of the phenomenon, one needs to infer the class from

a set of finite cardinality, say M . This can be represented by a hypothesis testing problem with

M possible hypotheses: H0, . . . ,HM−1. Agents collect multiple observations x = [x1, . . . , xN ]
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regarding the phenomenon. If the probability density function p(x|Hi) for each hypothesis Hi,

i = 0, . . . ,M−1 is available, the phenomenon is classified using theM -ary maximum a posteriori

(MAP) decision rule as k-th class if

p(Hk|x) > p(Hi|x), i 6= k.

If the number of hypotheses M = 2, it is referred to as the binary classification problem, or the

detection problem.

If the probability density functions p(x|Hi), i = 0, . . . ,M − 1 are not available, the generic

classification framework is

k = arg max
i

φ(i|x),

where the function φ(i|x) measures the possibility of the hypothesis Hi given the observation x.

The hypothesis Hk is determined to be true when φ(k|x) has the maximal value compared with

other hypotheses.

This thesis focuses on classification problems, when p(x|Hi), i = 0, . . . ,M −1 are not known,

in different scenarios with human-driven or data-driven systems where the goal is to classify the

unknown phenomenon using multiple observations.

1.1.2 Agents

Typically, the observations regarding the phenomenon are made in a distributed fashion at the

agents. The agents observe the phenomenon and send their local observations (possibly after local

processing) to other agents within communication range, and to a fusion center over (possibly)

imperfect channels. The fusion center then fuses the data from the agents to infer about the phe-

nomenon for classification. In such a framework for classification, there are two problems to be

considered:

• How does one design the local signal processing schemes at the agents?
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• How does one design the signal processing schemes for aggregation at the fusion center?

such that the classification is as accurate as possible. There has been significant work on these

two problems with specific consideration of network topology, decision rules, effect of commu-

nication channels, effect of spatio-temporal dependence, etc (see the survey paper [116] and the

references therein). An important application for such a classification framework is wireless sensor

networks (WSNs), which renewed the general interest in distributed classification with new inter-

esting research challenges: correlated observations [14, 24, 52, 106], wireless channels [15, 17],

sensor resource management [2, 3, 54, 91], etc.

Depending on the types of the agents (humans or machines), the classification systems are

of two types: human-driven systems with human workers providing subjective observations, and

data-driven systems with physical machines giving objective measurements. This thesis focuses on

(distributed) classification problems with measurements from agents of both types, namely either

humans or machines.

1.1.3 Unreliability

The agents in both human-driven and data-driven systems for classification are not necessarily

reliable. In human-driven systems, unreliability could be due to a lack of expertise of the hu-

man worker when performing the classification task. Unintentionally, the observation can be very

unclear due to prevailing conditions such as occlusion or fog, which can cause a degradation in

classification performance. Additionally, the unreliableness could also result from the presence of

spammers in the network, who typically provide random responses to the fusion center. For exam-

ple, in crowdsourcing systems for classification tasks, the human workers are typically anonymous

and the presence of spammers is justified in various applications. In data-driven systems with

machines, the agents could be unreliable due to various reasons. First, the agents could receive

noisy local observations. Second, the agents could have permanent errors such as in the cases

where the agents are stuck due to local computation failures, which results in agents always send-

ing erroneous information to the fusion center. Besides, the physical machines could be attacked
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by external adversaries. The attacker can reprogram the machines and consequently the machines

would always send erroneous information to other machines and to the fusion center. The unrelia-

bility issue of the agents causes a degradation in classification.

This thesis focuses on classification problems with information from potentially unreliable

agents of humans or machines.

1.2 Classification Problems in Human-driven Systems

In the broad area of human-driven systems, this thesis considers classification problems in two

typical scenarios. One is crowdsourcing systems and the other is social networks.

1.2.1 Classification in Crowdsourcing Systems

Crowdsourcing has attracted intense interest in recent years as a new paradigm for distributed clas-

sification that harnesses the intelligence of the crowd, exploiting inexpensive and online labor mar-

kets in an effective manner [9,46,48,49,107,108,129]. Crowdsourcing enables a new framework to

utilize distributed human wisdom to solve problems that machines cannot perform well, like hand-

writing recognition, paraphrase acquisition, audio transcription, and photo tagging [12,30,60,85].

While conventional group collaboration and cooperation frameworks rely heavily on a collection

of experts in related fields, the crowd in crowdsourcing usually consists of non-experts, and it relies

on the co-work of diverse amateurs. This makes the problem of crowdsourcing for classification

quite challenging and is investigated in this thesis.

In spite of the successful applications of crowdsourcing, the relatively low quality of output re-

mains a key challenge [1,51,76] due to the following reasons. First, the worker pool is anonymous

in nature, which allows unskilled and unreliable workers in the crowd [114]. Second, the assump-

tion that the workers are sufficiently motivated, extrinsically or intrinsically, to take part seriously

in the crowdsourcing task, is highly questionable [44, 112]. Third, for the non-expert crowd to

successfully complete the crowdsourcing work, some tasks are specifically designed to be com-
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posed of easy but tedious microtasks [117], which might cause boredom and result in low-quality

work. Finally, noisy and unreliable responses to the tasks cannot be detected and tagged before

aggregation so that appropriate weights could be assigned to responses [128]. For instance, as the

most popular aggregation decision rule, simple majority voting takes all of the answers (including

the noisy ones) into account with the same weight [98].

Several methods have been proposed to deal with the aforementioned problems [44, 114, 117,

128], [61, 62, 90, 99, 131]. A crowdsourcing task is decomposed into microtasks that are easy for

an individual to accomplish, and these microtasks could be as simple as binary distinctions [62]. It

is expected that very little knowledge would be needed to complete the microtasks, and typically

common sense or observation is good enough for such microtasks. A classification problem with

crowdsourcing, where taxonomy and dichotomous keys are used to design binary questions, is

considered in [117]. These schemes lower the chance for the workers to make mistakes. New ag-

gregation rules that mitigate the unreliability of the crowd and improve the crowdsourcing system

performance are investigated in [99,128]. In [114,117], the authors employed binary questions and

studied the use of error-control codes and decoding algorithms to design crowdsourcing systems

for reliable classification despite unreliable crowd workers. A group control mechanism where the

reputation of the workers is taken into consideration to partition the crowd accordingly into groups

is presented in [90] and [131]. Group control and majority voting techniques are compared in [44],

which reports that majority voting is more cost-effective on less complex tasks.

In the past work on classification via crowdsourcing, crowd workers were required to provide a

definitive yes/no response to binary microtasks. Crowd workers may be unable to answer questions

for a variety of reasons such as lack of expertise. As an example, in mismatched speech transcrip-

tion, i.e., transcription by crowd workers who do not know the language, workers may not be able

to perceive the phonological dimensions they are tasked to differentiate [57]. In such situations, it

is useful to provide a “no response” or “reject” option. In this thesis, we consider the problem of

classification via crowdsourcing with a reject option.

Research in psychology [26] suggests a greater tendency to select the reject option (no choice)
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when the choice set offers several attractive alternatives but none that can be easily justified as

the best, resulting in less arbitrary decisions. To avoid requiring workers to respond to microtasks

beyond their expertise resulting in making random guesses, in this thesis, we consider the optimal

design of the aggregation rule in crowdsourcing systems where the workers are not forced to make

a binary choice when they are unsure of their response and can choose not to respond. As shown

in [56], the quality of label prediction can be improved by adopting a decision rejection option to

avoid results with low confidence. The reject option has also been considered in machine learning

and signal processing literatures [4, 19, 89, 111]. With a reject option, the payment mechanism is

investigated in crowdsourcing systems where the workers can also report their confidence about

the submitted answers [100].

1.2.2 Classification in Social Networks

In social networks, information emerges dynamically and diffuses quickly via agent interactions

[70]. Thus, it is challenging to understand and predict the information diffusion mechanisms in

complex social networks. For example, to better characterize the factors influencing spread of

diseases, planned terrorist attacks, and effective social marketing campaigns, etc., it is crucially

important if one can exploit the knowledge of the information dynamics [37]. Essentially, the fo-

cused research problem to understand information diffusion in social networks is: Which members

of the network are influential and play important roles in the information diffusion process? This

is a typical classification problem is social networks, i.e., influential node detection, which is a

central research topic in social network analysis. One is confronted with two crucial challenges

while attempting to address the problem. First, a descriptive diffusion model, which can mimic

the information diffusion behavior observed in real world, is required. Second, efficient learning

algorithms are required for inferring influence structure based on the assumed diffusion model.

In the literature, various information diffusion prediction models have been developed [28,

38, 121, 126, 130]. In many of these models, it is typically assumed that the social network is

a connected graph and the corresponding network structure is available a priori. However, the
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structure of the network can be implicit or difficult to model, and the knowledge of the complex

social networks is extremely difficult to obtain in practice. For example, modeling the structure of

the spread of infectious disease among people is almost impossible. Therefore, network structure

unaware diffusion prediction models have gained tremendous interests. In [126], Yang et. al.

proposed a linear influence model (LIM), which can effectively predict the information volume

by assuming that each of the contagions spreads with the same influence in an implicit network.

Subsequently, in [121], the authors extended LIM by exploiting the sparse structure in the influence

function to identify the influential nodes. However, most of the existing approaches ignore the

information regarding the relationships between multiple contagions, which could be used for

more accurate modeling. In this thesis, we address the above issues by augmenting linear influence

models with complex task dependency information. Furthermore, the influence function values for

individual users are collected for the classification problem of influential node detection.

1.3 Classification Problems in Data-driven Systems

For data-driven systems, this thesis considers two aspects of classification problems. The first one

considers a decentralized classification problem where the agents communicate with their neigh-

bors to reach a classification consensus in a decentralized learning manner. The second one consid-

ers the fundamental performance limits of traditional classification from an information theoretic

perspective.

1.3.1 Classification in Decentralized Learning

Decentralized classification problems fit into the general framework where a cost function with

respect to the classifier is to be optimized numerically by a decentralized learning algorithm. This

problem structure is also applicable to collaborative autonomous inference in statistics, distributed

cooperative control of unmanned vehicles in control theory, and training of models (such as, sup-

port vector machines, deep neural networks, etc.) in machine learning.
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However, it is often infeasible to solve the classification problem numerically at a single node

(or agent) due to the emergence of the big data era and associated sizes of datasets. Thus, the

decentralized optimization setting [11, 63] has attracted much interest, in which the training data

for the classification problem is stored and processed in a distributed fashion across a number

of interconnected nodes, and the optimization problem is solved collectively by the cluster of

nodes. The decentralized learning system can be implemented on an arbitrarily connected network

of computational nodes. In such a system, the classification problem is treated as a consensus

optimization problem such that the nodes provide one common final solution.

There exist several optimization methods for solving decentralized classification problems, in-

cluding belief propagation [88], distributed subgradient descent algorithms [79], dual averaging

methods [29], and the alternating direction method of multipliers (ADMM) [11]. Among these,

ADMM has drawn significant attention, as it is well suited for decentralized optimization and

demonstrates fast convergence in many applications, such as online learning, decentralized collab-

orative learning, neural network training, and so on [45,109,125]. We use ADMM in this thesis to

numerically solve the decentralized classification problem.

The ADMM algorithm while solving the problem involves two basic steps: (i) a communica-

tion step for exchanging information only among single-hop neighbors; and, (ii) an update step for

updating the local solution at each agent. By alternating between the two, local iterates eventu-

ally converge to the global solution. Performance of the applications heavily depends on whether

ADMM can have convergence with acceptable accuracy or not. Therefore, an immense amount of

effort has been put in to establish convergence rates of ADMM in different scenarios [101].

However, it is assumed in most of the past works on ADMM that the decentralized system is

ideal in that the updates are not erroneous. This assumption is very restrictive and rarely satisfied in

practice which limits the applicability of these results. Note that due to the decentralized nature of

the systems considered, computation over federated machines induces a higher risk of unreliability

because of communication noise, crash failure, and adversarial attacks. Therefore, the design and

analysis of decentralized optimization algorithms in the presence of these practical challenges is
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of utmost importance.

In this thesis, we analyze the convergence behavior of ADMM in the presence of unreliable

agents, and provide guidelines to minimize the impact of error on the classification performance.

Furthermore, we propose a robust scheme that can eliminate the impact of errors.

1.3.2 Classification as Hypothesis Testing

For hypothesis testing problems, information theoretic tools have been developed to characterize

the error exponent [22,23,34,122], and to study a class of distributed parametric hypothesis testing

problems [40, 41, 115]. For sequential multi-hypothesis testing, information theoretic bounds on

the sample size subject to constraints on the error probabilities have been developed in [65]. A

generalization of the classical hypothesis testing problem is studied in [78], where a Bayesian

decision maker is designed to enhance its information about the correct hypothesis. Information

theory has also been applied to study nonparametric hypothesis testing problems with the primary

focus being on the Neyman-Pearson formulation [39, 66]. An information-theoretic approach to

the problem of a nonparametric hypothesis test with a Bayesian formulation is presented in [50].

By factorizing dependent variables into mutually independent subsets, it has been shown that the

likelihood ratio can be written as the sum of two sets of Kullback-Leibler divergence (KLD) terms,

which is then used to quantify loss in hypothesis separability. Our study is different in that we

focus on the asymptotic regime where the number of hypotheses scales with sample size.

The classification problem we study here can also be viewed as a supervised learning problem

studied in the machine learning literature. However, the problem formulated here is different from

the traditional supervised learning problem [7], where sample points corresponding to the same

label are treated as individual samples, and their underlying statistical structure is not exploited in

the design of classification rules. For example, the support vector machine (SVM) is one of the

important classification algorithms for supervised learning, where the distance between samples is

measured either by the Euclidean distance or by a kernel-based distance. Such distances do not

exploit the underlying statistical distributions of data samples. A robust form of the SVM in [102]



11

incorporates the probabilistic uncertainty into the maximization of the margin. Our formulation

exploits the underlying probabilistic structure of data samples, which is also robust to missing

data, system noise, etc.

A formulation of the supervised learning problem that is similar to our formulation has been

studied previously in [77]. The proposed approach, therein named support measure machine

(SMM), exploits the kernel mean embedding to estimate the distance between probability distribu-

tions. In fact, the comparison between an SMM and an SVM also reflects the differences between

our formulation and the traditional supervised learning problem. However, the study in [77] fo-

cused only on the regime with finite and fixed number of classes, and did not characterize the decay

exponent of the error probability, whereas our focus is mainly on the asymptotic regime with in-

finite number of classes, and on the scaling behavior of the number of classes under which an

asymptotically small error probability can be guaranteed. Nevertheless, the kernel-based approach

developed in [77] as well as in various other papers [33,35,105] provide important techniques that

we exploit in our study.

1.4 Outline and Contributions

This thesis is organized as follows: In Chapter 2, the optimal aggregation rule for the responses

from honest human workers in crowdsourced classification problems is investigated. In Chapter 3,

the presence of unreliable human workers is considered in crowdsourcing systems for classifica-

tion, and the optimal aggregation rule is derived. In Chapter 4, an important classification problem

namely the influential node detection problem in social networks without the knowledge of the

structure of the network is considered. The decentralized learning in classification systems when

some of the agents are unreliable is studied in Chapter 5. Further, in Chapter 6, we study the

fundamental performance limits of classification problems posed in the form of nonparametric hy-

pothesis testing from information theoretic perspectives. We then conclude this thesis in Chapter

7. The main contributions of each chapter are as follows.
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Chapter 2 considers the design of an effective crowdsourcing system for M -ary classification

where crowd workers complete simple microtasks which are aggregated to give a final result. We

consider the novel scenario where workers have a reject option so they may skip microtasks they

are unable or unwilling to do. For example in mismatched speech transcription, workers who do

not know the language may be unable to respond to microtasks in phonological dimensions outside

their categorical perception. We present an aggregation approach using a weighted majority voting

rule, where each worker’s response is assigned an optimized weight to maximize the crowd’s

classification performance. We evaluate system performance in both exact and asymptotic forms.

We also show that human workers’ confidence does not help in improving system performance.

In Chapter 3, the presence of spammers, who give random responses to the microtasks, is

considered in the crowdsourced classification systems. First, we study the case when the spammers

complete all the microtasks with random guesses. A heuristic adaptive approach is proposed by

switching between oblivious and expurgation strategies, based on the estimation of several crowd

parameters such as the fraction of greedy spammers. Next, we investigate the optimal behavior for

spammers to maximize their monetary reward for completing tasks. To combat the impact from

the spammers who behave strategically, we derive an optimal aggregation rule to maximize the

classification performance in the presence of spammers.

Chapter 4 considers the classification problem of influential node detection in implicit social

networks. We propose a descriptive diffusion model to take dependencies among the topics into

account. We also propose an efficient algorithm based on alternating methods to perform inference

and learning on the model. It is shown that the proposed technique outperforms existing influential

node detection techniques. Furthermore, the proposed model is validated both on a synthetic and

a real (ISIS) dataset. We show that the proposed approach can efficiently determine the influential

users for specific contagions. We also present several interesting patterns of the selected influential

users for the ISIS dataset.

In Chapter 5, we consider the problem of decentralized learning of classification problems

using ADMM in the presence of unreliable agents. We study the convergence behavior of the
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decentralized ADMM algorithm and show that the ADMM converges to a neighborhood of the

solution under certain conditions. We suggest guidelines for network structure design to achieve

faster convergence. We also give several conditions on the errors to obtain exact convergence

to the solution. A robust variant of the ADMM algorithm is proposed to enable decentralized

classification in the presence of unreliable agents and its convergence to the optima is proved.

We also provide experimental results to validate the analysis and show the effectiveness of the

proposed robust scheme.

From an information theoretic perspective, Chapter 6 develops a nonparametric composite

hypothesis testing approach for arbitrary distributions based on the maximum mean discrepancy

(MMD) and Kolmogorov-Smirnov (KS) distance measure based tests. We introduce the informa-

tion theoretic notion of discrimination capacity that is defined for the regime where the number of

hypotheses scales along with the sample size. We also provide characterization of the correspond-

ing error exponent and the discrimination rate, i.e., a lower bound on the discrimination capacity.

Our framework is extended to unsupervised learning problems and similar performance limits are

investigated.

In Chapter 7, we summarize the findings and results of this thesis, and present several directions

and ideas for future research.
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CHAPTER 2

CLASSIFICATION IN CROWDSOURCING:

RELIABLE AGENTS

2.1 Introduction

Engineered social systems such as crowdsensing, crowdsourcing, and social production are be-

coming increasingly prevalent for classification tasks. Advances in signal processing theory and

methods to optimize these novel human-oriented approaches to signal acquisition and processing

are needed [87].

Crowdsourcing has particularly attracted intense interest [9, 46, 48, 49, 107, 108, 129] as a new

paradigm for classification tasks such as handwriting recognition, paraphrase acquisition, speech

transcription, image quality assessment, and photo tagging [12, 30, 47, 60, 85, 94, 95, 104], which

are all essentially inference problems of M -ary classification. Unfortunately, the low quality of

crowdsourced output remains a key challenge [1, 51, 76].

Low-quality work may arise not only because workers are insufficiently motivated to perform

well [44, 112], but also because workers lack the skills to perform the task that is posed to them

[117]. Decomposing larger tasks into smaller subtasks for later aggregation allows workers lacking

certain skills to contribute useful information [62,117]. Thus, the lack of certain skill of a particular
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Fig. 2.1: An illustrative example of the proposed crowdsourcing framework.

worker could be only reflected in a subset of subtasks, and this worker would be able to complete

other subtasks.

As an illustrative example of lack of skill, consider the problem of mismatched crowdsourcing

for speech transcription, which has garnered interest in the signal processing community [18, 42,

57, 58, 64, 69, 113]. The basic idea is to use crowd workers to transcribe a language they do

not speak, into nonsense text in their own native language orthography. Certain phonological

dimensions, such as aspiration or voicing, are used to differentiate phonemes in one language but

not others [113]. Moreover due to categorical perception acquired in childhood, workers lacking a

given phonological dimension in their native language may be unable to make relevant distinctions.

That is, they lack the skill for the task.

Fig. 2.1 depicts the task of language transcription of Hindi. Suppose the four possibilities for

a velar stop consonant to transcribe are R = {k, K, g, G}. The binary query of “aspirated or

unaspirated” differentiates between {K, G} and {k, g}, whereas the query of “voice or unvoiced”

differentiates between {g, G} and {k, K}. Note the two queries are independent. Now sup-

pose the first worker is a native Italian speaker. Since Italian does not use aspiration, this worker

will be unable to differentiate between k and K, or between g and G. It would be useful if this

worker specified the inability to perform the task through a special symbol λ, rather than guessing

randomly. Suppose the second worker is a native Bengali speaker; since this language makes a

four-way distinction among velar stops, such a worker will probably answer both questions with-
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out a λ. Now suppose the third worker is a native Hawaiian speaker; since this language does not

use voicing, such a worker will not be able to differentiate between k and g, or between K and G.

Hence, it would be useful if this worker answered λ for the question of differentiating among these

two subchoices.

This thesis allows workers to not respond, i.e., allowing a reject option, as in the example.

Research in psychology suggests a greater tendency to select the reject option when the choice set

offers several attractive alternatives but none that can be easily justified as the best, resulting in less

arbitrary decisions [26]. The reject option has previously been considered in the machine learning

and signal processing literatures [4, 19, 56, 89, 111], but we specifically consider worker behavior

and aggregation rules for crowdsourcing with a reject option. To characterize performance, we

derive a closed-form expression for the probability of a microtask being correct, together with the

asymptotic performance when the crowd size is large.

Several methods have been proposed to deal with noisy crowd work when crowd workers are

required to provide a definitive yes/no response [44, 61, 62, 90, 99, 117, 128, 131], rather than al-

lowing a reject option. Without the reject option, noisy responses to tasks cannot be tagged before

aggregation so appropriate weights cannot be assigned [128]. For instance, the popular majority

voting rule weights all answers equally [98], though new weighted aggregation rules have also

been developed [99, 128]. Vempaty et al. employed error-control codes and decoding algorithms

to design reliable crowdsourcing systems with unreliable workers [117]. A group control mecha-

nism where worker reputation is used to partition the crowd into groups is presented in [90, 131];

comparing group control to majority voting indicates majority voting is more cost-effective on less

complex tasks [44].

2.2 Classification Task for Crowds

Consider W workers taking part in an M -ary classification task. Each worker is asked N simple

binary questions, termed microtasks, which eventually lead to a decision among the M classes.
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We assume it is possible to construct N = dlog2Me independent microtasks of equal difficulty.

Such microtasks can be designed using taxonomy and dichotomous keys [97]. The workers submit

results that are combined to give the final decision. A worker’s answer to a single microtask is

represented by either “1” (Yes) or “0” (No) [117] and so the wth worker’s ordered answers aw(i),

i ∈ {1, 2, . . . , N} to all microtasks form an N -bit word, denoted aw.

Each worker has the reject option of skipping microtasks; we denote a skipped answer as λ,

whereas “1/0” (Yes/No) responses are termed definitive answers. Due to variability in worker

expertise, the probability of submitting definitive answers is different for each worker. Let pw,i

represent the probability the wth worker submits λ for the ith microtask. Similarly, let rw,i be the

probability aw(i), the ith answer of the wth worker, is correct given a definitive answer has been

submitted. Due to worker anonymity, we study performance when pw,i and rw,i are realizations

of certain probability distributions, denoted FP (p) and FR(r) with corresponding means m and µ,

respectively. Let H0 and H1 be hypotheses of bits “0” and “1” for a single microtask, respectively.

For simplicity of performance analysis, “0” and “1” are assumed equiprobable for every microtask.

The crowdsourcing platform or fusion center (FC) collects the N -bit words from W workers and

aggregates results, as discussed next.

2.2.1 Weighted Majority Voting

We first investigate weighted majority voting as the fusion rule for classification. Consider all

object classes as elements in the setD = {ej}, j = 1, . . . ,M , where ej represents the jth class. As

indicated earlier, a worker’s definitive responses to the microtasks determine a subset in the original

set D, consisting of multiple elements/classes. If all responses from the crowd are definitive, the

final subsets are singletons and a single class is identified as the object class. Since some microtasks

may be answered with a response λ, the resulting subsets may not be singletons and each element

of the same corresponding subsets will be chosen equiprobably as the classification decision. Let

us denote the subset determined by the definitive answers of the wth worker as Dw ∈ D. The

task manager assigns the same weight to all elements in Dw based on the wth worker’s answer.
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With the submitted answers from W workers, we determine the overall weight assigned to any jth

element of D as

W (ej) =
W∑
w=1

WwIDw〈ej〉, j = 1, 2, . . . ,M, Dw ∈ D, (2.1)

where Ww is the weight1 assigned to Dw, and IDw〈ej〉 is an indicator function which equals 1 if

ej ∈ Dw and 0 otherwise. Then the element eD with the highest weight is selected as the final

class, and the classification rule is stated as

eD = arg max
ej∈D
{W (ej)} . (2.2)

For tie-breaking, randomly choose from the classes with the same weight. Notice that conventional

majority voting requires full completion of all microtasks without the reject option and has identical

Ww for each worker’s decision.

Next, we show how the problem formulated in (2.2) can be further decomposed.

Proposition 2.1. Classification rule (2.2) is equivalent to bit-by-bit decision since the ith bit, i =

1, . . . , N , is decided by

W∑
w=1

WwI1 〈i, w〉
H1

≷
H0

W∑
w=1

WwI0 〈i, w〉, (2.3)

where Is 〈i, w〉, s ∈ {0, 1}, is the indicator function which is 1 if the wth worker’s answer to the

ith bit is “s”, otherwise Is 〈i, w〉 = 0. For tie-breaking, randomly choose 0 or 1.

Proof. The class eD corresponds to a unique N -bit word. Thus, if the ith bit of the N -bit word

corresponding to the class eD is equal to s, s has the same weight as assigned to eD, which is

greater than or equal to the symbol 1− s.
1The assignment of these weights will be discussed later in the thesis.
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2.2.2 Optimal Bit-by-bit Bayesian Aggregation

Let A(i) = [a1(i), a2(i), . . . , aW (i)] denote all the answers to ith microtask collected from the

crowd. For the binary hypothesis testing problem corresponding to the ith bit of the N -bit word,

the log-likelihood ratio test is

log
P (H1|A(i))

P (H0|A(i))

H1

≷
H0

0, (2.4)

where P (·) denotes the probability density function. We can express the likelihood ratio as

P (H1|A(i))
P (H0|A(i))

=

W∏
w=1

P (aw(i)|H1)

W∏
w=1

P (aw(i)|H0)

=

∏
S1

(1− pw,i) rw,i
∏
S0

(1− pw,i) (1− rw,i)
∏
Sλ

pw,i∏
S1

(1− pw,i) (1− rw,i)
∏
S0

(1− pw,i) rw,i
∏
Sλ

pw,i
, (2.5)

where S1 is the set of w such that aw(i) = 1, S0 is the set of w such that aw(i) = 0 and Sλ is the

set of w such that aw(i) = λ, respectively. Then, it is straightforward to show that the test for the

decision on the ith bit is

∑
w∈S1

log
rw,i

1− rw,i

H1

≷
H0

∑
w∈S0

log
rw,i

1− rw,i
. (2.6)

Note that the optimal Bayesian criterion can also be viewed as the general weighted majority voting

rule in (2.3) with weight Ww = log
rw,i

1−rw,i , also called the Chair-Varshney rule [13]. Note that (2.3)

represents majority voting when Ww = 1.

However, this optimal Bayesian criterion can only be used if rw,i for every worker is known a

priori, which is usually difficult to estimate for anonymous crowds just from submitted answers.

The difficulty in obtaining prior information makes the simple majority voting scheme very effec-

tive and therefore widely used [98]. We show later that our proposed method—which need not

estimate rw,i but only its mean µ—can outperform conventional majority voting.
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2.2.3 Class-based Aggregation Rule

For the general weighted majority voting scheme where eC is the correct class, the probability of

misclassification is

Pm = Pr (eD 6= eC)

= Pr

(
arg max

ej∈D

{
W∑
w=1

WwIDw 〈ej〉

}
6= eC

)

= 1− Pr

(
arg max

ej∈D

{
W∑
w=1

WwIDw 〈ej〉

}
= eC

)
, (2.7)

where Pr(E) is the occurrence probability of event E .

A closed-form expression for the error probability Pm cannot be derived without an explicit

expression for Ww; hence it is difficult to determine the optimal weights to minimize Pm.

Consequently, we consider an optimization problem based on a different objective function and

propose a novel weighted majority voting method that outperforms simple majority voting. Note

that eD is chosen as the decision for classification such that eD has the maximum overall weight

collected from all the workers. Thus, we maximize the average overall weight assigned to the

correct class while the overall weight collected by all the elements remains the same as the other

existing methods such as majority voting. We state the optimization problem over the weights as

maximize EC [W]

subject to EO [W] = K,
(2.8)

where EC [W] is the crowd’s average weight contribution to the correct class and EO [W] is the

average weight contribution to all possible classes. K is set to a constant so we are looking for

a maximized portion of weight contribution to the correct class while the weight contribution to

all classes remains fixed. This procedure ensures that one cannot obtain greater EC [W] by simply

increasing the weight for each worker’s answer, whileK results in a normalized weight assignment

scheme. If two weight assignment schemes share the same value of EO [W], one can expect better
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performance by the scheme with higherEC [W]. Thus,K facilitates a relatively easier performance

comparison of different weight assignment schemes.

2.3 System With Honest Crowd Workers

We first consider the case where the crowd is entirely composed of honest workers—workers that

are not greedy and honestly observe, think, and answer microtasks posed to them, while skipping

queries they are not confident about. The wth worker responds with a λ to the ith microtask with

probability pw,i. Next, we derive the optimal weight Ww for the wth worker in this case.

Proposition 2.2. To maximize the normalized average weight assigned to the correct classification

element, the weight for wth worker’s answer is given by Ww = µ−n, where µ = E[rw,i] and n is

the number of definitive answers that the wth worker submits.

Proof. See Appendix A.1.

Note that when workers are forced to make a hard decision for every single bit, the weights

derived above become identical. In general, the weight depends on the number of questions an-

swered by a worker: if more questions are answered, the weight assigned to the corresponding

worker’s answer is larger. Assuming a worker’s correct probability is greater than half if he/she

gives a definitive answer, a larger number of definitive answers increases the chance the quality

of the worker is higher than others. Increased weight can thereby emphasize the contribution of

high-quality workers and improve overall classification performance.

2.3.1 Estimation of µ

Before the proposed aggregation rule can be used, note that µ has to be estimated to assign the

weight for every worker’s answers. Here, we give two approaches to estimate µ.
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Training-based Approach

In addition to the N microtasks, the task manager inserts additional questions to estimate the

crowd’s µ value. The answers to such “gold standard” questions are known to the manager [27,55].

By checking the crowd worker’s answers, µ can be estimated. Suppose the first T questions are

training questions, and let B̄ be the T -bit correct answers to them. First, we calculate the ratio

r(w) as

r(w) =
T∑
i=1

IB̄(i) 〈aw(i)〉
I(w)

, (2.9)

where Ix〈y〉 is the indicator function which is 1 if x = y and 0 otherwise, and I(w) =
∑T

i=1 (I1〈i, w〉+ I0〈i, w〉).

In order to avoid the cases where some workers submit λ for all the training questions, we estimate

µ as follows

µ̂ =
1

W − ε

W∑
w=1

r(w), (2.10)

where ε is the number of workers that submit all λ for the training questions and the corresponding

r(w) is set to 0.

Majority-voting based Approach

We use majority voting to obtain the initial aggregation result and set it as the benchmark to es-

timate µ. First, all the answers aw(i) are collected to obtain the benchmark B(i) by traditional

majority voting, where i = 1, . . . , N . Note that B(i) may contain λ since it is possible that all

answers aw(i) have λ at the same position. Then, for the wth worker, we calculate the ratio r(w)

as

r(w) =
N∑
i=1

IB(i) 〈aw(i)〉
I (w)

, (2.11)
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where Iλ〈λ〉 = 0, and I(w) =
∑N

i=1 (I1〈i, w〉+ I0〈i, w〉). As before, we estimate µ as in (2.10),

but where ε is the number of workers that submit λ for all microtasks.

2.3.2 Performance Analysis

In this subsection, we characterize performance of the proposed classification framework in terms

of probability of correct classification Pc. Note that we have overall correct classification only

when all the bits are classified correctly,2 which also offers the lower bound in the general case

where the microtasks are not completely independent of each other.

First, we restate the bit decision criterion in (2.3) as

W∑
w=1

Tw
H1

≷
H0

0 (2.12)

with Tw = Ww (I1〈i, w〉 − I0〈i, w〉), where the resulting

Tw ∈ {−µ−N ,−µ−N+1, . . . ,−µ−1, 0, µ1, . . . , µN−1, µN}

.

Proposition 2.3. For the ith bit, the probability mass function of Tw under hypothesisHs, Pr (Tw|Hs),

for s ∈ {0, 1}, is:

Pr
(
Tw = I(−1)t+1µ−n|Hs

)
=

 r
1−|s−t|
w,i (1− rw,i)|s−t|ϕn(w), I = 1

pw,i, I = 0
, t ∈ {0, 1}, n ∈ {1, . . . , N},

(2.13)

2When N > log2M , the N -bit answer after aggregation may correspond to a class that does not exist; this is also
misclassification.
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where I = I1〈i, w〉+ I0〈i, w〉, ϕn(w) = (1− pw,i)
∑

C

∏N
j=1
j 6=i

p
kj
w,j(1− pw,j)

1−kj and C is the set

C =

{k1, k2, . . . , ki−1, ki+1, . . . , kN} :
N∑
j=1
j 6=i

kj = N − n


with kj ∈ {0, 1}.

Proof. See Appendix A.2.

Since hypotheses H0 and H1 are assumed equiprobable, the correct classification probability

for the ith bit Pc,i is Pc,i =
1+Pd,i−Pf,i

2
, where Pd,i is the probability of deciding the ith bit as “1”

when the true bit is “1” and Pf,i is the probability of deciding the ith bit as “1” when the true bit is

“0”.

Proposition 2.4. The probability of correct classification for the ith bit Pc,i is

Pc,i =
1

2
+

1

2

∑
S

(
W

Q

)
(Fi (Q)− F ′i (Q)) +

1

4

∑
S′

(
W

Q

)
(Fi (Q)− F ′i (Q)) (2.14)

with

Fi(Q) =
∏
w∈Gλ

pw,i
∏
w∈G0

(1− rw,i)ϕn (w)
∏
w∈G1

rw,iϕn (w)

and

Fi
′(Q) =

∏
w∈Gλ

pw,i
∏
w∈G1

(1− rw,i)ϕn (w)
∏
w∈G0

rw,iϕn (w) ,

where

Q =

{
(q−N , q−N+1, . . . qN) :

N∑
n=−N

qn = W

}
(2.15)

with natural numbers qn and q0, G0 denotes the worker group that submits “0” for ith microtask,



27

G1 the group that submits “1” and Gλ the group that submits λ, and

S =

{
Q :

N∑
n=1

µ−n (qn − q−n) > 0

}
, (2.16)

S ′ =

{
Q :

N∑
n=1

µ−n (qn − q−n) = 0

}
, (2.17)

and
(
W
Q

)
= W !/

∏N
n=−N qn!.

Proof. See Appendix A.3.

Proposition 2.5. The probability of correct classification Pc in the crowdsourcing system is

Pc =
[1

2
+

1

2

∑
S

(
W

Q

)
(F (Q)− F ′ (Q)) +

1

4

∑
S′

(
W

Q

)
(F (Q)− F ′ (Q))

]N
, (2.18)

where

F (Q) = mq0

N∏
n=1

(1− µ)q−nµqn
(
Cn−1
N−1(1−m)nmN−n)q−n+qn (2.19)

and

F ′(Q) = mq0

N∏
n=1

(1− µ)qnµq−n
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

. (2.20)

Proof. See Appendix A.4.

In practice, the number of workers for crowdsourcing tasks is large (hundreds). Thus, it is

useful to investigate asymptotic system performance when W increases without bound.

Proposition 2.6. As the number of workers W approaches infinity, the probability of correct clas-
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sification Pc is

Pc =

[
Q

(
− M√

V

)]N
, (2.21)

where Q(x) = 1√
2π

∫∞
x
e
−t2
2 dt, and M and V are given as

M = W (2µ−1)(1−m)
µ

(
1
µ
−
(

1
µ
− 1
)
m
)N−1

, (2.22)

and

V = W (1−m)
µ2

(
1
µ2
−
(

1
µ2
− 1
)
m
)N−1

− M2

W
. (2.23)

Proof. See Appendix A.5.

For large but finite crowds, the asymptotic result (2.21) is a good characterization of actual

performance. Let us, therefore, consider (2.21) in more detail. First, we rewrite (2.21) as

Pc =

[
Q

(
−
√

W
1

f(µ,m)
− 1

)]N
, (2.24)

where

f (µ,m) = (1−m) (2µ− 1)2(g (µ,m))N−1, (2.25)

and

g (µ,m) =
(1− (1− µ)m)2

1− (1− µ2)m
. (2.26)

Theorem 2.1. The correct classification probability of the system increases with increasing crowd
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size W .

Proof. Follows from (2.24) as the probability of correct classification increases monotonically with

respect to W .

Theorem 2.2. The correct classification of the system increases with increasing µ.

Proof. We take the partial derivative of g(µ,m) with respect to µ and obtain

∂g

∂µ
=

2m(1− µ) (1−m) A

B2
, (2.27)

where A = mµ−m+ 1, and B = mµ2 −m+ 1.

Clearly ∂g
∂µ
> 0. Recall (2.24), (2.25), and (2.26) where a larger Pc results as µ increases. Then,

the classification performance of the task in the crowdsourcing system also increases.

To obtain the relation between crowd’s performance in terms of Pc and m, we take the partial

derivative of f(µ,m) with respect to m and obtain

1

(2µ− 1)2
∂f

∂m
= −

(
A2

B

)N−1

+ (N − 1) (1−m)

(
A2(µ2−1)

B2 + 2A(1−µ)
B

)(
A2

B

)N−2
.

After some mathematical manipulations, we observe:

• When m > 1
1+µ

, we can guarantee that ∂f
∂m

< 0, which means that the crowd performs better

as Pc increases with decreasing m.

• When m < 1
1+µ

and N ≥ (mµ−m+1)2

(1−m)(1−µ)2(mµ+m−1)
+ 1, we can guarantee that ∂f

∂m
> 0, which

means that the crowd performs better as Pc increases with increasing m.

These two observations indicate that a larger probability of the crowd responding to the ith

microtask with λ does not necessarily degrade crowd’s performance in terms of the detection of

the ith microtask.
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Fig. 2.2: Proposed approach compared to majority voting at rw,i = 0.8.

This counterintuitive result follows since even though the crowd skips more microtasks, the

optimized weights take advantage of the number of unanswered questions and extract more in-

formation. For this to happen, the number of microtasks N has to be greater than a lower limit.

Since a larger N induces more diversity in the number of unanswered questions, the existence of

the lower limit means that this diversity can actually benefit the performance using the proposed

scheme.

2.3.3 Simulation Results

In this subsection, we compare the performance of the proposed crowdsourcing system where

crowd workers are allowed to skip microtasks with the conventional majority voting method in a

hard-decision fashion, which means that workers are forced to make a decision even if the workers

believe that no definitive answers could be provided. The number of equiprobable classes is set as

M = 8.

Fig. 2.2 compares performance when W = 20 workers take part in the task. We consider here

that workers have a fixed pw,i for each microtask and rw,i = 0.8. We observe that performance

degrades as pw,i gets larger, i.e. the workers have a higher probability of not submitting an answer
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Fig. 2.3: Proposed approach compared to majority voting at pw,i = 0.5.

to the microtask. A remarkable performance improvement associated with our proposed approach

is observed. The two curves converge at pw,i = 1 with Pc being equal to 0.125. At this point,

with the majority-based approach, each worker gives random answers for each microtask whereas

workers using the proposed scheme skip all the questions and the tie-breaking criterion is used to

pick a random bit for every microtask. In Fig. 2.3, we fix pw,i = 0.5 and vary rw,i to compare the

resulting Pc. Notable performance improvement is also seen. The point at rw,i = 0.5 indicates

that the worker is making a random guess even if he/she believes that he/she can complete the

corresponding microtask correctly. The performance improves as rw,i gets larger, which means

that the crowd is able to give higher-quality definitive answers.

In Fig. 2.4, we compare the performance with different number of workers, also showing the

asymptotic performance characterization. Here, we consider different qualities of the individuals

in the crowd which is represented by variable pw,i with uniform distribution U(0, 1) and rw,i with

U(0.6, 1). First, it is observed that a larger crowd completes the classification task with higher

quality. The asymptotic curves are derived under the assumption of a very large crowd, which

are the bounds on the performance of the systems. It is not difficult to derive the asymptotic

performance for conventional majority voting: Pc =

[
Q

(
−
√

W 2(2l−1)
4l−4l2

)]N
, where l = µ +
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Fig. 2.5: Proposed approach compared to majority voting with varying number of workers at
pw,i ∼ U(0, 1) and r ∼ U(0.5, 1). Two methods are used to estimate µ for weight assignment.
One uses training to insert T additional microtasks for estimation, whereas the other one uses the
decision results of majority voting as a benchmark to estimate µ. (a) provides the performance
comparison while (b) is a zoomed-in region which is indicated in the box in (a).
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Fig. 2.6: Performance vs. overhead tradeoff. The crowd size is set as W = 20 and N = 3, 6, and
10, from top to bottom, respectively.

m(0.5 − µ). Therefore, the asymptotic gap in the performance between conventional majority

voting and the proposed method can also be obtained. We find that the asymptotic curves are quite

a tight match to the actual performance. Again, we can see a significant improvement in Pc brought

by the proposed approach.

We now include the estimation of µ in Fig. 2.5 for weight assignment. Observe in Fig. 2.5(a)

that the performance improves as the number of workers increases and that the proposed approach

is significantly better than majority voting. Second, the performance of the proposed approach is

significantly better than that of traditional majority voting, and it changes for different estimation

settings. As is expected, a larger number of training questions result in better system performance

as observed in Fig. 2.5(b). Another interesting finding is that training-based estimation can out-

perform majority voting only when a relatively large number of training questions are used. We

see from the figure that the training method with T = 10 slightly outperforms the Majority-voting

method (without training). However, the number of microtasks N is only 3, which is much smaller

than the training size. Much extra overhead beyond the classification task must be added if the

training method is adopted. Hence, it is reasonable to employ the Majority-voting method together

with the proposed approach for classification using crowdsourcing.

Fig. 2.6 shows Pc performance as a function of overhead with different numbers of microtasks,
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to illustrate the performance gap between the two methods. Observe that the method without

training exhibits remarkable advantage when a reasonable number of additional microtasks are

inserted. Improved performance of the training-based method is shown when T gets larger as this

results in more accurate estimation. To have comparable performance with the method without

training, the training-based method requires even more additional microtasks when the original

number of microtasks N increases. With enough microtasks inserted, the training method can

outperform the one without. Again, this result encourages employing the method without training

in practice.

2.4 Crowdsourcing with Confidence Reporting

We consider the case where the crowd is composed of honest workers, which means that the work-

ers honestly observe, think, and answer the questions, give confidence levels, and skip questions

that they are not confident about. We derive the optimal weight assignment for the workers and the

performance of the system in a closed form. Based on these findings, we determine the potential

benefits of confidence reporting in a crowdsourcing system with a reject option.

2.4.1 Confidence Level Reporting

In a crowdsourcing system where workers submit answers and report confidence, we define the

wth worker’s confidence about the answer to the ith microtask as the probability of this answer

being correct given that this worker gives a definitive answer, which is equal to ρw,i as defined

earlier. When ρw,i is bounded as lw,i−1

L
≤ ρw,i ≤ lw,i

L
, lw,i ∈ {1, . . . , L}, the wth worker reports

his/her confidence level as lw,i. Let lw,i be drawn from the distribution lw,i ∼ FL(l). Note that

every worker independently gives confidence levels for different microtasks, and L = 1 simply

means that workers submit answers and do not report their confidence levels.

Assuming that a worker can accurately perceive the probability ρw,i and honestly report the

confidence level, intuitively it is expected that it will benefit the crowdsourcing fusion center as
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much more information about the quality of the crowd can be extracted. However, as the confi-

dence is quantized, which helps the workers in determining the confidence levels to be reported,

quantization noise is introduced in extracting the crowd quality from confidence reporting.

As an illustrative example, consider the problem of mismatched crowdsourcing for speech

transcription, which has garnered interest in the signal processing community [18, 42, 57, 64, 69,

113]. Suppose the four possibilities for a velar stop consonant to transcribe are R = {k, K, g,

G}. The simple binary question of “whether it is aspirated or unaspirated” differentiates between

{K, G} and {k, g}, whereas the binary question of “whether it is voice or unvoiced” differentiates

between {g, G} and {k, K }. The highest confidence level is set as L = 4. Now suppose the

first worker is a native Italian speaker. Since Italian does not use aspiration, this worker will be

unable to differentiate between {k} and {K}, or between {g} and {G}. It would be of benefit if

this worker would specify the inability to perform the task through a special symbol λ, rather than

guessing randomly, and this worker answers “Yes” with confidence level 1 to the second question.

Suppose the second worker is a native Bengali speaker. Since this language makes a four-way

distinction among velar stops, such a worker will probably answer both questions without a λ.

In the rest of this section, we address the problem “Does the confidence reporting help crowd-

sourcing system performance?” by performing analyses when workers report their confidences

with their definitive answers.

2.4.2 Optimal Weight Assignment Scheme

We determine the optimal weight Ww for the wth worker in this section. We rewrite hereby the

weight assignment problem

maximize EC [W]

subject to EO [W] = K
(2.28)

where EC [W] denotes the crowd’s average weight contribution to the correct class and EO [W]

denotes the average weight contribution to all the possible classes and remains a constant K. Sta-

tistically, we are looking for the weight assignment scheme such that the weight contribution to
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the correct class is maximized while the weight contribution to all the classes remains fixed, so as

to maximize the probability of correct classification.

Proposition 2.7. To maximize the average weight assigned to the correct classification element,

the weight for wth worker’s answer is given by

Ww = µ−n, (2.29)

where n is the number of definitive answers that the wth worker submits.

Proof. Same as Proposition 1.

Remark 2.1. Here the weight depends on the number of questions answered by a worker. In

fact, if more questions are answered, the weight assigned to the corresponding worker’s answer

is larger. This is intuitively pleasing as a high-quality worker is able to answer more questions

and is assigned a higher weight. Increased weight can put more emphasis on the contribution of

high-quality workers in that sense and improve overall classification performance.

Remark 2.2. When L = ∞, ρw,i associated with every worker for every microtask is reported

exactly. Then the Chair-Varshney rule gives the optimal weight assignment to minimize error

probability [13]. However, human decision makers are limited in their information processing

capacity and can only carry around seven categories [75]. Thus, the largest value of L is around

7 in practice.

Remark 2.3. Note that the optimal weight assignment scheme is the same as in the case where the

workers do not report confidence levels, i.e., L = 1. Actually, the value of L does not play any role

in the weight assignment, as long as ρw,i is not known exactly. Therefore, the weight assignment is

universally optimal regardless of confidence reporting.
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2.4.3 Parameter Estimation

Before the proposed aggregation rule can be used, µ has to be estimated to assign the weight for

every worker’s answers. Here, we employ three approaches to estimate µ. We refer to the previous

section for training-based and majority-voting based methods to estimate µ, and give an additional

method using the information extracted from the workers’ reported confidence levels.

Confidence-based Approach

Note that the reported confidence levels correspond to ρw,i. We collect all the values of the submit-

ted confidence levels and obtain the estimate of µ from them. First, the wth worker’s confidence

level for the ith microtask is represented by lw,i. Considering the fact that lw,i−1

L
≤ ρw,i ≤ lw,i

L
if

the worker submits a definitive answer, we use lw,i− 1
2

L
to approximate ρw,i. Let lw,i = 1

2
if the wth

worker skips the ith microtask. We obtain the estimate of µ by

µ̂ =
1

W − ε

W∑
w=1

N∑
i=1

lw,i − 1
2

LI(w)
, (2.30)

where I(w) denotes the number of definitive answers that wth worker submits.

2.4.4 Performance Analysis

In this section, we characterize the performance of the proposed crowdsourcing classification

framework in terms of the probability of correct classification Pc. Note that we have overall correct

classification only when all the bits are classified correctly.

Proposition 2.8. The probability of correct classification Pc in the crowdsourcing system is

Pc =
[1

2
+

1

2

∑
S

(
W

Q

)
(F (Q)− F ′ (Q)) +

1

4

∑
S′

(
W

Q

)
(F (Q)− F ′ (Q))

]N
, (2.31)

where Q =

{
(q−N , q−N+1, . . . qN) :

N∑
n=−N

qn = W

}
with natural numbers qn and q0, and S =
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{
Q :

N∑
n=1

µ−n (qn − q−n) > 0

}
, S ′ =

{
Q :

N∑
n=1

µ−n (qn − q−n) = 0

}
,
(
W
Q

)
= W !

N∏
n=−N

qn!

, and

F (Q) = mq0

N∏
n=1

(1− µ)q−nµqn
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

F ′(Q) = mq0

N∏
n=1

(1− µ)qnµq−n
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

.

Proof. The proof is similar to the proof in the previous section and is, therefore, omitted for brevity.

2.5 Simulation Results

In this section, we give the simulation results for the proposed crowdsourcing system. The workers

take part in a classification task of N = 3 microtasks. FP (p) is a uniform distribution denoted as

U(0, 1).

Since an accurate estimation of µ is essential for applying the optimal weight assignment

scheme, we focus on the estimation results of µ for the three estimation methods as discussed

in the previous section. Let Fρ(ρ) be a uniform distribution expressed as U(x, 1) with 0 ≤ x ≤ 1,

and thus we can have µ varying from 0.5 to 1. We consider that W = 20 workers participate in the

classification task with a reject option and confidence reporting.

In Fig. 3.7(a), it is observed that the training-based method has the best overall performance,

which takes advantage of the gold standard questions. We can also see that the majority voting

method has better performance as µ increases. This is because a larger µ means a better-quality

crowd, which will lead to a more accurate result from majority voting, and consequently better

estimation performance of µ. When confidence is considered with L = 4, we find that the overall

estimation performance is not better than the other two methods because of quantization noise
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Fig. 2.7: Estimation performance comparison. (a) Different methods. (b) Confidence-based
method with different confidence levels.

associated with confidence reporting in the estimation of µ. It is also shown that the curve saturates

and yields a fixed value of µ̂ = 0.875 when µ ≥ 0.9. This is because almost all the confidence

levels submitted then are lw,i = 4 and the corresponding estimate result is exactly 0.875.

The estimation performance of the confidence-based method with multiple confidence levels is

presented in Fig. 3.7(b). As is expected, a larger L can help improve the estimation performance.

However, it is seen that even though L = 8, the corresponding performance is still not as good as

that of the other two methods. Although we can expect estimation performance improvement as

the maximum number of confidence levels L increases, L = 8 is pretty much the limit in practice

due to the human inability to categorize beyond 7 levels. When the confidence-based estimation

method is employed, the estimate value saturates at a certain fixed value when µ is large. Therefore,

it can be concluded that the confidence-based estimation method does not provide good results.

Even though the three methods differ in performance in the estimation of µ, we show the ro-

bustness of the proposed system. in Fig. 2.8. We observe from Fig. 2.8 that the majority voting

based method suffers from performance degradation in the low-µ regime, while the confidence

based one suffers in the high-µ regime. However, when the value of µ is low, the workers are mak-

ing random guesses even when they believe that they are able to respond with definitive answers.

When the value of µ is large, almost all the definitive answers submitted are correct. Therefore, in
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Fig. 2.8: Robustness of the proposed system and performance comparison with simple majority
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those two situations, the performance degradation in the estimation of µ is negligible. From Fig.

2.8, we see that system performance of the proposed system with estimation results from Fig. 2.8

is almost the same as with the other three estimation methods, which significantly outperforms the

system where simple majority voting is employed without a reject option. However, if a significant

performance degradation in the estimation of µ occurs outside the two aforementioned regimes,

overall classification performance loss is expected. For example, consider the case where µ is 0.8

while µ̂ is 0.5, and N = 5, then Pc = 0.8. However, the actual Pc equals 0.89 when µ is estimated

with an acceptable error.

2.6 Summary

We have studied a novel framework for crowdsourcing of classification tasks that arise in human-

based signal processing, where an individual worker has the reject option and can skip a microtask

if he/she has no definitive answer. We presented an aggregation approach using a weighted ma-

jority voting rule, where each worker’s response is assigned an optimized weight to maximize the

crowd’s classification performance. We have shown that our proposed approach significantly out-

performs traditional majority voting and provided asymptotic characterization as an upper bound
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on performance. We showed that reporting of confidence by the crowd does not benefit classifica-

tion performance. One is advised to adopt the reject option without confidence indication from the

workers as it does not improve classification performance and may degrade performance in some

cases.
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CHAPTER 3

CLASSIFICATION IN CROWDSOURCING:

UNRELIABLE AGENTS

3.1 Introduction

Note that under typical crowdsourcing incentive schemes based on work volume, workers may

respond to tasks for which they are not sufficiently skilled, even when a reject option is available.

This chapter extends the work in the previous chapter by further considering the spammers’ impact

on the system. First, we consider the case where the spammers believe that responding to more

microtasks would result in more rewards (payment). Equivalently, we study the case where a frac-

tion of the anonymous crowd workers that are greedy, i.e., spammers, complete all the microtasks

with random guesses to maximize their rewards. A heuristic adaptive approach is proposed by

switching between oblivious and expurgation strategies, based on the estimation of several crowd

parameters such as fraction of greedy workers. In the oblivious strategy, we weight the crowd

workers’ response using the aggregation rule derived in the previous chapter. In the expurgation

strategy, responses of workers that respond to all microtasks are discarded and the remaining work-

ers’ responses are assigned optimized weights.

Next, we study the spammer’s optimal behavior to maximize its monetary reward based on the
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payment mechanism proposed in [100], which is the only mechanism that satisfies the “no-free-

lunch” rule and is also incentive-compatible. We find that the spammers should either complete

or skip all the microtasks in order to get the maximal reward in an average sense. The statistical

properties of the crowd determine whether the spammers should complete or skip. The spammers

behave optimally to maximize their monetary reward and the manager employs the optimal weight

assignment scheme for aggregation. To combat the optimal behavior of the spammers in the crowd,

we also design an optimal aggregation rule where the workers are assigned optimal weights. We

give methods for estimating several crowd parameters that are used for weight assignment.

Although the contributions listed above are stated for the crowdsourcing paradigm, our re-

sults hold for other signal classification tasks when decisions are made using signals that are quite

uncertain. This is known as classification with a reject option [43] and has been the focus of sev-

eral recent studies in signal processing research including pattern recognition, image, and speech

classification [4, 19, 21, 86, 111].

3.2 System With Greedy Crowd Workers

In Sec. 2.3, we considered conscientious crowd workers who respond only when having confi-

dence in their ability to respond. In our formulation, the weight assigned to a worker’s response

increases with the number of definitive answers and this contributes to the selection of the cor-

rect class. In a reward-based system, such honest workers should be compensated and actually

rewarded for completing as many tasks as possible. Typical crowdsourcing setups do in fact pay

workers in proportion to the number of microtasks they complete [53,118,119]. However, if there

are workers that try to get as much reward as possible without regard to the system goal of clas-

sification, such a reward mechanism can encourage these greedy workers to randomly complete

all microtasks (without regard to the question being asked). These greedy workers who degrade

system classification performance are often termed spammers and are known to exist in large num-

bers on crowdsourcing platforms [53,118,119]. Indeed, Mason and Watts observed that increasing
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financial incentives increases the quantity of work performed, but not necessarily the quality [72].

Note that the semi-greedy situation where some workers occasionally complete microtasks that

they are not confident about can be considered as a special case of our model with pw,i = 0 and

rw,i = 1/2. Thus our model to characterize the greedy behavior of workers is general.

In this section, we study system performance when a part of the crowd completes all micro-

tasks with random guesses. In other words, these greedy workers submit N -bit codewords, termed

as full-length answers. Note that the semi-greedy situation where some workers occasionally com-

plete microtasks that they are not confident about can be characterized by small values of pw,i and

rw,i.

Insertion of a gold standard question set is a common method to address the issue of greedy

workers, but comes at the cost of a large question set to avoid workers spotting recurrent ques-

tions [27]. Besides, this is wasteful since the fundamental reason for crowdsourcing is to collect

classified labels that we do not have [55]. We, therefore, study two different strategies besides

inserting a gold standard question set. The Oblivious Strategy continues to use the scheme from

Sec. 2.3, ignoring the existence of greedy workers. In the Expurgation Strategy, we discard the an-

swers of workers who only give full-length answers, to reduce the impact of greedy workers on the

overall system performance. Note that this strategy will also discard the responses of those honest

workers that provided definitive answers to all microtasks. Also note that greedy workers are not

being punished in any way here; only that their responses are being ignored in the aggregation

strategy. Let α be the fraction of greedy workers in the crowd.

3.2.1 Oblivious Strategy

In this strategy, we continue to use the same weight allocation scheme as for honest workers:

Ww = α1µ
−n, where the factor α1 is introduced to satisfy the constraint EO [W] = K.

The average contribution from the crowd to the correct class and all the classes can be given
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respectively as

EC [W] =
Wα∑
w=1

α1µ
−N 1

2N

+
W∑

w=Wα+1

N−1∑
n=0

α1µ
−nCn

N [(1−m)µ]nmN−n

=
Wαα1

(2µ)N
+ α1W (1− α) , (3.1)

and

EO [W] =
Wα∑
w=1

α1

(
1
µ

)N
+

W∑
w=Wα+1

N−1∑
n=0

α1µ
−n2N−nCn

N(1−m)nmN−n

= Wαα1

(
1
µ

)N
+(W −Wα)α1

(
1−m
µ

+ 2m
)N
. (3.2)

Therefore, we can calculate α1 and obtain EC [W] as:

α1 =
K

Wα
(

1
µ

)N
+ (W −Wα)

(
1−m
µ

+ 2m
)N , (3.3)

EC [W] =
Kα
(

1
2µ

)N
+K (1− α)

α
(

1
µ

)N
+ (1− α)

(
1−m
µ

+ 2m
)N . (3.4)

Proposition 3.1. The probability of correct classification Pc when the Oblivious Strategy is used
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is

Pc =
[1

2
+

1

2

∑
S1

(
W

Q1

)
(F (Q1)− F ′(Q1))

+
1

4

∑
S′1

(
W

Q1

)
(F (Q1)− F ′(Q1))

]N
(3.5)

with

F (Q1)=
mq0

2Wα

N∏
n=1

(1−µ)q−nµqn
(
Cn−1
N−1(1−m)nmN−n)q−n+qn (3.6)

and

F ′(Q1)

=
mq0

2Wα

N∏
n=1

(1− µ)qnµq−n
(
Cn−1
N−1(1−m)nmN−n)q−n+qn (3.7)

where

Q1 =

{
(q−N , q−N+1, . . . qN) :

N∑
n=−N

qn = W −Wα

}
, (3.8)

with natural numbers qn,

S1 =

{
Q1 :

N∑
n=1

µ−n (qn − q−n) + µ−NWα > 0

}
, (3.9)

S1
′ =

{
Q1 :

N∑
n=1

µ−n (qn − q−n) + µ−NWα = 0

}
, (3.10)

and
(
W
Q1

)
= W !/

∏N
n=−N qn!.

Proof. See Appendix A.6.
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3.2.2 Expurgation Strategy

In this strategy, all definitive answers of length of N bits are discarded to avoid answers from

greedy workers. The classification decision is made based on the answers with maximum number

of bits equal to N − 1. To proceed, we need the weight for every worker’s answer in this case. We

begin by restating the optimization problem:

maximize EC [W]

subject to EO [W] = K
(3.11)

and we have

EC [W] =
W−Wα∑
w=1

N−1∑
n=0

Ww

(
N

n

)
[(1−m)µ]nmN−n

=
W−Wα∑
w=1

N−1∑
n=0

Wwµ
nxn−NPx (n), (3.12)

where

Px (n) =

(
N

n

)
(1−m)n(mx)N−n, (3.13)

and x is such that

N−1∑
n=0

Px (n) = 1. (3.14)

Then, we can write

EC [W] ≤
W−Wα∑
w=1

√√√√N−1∑
n=0

(Wwµnxn−N)2Px (n)

√√√√N−1∑
n=0

Px (n), (3.15)
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which holds with equality only if

Wwµ
nxn−N

√
Px (n) = α2

√
Px (n), (3.16)

where the factor α2 is introduced to satisfy the constraint EO[W] = K. Hence, we have the

maximum of EC [Ww] as

EC [W] = W (1− α)α2, (3.17)

when

Ww = α2µ
−nxN−n. (3.18)

To obtain the value of x, we rewrite (3.14) as:

(1−m+mx)N − (1−m)N = 1, (3.19)

and x is given as

x =

(
1 + (1−m)N

) 1
N

+m− 1

m
. (3.20)

For this strategy, the overall weight constraint is given as

EO [W] =
W−Wα∑
w=1

N−1∑
n=0

α2µ
−nxN−n2N−n

(
N

n

)
(1−m)nmN−n

=W (1− α)α2

[(
1−m
µ

+ 2mx

)N
−
(
1−m
µ

)N]
. (3.21)
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By substituting this result back into (3.17), the maximum value of EC [W] can be written as

EC [W] =
K(

1−m
µ

+ 2mx
)N
−
(

1−m
µ

)N . (3.22)

Note that the weight could be Ww = µ−nx−n when the Expurgation Strategy is employed in

practice, where x is given by (3.20).

Proposition 3.2. The probability of correct classification Pc when the Expurgation Strategy is used

is

Pc =
[1

2
+

1

2

∑
S2

(
W

Q2

)
(F (Q2)− F ′(Q2))

+
1

4

∑
S′2

(
W

Q2

)
(F (Q2)− F ′(Q2))

]N
(3.23)

with

F (Q2) = mq0

N−1∏
n=1

(1− µ)q−nµqn
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

and

F ′(Q2) = mq0

N−1∏
n=1

(1− µ)qnµq−n
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

,

where

Q2 =

{
(q−N+1, q−N+2, . . . qN−1) :

N−1∑
n=−N+1

qn ≤W −Wα

}

with natural numbers qn, and

S2 =

{
Q2 :

N−1∑
n=1

µ−nx−n (qn − q−n) > 0

}
,

S2
′ =

{
Q2 :

N∑
n=1

µ−nx−n (qn − q−n) = 0

}

and
(
W
Q2

)
= W !/

∏N−1
n=−N+1 qn!.



50

Proof. See Appendix A.6.

3.2.3 Adaptive Algorithm

We now investigate the adaptive use of our two strategies to improve system performance. The

goal is to find a threshold to determine when one strategy will outperform the other, so as to allow

switching.

Note that the two strategies are associated with the same overall weight for all classes. Thus,

we compare the crowd’s total contribution to the correct class under this condition and derive the

corresponding switching scheme. From (3.4) and (3.17), this can be expressed in (3.24),

αK
(

1
2µ

)N
+K(1− α)

α
(

1
µ

)N
+ (1− α)

(
1−m
µ

+ 2m
)N Oblivious Strategy

≷
Expurgation Strategy

K(
1−m
µ

+ 2mx
)N
−
(

1−m
µ

)N , (3.24)

which simplifies to having the switching threshold of α as

α

((
1
µ

)N
− γ1

(
1

2µ

)N
− γ2 + γ1

)
Expurgation Strategy

≷
Oblivious Strategy

γ1 − γ2, (3.25)

where γ1 =
(

1−m
µ

+ 2mx
)N
−
(

1−m
µ

)N
, and γ2 =

(
1−m
µ

+ 2m
)N
.

To obtain the threshold associated with α in the switching criterion (3.25), µ and m should be

estimated first. The previous chapter established a simple and effective method to estimate µ based

on majority voting. Therefore, we again use majority voting to get initial detection results, which

are then set as the benchmark to estimate µ. Note that estimation of µ is based on the answers

without the full-length ones to avoid degradation from the greedy workers.

The performance of this integrated scheme can be derived using Props. 3.1 and 3.2, and switch-

ing criterion (3.25).
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3.2.4 Joint Estimation of m and α

The threshold on α is specified based on the estimated values of m and µ. Then, we estimate α

and compare it with the corresponding threshold to switch the strategies adaptively. Though we

discard full-length answers and use the rest to estimate m, it is an inaccurate estimate because the

discarded answers also contain those from honest workers.

Several works have studied the estimation of α in crowdsourcing systems [1, 44, 131], which

can be divided into two categories: one studies the behavior of the workers in comparison to the

honest control group [44]; the other one learns worker’s reputation profile [1,131], which is stored

and updated over time to identify the greedy ones from the crowd. However, neither estimation

method is suitable here due to the anonymous nature of crowd workers. The first category suffers

from the difficulty in extracting the honest group from the anonymous crowd while the second

requires identification of every worker.

Since the worker’s quality is assumed to be i.i.d., we give a joint parametric estimation method

of both m and α based on maximum likelihood estimation (MLE).

As defined earlier, out of W workers, qn + q−n workers submit answers of n bits, 0 ≤ n ≤ N .

Thus, the probability mass function of the number of submitted answers given m and α is obtained

as,

f (qn + q−n|m,α) =


(
W−Wα
qn+q−n

)
AN,n,m

qn+q−n(1− AN,n,m)W−Wα−qn−q−n , 0 ≤ n < N(
W−Wα

qN+q−N−Wα

)
(1−m)N(qN+q−N−Wα)

(
1− (1−m)N

)
, n = N

(3.26)

where AN,n,m =
(
N
n

)
(1−m)nmN−n, is defined as the expectation of the probability of a single

worker submitting n definitive answers.

Because of the independence of workers, we can form the likelihood statistic as

L (m,α) =
N∑
n=0

logf (qn + q−n|m,α) . (3.27)
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Table 3.1: Estimation of α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α̂ 0.11 0.26 0.36 0.48 0.58 0.67 0.79 0.87 0.96

Therefore, the ML estimates of m and α, which are denoted by m̂ and α̂, can be obtained as

{m̂, α̂} = arg max
{m,α}∈[0,1]

L (m,α) . (3.28)

Once we have µ̂, m̂ and α̂, we can adaptively switch to the suitable strategy using (3.25).

3.2.5 Simulation Results

Now, we present some simulation results to illustrate the performance of our proposed algorithm.

First, the theoretical value of the threshold for adaptive switching between the strategies is obtained

for different values of m and µ based on (3.25). We switch to the Expurgation Strategy if the

fraction of greedy workers α is greater than the threshold. Otherwise we stick to the Oblivious

Strategy. As we observe from Fig. 3.1, when m decreases and µ increases—when the quality of

the crowd improves—the threshold increases. This implies a crowdsourcing system employing

the Oblivious Strategy can tolerate a higher fraction of greedy workers in the crowd; instead of

discarding all of the answers from the greedy workers and from those honest workers who submit

full-length answers, it is better to keep them as long as the honest ones can perform well. The

effect of greedy workers’ answers can be compensated by the high-quality answers of the honest

workers in the crowd.

Next, we give the estimation results for α̂ in Table 3.1 using the proposed MLE method. The

crowd quality parameters pw,i and rw,i are drawn from distributions U(0, 1) and U(0.5, 1) respec-

tively. The number of microtasksN and the number of workersW are set to 3 and 20, respectively.

Fig. 3.2 shows the performance of the proposed adaptive scheme. The system parameters are

the same as in previous simulations except that the crowd size W is set to 15. The crowdsourcing

system starts with the estimation of the parameters µ, m, and α. Once it has obtained µ̂ and m̂,



53

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ
m

T
h
re

s
h
o
ld

Oblivious

Strategy

Expurgation

Strategy

Fig. 3.1: Threshold to switch between strategies.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

P
c

 

 

Oblivious Strategy

Expurgation Strategy

α̂=0.3369

Fig. 3.2: Performance of both the strategies with greedy workers.



54

the system calculates the threshold value and compares it with α̂, and then decides the strategy to

be used. Next, the system allocates weights to the answers for aggregation based on the strategy

selected and makes the final classification decision. Fig. 3.2 presents the performance of both

strategies and the estimated threshold for switching. The performance deterioration caused by

greedy workers is quite obvious as the probability of correct classification Pc decreases for both

strategies with increasing α. The intersection of curves illustrates the need for strategy switching.

The estimated Pareto frontier α̂ for switching is 0.3369 in this system setting, which is indicated

in the figure by a line segment and is very close to the intersection of the two curves. Therefore,

the actual performance curve of the proposed algorithm consists of the curve with squares when

α < α̂ and curve with circles when α > α̂.

3.3 Optimal Behavior of the Spammers and the Manager

In this section, we consider the existence of spammers in the crowd. Spammers are workers who

answer randomly without regard to the question being asked, in the hope of earning some free

or extra money, and are known to exist in large numbers on crowdsourcing platforms [100]. We

study the optimal behavior for the spammers and the manager. First, the one and only incentive-

compatible payment mechanism that satisfies the “no-free-lunch” axiom1 for crowdsourcing with a

reject option is adopted. This mechanism makes the smallest possible payment to spammers among

all possible incentive-compatible mechanisms that may or may not satisfy the “no-free-lunch” ax-

iom [100]. Based on this mechanism, we investigate the optimal behavior on the spammers’ side

such that the spammers can maximize their monetary reward. Next, considering the spammers be-

having optimally in this manner, we design the optimal weight assignment scheme for aggregation

on the manager’s side to combat the spammers’ effect on the crowdsourcing system performance.

1The “no-free-lunch” axiom requires that the payment is minimum possible if all the answers attempted by the
worker in the gold standard questions are wrong.
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3.3.1 Payment Mechanism

The payment to the worker is based on the evaluation of the answers that the worker gives to the

G gold standard questions. The goal of the mechanism is to incentivize the worker to skip the

questions for which its confidence is lower than T . The value of T is chosen a priori based on

factors such as budget constraints or the targeted performance quality. Let f denote the payment

rule, which is proposed in [100] and is written as

f(x1, . . . , xG) = κ
G∏
i=1

αxi + µmin (3.29)

where xj ∈ {−1, λ,+1}, 1 ≤ j ≤ G , are the results of the gold standard questions. “−1” denotes

that the worker attempted to answer the microtask and the answer was incorrect, “λ” denotes the

worker skipped the microtask, and “+1” denotes that the worker attempted to answer the microtask

and the answer was correct. Set α−1 = 0, αλ = 1, α+1 = 1
T

, and κ = (µmax − µmin)TG with

budget parameters µmax and µmin denoting the maximum and minimum payments respectively. To

the workers, the mechanism reads that even one mistake leads to minimum payment so use the

reject option wisely.

3.3.2 Optimal Behavior for the Spammers

In this subsection, we give the optimal behavior for the spammers that maximizes their expected

monetary reward based on the payment mechanism described in the previous subsection. By opti-

mal behavior, we mean the optimal number of questions to be skipped by the spammers.

Proposition 3.3. To maximize the expected monetary reward, the optimal behavior for a spammer

is that he/she completes all the microtasks if T < 1
2
, and skips all the microtasks otherwise.

Proof. See Appendix A.7.

The above proposition addresses the optimal strategy for the spammers to participate in the

crowdsourcing task. Since a spammer can not distinguish the gold standard ones from the other
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questions, the result derived indicates that the spammers should either complete or skip all the

questions according to the value of T to maximize their expected monetary reward.

3.3.3 Optimal Behavior for the Manager

In typical crowdsourcing setups, workers are simply paid in proportion to the number of tasks

they complete [100]. Most likely, the spammers will complete all the microtasks in the skip-based

setting if they do not optimize their behavior as given in Proposition 3.3. However, even if the

spammers know the optimal strategy to maximize the monetary reward, an accurate estimate of

T is needed before hand for them to behave wisely, which is almost intractable for the spam-

mers. According to Prospect Theory [59], a Nobel prize winning theory developed by Kahneman

and Tversky, real-life decision- making deviates from rational behavior which is uninfluenced by

real-life perceptions. People use their subjective probabilities rather than objective probabilities to

weigh the values of possible outcomes, and the value of an outcome is determined by considering

the relative gains or losses regarding a reference point. Thus, to maximize the monetary reward,

the spammers roughly and subjectively evaluate T , and strategically complete or skip all the mi-

crotasks based on their own perceptions of the value of T . Consequently, no matter whether the

spammers are wise or not, we assume that MN spammers complete all the N microtasks and the

rest of the M0 spammers skip all the microtasks, making a total of M spammers in the crowd of

size W .

The presence of the spammers will significantly affect the classification performance of the

crowdsourcing system, which may make it worse when the spammers are starting to act strategi-

cally. To combat the spammers’ effect on the system performance, we develop the aggregation rule

on the manager’s side with a new weight assignment scheme to maximize the weight assigned to

the correct class in this subsection.

Proposition 3.4. To maximize the average weight assigned to the correct classification element,
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the weight for the wth worker’s answer is given by

Ww =

[
(W −M)µn +

MN

2N(1−m)N
δ (n−N)

]−1

, (3.30)

where n is the number of definitive answers that the wth worker submits, and δ(·) is the Dirac delta

function.

Proof. See Appendix A.8.

Compared to the weight assignment for an honest crowd [68], the derived scheme differs in

terms of the weight assigned to the workers who complete all the microtasks. If the spammers skip

all the microtasks, the weight assignment scheme remains the same, which is intuitively true as no

random guesses are received by the manager from the spammers and the crowd can be considered

as honest as well. Otherwise, the weight assignment scheme differs from the scheme given in [68].

3.3.4 Parameter Estimation

In order to behave optimally for the manager, several parameters have to be estimated before

the weight assignment can be adopted. Specifically, one has to estimate µ,m,MN ,M0 before

he/she can proceed with the weight assignment. We can adopt Training-based or Majority-voting

based method to estimate µ as stated in previous work [68]. Calculating the ratio of the sum of

skipped questions over all the questions attempted by the crowd gives the estimated m. Based on

the analysis in previous sections, the answers with all questions completed or skipped should be

discarded for estimation.

We hereby jointly address the estimation ofM0 andMN by using the maximum likelihood esti-

mation (MLE) method. First, as we employ G gold standard questions, a worker has to respond to

N+G microtasks. Let WN+G denote the number of workers submitting N+G definitive answers,

and W0 denote the number of workers skipping all the microtasks. Given the numbers of spam-

mers respectively completing and skipping all the microtasks, MN and M0, the joint probability
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distribution function of WN+G and W0, f(WN+G,W0|MN ,M0), is expressed in (3.32), where m̂

is the estimated m.

Therefore, by the MLE method, the estimation of MN and M0, which are denoted by M̂N and

M̂0 respectively, can be obtained as

{
M̂N , M̂0

}
= arg max

{MN ,M0}≥0
f(WN+G,W0|MN ,M0). (3.31)

where

f(WN+G,W0|MN ,M0) =

(
W0 −M0

W −M0 −MN

)
(m̂N+G)W0−M0(1− m̂N+G)W−W0−MN

·
(
WN+G −MN

W −W0 −MN

)
(1− m̂)(N+G)(WN+G−MN )

(
1− (1− m̂)N+G

)W−WN+G−W0

(3.32)

Once the manager has the estimation results µ̂, m̂, M̂N , and M̂0, he/she can optimally assign

the weight to the workers’ answers for aggregation.

3.3.5 Performance Analysis

In this section, we characterize the performance of such a crowdsourcing classification framework,

where the task manager behaves optimally, in terms of the probability of correct classification Pc.

Note that we have an overall correct classification only when all the bits are classified correctly.

Proposition 3.5. The probability of correct classification Pc in the crowdsourcing system is

Pc =
[1

2
+

1

2

∑
S

(
W

Q

)
(F (Q)− F ′(Q)) +

1

4

∑
S′

(
W

Q

)
(F (Q)− F ′(Q))

]N
(3.33)

with

F (Q)=mq0

N∏
n=1

(1−µ)q−nµqn
(
Cn−1
N−1(1−m)nmN−n)q−n+qn
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and

F ′(Q)=mq0

N∏
n=1

(1−µ)qnµq−n
(
Cn−1
N−1(1−m)nmN−n)q−n+qn

where

Q = {(q−N , q−N+1, . . . qN ,M
′
A,M

′′
A) :

N∑
n=−N

qn = W −MA −M0,M
′
A +M ′′

A = MA},

with natural numbers qn, M ′
A, and M ′′

A,

S=

{
Q :

N∑
n=1

qn − q−n
(W−M)µn

+(M ′
A−M ′′

A)
2N(1−m)N

MA

>0

}
,

S ′ =

{
Q :

N∑
n=1

qn−q−n
(W−M)µn

+(M ′
A−M ′′

A)
2N(1−m)N

MA

=0

}
,

and
(
W
Q

)
= W !∏N

n=−N qn!
.

Proof. See Appendix A.6.

3.3.6 Simulation Results

In this section, we present the simulation results to illustrate the performance of the proposed

schemes. W = 50 workers participate in a crowdsourcing task with N = 3 microtasks and G = 3

gold standard questions. FP (p) is chosen as a uniform distribution U(0, 1), and let Fρ(ρ) be a

uniform distribution expressed as U(x, 1) with 0 ≤ x ≤ 1, and thus we can have µ varying from

0.5 to 1.

In Table 3.3, we show the estimation results of M0 and MN . Here, µ is set as 0.75. The

estimation is based on the distribution of the numbers of workers completing and skipping all
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Fig. 3.3: Estimation of M0 and MN .

questions WN+G and W0, and we can see from the table that most pairs of numbers M0 and MN

can be exactly estimated, and most of the errors are ±1.

We present the performance comparison with spammers in Fig. 3.4, where the quality of the

crowd µ varies. We plot the performance of three different weight assignment methods. The first

one is what we derived in this section, which is referred to as the optimal behavior for the manager

with spammers. The second is the one that we derived in [67], which is given byWw = µ−n. Since

we do not assume the knowledge of prior information regarding individuals, the existing weighted

majority voting methods fail to work in this setting. Thus, we choose the conventional simple

majority voting without a reject option for comparison. For illustration, there are 14 spammers

in a crowd of 50 workers, and we have 7 spammers completing all the questions and the other 7

skipping all the questions. When µ = 0.5, the workers are making random guesses even if they

believe that they are able to respond with definitive answers. In such a case, the choice of weight

assignment schemes does not make a difference, and, therefore, the three curves merge at this

point. The method with optimal behavior for the manager with spammers outperforms the other
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two, while the simple majority voting without a reject option performs the worst.
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In Fig. 3.5, we plot the performance comparison when the number of spammers changes. We

set that M0 = MA, and µ is fixed at 0.75. As we can observe, the method with optimal behavior

for the manager with spammers yields the best performance. When the number of spammers is

small, the simple majority voting method is outperformed by the one with optimal behavior for

the manager with honest workers. However, this is not the case when the number of spammers is

large. The reason is that with honest workers, the manager assigns a greater weight to the worker

with a larger number of definitive answers. In the regime where MA is large, which means the

number of spammers completing all the questions is large, the impact from the spammers is much
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more severe on the performance with such a weight assignment scheme. Thus, the corresponding

performance degrades significantly.

3.4 Summary

We have studied a novel framework of crowdsourcing system for classification, where an individual

worker has the reject option and can skip a microtask if he/she has no definitive answer. We

investigated the impact of the spammers in the crowd on the crowdsourcing system performance.

First, oblivious and expurgation strategies were studied to deal with the spammers’ impact, and an

algorithm to adaptively switch between them, based on the estimated fraction of greedy workers in

the anonymous crowd, was developed to combat performance degradation. Next, we investigated

the case where the spammers can strategically behave to maximize their reward. In such a case,

we derived the optimal strategy to aggregation the responses from the crowd workers.
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CHAPTER 4

CLASSIFICATION IN SOCIAL NETWORKS:

INFLUENTIAL NODE DETECTION

4.1 Introduction

Information emerges dynamically and diffuses quickly via agent interactions in complex networks,

e.g. social networks [70]. Consequently, understanding and prediction of information diffusion

mechanisms are challenging. There is a rapidly growing interest in exploiting knowledge of the

information dynamics to better characterize the factors influencing spread of diseases, planned

terrorist attacks, and effective social marketing campaigns, etc [37]. The broad applicability of

this problem in social network analysis has led to focused research on the following questions:

(I) Which contagions are the most popular and can diffuse the most? (II) Which members of the

network are influential and play important roles in the diffusion process? (III) What is the range

over which the contagions can diffuse [38]? While attempting to answer these questions, one is

confronted with two crucial challenges. First, a descriptive diffusion model, which can mimic the

behavior observed in real world data, is required. Second, efficient learning algorithms are required

for inferring influence structure based on the assumed diffusion model.

A variety of information diffusion prediction frameworks have been developed in the litera-



64

ture [28, 38, 121, 126, 130]. A typical assumption in many of these approaches is that a connected

network graph and knowledge of the corresponding structure are available a priori. However, in

practice, the structure of the network can be implicit or difficult to model, e.g., modeling the struc-

ture of the spread of infectious disease is almost impossible. As a result, network structure unaware

diffusion prediction models have gained interest. For example, Yang et. al. [126] proposed a lin-

ear influence model (LIM), which can effectively predict the information volume by assuming

that each of the contagions spreads with the same influence in an implicit network. Subsequently,

in [121], the authors extended LIM by exploiting the sparse structure in the influence function to

identify the influential nodes. Though the relationships between multiple contagions can be used

for more accurate modeling, most of the existing approaches ignore this information.

In this chapter, we address the above issues, especially the classification problem of influential

node detection, by augmenting linear influence models with complex task dependency informa-

tion. More specifically, we consider the dependency of different contagions in the network, and

characterize their relationships using Copula Theory. Furthermore, by imposing a low-rank regu-

larizer, we are able to characterize the clustering structure of the contagions and the nodes in the

network. Through this novel formulation, we attempt to both improve the accuracy of the predic-

tion system and better regularize the influence structure learning problem. Finally, we develop an

efficient algorithm based on proximal mappings to solve this optimization problem. Experiments

with synthetic data reveal that the proposed approach fares significantly better than a state-of-the-

art multi-task variant of LIM both in terms of volume prediction and influence structure estimation

performance. In addition, we demonstrate the superiority of the proposed method in predicting the

time-varying volume of tweets using the ISIS twitter dataset1.

1ISIS dataset from Kaggle is available at https://www.kaggle.com/kzaman/how-isis-uses-twitter.
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4.2 Background

In this section, we present the linear influence model (LIM) [126] and discuss its limitations.

Consider a set of N nodes that participate in an information diffusion process of K different con-

tagions over time. Node u ∈ {1, . . . , N} can be infected by contagion k ∈ {1, . . . , K} at time

t ∈ {0, 1, . . . , T}. The volume Vk(t) is defined as the total number of nodes that get infected by

the contagion k at time t. Let the indicator function Mu,k(t) = 1 represent the event that node u

got infected by contagion k at time t, and 0 otherwise. LIM models the volume Vk(t) as a sum of

influences of nodes u that got infected before time t:

Vk(t+ 1) =
N∑
u=1

L−1∑
l=0

Mu,k(t− l)Iu(l + 1), (4.1)

where each node u has a particular non-negative influence function Iu(l). One can simply think

of Iu(l) as the number of follow-up infections l time units after u got infected. The value of L

is set to indicate that the influence of a node drops to 0 after L time units. Thus, the influence

of node u is denoted by the vector Iu = (Iu (1) , . . . , Iu (L))T ∈ RL×1. Next, using the notation

Vk = (V (1), . . . , V (T ))T ∈ RT×1 and I = (IT1 , · · · , ITN)T ∈ RLN×1, the inference procedure of

LIM can be formulated as follows

minimize
K∑
k=1

‖Vk −Mk · I‖2
2 + 1(I), (4.2)

where Mk is obtained via concatenation of Mu,k, ‖ · ‖2 denotes the Euclidean norm, and 1(I) is an

indicator function that is zero when Iuk (l) ≥ 0 and +∞ otherwise. A node can be influential due

to various reasons. One of those is the node’s specific location in the network, which is determined

by network topology. For example, if a node is at the center of a star network, this node is in a

position to influence others more easily. LIM links the volume of the contagions and the nodes’

influences, without the knowledge of network topology. Even if the nodes’ influences are related

to their locations in the network, they can also be characterized by LIM. Indeed, LIM has been
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effective in predicting the future volume for each contagion, however, it assumes that each node

has the same influence across all the contagions. Consequently, to achieve contagion-sensitive

node selection in an implicit network, the LIM model was extended and the multitask sparse linear

influential model (MSLIM) was proposed in [121].

The influence function is defined by extending Iu in LIM into contagion-sensitive Iu,k ∈ RL×1,

which is a L-length vector representing the influence of the node u for the contagion k. For each

contagion k, let Ik ∈ RLN×1 be the vector obtained by concatenating I1k, . . . , INk. For each node

u, the influence matrix for the node u is defined as Iu = (Iu1, . . . , IuK) ∈ RL×K . Using these

notations, the inference procedure to estimate Iu,k is formulated as follows

minimize
1

2

K∑
k=1

‖Vk −Mk · Ik‖2
2 + λ

N∑
u=1

‖Iu‖F + γ
N∑
u=1

K∑
k=1

‖Iuk‖2 + 1(I), (4.3)

where ‖ · ‖F denotes the Frobenius norm. The penalty term ‖Iu‖F is used to encourage the entire

matrix Iu to be zero altogether, which means that the node u is non-influential for all different

contagions. If the estimated ‖Iu‖F > 0 (i.e., the matrix Iu is non-zero), a fine-grained selection

is performed by the penalty
N∑
u=1

K∑
k=1

‖Iuk‖2, which is essentially a group-Lasso penalty and can

encourage the sparsity of vectors {Iuk}. For a specific contagion k, one can identify the most

influential nodes by finding the optimal solution {Îuk} of (4.3). However, the penalty terms used

in MSLIM encourages that certain nodes have no influence over all the contagions which may

not be true in practice. Furthermore, for most of the real world applications, there exists complex

dependencies among the contagions. In order to alleviate these shortcomings, we propose a novel

probabilistic multi-task learning framework and develop efficient optimization strategies.
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4.3 Proposed Approach

4.3.1 Probabilistic Multi-Contagion Modeling of Diffusion

We assume a linear regression model for each task:Vk = MkI
k + nk, where Vk,Mk and Ik are

defined as before, and nk ∈ RT×1 is an i.i.d. zero-mean Gaussian noise vector with the covariance

matrix Σk. The distribution for Vk given Mk, Ik and Σk can be expressed as

Vk|Mk, I
k,Σk ∼ N

(
MkI

k,Σk

)
=

exp
(
−1

2

(
Vk −MkI

k
)T

Σ−1
k

(
Vk −MkI

k
))

(2π)
T
2 |Σk|

1
2

. (4.4)

Assuming that the influence for a single contagion is also Gaussian distributed, we can express

the marginal distributions as Ik|mk,Θk ∼ N (mk,Θk), where mk ∈ RLN×1 is the mean vector

and can be expressed as mk = [mT
1,k, . . . ,m

T
N,k]

T , and Θk ∈ RLN×LN is the covariance matrix

of Ik. For a node u and contagion k, we assume that the variables in the influence Iuk have the

same mean, i.e., mu,k = mu,k1L×1, where mu,k is a scalar and 1L×1 is a vector of all ones with

dimension L× 1. Let m′ ∈ RN×K represent the mean matrix with entriesmu,k, and it is connected

as m = (m1, . . . ,mK) = Qm′, where Q ∈ RLN×N = IN×N ⊗ 1L×1 and IN×N is the identity

matrix with dimension N ×N and ⊗ is the Kronecker product operator.

4.3.2 Dependence Structure Modeling Using Copulas

Consider a general case where the contagions are correlated. We construct a new influence matrix

I =
[
I1, . . . , IK

]
∈ RLN×K . In our formulation, Iks are assumed to be correlated and the joint

distribution of I is not a simple product of all the marginal distributions of Ik as is adopted by most

multi-task learning formulations. Here, we propose to use a multi-task copula that is obtained by

tailoring the copula model for the multi-task learning problem.

Copulas are parametric functions that couple univariate marginal distributions to a multivariate

distribution. They can model the dependence among random variables with arbitrary marginal

distributions. An important theorem that is central to the theory of copulas is Sklar’s theorem
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(see [81] for a detailed proof), which is stated below.

Theorem 4.1. (Sklar’s Theorem). Consider anN -dimensional distribution functionF with marginal

distribution functions F1, . . . , FN . Then there exists a copula C, such that for all x1, . . . , xN in

[−∞,∞],

F (x1, . . . , xN) = C (F1 (x1) , . . . , FN (xN)) . (4.5)

If Fn is continuous for 1 ≤ n ≤ N , then C is unique, otherwise it is determined uniquely on

RanF1 × . . . × RanFN where RanFn is the range of Fn. Conversely, given a copula C and

univariate cumulative distribution functions (CDFs) F1, . . . , FN , F is a valid multivariate CDF

with marginals F1, . . . , FN .

Note that the above theorem implies that the copula function is a joint distribution of uniformly

distributed random variables. As a direct consequence of Sklar’s Theorem, for continuous distri-

butions, the joint probability density function (PDF) f (x1, . . . , xN) is obtained by differentiating

both sides of (4.5),

f(x1, . . . , xN) =

(
N∏
n=1

fn (xn)

)
c (F1 (X1) , . . . , FN (XN)) , (4.6)

where fn (·) is the marginal PDF and c is termed as the copula density given by

c(v) =
∂NC (v1, . . . , vN)

∂v1, . . . , ∂vN
(4.7)

where vn = Fn(xn).

One can construct a joint density function with specified marginal densities by employing (4.6).

The choice of a copula function to represent the joint statistics is an important consideration. Vari-

ous families of copula functions exist in the literature [81]. However, which copula function should

be used for a given case is not very clear as different copula functions may characterize different

types of dependence behavior among the random variables.
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We apply the copula theory to multi-task learning and express the joint distribution of I as

follows:

p(I1, I2, . . . , IK) =

(
K∏
k=1

N (mk,Θk)

)
c(F1(I1), F2(I2), . . . , FK(IK)), (4.8)

where Fk(Ik) is the CDF of the influence for kth contagion. The copula density function c(·)

takes all marginal CDFs {Fk(Ik)}Kk=1 as its arguments, and maintains the output correlations in a

parametric form.

Gaussian copula: There are a finite number of well defined copula families that can characterize

several dependence structures [80]. Though, in general, one selects the most appropriate copula

along with its parameters from data, here, we consider the Gaussian copula for its tractability

and favorable analytical properties. A Gaussian copula can be constructed from the multivariate

Gaussian CDF, and the resulting prior on I is given by a multivariate Gaussian distribution as

I ∼MN LN×K(m,U,Ω) =
exp

(
−1

2
tr
(
U−1 (I−m) Ω−1 (I−m)T

))
(2π)

LNK
2 |Ω|LN2 |U|K2

(4.9)

where U ∈ RLN×LN is the row covariance matrix modeling the correlation between the influence

of different nodes, Ω ∈ RK×K is the column covariance matrix modeling the correlation between

the influence for different contagions, and m ∈ RLN×K is the mean matrix of I. The two co-

variances can be computed as E
[
(I−m) (I−m)T

]
= Utr(Ω) and E

[
(I−m)T (I−m)

]
=

Ωtr(U) respectively. We assume that N individual nodes are spreading the contagions and influ-

encing others independently, and thus the row covariance matrix is diagonal and can be expressed

as U = diag(e2
1, e

2
2, . . . , e

2
N) ⊗ IL×L, where e2

n, n ∈ {1, . . . , N} are scalars. The posterior distri-

bution for I, which is proportional to the product of the prior in (4.4) and the likelihood function
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in (4.9), is given as

p (I|M,V,Σ,U,Ω) ∝ p (V|M, I,Σ) p (I|m,U,Ω)

=

(
K∏
k=1

N
(
MkI

k,Σk

))
MN LN×K (I|m,U,Ω) , (4.10)

where M = (M1, . . . ,MK) ∈ RT×LNK , V = (V1, . . . ,VK) ∈ RT×K , Σ is the corresponding

covariance matrix of n = (n1, . . . , nK) ∈ RT×K . We assume Σk , σ2IT×T and also an identical

value of e2
n = e2,∀k = 1, . . . , K,∀n = 1, . . . , N . We employ maximum a posteriori (MAP) and

maximum likelihood (ML) estimation methods, and obtain I, m, and Ω by

min
I,m,Ω

1

σ2

K∑
k=1

‖Vk −MkI
k‖2

2 +
1

e2
tr
(
(I−m)Ω−1(I−m)T

)
+ LN ln |Ω|+ 1(I).

However, if we assume Ω−1 to be non-sparse, the solution to Ω−1 will not be defined (when

K > LN ) or will overfit (when K is of the same order as LN ) [92]. In fact, some contagions in

the network can be uncorrelated, which makes the corresponding entry values in Ω−1 zero. Hence,

we add an l1 penalty term to promote sparsity of matrix Ω−1 to obtain

min
I,m,Ω

K∑
k=1

‖Vk −MkI
k‖2

2 + λ1tr
(
(I−m)Ω−1(I−m)T

)
− λ2 ln |Ω−1|+ λ3‖Ω‖1 + 1(I).

Compared with the state-of-art LIM method (4.3), the above formulation incorporates complex

correlation of the influence matrix I for different users and different contagions.

4.3.3 Modeling the Structure of Influence Matrix I

In order to better characterize the influence matrix, we propose to impose a low rank structure

on the influence matrix I. The nodes or the contagions in the influence network are known to

form communities (or clustering structures), which may be captured using the low-rank property

of the influence matrix. Note that, the sparse structure in the influence matrix implies that most
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individuals only influence a small fraction of contagions in the network while there can be a few

nodes with wide-spread influence. We incorporate this into our formulation by using a sparsity

promoting regularizer over Iu,k.

min
I,m,Ω

K∑
k=1

‖Vk −MkI
k‖2

2 + λ1tr
(
(I−m)Ω−1(I−m)T

)
− λ2 ln |Ω−1|+ λ3‖Ω‖1 + λ4‖I‖∗ + λ5

N∑
u=1

K∑
k=1

‖Iuk‖2 + 1(I),

(4.11)

where ‖ · ‖∗ denotes the nuclear norm, and λ1, λ2, λ3, λ4 and λ5 are the regularization parameters.

With the estimated {Îuk}, one can predict the total volume of the contagion k at T + 1 by V̂k(T +

1) =
∑N

u=1

∑L−1
l=0 Muk(T − l)Iuk(l + 1).

Thus, our proposed approach incorporates the complex dependence among different users and

different contagions, and the unique structure of the influence matrix, which can simultaneously

perform contagion-sensitive volume prediction and influential node detection in a unified frame-

work.

4.4 Optimization Algorithm

We adopt an alternating optimization approach to solve the problem in (4.11).

Optimization w.r.t. m: Given I and Ω−1, the mean matrix m can be obtained by solving the

following problem

min
m

tr
(
(I−m)Ω−1(I−m)T

)
.

The estimate m̂ can be analytically obtained as m̂ = 1
L
QQT I.

Optimization w.r.t. Ω: Given I and m, the contagion inverse covariance matrix Ω−1 can be

estimated by solving the following optimization problem

min
Ω

λ1tr
(
(I−m)Ω−1(I−m)T

)
− λ2 ln |Ω−1|+ λ3‖Ω‖1
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The above is an instance of the standard inverse covariance estimation problem with sample co-

variance λ1
λ2

(I −m)T (I −m), which can be solved using standard tools. In particular, we use the

graphical Lasso procedure in [32]

Ω̂−1 = gLasso
(
λ1/λ2(I−m)T (I−m), λ3

)
. (4.12)

Optimization w.r.t. I: The corresponding optimization problem becomes

min
I

K∑
k=1

‖Vk −MkI
k‖2

2 + λ1tr
(
(I−m)Ω−1(I−m)T

)
+ λ4‖I‖∗ + λ5

N∑
u=1

K∑
k=1

‖Iuk‖2 + 1(I).

We rewrite the problem as

min
I

`(I) + λ4‖I‖∗ + 1(I). (4.13)

where `(I) =
K∑
k=1

‖Vk−MkI
k‖2

2+λ1tr
(
(I−m)Ω−1(I−m)T

)
+λ5

N∑
u=1

K∑
k=1

‖Iuk‖2. This formula-

tion involves a sum of a convex differentiable loss and convex non-differentiable regularizers which

renders the problem non-trivial. A number of algorithms have been developed for the case where

the optimal solution is easy to compute when each regularizer is considered in isolation. This cor-

responds to the case where the proximal operator defined for a convex regularizerR : RLN×K → R

at a point Z by proxR(Z) = arg min1
2
‖I − Z‖2

F + R(I), is easy to compute for each regularizer

taken separately. See [20] for a broad overview of proximal methods. The proximal operator for

the nuclear norm is given by the shrinkage operation as follows [5]. If Udiag(σ1, . . . , σn)V T is the

singular value decomposition of Z, then proxλ4‖·‖∗(Z) = Udiag((σi−λ4)+)iV
T . The proximal op-

erator of the indicator function 1(I) is simply the projection onto Iu,k(l) ≥ 0, which is denoted by

P1(I). Next, we describe a matching serial algorithm introduced in [6]. Here, we present a version

where updates are performed according to a cyclic order [96]. Note that one can also randomly

select the order of the updates. We use the optimization algorithm 1 to solve the optimization

problem in (4.13).
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Algorithm 1 Incremental Proximal Descent
1: Initialize I = A
2: repeat
3: Set I = I− θ∇I`(I)
4: Set I = proxθλ4‖·‖∗(I)
5: Set I = P1(I)
6: until convergence
7: return I

4.5 Experimental Results

We compare the performance of the proposed approach to MSLIM by applying it to both synthetic

and real datasets. Since the volume of a contagion over time Vk(t) can be viewed as a time series,

we set up this problem as a time series prediction task and evaluate the performance using the

prediction mean-squared error (MSE), which is the l-2 norm of the difference between the true

volume and the predicted volumn across different time instances. Furthermore, for the synthetic

data set, where we have access to the true influence matrix I, we also evaluate the performance

of the influence matrix prediction task using the metric ‖Î − I‖F , which is termed as “Influence

Matrix Estimation Error”. We determined the regularization parameters for the proposed model

using cross validation. In particular, we split the first 60% of the time instances as the training set

and the rest for validation. Following [121], we combine the training and validation sets to re-train

the model with the best selected regularization parameters and estimate the influence matrix.

4.5.1 Synthetic Data

We created a synthetic dataset with the number of nodes fixed at N = 100 and the number of

contagions at K = 20. In addition, we assumed that L = 10 and T = 20. A rank 5 (low-rank)

influence matrix I was generated randomly with uniformly distributed entries. The matrix M was

generated with uniformly distributed random integers {0, 1}. Following our model assumption,

the volume for each Vk was calculated as follows Vk = Mk × Ik +N (0,∆) where N (0,∆) is

a multivariate normal distribution with covariance matrix ∆. In Table 4.1, we present the results

obtained using the proposed approach and its comparison to MSLIM, the state-of-art LIM method
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Table 4.1: Prediction performance for different information diffusion models on synthetic data.

Approach MSLIM Proposed
Volume Prediction MSE 0.834 0.007

Influence Matrix Estimation Error 0.7681 0.62

(4.3). As can be observed that for volume prediction, our method obtains a significant improvement

compared with MSLIM, and achieves highly accurate estimates. For influence matrix estimation,

the proposed approach provides a better result compared to MSLIM, while the improvement is not

as significant as that of volume prediction. The reason is that the model is trained to minimize

the volume predication error, since in reality we might not be able to have access to the influence

matrix. Thus, the volume predication error is very small for our method, while the influence matrix

estimation error is comparatively larger.

4.5.2 ISIS Twitter Data

In this section, we demonstrate the application of the proposed approach to a real-word analysis

task. We begin by describing the twitter dataset used for analysis and the procedure adopted to

extract the set of contagions. Following this, we discuss the problem setup and present comparisons

to MSLIM on predicting the time-varying tweet volume. Finally, we present a qualitative analysis

of the inferred influence structure for different contagions.

The ISIS dataset from Kaggle2 is comprised of over 17, 000 tweets from 112 users posted

between January 2015 and May 2016. In addition to the actual tweets, meta-information such

as the user name and the timestamp for each tweet are included. We performed standard pre-

processing by removing a variety of stop words, e.g. URLs, and symbols. After preprocessing, we

converted each tweet into a bag-of-words representation and extracted the term frequency-inverse

document frequency (tf-idf) feature.

Topic Modeling: When applying our approach, the first step is to define semantically meaningful

2ISIS dataset from Kaggle is available at https://www.kaggle.com/kzaman/how-isis-uses-twitter.
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Table 4.2: Top words for each topic learned using NMF with the ISIS twitter dataset.

Topic 1 isis ramiallolah iraq attack libya warreporter1 saa aamaq usa abu
Topic 2 killed soldiers today airstrikes injured wounded civilians militants iraqi attack
Topic 3 syria russia ramiallolah turkey ypg breakingnews usa group saa terror
Topic 4 state islamic fighters fighting group saudi new http wilaya control
Topic 5 aleppo nid gazaui rebels north today northern syrian ypg turkish
Topic 6 assad regime myra forces rebels fsa pro islam syrian jaysh
Topic 7 al qaeda nusra abu sham ahrar islam jabhat http warreporter1
Topic 8 army iraq near ramiallolah iraqi lujah turkey ramadi west sinai
Topic 9 allah people muslims abu accept muslim make know don islam
Topic 10 breaking islamicstate forces amaqagency city fighters iraqi near area syrian

contagions. A simple way of defining topics is to directly use words as topics (e.g., ISIS). However,

a single word may not be rich enough to represent a broad topic (e.g., social network sites). Hence,

we propose to perform topic modeling on the tweets based on the tf-idf features. In our experiment,

we obtained the topics using Non-negative Matrix Factorization (NMF), which is a popular scheme

for topic discovery, with the number of topics K set at 10. Table 4.2 lists the top 10 words for each

of the topics learned using NMF.

Volume Time Series Prediction: In our experiment, we set one day as the discrete time step

for aggregating the tweet volume. The parameter L denotes the number of time steps it takes for

the influence of a user to decay to zero. We set the parameter L equal to 5 since we observed

that beyond L = 5, there is hardly any improvement in performance. The MSE on the predicted

volume is computed over the entire period of observation. The comparison of the prediction MSE

is presented in Table 4.3. It can be seen that the proposed approach significantly outperforms

MSLIM in predicting the time-varying volume.

Influential Node Detection: For a contagion k, we identify the most influential nodes with re-

spect to this contagion as nodes having high ‖Iu,k‖2 values. First, in Figure 4.2(a), we plot the

correlation among 10 topics learned by NMF. More specifically, we plot the pair-wise correlation

structure learned by our approach. It can be seen that, a strong positive correlation structure exists,
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(a) Average Influence

(b) Maximum Influence

Fig. 4.1: Comparing statistics from the estimated influence matrix with the volume of tweets
corresponding to each of the users to identify influential users. We define the average influence
score as the averaged influence for a user among all the topics. The maximum influence score is
defined as the maximum influence for a user across all the topics. In both cases, the users with a
large influence score are marked in red.
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(a)

(b)

Fig. 4.2: (a) Correlation Structure among the topics (non-black color represents positive correla-
tion), (b) Top 9 influential users and their tweet distributions.
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Table 4.3: Volume prediction performance on the ISIS twitter dataset.
Approach MSLIM Proposed

Volume Prediction MSE 2.7 0.329

which enabled the improved prediction in Table 4.3. Following this, we use the predicted influence

matrix to select a set of highly influential nodes from the dataset. A simple approach to select the

influential users can be to select the ones with a large number of tweets. However, we argue that

the influence predicted in an information diffusion model can be vastly different. Consequently, we

consider a user to be influential if she has a high influence score for at least one of the topics, or if

she can be influential for multiple topics. For example, in Figure 4.1(a), we plot average influence

scores of the users (averaged over all the topics) against the total number of tweets. Similarly, in

Figure 4.1(b), we plot influence scores of the users (maximum over all the topics) against the total

number of tweets. The first striking observation is that the users with high influence scores are

not necessarily the ones with the most number of tweets. Instead, their impact on the information

diffusion relies heavily on the complex dynamics of the implicit network.

Finally, in Figure 4.2(b) we plot the percentage of tweets regarding each of the topics for

top 9 influential nodes. Influential nodes are obtained as a union of nodes identified based on

both average and maximum influence scores. More specifically, we select the union of users with

average influence score greater than 1.3 and maximum influence score greater than 1.8. In addition

to displaying the distribution across topics, for each influential user, we show the total number of

tweets posted by that user. It can be seen that the total number of tweets of these users vary a lot

and, therefore, is not a good indication of their influence.

4.6 Summary

In this chapter, we considered the problem of influential node detection and volume time series

prediction. We proposed a descriptive diffusion model to take dependencies among the topics into

account. We also proposed an efficient algorithm based on alternating methods to perform infer-
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ence and learning on the model. It was shown that the proposed technique outperforms existing

influential node detection techniques. Furthermore, the proposed model was validated both on a

synthetic and a real (ISIS) dataset. We showed that the proposed approach can efficiently select

the most influential users for specific contagions. We also presented several interesting patterns of

the selected influential users for the ISIS dataset.
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CHAPTER 5

CLASSIFICATION IN DECENTRALIZED

LEARNING SYSTEM: UNRELIABLE

AGENTS

5.1 Introduction

As one of the typical machine learning and statistics problems, classification fits into the general

framework where a finite-sum of functions is to be optimized. In general, the problem is formulated

as

min
x∈RN

f(x), f(x) =
D∑
i=1

fi(x). (5.1)

The problem structure in (5.1) is applicable to collaborative autonomous inference in statistics, dis-

tributed cooperative control of unmanned vehicles in control theory, and training of models (such

as, support vector machines, deep neural networks, etc.) in machine learning. Due to the emer-

gence of the big data era and associated sizes of datasets, solving problem (5.1) at a single node (or

agent) is often infeasible.This gives rise to the decentralized optimization setting [11,63], in which

the training data for the problem is stored and processed across a number of interconnected nodes
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and the optimization problem is solved collectively by the cluster of nodes. The decentralized

classification system can be implemented on an arbitrarily connected network of computational

nodes that solves (5.1) by treating it as a consensus optimization problem. There exist several de-

centralized optimization methods for solving (5.1), including belief propagation [88], distributed

subgradient descent algorithms [79], dual averaging methods [29], and the alternating direction

method of multipliers (ADMM) [11]. Among these, ADMM has drawn significant attention, as it

is well suited for decentralized optimization and demonstrates fast convergence in many applica-

tions, such as online learning, decentralized collaborative learning, neural network training, and so

on [45, 109, 125].

However, most of these past works assume an ideal system where updates are not erroneous.

This assumption is very restrictive and rarely satisfied in practice which limits the applicability of

these results. Note that due to the decentralized nature of the systems considered, computation over

federated machines induces a higher risk of unreliability because of communication noise, crash

failure, and adversarial attacks. Therefore, the design and analysis of decentralized optimization

algorithms in the presence of these practical challenges is of utmost importance. A systematic con-

vergence analysis of ADMM in the presence of unreliable agents has been missing for a long time.

The reason is that unreliable agents (sometimes termed as Byzantine agents in the literature) have

large degrees of freedom without abiding to an error model and this makes the convergence anal-

ysis significantly more challenging as existing proof techniques used in studying the convergence

of ADMM do not directly apply.

Although, the problem of design and analysis of ADMM with unreliable agents has not been

considered in the past, a related research direction is inexact consensus ADMM [8, 16, 36, 82, 124,

127]. The inexactness in ADMM can be categorized as of two different types. Type 1 assumes

that there are errors that can occur in an intermediate step of proximal mapping in each ADMM

iteration. Type 2 replaces the computationally complex calculation in each ADMM iteration by

a proximity operator that can be computed more easily, and hence inexactness occurs. Error in

inexact ADMM is induced implicitly in intermediate proximal mapping steps and, thus, has a
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specific restrictive and bounded form with amenable properties for convergence analysis (such as,

it converges to zero). These assumptions are very limited in their ability to model unreliability

in updates, and are different from what we have studied in this thesis. Furthermore, since the

proof techniques for the convergence analysis of inexact ADMMs are designed on an algorithm-

by-algorithm basis with restrictive assumptions on error, it lacks a unified framework to analyze

the convergence problem of ADMM with an arbitrary error model (of utmost importance to cyber

physical security and noisy communication channel scenarios).

A unified framework to study the convergence analysis of decentralized ADMM algorithms for

classification in the presence of an arbitrary error model is proposed in this chapter1. We consider a

general error model where an unreliable agent i adds an arbitrary error term eki to its state value xki

at each time step k. The error first contaminates xki and the resulting output xki + eki is broadcast to

the neighboring agents. First, we provide a comprehensive convergence analysis both for convex

(and strongly convex) cost functions. Next, we show that ADMM converges to a neighborhood

of the optimal solution if certain conditions involving the network topology, the properties of the

objective function, and algorithm parameters, are satisfied. Guidelines are developed for network

structure design and algorithm parameter optimization to achieve faster convergence. We also

give several conditions on the errors such that exact convergence to the optimum can be achieved,

instead to the neighborhood of the optimum. Finally, to mitigate the effect of unreliable agents, a

robust variant of ADMM, referred to as ROAD, is proposed. We show that ROAD achieves exact

convergence to the optimum with a rate of O(1/T ) for convex cost functions.

1Note that, the results in inexact ADMM literature [8, 16, 36, 82, 124, 127] can be seen as a special cases of our
analysis.
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5.2 Problem Formulation

5.2.1 Decentralized Learning with ADMM

Consider a network consisting of D agents bidirectionally connected with E edges. We can de-

scribe the network as a symmetric directed graph Gd = {V ,A}, where V is the set of vertices

and A is the set of arcs with |A| = 2E. In a distributed setup, a connected network of agents

collaboratively minimize the sum of their local loss functions over a common optimization vari-

able. Each agent generates local updates individually and communicates with its neighbors to

reach a network-wide common minimizer. The decentralized learning problem, can be formulated

as follows

min
{xi},{yij}

D∑
i=1

fi(xi), s.t. xi = yij, xj = yij, ∀(i, j) ∈ A, (5.2)

where xi ∈ RN is the local optimization variable at agent i and yij ∈ RN is an auxiliary variable

imposing the consensus constraint on neighboring agents i and j. Defining x ∈ RDN as a vector

concatenating all xi, y ∈ R2EN as a vector concatenating all yij , (5.2) is written in a matrix form

as

min
x,y

f(x) + g(y), s.t. Ax + By = 0, (5.3)

where f(x) =
D∑
i=1

fi(xi) and g(y) = 0. Here A = [A1; A2]; A1,A2 ∈ R2EN×LN are both

composed of 2E ×D blocks of N ×N matrices. If (i, j) ∈ A and yij is the qth block of y, then

the (q, i)th block of A1 and the (q, j)th block of A2 are N ×N identity matrices IN ; otherwise the

corresponding blocks are N ×N zero matrices 0N . Also,we have B = [−I2EN ;−I2EN ] with I2EN

being a 2EN×2EN identity matrix. Define the matrices: M+ = AT
1 +AT

2 and M− = AT
1 −AT

2 .

Let W ∈ RDN×DN be a block diagonal matrix with its (i, i)th block being the degree of agent

i multiplying IN and other blocks being 0N , L+ = 1
2
M+MT

+, L− = 1
2
M−MT

−, and we know

W = 1
2
(L+ + L−). These matrices are related to the underlying network topology.
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5.2.2 Decentralized ADMM with Unreliable Agents

The iterative updates of the decentralized ADMM algorithm are given by [101] as

x− update : ∇f(xk+1) + αk + 2cWxk+1 = cL+xk,

α− update : αk+1 − αk − cL−xk+1 = 0.

(5.4)

Note that x = [x1; . . . ; xD] where xi ∈ RN is the local update of agent i and α = [α1; . . . ;αD]

where αi ∈ RN is the local Lagrange multiplier of agent i. Recalling the definitions of W, L+ and

L−, (5.4) results in the decentralized update of agent i given as follows

∇fi(xk+1
i ) + αki + 2c|Ni|xk+1

i = c|Ni|xki + c
∑
j∈Ni

xkj ,

αk+1
i = αki + c|Ni|xk+1

i − c
∑
j∈Ni

xk+1
j ,

where Ni denotes the set of neighbors of agent i.

In such a setup, we consider the case where a fraction of the agents are unreliable and generate

erroneous updates. Assume that the true update is xk, and the erroneous update is modeled as

xk + ek, which is denoted as zk = xk + ek. The corresponding algorithm becomes

∇fi(xk+1
i ) + αki + 2c|Ni|xk+1

i = c|Ni|zki + c
∑
j∈Ni

zkj ,

αk+1
i = αki + c|Ni|zk+1

i − c
∑
j∈Ni

zk+1
j .

For a clearer presentation, we will use the following form of the updates for our analysis

x− update : ∇f(xk+1) + αk + 2cWxk+1 = cL+zk,

α− update : αk+1 − αk − cL−zk+1 = 0.

(5.5)

Compared to (5.4), xk is replaced by the erroneous update zk in the first step, and xk+1 is replaced

by zk+1 in the second step. The convergence analysis of (5.5) is nontrivial and is not a straightfor-
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ward extension of the analysis with (5.4) in [101]. Additionally, the analysis in [101] was restricted

to strongly convex cost functions. We analyze the problem for both convex and strongly convex

cost functions.

5.2.3 Assumptions

We provide definitions and assumptions that will be used for the cost functions in our analysis.

Definition 5.1. For a differentiable function f(x) : RDN → R:

• f is v-strongly convex if ∀x,y ∈ RDN , f(x) ≥ f(y) + 〈∇f(y),x− y〉+ v‖x− y‖2.

• f is L-smooth if ∀x,y ∈ RDN , ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 1. For a differentiable function f(x) : RDN → R:

• The feasible x ∈ RN is bounded as ‖x‖ ≤ V1.

• The gradient∇f(x) is bounded as ‖∇f(x)‖ ≤ V2.

Note that these assumptions are very common in the analysis of first-order optimization meth-

ods [10]. The first assumption provides the feasible set, which basically means that x = +∞ and

x = −∞ are not considered by the system. The second assumption assumes that the cost function

does not change values abruptly in a small area in the domain.

5.3 Convergence Analysis

To effectively present the convergence results, we first introduce a few notations. Let Q =

VΣ
1
2 VT , where L−

2
= VΣVT is the singular value decomposition of the positive semidefinite

matrix L−
2

. We also construct a new auxiliary sequence rk =
k∑
s=0

Q(xs + es). Let z∗ = x∗, where

x∗ denotes the optimal solution to the problem. Define the auxiliary vector qk, matrix pk, and
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matrix G as

qk =

rk

zk

 ,pk =

rk

xk

 ,G =

cI 0

0 cL+/2

 .
For a positive semidefinite matrix X, we use σmin(X) as the nonzero smallest eigenvalue of matrix

X and σmax(X) as the nonzero largest eigenvalue in sequel.

5.3.1 Convex Case

In this case, we assume convexity for the cost function and analyze the convergence of the ADMM

algorithm in the presence of errors. First, we present the convergence of the function values in

terms of the current update and averaged update.

Theorem 5.1. There exists p =

 r

x∗

 with r = 0 such that

f(xT )− f(x∗) ≤ ‖qT−1 − p‖2
G, and (5.6)

f(x̂T )− f(x∗) ≤ ‖p
0 − p‖2

G

T
+
c

T

T∑
k=1

(
σ2

max(L+)

2σmin(L−)
‖ek‖2

2 + 〈ek, 2Qrk)〉
)
. (5.7)

where x̂T =
∑T

k=1 xk/T .

Proof. See Appendix A.9

Theorem 5.1 provides the upper bound for the residual of the function value over the iterations,

and shows how errors accumulate and affect the convergence of the algorithm. In (5.6), the effect

of the errors that occurred before the T -th iteration is represented by qT−1, which means that the

previous errors have accumulated to impact the current algorithm state. It is observed in (5.7)

that the averaged function value approaches the neighborhood of the minimum function value in a
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sub-linear fashion, and the second term on the right hand side of the bound represents the radius

of this neighborhood. It also shows that the algorithm converges sub-linearly if after a certain

number of iterations, there are no errors in the updates. Compared to the convergence rate ofO( 1
T

)

with decentralized ADMM for convex programming, e.g., [71], our result is very different. In the

presence of errors, the algorithm converges to the neighborhood of the minimizer with a rate of

O( 1
T

) as well, but the true convergence to the minimizer cannot be guaranteed. The bounds are

obtained in the form of the G norm. Recall the definition of G, we can see that the structure of

the network also plays a role in bounding the residual of the function value. Both the bounds show

that a network with smaller σmax(L+) (which is proportional to the network connectivity) is more

resilient to errors. Intuitively, a less connected network can lower the spread of the errors. However,

a more connected network has a faster convergence speed. This observation also highlights a

potential trade-off between the resilience and the convergence speed.

5.3.2 Strongly Convex & Lipschitz Continuous Case

We assume that f(x) is v-strongly convex and L-smooth, and provide the convergence analysis.

Theorem 5.2. There exists q∗ =

r∗

x∗

 such that for the k-th iteration,

‖qk − q∗‖2
G ≤
‖qk−1 − q∗‖2

G

1 + δ
+
P‖ek‖2

2 + 〈ek, s〉
1 + δ

with s = cL+(zk−zk−1)+2cQ(rk−r∗)+2cW(xk−x∗), where P = c2δλ2σ2
max(W)

σ2
min(Q)

+ c2δλ3σ2
max(L+)
4

,

and

δ = min

{
(λ1 − 1)(λ2 − 1)σ2

min(Q)σ2
min(L+)

λ1λ2σ2
max(L+)

,
4v(λ2 − 1)(λ3 − 1)σ2

min(Q)

λ1λ2(λ3 − 1)L2 + c2λ3(λ2 − 1)σ2
max(L+)σ2

min(Q)

}

with quantities λ1, λ2, and λ3 being greater than 1.

Proof. See Appendix A.10.
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Theorem 5.2 shows that the sequence ‖qk − q∗‖2
G converges linearly with a rate of 1

1+δ
if after

a certain number of iterations, there are no errors in the updates. Then, it can be easily shown that

the sequence zk or xk converges to the minimizer. However, if the errors persist in the updates,

this theorem shows how the errors are accumulated after each iteration. As a general result, one

can further optimize over λ1, λ2, and λ3 to obtain maximal δ and minimal P to achieve fastest

convergence and least impact from the errors.

Theorem 5.3. Choose 0 < β ≤
b(1+δ)σ2

min(L+)
(

1− 1
λ4

)
4bσ2

min(L+)
(

1− 1
λ4

)
+16σ2

max(W)
where b > 0 and λ4 > 1, then

‖zk − z∗‖2
2 ≤ Bk

(
A+

k∑
s=1

B−sC‖es‖2
2

)

where A = ‖z0 − z∗‖2
2 + A2‖r0 − r∗‖2

2 with A2 = 4
(1+4β)σ2

max(L+)
, and B = (1+4β)σ2

max(L+)

(1−b)(1+δ−4β)σ2
min(L+)

,

C = 4P+2/β

c2(1−b)(1+δ−4β)σ2
min(L+)

+ b(λ4−1)
1−b .

Proof. See Appendix A.11.

Theorem 5.3 presents a general convergence result for ADMM for decentralized consensus

optimization with errors, and indicates that the erroneous update zk approaches the neighborhood

of the minimizer in a linear fashion. The radius of the neighborhood is given asBk
k∑
s=1

B−sC‖es‖2
2.

Note that B is not guaranteed to be less than 1. This is very different from the convergence result

of ADMM for decentralized consensus optimization [101], which can guarantee that the update

converges to the minimizer linearly fast and the corresponding rate is less than 1. Additionally, if

σ2
max(L+) >> σ2

min(L−), and it ends up with B being greater than 1, then the algorithm might not

converge at all. We show later in the experiments that the ADMM algorithm can indeed diverge.

Thus, the first problem that follows is to guarantee that B is within the range (0, 1), and the

second one is to minimize the radius of the neighborhood by minimizing C. Accordingly, we

optimize over the variables that appeared in the above theorems and the algorithm parameter c,

and give the convergence result with B ∈ (0, 1) in the following theorem.



89

Theorem 5.4. If b and λ2 can be chosen, such that

(1− b)(1 + δ)σ2
min(L+) > σ2

max(L+) (5.8)

with δ = (λ2−1)
λ2

2vσ2
min(Q)σ2

min(L+)

L2σ2
min(L+)+2vσ2

max(L+)
, then the ADMM algorithm with a parameter c =

√
λ1λ2(λ3−1)L2

λ3(λ2−1)σ2
max(L+)σ2

min(Q)

converges linearly with a rate of B ∈ (0, 1), to the neighborhood of the minimizer where λ1 =

1 + 2vσ2
max(L+)

L2σ2
min(L+)

, λ3 = 1 +
√

L2σ2
min(L+)+2vσ2

max(L+)

βλ1L2vσ2
min(L+)

and

0 < β ≤ min

 b(1 + δ)σ2
min(L+)

(
1− 1

λ4

)
4bσ2

min(L+)
(

1− 1
λ4

)
+ 16σ2

max(W)
,

(1− b)(1 + δ)σ2
min(L+)− σ2

max(L+)

4σ2
max(L+) + 4(1− b)σ2

min(L+)

}
.

Proof. See Appendix A.12.

Theorem 5.4 provides an optimal set of choices of variables and the algorithm parameter such

that B ∈ (0, 1) and C is minimized in Theorem 5.3. Recalling condition (5.8), it is equivalent to

σ2
min(L+)

σ2
max(L+)

>
4v√

(L2 + 2v)2 + 16v2 λ2−1
λ2

σ2
min(Q)− L2 + 2v

. (5.9)

As the only condition for the convergence, we show in our experiments that it can be easily satis-

fied.

Remark 5.1. The value of σ2
min(L+)

σ2
max(L+)

, which corresponds to the network structure, has to be greater

than a certain threshold such that B ∈ (0, 1) can be achieved. This shows that a decentralized

network with a random structure may not converge at all to the neighborhood of the minimizer, in

the presence of errors in iteration.

Remark 5.2. The right hand side of inequality (5.9) is upper bounded by 4v
(
√

2−1)L2+(2
√

2+2)v
, which

depends on the geometric properties of the cost function. There exists a certain class of cost

functions (e.g., v is small, L is large), such that a more flexible network structure design is allowed

for a linear convergence to the neighborhood of the minimizer.
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Corollary 5.1. When (5.9) is satisfied, the first condition below achieves linear convergence to

the neighborhood of the minimizer with a radius of Ce
1−B , and either of the last two conditions

guarantees linear convergence to the minimizer

• ‖ek−1‖2
2 ≤ e

• ‖ek‖2
2 decreases linearly at a rate R such that 0 < R < B

• C‖ek‖2
2 ≤ B(A1 − A2)‖rk−1 − r∗‖2

2 with A1 = 4
(1−b)σ2

min(L+)

Proof. See Appendix A.13.

The first result in Corollary 5.1 simply states that if the error at every iteration is bounded, then

the algorithm will approach the bounded neighborhood of the minimizer, and the second result

states that if the error in the update decays faster than the distance between the update and the

minimizer ‖zk − z∗‖2
2, then the algorithm will reach the minimizer at a linear rate. The third

result provides a much more general condition for convergence to the minimizer, which gives an

upper bound for the current error based on the past errors, such that the network can tolerate the

accumulated errors and the convergence to the minimizer can still be guaranteed.

5.4 Robust Decentralized ADMM Algorithm (ROAD)

Based upon insights provided by our theoretical results in Section 5.3, we investigate the design of

the robust ADMM algorithm which can tolerate the errors in the ADMM updates. We focus on the

scenario where a fraction of the agents generate erroneous updates. The remaining agents in the

network follow the protocol and generate true updates, which are referred to as reliable agents2 in

this thesis. We refer to our proposed robust ADMM algorithm as “ROAD” (Algorithm 1).

2We also assume that reliable neighbors are in a majority for each agent i in the network.
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Algorithm 2 ROAD(x0, c, α0, T, U )

1: function f =
D∑
i=1

fi(x)

2: Initialization: x0 = 0, c, α0 = 0, T , U
3: for k = 1 to T do
4: For the node i :
5: if

∑k
t=1 ‖xti − xtj‖ > U , j ∈ Ni, then

6: Replace xkj with xki in current update (5.4)
7: else
8: Use xkj in current update (5.4)
9: end if

10: end for
11: Output xT

12: end function

Lemma 5.1. In the error-free case, starting from x0 = 0, we have

1

T

T∑
k=1

‖Qxk‖ ≤ 1

4T

(
σmax(L+)V 2

1 +
2V 2

2

σmin(L−)c2
+ 4

)
. (5.10)

To explain the idea behind ROAD, let us define two crucial variables used in the algorithm: I)

deviation statisticsZ(k) =
∑k

t=1 ‖Qzt‖, and II) thresholdU =
(
σmax(L+)V 2

1 +
2V 2

2

σmin(L−)c2
+ 4
)
/2
√

2.

The deviation statistics accumulates agents’ update deviation from each other over ADMM it-

erations. Next, we obtain an upper bound on the deviation statistics for the error-free case.

Specifically, if there were no errors in the updates from the neighbors, we show in Lemma 5.1

that Z(k) ≤ U/
√

2. This upper bound U serves as a threshold to identify unreliable agents.

Note that Z(k) = 1√
2

∑k
t=1

∑
(i,j)∈V ‖zki − zkj‖, thus, we have 1√

2

∑k
t=1 ‖zki − zkj‖ ≤ Z(k) ≤

U/
√

2, ∀(i, j) ∈ V . Inspired by this relationship, each agent i maintains the local deviation

statistics
∑k

t=1 ‖zki − zkj‖ for every neighboring agent j ∈ Ni and compares it with the threshold

U to identify if neighboring agent j is providing erroneous updates. For a reliable node j, the

statistic
∑k

t=1 ‖zti − ztj‖ will not exceed the threshold U . If the statistic
∑k

t=1 ‖zti − ztj‖ exceeds

the threshold U , the neighboring agent j is labeled as unreliable and its update is not be used by

agent i. To avoid network disconnection in the case of unreliable neighbors, the link {i, j} would

not be cut off, however, the update from j will be replaced by node i’s own value. Next, we show
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in Theorem 5.5 that the proposed ROAD algorithm converges to the optimum at a rate of O(1/T ).

Theorem 5.5. For convex function f(x), there exists p =

 r

x∗

 with r = 0, and ROAD provides

f(x̂T )− f(x∗) ≤ 1

T

(
‖p0 − p‖2

G + 8c
σ2

max(L+)

σ2
min(L−)

E2U2

)
(5.11)

where x̂T =
∑T

k=1 xk/T , and U =
(
σmax(L+)V 2

1 +
2V 2

2

σmin(L−)c2
+ 4
)
/2
√

2.

Proof. See Appendix A.16.

Theorem 5 shows that the ROAD achieves a sub-linear convergence rate of O(1/T ). Note that

to account for the thresholding operation in ROAD, the upper bound in (10) introduces an addi-

tional term 8cσ
2
max(L+)

σ2
min(L−)

E2U2. ROAD still falls under the formulation in (4) and follows the general

analysis framework considered in this thesis. In the next section, we will also show empirically

that employing the algorithmic parameter c derived in Theorem 4 accelerates the convergence rate

of ROAD.

5.5 Experimental Results

Fig. 5.1: Decentralized network topology.
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In this section, we use ROAD to solve two different decentralized consensus optimization prob-

lems with D = 10 agents. We provide the network topology for the experiments in Figure 5.5.

We assume that there are 3 unreliable agents (chosen randomly) in the network. Unreliable agents

introduce errors in their updates by adding Gaussian noise3 with mean µb and variance σ2
b .

Consider a binary classification problem with a support vector machine, and the local cost

function is

fi(wi, bi) =
1

2
‖wi‖2

2 + C
N∑
j=1

max(0, 1− yj(wT
i xj + bi)).

5.5.1 Synthetic Data

Here, the training set with N = 1000 sample points is equally partitioned across 10 agents. For

each training point {xj, yj}, xj ∈ R2 is the feature vector, and yj ∈ {−1, 1} is the corresponding

label. We assume that xj follows a normal distributionN ([2.8, 2.8]T , I) when yj = 1, andN (0, I)

when yj = −1, respectively. Locally, the training data is evenly composed of samples from two

different distributions. In our experiment, each agent updates{w, b}, and the whole network tries

to reach a final consensus on a globally optimal solution. We choose the regularization parameter

c = 0.35 in our experiment.We model the error injected by unreliable agents with distribution

N (0, 1.52).

In Figure 5.5(a), we present the objective function value against the number of iterations for

different algorithms. We observe that in the absence of unreliable agents, the original ADMM

algorithm converges quickly and there are no function value fluctuations. When unreliable agents

provide erroneous updates, ADMM algorithm diverges from the minimizer significantly. We can

see that when the noise intensity µb is larger, the size of the neighborhood is larger. On the other

hand, when ROAD is employed, we observe that the algorithm converges to the minimizer which

corroborates our theoretical results in Theorem 5.

We show the classification results by depicting the hyperplane (wTx + b = 0) in Figure 5.5(b).

3Note that our theoretical analysis and the proposed mitigation scheme (ROAD) do not assume that the error is of
any parametric structure and are applicable to any arbitrary type of error.
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(a)

(b)

Fig. 5.2: (a) Performance comparison with different noise intensities. (b) Classification with
unreliable agents.
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When there are unreliable agents, the algorithm learns an “incorrect” classifier as is shown by

the red line. By using ROAD, we obtain a classifier which is almost the same as the case where

there are no unreliable agents. The slight difference arises because the algorithms stop after the

same number of iterations in our experiments, thus, ROAD does not achieve the same accuracy as

error-free ADMM.

5.5.2 MNIST Dataset

MNIST is a dataset that contains 60000 training images and 10000 testing images of hand written

digits. Each image is fit into a 28x28 pixel bounding box, making its dimension 784 for an individ-

ual sample. We extract the data samples of digits “1” and “5” for binary classification. To better

visualize the result, we first use a deep neural net of autoencoder for mapping the 784-dimensional

samples into 2-dimensional points as is shown in Figure 5.3.

Again, we run the decentralized ADMM algorithm to optimize the cost function for the classi-

fier of the support vector machine. As is shown in Figure 5.3, when there are no unreliable agents

in the network, the original ADMM algorithm gives a “sane” classifier inidcated by the blue line.

However, when there are unreliable agents in the network, the original ADMM algorithm again

gives an “insane” classifier inidcated by the green line. On the contrary, in the presence of unre-

liable agents in the network, the proposed robust scheme obtains a classification result as good as

the case where there are no unreliable agents.

5.6 Summary

We considered the problem of decentralized learning using ADMM in the presence of unreliable

agents. We studied the convergence behavior of the decentralized ADMM algorithm and showed

that the ADMM algorithm converges to a neighborhood of the solution under certain conditions.

We suggested guidelines for network structure design to achieve faster convergence. We also gave

several conditions on the errors to obtain exact convergence to the solution. A robust variant of



96

Fig. 5.3: Classification with 2-dimensional MNIST digits (1 and 5).

the ADMM algorithm was proposed to enable decentralized learning in the presence of unreliable

agents and its convergence to the optima was proved. We also provided experimental results to

validate the analysis and showed the effectiveness of the proposed robust scheme. We assumed the

convexity of the cost function, and one might follow our lines of analysis for non-convex functions.

Extension of the analysis and the algorithm to an asynchronous setting can also be considered.
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CHAPTER 6

CLASSIFICATION: FUNDAMENTAL LIMITS

6.1 Introduction

Information theory was largely developed in the context of communication systems, where it plays

an important role in characterizing performance limits. However, another important area where

information theory has proved useful is in statistical inference, e.g., hypothesis testing, which is

equivalent to statistical classification. We use the terms hypothesis testing and classification in-

terchangeably in this chapter. For parametric hypothesis testing problems, information theoretic

tools such as joint typicality, the equipartition property, and Sanov’s theorem have been developed

to characterize the error exponent [22,23,34]. Information theory has also been applied to investi-

gate a class of parametric hypothesis testing problems [40, 41], where correlated data samples are

observed over multiple terminals and data compression needs to be carried out in a decentralized

manner. Additionally, information theory has also been applied to solve nonparametric hypothesis

testing problems under the Neyman-Pearson framework [39, 66].

In this chapter, we apply information theoretic tools to study the nonparametric hypothesis

testing problem, but with a focus on the average error probability instead of the Neyman-Pearson

formulation. We address a more general scenario, where each hypothesis corresponds to a cluster

of distributions. Such a nonparametric problem has not been thoroughly explored in the litera-
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ture. We develop two nonparametric tests based respectively on the maximum mean discrepancy

(MMD) and the Kolmogorov-Smirnov (KS) distance, and characterize the exponential error decay

rate for these tests. Furthermore, in contrast to previous works where the number of hypotheses is

assumed fixed, we study the regime where the number of hypotheses scales along with the sample

size. This is analogous to the information theoretic channel coding problem where the number of

messages scales along with the codeword length. Hence, in our study, information theory not only

provides a technical tool to analyze the performance, but also provides an asymptotic perspective

for understanding nonparametric hypothesis testing problems in the regime where the number of

hypotheses is large, i.e., in the large-hypothesis large-sample regime.

More specifically, this chapter assumes that there are M hypotheses, each corresponding to

a cluster of distributions, which are unknown. During the training phase, sequences of length-n

training data samples generated by each distribution are available. The more general case with the

training data sequences having different lengths is discussed in Section 6.3.4. Then, during the

testing phase, a length n data stream is observed, consisting of samples generated by one of the

distributions. The goal is to determine the cluster that contains the distribution that generated the

observed test sequence. We are interested in the large-hypothesis regime, in which M = 2nD, i.e.,

the number of hypotheses scales exponentially in the number of samples with a constant rate D.

The analogy to the channel coding problem [22] is now apparent where the exponent represents

the transmission rate, i.e., the transmitted bits per channel use, for the channel coding problem,

here D represents the number of hypothesis bits that can be distinguished per observation sample.

Correspondingly, we refer to D as the discrimination rate, and the largest such value is referred

to as the discrimination capacity. The notion of discrimination capacity provides the fundamental

performance limit for the hypothesis testing problem in the large-hypothesis and large-sample

regime.

This chapter makes the following major contributions. First, we provide an asymptotic view-

point to understand the nonparametric hypothesis testing problem in the regime where the number

of hypotheses scales exponentially in the sample size. Based on its connection to the channel cod-
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ing problem, we introduce the notions of the discrimination rate and the discrimination capacity

as the performance metrics in such an asymptotic regime. Second, we develop two nonparamet-

ric approaches that are based respectively on the maximum mean discrepancy (MMD) and the

Kolmogorov-Smirnov (KS) distance. For both tests, we derive the error exponents and the dis-

crimination rates. Our results show that as long as the number M of hypotheses does not scale too

fast, i.e., the scaling (discrimination) exponent is less than a certain threshold, the derived tests are

exponentially consistent. For each algorithm, the proof of its discrimination rate is similar to the

achievability proof in channel coding. Finally, we also derive an upper bound on the discrimination

capacity, which serves as an upper limit beyond which exponential consistency cannot be achieved

by any nonparametric composite hypothesis testing rule. This upper bound is based on the Fano

minimax method, and is similar to the converse proof used in channel coding.

6.1.1 Related Work

Quite a few recent studies have applied various notions in information theory for studying hy-

pothesis testing problems. A minimax approach for multi-hypothesis testing, where the goal is to

minimize the worst-case expected loss function over a certain set of probability distributions was

developed in [31]. The designed classification rules are expected to be robust over datasets gener-

ated by any probability distribution in the set. A classification problem, where the observation is

obtained via a linear mapping of a vector input was studied in [83]. The notion of classification

capacity was proposed, which is similar to the discrimination capacity we propose. However, the

results in [83] are derived under the Gaussian model, whereas our formulation does not assume

any specific distributions and is hence much more general. Furthermore, a parametric setting is

implicitly assumed in [83], whereas our focus is on the nonparametric problem. A connection

between the hypothesis testing problems and channel coding was established in [83], whereas in

this paper we focus on the asymptotic case where the number of classes can grow exponentially

large. A supervised learning problem, where the joint distribution of the data sample and its label

is assumed to be known but with an unknown parameter, was studied in [84]. A classifier was
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proposed and the corresponding performance was analyzed. The connection of the problem to

rate-distortion theory was explored. There are several key differences between the work in [84]

and our study. There is no notion of discrimination rate in [84], and the performance is not defined

in terms of the asymptotic classification error probability. Additionally, our study does not assume

any joint distribution of both the data sample and its label.

6.2 Problem Formulation

In this section, we first describe our composite nonparametric hypothesis model, and then connect

it to the channel coding problem, which motivates several information theory related definitions

that we will use to characterize system performance. For ease of readability, we also give prelimi-

naries on the parametric hypothesis testing problem.

6.2.1 Classification as Nonparametric Hypothesis Testing

Consider the following nonparametric hypothesis testing problem with composite distributions.

Suppose there are M hypotheses, and each hypothesis corresponds to a set Pm of distributions for

m = 1, . . . ,M . For a given distance measure d(p, q) between two probability distributions p and

q, define

d(Pm) := sup
pi,pi′∈Pm

d(pi, pi′),

d(Pm,Pm′) := inf
pi∈Pm,pi′∈Pm′

d(pi, pi′) for m 6= m′.

(6.1)

Hence, d(Pm) represents the diameter of the m-th distribution set and d(Pm,Pm′) represents the

inter-set distance between the mth and the m′th sets.

We assume that
lim sup
M→∞

sup
m=1,...,M

d(Pm) < DI ,

lim inf
M→∞

inf
m,m′=1,...,M

m6=m′

d(Pm,Pm′) > DO,
(6.2)

where DI < DO. That is, the intra-set distance (diameter) is always smaller than the inter-set
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distance for the composite hypothesis testing problem. The actual values of DI and DO depend

on the distance metrics used. Furthermore, lim sup
M→∞

and lim inf
M→∞

in (6.2) require that the conditions

hold in the limit of asymptotically large M , i.e., the limit taken over the sequences of distribution

clusters. We study the case where none of the distributions in the sets Pm for m = 1, . . . ,M are

known. Instead, for m = 1, . . . ,M , we assume that each distribution pm,im ∈ Pm, where im ∈

IMm
1 = {1, 2, . . . ,Mm} is the index of the distribution, generates one training sequence xm,im ∈

Rn consisting of n independently and identically distributed (i.i.d.) scalar training samples. We

use Xm to denote all training sequences generated by the distributions in Pm. We assume that a

test sequence y ∈ Rn of n i.i.d. scalar samples is generated by one of the distributions in one of

the sets Pm. The goal is to determine the hypothesis that the test sequence y belongs to, i.e., which

set contains the distribution that generated y.

A practical example of the considered problem involves nonparametric detection of micro-

Doppler modulated radar returns, such as those which occur in a ground moving target indicator

(GMTI) radar [103]. The micro-Doppler motion of a particular target generates a specific sideband

structure, which varies within a distributional radius as the fundamental frequency of the target’s

micro motion changes, i.e., DI . The difference between the fundamental sideband structure of the

micro-Doppler modulations for different target types implies a distributional difference, i.e., DO.

This problem is clearly composite (based on an unknown fundamental modulation frequency), and

a parametric realization is in many cases impractical as the specific physics of the movement can

be very difficult to model in a closed form.

Let δ({Xm}Mm=1,y) denote a test based on the given data. Then, the error probability for δ is

defined as

Pe =
M∑

m0=1

P

(
δ({Xm}Mm=1,y) 6= m0

∣∣y ∼ pm0,j ∈ Pm0

)
· P (m0), (6.3)

where P (m0) is the a priori probability that y is drawn from the m0-th set of distributions.

For the above M -ary hypothesis testing problem, we are interested in the regime, in which the
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number M of hypotheses scales with the number of samples. In particular, we assume M = 2nD,

where the parameter D captures how fast M scales with n. We refer to D as the discrimination

rate.

Definition 6.1. We say that the discrimination rate D is achievable, if there exists a classification

rule δ such that the probability of error converges to zero as the number n of observation samples

converges to infinity.

For a given composite hypothesis testing problem, we define the largest possible discrimination

rate, D, to be the discrimination capacity, and denote it as D̄.

6.2.2 Connection to the Channel Coding Problem

Next, we discuss the connection between the asymptotic regime of the hypothesis testing problem

and the channel coding problem studied in communications, which in fact motivated our definition

of the discrimination rate and the discrimination capacity.

In the channel coding problem (see Figure 6.1(a)), assume there areM = {1, . . . , 2nR} mes-

sages to be transmitted with equal probability. An encoder maps each messagem ∈M one-to-one

onto a length-n codeword ynm = {ym1, . . . , ymn}, which is transmitted over the channel. The chan-

nel maps each input symbol to an output symbol in a discrete memoryless fashion with the transi-

tion probability PX|Y (x|y) for each channel use, and the corresponding output sequence is given

by xn = {x1, . . . , xn}. A decoder then estimates the original message as m̂ based on the output

sequence. Essentially, in the channel coding problem, there are a total of M possible conditional

distributions pm(xn) = PX|Y (xn|ynm) given ynm, where m = 1, . . . ,M , and the decoder determines

which distribution p∗ ∈ {p1, . . . , pM} most probably generated the observed channel output xn.

The decoding process of the channel coding problem described above is a hypothesis testing

problem. Inspired by the channel coding problem, our total number of hypotheses corresponds to

the total number of messages in channel coding, and the discrimination rate D we define corre-

sponds to the communication rate R in channel coding, which represents the transmitted message
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(a) An illustration of the channel coding problem.

(b) An illustration of the multiple hypothesis testing problem.

Fig. 6.1: Illustrations of the channel coding problem and the multiple hypothesis testing problem

bits per coded symbol. By analogy, the discrimination rate D can be interpreted as the number of

class-bits that can be distinguished per observation sample. Similarly, the discrimination capacity

D̄ corresponds to the capacity in channel coding, and serves as the fundamental limit in hypothesis

testing problems. Note that in channel coding, the transmitter can choose to shape the distributions

of transmitted symbols. Here, the hypothesis testing problem corresponds to the case where the

distributions remain unshaped.

Essentially, Shannon’s channel coding theorem guarantees error-free transmission of an ex-

ponentially increasing number of messages provided that the transmission rate R is less than the

channel capacity C. In other words, Shannon’s theorem implies that codewords {yn} can be de-

signed such that exponentially increasing number of conditional probability distributions can be

distinguished given the channel output. Here, for the hypothesis testing problem, channel coding

motivates us to investigate the following problems:

• Which tests distinguish an exponentially increasing number of hypotheses with asymptoti-

cally small error probability based on n observation samples?

• What are the corresponding discrimination rates?

6.2.3 Preliminaries on Parametric Hypothesis Testing

The aforementioned questions can be answered for the parametric hypothesis testing problem in

the asymptotic regime based on existing studies, e.g., [22]. We explain this in detail for single
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distributions below as preliminary material before we delve into the main focus of this thesis on

the nonparametric composite hypothesis testing problem.

Consider the parametric hypothesis testing problem, where there are M = 2nD known distinct

distributions p1, ..., pM corresponding respectively to M hypotheses. Given a test sequence y

consisting of n i.i.d. samples generated from one of these distributions, the goal is to determine the

true hypothesis, i.e., which distribution pi generated the test sequence.

We apply the likelihood test given by:

δ(y) = arg max
i
PX|Hi(y) (6.4)

where the test labels the observed test data as hypothesis i if pi generates y with the largest

probability. It can be shown [22] that the likelihood test in (6.4) is equivalently given by

δ(y) = arg min
i
DKL(γ(y)‖pi), (6.5)

where DKL(·‖·) is the KLD between two distributions, and γ(·) is the empirical distribution of

the sequence. It suggests that the testing rule labels the test data as hypothesis i if the empirical

distribution of the test data is closest to pi in KLD.

We next analyze the average error probability of the above testing rule as follows.

Pe=
1

M

2nD∑
j=1

P (δ(y) 6= j|Hj)=
1

M

2nD∑
j=1

P (∃ i 6= j s.t. E1|Hj)

≤ 1

M

2nD∑
j=1

∑
i,i 6=j

P (E1|Hj)=
1

M

2nD∑
j=1

∑
i,i 6=j

exp{−nC(pi, pj)}

≤ 2
nD−n log e lim inf

M→∞
min

1≤i,j≤M
C(pi,pj)

, (6.6)
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where C(pi, pj) denotes the Chernoff distance

C(pi, pj) = max
0≤t≤1

− log

∫
[pi(p)]

1−t[pj(p)]
tdp, (6.7)

and E1 denotes the event that givenHj , the KLD between y and pj is greater than the KLD between

y and pi for some i 6= j, i.e., for i 6= j, DKL(γ(y)‖pi) < DKL(γ(y)‖pj). Note that for simplicity,

the default base for log in this chapter is 2. Thus, if D ≤ log e lim inf
M→∞

min
1≤i,j≤M

C(pi, pj), then

the error probability is asymptotically small as n goes to infinity, which proves the following

proposition.

Proposition 6.1. For the parametric multiple hypothesis testing problem, the discrimination rate

D is achievable if

D ≤ log e lim inf
M→∞

min
1≤i,j≤M

C(pi, pj).

Hence, for the discrimination rate to be positive, we require that the smallest pairwise Chernoff

information be bounded away from zero for asymptotically large M , i.e., the limit taken over the

sequences of distribution clusters.

6.3 Main Results

In this section, we obtain the performance bounds for the nonparametric hypothesis testing prob-

lem, with two different distance measures, i.e., MMD and KS distance.

6.3.1 MMD-Based Test

We construct a nonparametric test based on the MMD between two distributions p and q [35]

defined as

MMD2(p, q) := ‖µp − µq‖H. (6.8)
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where µp(·) maps a distribution p into an element in a reproducing kernel Hilbert space (RKHS)

associated with a kernel k(·, ·) as

µp(·) = Ep[k(·, x)] =

∫
k(·, x)dp(x). (6.9)

An unbiased estimator of (6.8) based on n samples of x = {x1, . . . , xn} generated by distribution

p and m samples of y = {y1, . . . , ym} generated by distribution q, is [35]:

MMD2(x,y)=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi, xj)

+
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj). (6.10)

Note that xi, yi ∈ Rd, and the dimension d ≥ 1.

We employ the MMD to measure the distance between the test sequence and the training se-

quences, and declare the hypothesis of the test sequence to be the same as the training sequence

that has the smallest MMD to the test sequence. The constructed MMD-based nonparametric

composite hypothesis test is given by

δMMD({Xm}Mm=1,y) = arg min
m,im

MMD2(xm,im ,y). (6.11)

The following theorem characterizes the average probability of error performance of the pro-

posed MMD-based test under composite distributions.

Theorem 6.1. Suppose the MMD-based test in (6.11) is applied to the nonparametric composite

hypothesis testing problem under assumption (6.2), where the kernel satisfies 0 ≤ k(x, y) ≤ K for

all (x, y). Then, the average probability of error is upper bounded as

Pe ≤ 2nD exp

(
−n(DO −DI)

2

96K2

)
.
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Thus, the achievable discrimination rate is

D =
log e

96K2
(DO −DI)

2. (6.12)

Proof. See Appendix A.17.

Next, we study a special case where each hypothesis is associated with a single distribution,

i.e., the m-th hypothesis is associated with only one distribution pm, m = 1, . . . ,M . Then, we

have the following corollary.

Corollary 6.1. Suppose the MMD-based test is applied to the nonparametric hypothesis testing

problem under assumption (6.2), and each hypothesis is associated with a single distribution,

where the kernel satisfies 0 ≤ k(x, y) ≤ K for all (x, y). Then, the average probability of error

under equally probable hypotheses is upper bounded as

Pe ≤ 2
nD−n log e

96K2 lim inf
M→∞

min
1≤i,j≤M

MMD4(pi,pj)
. (6.13)

Thus, the achievable discrimination rate is

D =
log e

96K2
lim inf
M→∞

min
1≤i,j≤M

MMD4(pi, pj). (6.14)

Note that, for the discrimination rate to be positive, we require the smallest pairwise MMD

between the distributions to be bounded away from zero for asymptotically large M , where the

limit is taken over the sequences of distribution clusters.

Proof. By Theorem 6.1, we set DI = 0 and DO = lim inf
M→∞

min
1≤i,j≤M

MMD2(pi, pj). Therefore, we
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can bound the probability of error as the number of classes scales according to M = 2nD

Pe ≤M exp

−nlim inf
M→∞

min
1≤i,j≤M

MMD4(pi, pj)

96K2


≤ 2

nD−n log e

96K2 lim inf
M→∞

min
1≤i,j≤M

MMD4(pi,pj)
. (6.15)

Then, it is straightforward to obtain the achievable discrimination rate for the MMD test as

D =
log e

96K2
lim inf
M→∞

min
1≤i,j≤M

MMD4(pi, pj). (6.16)

6.3.2 Kolmogorov-Smirnov Test

In this section, we construct a nonparametric hypothesis testing test based on the KS distance

defined as follows. Suppose x = {x1, . . . , xn}, and i.i.d. samples xi ∈ R, are generated by the

distribution p. Then the empirical CDF of p is given by

Fx(a) =
1

n

n∑
i=1

1[−∞,a](xi), (6.17)

where 1[−∞,x] is the indicator function. The KS distance between x and y having respectively

been generated by p and q is defined as

DKS(x,y) = sup
a∈R
|Fx(a)− Fy(a)|. (6.18)
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We construct the following KS based nonparametric composite hypothesis test

δKS({Xm}Mm=1,y) = arg min
m,im

DKS(xm,im ,y), (6.19)

The following theorem characterizes the performance of the proposed KS-based test.

Theorem 6.2. Suppose the KS-based test in (6.19) is applied to the nonparametric hypothesis

testing problem under assumption (6.2). Then, the average probability of error is upper bounded

as

Pe ≤ 6 · 2nD exp
(
− n(DO −DI)

2

8

)
.

Thus, the achievable discrimination rate is

D =
log e

8
(DO −DI)

2. (6.20)

Proof. See Appendix A.18.

Consider the case where each hypothesis is associated with a single distribution, and we have

the following corollary.

Corollary 6.2. Suppose the KS-based test is applied to the nonparametric hypothesis testing prob-

lem under assumption (6.2), and each hypothesis is associated with a single distribution. Then, the

average probability of error under equally probable hypotheses is upper bounded as

Pe ≤ 6 · 2
nD−n log e

8
lim inf
M→∞

min
1≤i,j≤M

d2KS(pi,pj)
. (6.21)

Thus, the achievable discrimination rate is

D =
log e

8
lim inf
M→∞

min
1≤i,j≤M

d2
KS(pi, pj). (6.22)

Hence, for the discrimination rate to be positive, we require the least pairwise KS distance
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between distributions to be bounded away from zero for asymptotically large M , where the limit

is taken over the sequences of distribution clusters.

Proof. By Theorem 6.2, we set DI = 0 and DO = lim inf
M→∞

min
1≤i,j≤M

dKS(pi, pj), and have

Pe ≤ 6 · 2nD−n
log e
8
D2
o ≤ 6 · 2

nD−n log e
8

lim inf
M→∞

min
1≤i,j≤M

d2KS(pi,pj)
.

Then, it is straightforward to obtain the achievable discrimination rate for the KS test.

6.3.3 Upper Bound on the Discrimination Capacity

In this section, we provide an upper bound on the discrimination capacity for the composite hy-

pothesis testing problem. Let h be a random index representing the actual hypothesis that occurs.

We assume that h is uniformly distributed over the M hypotheses, and h′ has the same distribution

as m, but is independent from h. Then, Lemma 2.10 in [110] directly yields the following upper

bound on the discrimination capacity D̄.

Remark 6.1. The discrimination capacity D̄ is upper bounded as

D̄ ≤ lim sup
M→∞

Eh,h′DKL(ph‖ph′), (6.23)

where DKL(·‖·) is the KLD between two distributions.

Note that the above limit lim supM→∞ is taken over the sequences of distribution clusters. In

Appendix A.19, we provide an alternative but simpler proof based on Fano’s inequality for the

above upper bound, which is closely related to the proposed concept of discrimination capacity.

6.3.4 Training Sequences of Unequal Length

In this subsection, we discuss the impact of different number of training samples in different classes

on the probability of error and the discrimination rate. Here, we still assume that there are n test
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samples. To keep the problem formulation meaningful, we assume that the number M of classes

increases exponentially with n at a rate D, i.e., M = 2nD. To avoid notational confusion, we

use the non-composite case, i.e., with each class corresponding to one distribution, to illustrate

the idea. Suppose that each class, i.e., each distribution, generates γm(n) training samples, for

m = 1, . . . ,M , where γm(n) represents the number of samples in the m-th class (as a function

of n). Let γmin(n) = min1≤m≤M γm(n). In particular, for the MMD-based test, the probability of

error can be bounded as

Pe ≤ 2
n

(
D−min{1, γmin(n)

n
} log e(DO−DI )

2

96K2

)
. (6.24)

For the KS-based test, the probability of error can be bounded as

Pe ≤ 6 · 2
n

(
D−min{1, γmin(n)

n
} log e(DO−DI )

2

8

)
. (6.25)

It can be seen that here the ratio γmin(n)
n

plays an important role in determining the error exponent

asymptotically. For example, for the MMD-based test, if the ratio converges to zero for large n,

i.e., the shortest training length γmin(n) scales as an order-level slower than the test length, then

there is no guarantee of exponential error decay, and the discrimination rate equals zero. On the

other hand, if limn→∞
γmin(n)

n
= c with 0 < c < 1, then the discrimination rate D = c log e(DO−DI)2

96K2 .

Furthermore, if limn→∞
γmin(n)

n
= c with c ≥ 1, then the discrimination rate D = log e(DO−DI)2

96K2 . A

sketch of the proof of (6.24) and (6.25) can be found in Appendix A.20

6.4 Numerical Results

In this section, we present numerical results to compare the performance of the proposed tests. In

the experiment, the number of classes is set to be five, and the error probability versus the number

of samples for the proposed algorithms is plotted. For the MMD based test, we use the standard

Gaussian kernel given by k(x, x′) = exp(−‖x−x
′‖2

2
).
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Fig. 6.2: Error probabilities of different hypothesis testing algorithms for Gaussian distributions
with different means.
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Fig. 6.3: Error probabilities of different hypothesis testing algorithms for Gaussian distributions
with different variances.

In the first experiment, all the hypotheses correspond to Gaussian distributions with the same

variance σ2 = 1 but different mean values µ = {−2,−1, 0, 1, 2}. A training sequence is drawn

from each distribution and a test sequence is randomly generated from one of the five distribu-

tions. The sample size of each sequence ranges from 5 to 45. A total of 105 monte carlo runs

are conducted. The simulation results are given in Figure 6.2. It can be seen that all the tests

give better performance as the sample size n increases. We can also see that the MMD-based test

slightly outperforms the KS-based test. We also provide results for the parametric likelihood test
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as a lower bound on the probability of error for performance comparison. It can be seen that the

performance of the two nonparametric tests are close to the parametric likelihood test even with a

moderate number of samples.

In the second experiment, all the hypotheses correspond to Gaussian distributions with the

same mean µ = 1 but different variance values σ2 = {0.52, 12, 1.52, 22, 2.52}. The simulation

results are given in Fig. 6.3. In this experiment, the MMD-based test yields the worst performance,

which suggests that this method is not suitable when the distributions overlap substantially with

each other. The two simulation results also suggest that none of the three tests perform the best

universally over all distributions. Although there is a gap between the performance of MMD and

KS tests and that of the parametric likelihood test, we observe that the error decay rates of these

tests are still close.

To show the tightness of the bounds derived in the paper, we provide a table (See Table I) of

error decay exponents (and thus the discrimination rates) for different algorithms.

0.6
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Fig. 6.4: Error probabilities for different hypothesis testing algorithms for Gaussian distributions
with different means.

Estimates of error decay exponent of KS and MMD based tests on a multi-hypothesis testing

problem are presented for the problem considered in the first experiment. Note that the theoretical

lower bounds in the table correspond to the achievable discrimination rates of the methods asymp-

totically. Fano’s bound (FB in the table) is estimated by using data-dependent partition estimators
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of Kullback-Leibler divergence [120]. The parametric upper bound is based on the maximum like-

lihood test, which can serve as an upper bound on the error decay exponent (and hence intuitively

on the discrimination capacity). It can be seen from the table that both the KS and MMD tests do

achieve an exponential error decay and have positive discrimination rates as we show in our theo-

rems. Clearly, the empirical values of the bounds for both tests are better than the corresponding

theoretical values. More importantly, both of the empirical lower bounds are close to the likelihood

upper bound, demonstrating that the actual performance of the two tests are satisfactory. We also

note that the Fano’s upper bound is not very close to the lower bound.

Table 6.1: Comparison of Bounds
Lower Bounds Upper Bounds
KS MMD Parametric FB

Empirical 0.0897 0.0916 0.146 2.5
Theoretical 0.0183 0.0071 0.125 -

To better illustrate the bounds in Table I, we provide experimental results with different number

of hypotheses M in Figure 4. In particular, we present the simulation results with M = 5, 10, 15.

We use a similar experiment setting as that in the first experiment, where Gaussian distributions

have the same variance and different mean values, and the mean values are {−2,−1, . . . , 2},

{−4.5,−3.5, . . . , 4.5} and {−7,−6, . . . , 7} respectively. The parametric maximum likelihood

test serves as an upper bound for the error decay exponent for all of the three cases. Similar to

the case M = 5, KS and MMD nonparametric tests achieve an exponential error decay and hence

the positive discrimination rates for the cases M = 10 and M = 15.

We now conduct experiments with composite distributions. First, we still use five hypotheses

with Gaussian distributions with variance σ2 = 1 and different mean values µ = {−2,−1, 0, 1, 2}.

For each hypothesis, we vary the mean values by ±0.1. Thus, within each hypothesis, there are

three different distributions with mean values in {µ− 0.1, µ, µ+ 0.1}. The results are presented in

Figure 6.5. As expected, the performance improves as the sample size n increases. The two tests

perform almost identically, with the MMD-based test slightly outperforming the KS-based test for

small n.
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We again vary the variances of the Gaussian distributions as in the second experiment in a

similar way. In particular, the variances in the same class are {(σ− 0.1)2, σ2, (σ+ 0.1)2}, and σ ∈

{0.5, 1, 1.5, 2, 2.5} . In Figure 6.6, we observe the performance improvement as the sample size n

increases. Different from the results in the second experiment, the MMD-based test outperforms

the KS-based test in the composite setting.
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Fig. 6.5: Error probabilities of different hypothesis testing algorithms for composite Gaussian
distributions with different means.
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Fig. 6.6: Error probabilities of different hypothesis testing algorithms for composite Gaussian
distributions with different variances.



116

6.5 Summary

A nonparametric composite hypothesis testing approach for arbitrary distributions based on the

maximum mean discrepancy (MMD) and Kolmogorov-Smirnov (KS) distance measure based tests

was developed in this chapter. We introduced the information theoretic notion of discrimination

capacity that was defined for the regime where the number of hypotheses scales along with the

sample size. We also provided characterization of the corresponding error exponent and the dis-

crimination rate, i.e., a lower bound on the discrimination capacity. Our framework can been

extended to unsupervised learning problems and similar performance limits can be investigated.
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CHAPTER 7

CONCLUSION

7.1 Summary

In this thesis, the problem of accomplishing reliable classification from systems consisting of po-

tentially unreliable agents was addressed. The general methodology for this was to first analyze the

effect of unreliable agents in the network and quantify their effect on the global classification per-

formance of the network. The second step was to design schemes that are robust to such unreliable

information from these agents. These schemes used statistical and robust optimization approaches

to correct the errors from individual agents and improve the classification performance at the global

decision making or decision making stage. We also analyzed the classification performance limits

from an information-theoretic perspective.

Human-driven Classification Systems

Chapter 2 considered the design of an effective crowdsourcing system for M -ary classification

where crowd workers complete simple microtasks which are aggregated to give a final result. We

considered the novel scenario where workers have a reject option so they may skip microtasks

they are unable or unwilling to do. For example, in mismatched speech transcription, workers who

do not know the language may be unable to respond to microtasks in phonological dimensions
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outside their categorical perception. We presented an aggregation approach using a weighted ma-

jority voting rule, where each worker’s response is assigned an optimized weight to maximize the

crowd’s classification performance. Since the individual statistical property of the human worker

is essentially unavailable, we developed the aggregation rule such that the overall system classifi-

cation performance can be maximized in an average sense when the entire crowd participates in

the classification task. Thus, the aggregation rule doe not need individual information from the

workers, and is highly practical. We evaluated system performance in both exact and asymptotic

forms. We also showed that human workers’ confidence does not help in improving the system

performance.

In Chapter 3, we considered the presence of spammers, who give random responses to the

microtasks, in the crowdsourced classification systems. First, we investigated the case where the

crowd workers have no knowledge of the payment mechanism and the spammers respond to all

the microtasks with random guesses. In this case, we developed a heuristic adaptive scheme for

aggregation which switches between the oblivious strategy and the expurgation strategy, based

on the estimated fraction of spammers in the crowd. Next, we studied the case where the crowd

workers have the knowledge of the payment mechanism. The optimal strategy for the spammers to

maximize their reward was derived. When the spammers adopt the optimal strategy, we derived an

optimal aggregation rule to maximize classification performance. The classification performance

in terms of probability of correct classification was provided when different aggregation rules were

employed.

Chapter 4 considered the classification problem of influential node detection and volume time

series prediction in implicit social networks. Implicit social networks do not assume the knowledge

of the network structure. In such a case, we employed the linear information model to characterize

the information flow of different contagions in the network. Additionally, we proposed a descrip-

tive diffusion model to take dependencies among the topics into account. By exploiting Copula

Theory and rank-constrained influence matrix, we modeled the complex dependency between dif-

ferent contagions and different users. We also proposed an efficient algorithm based on alternating
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methods to perform classification and learning on the model. It was shown that the proposed

technique outperforms existing influential node detection techniques. Furthermore, the proposed

model was validated both on a synthetic and a real (ISIS) dataset. We showed that the proposed ap-

proach can efficiently select the influential users for specific contagions. We also presented several

interesting patterns of the selected influential users for the ISIS dataset.

Data-driven Classification Systems

In Chapter 5, we considered the problem of decentralized learning of classification problems using

ADMM in the presence of unreliable agents. The agents update their information by local compu-

tation and communication with their neighbors. Classification was formulated as an optimization

problem, and the agents in the network collaboratively work towards a consensus of the classifi-

cation result using the ADMM algorithm. The unreliable agents send erroneous information to

their neighbors. We studied the convergence behavior of the decentralized ADMM algorithm and

showed analytically that the ADMM algorithm converges to a neighborhood of the solution under

certain conditions. We suggested guidelines for network structure design to achieve faster conver-

gence. We also gave several conditions on the errors to obtain exact convergence to the solution.

A robust variant of the ADMM algorithm was proposed to enable decentralized classification in

the presence of unreliable agents and its convergence to the optima was proved. We also provided

experimental results to validate the analysis and showed the effectiveness of the proposed robust

scheme.

From the statistical signal processing point of view, classification is equivalent to hypothesis

testing. Chapter 6 developed a nonparametric composite hypothesis testing approach for arbitrary

distributions based on the maximum mean discrepancy (MMD) and Kolmogorov-Smirnov (KS)

distance measure based tests, from the information theoretic perspective. Connecting to the notion

of channel capacity in information theory, we introduced the information theoretic notion of dis-

crimination capacity that is defined for the regime where the number of hypotheses scales along

with the sample size. We also provided characterization of the corresponding error exponent and
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the discrimination rate, i.e., a lower bound on the discrimination capacity.

7.2 Future Directions

There are a number of interesting future directions for research, which can be summarized into two

specific research directions for human-driven and data-driven systems respectively:

1. Use of statistical modeling techniques to develop mathematical models of human decision

making in collaboration with cognitive psychologists

2. To develop a universal robust scheme for decentralized classification.

These problems have both theoretical and implementation challenges. Therefore, the focus is first

on developing theoretical models for such a collaboration and then, implementing the designed

algorithms to verify their applicability in practice. Both these problems are further explained in

detail below.

7.2.1 Human-driven Systems

The first step to develop efficient systems that include humans is to develop appropriate statisti-

cal models that characterize their behavior. Researchers have not extensively investigated 1) the

modeling of decisions by humans; 2) the modeling of subjective confidences on multi-hypothesis

tasks; 3) the modeling of tasks in which human decision makers can provide imprecise decisions.

For example, it has been found in reality that some of the human workers form a colluder group,

in which the rest of the group members follow one leader’s decision. This has never been mod-

eled properly in literature. In the work presented in Chapter 2 and Chapter 3, we assumed equal

difficulty corresponding to different microtasks for the crowd workers to answer. In some settings,

worker qualities are not identically distributed, which makes estimating the greedy fraction α dif-

ficult. The difficulty for microtasks might not be equal, which makes the microtask design quite

challenging. Therefore, further research directions include the development of a general model to
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characterize the crowd quality, design of a robust method to estimate the fraction of greedy work-

ers in the crowd, and binary microtask design with a reject option. One can also build models that

consider the effect of stress, anxiety, and fatigue in the cognitive mechanisms of human decision

making, decision confidence assessment, and response time (similar to [93, 123]).

In social networks, one important factor in human decision making that we have not considered

is that the human users often acquire noisy information from outside the contagions that we con-

sidered. As we assumed a fixed number of contagions, it is possible that the human users acquire

noisy information from the other sources which can affect their decision making in the consid-

ered contagions. One can better model the information diffusion mechanism in social networks by

taking this factor into account.

7.2.2 Data-driven Systems

In data-driven systems, one interesting direction of future work is to develop universally efficient

fusion algorithms for decision making. In our work in Chapter 5, we analyzed the impact of un-

reliable agents when they send erroneous information to their neighbors, and proposed a robust

algorithm to combat this impact. However, we considered the problem under a specific circum-

stance namely where ADMM is used as the algorithm to solve the classification problem. Although

ADMM is widely used as an effective algorithm in decentralized learning problems,it is possible

that the methodology developed in the proposed robust algorithm based on ADMM is not feasible

for other decentralized learning algorithms. Thus, one can investigate the possibility of develop-

ing a universal robust methodology for decentralized learning that can result in robust schemes

for different scenarios where different algorithms are employed. Additionally, the problem was

studied in a synchronous setting, where all the updates are received at agents before the next it-

eration. However, in practice, some agents may not received all the updates from their neighbors

before the next iteration starts. Thus, it is very important that the problem is investigated under an

asynchronous setting and show whether or not the proposed robust algorithm still works.

For the characterization of performance limits, we proposed the notion of discrimination rate
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in Chapter 6. We developed the discrimination capacity, which is universal for all the classifica-

tion algorithms. Different algorithms have different associated discrimination rates. A universal

discrimination rate bound is missing which characterizes the regime where the corresponding al-

gorithm cannot perform the classification task. Additionally, we did not consider the unreliable

agents in the systems. Since sample distance is required from different clusters of distributions,

system performance could be drastically degraded if the distance is not reported correctly for clas-

sification. One interesting project can investigate the robustness in terms of discrimination rate.
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APPENDIX A

APPENDIX

A.1 Proof of Proposition 2.2

To solve problem (4.2), we need EC [W] and EO[W]. First, the wth worker can have weight con-

tribution to EC [W] only if all his/her definitive answers are correct. Thus, we have the average

weight assigned to the correct element as

EC [W] = Ep,r

[
W∑
w=1

N∑
n=0

WwP (n,N − n)

]

=
W∑
w=1

Ep,r

[
N∑
n=0

WwP (n,N − n)

]
, (A.1)

where P (n,N−n) represents the probability ofN−n bits equal to λ and the rest of the n definitive

answers in the N -bit word are correct.

Then, given the wth worker with pw,i known, we write

Aw(pw,i) = Er

[
N∑
n=0

WwP (n,N − n) |pw,i

]
. (A.2)

Let Pλ(n) denote the probability of the wth worker submitting n definitive answers out of N

microtasks, which only depends on pw,i. Note that
∑N

n=0 Pλ(n) = 1, and then (A.2) is upper-
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bounded using the Cauchy-Schwarz inequality as:

Aw(pw,i) =
N∑
n=0

Er [Wwr (n)]
√
Pλ(n)

√
Pλ(n)

≤

√√√√ N∑
n=0

E2
r [Wwr (n)]Pλ(n)

√√√√ N∑
n=0

Pλ(n) (A.3)

, αw(pw,i), (A.4)

where r(n) is the product of any n out of N variables rw,i as i = 1, . . . , N , and αw is a positive

quantity independent of n, which might be a function of pw,i. Note that equality holds in (A.3)

only if

Er [Wwr (n)]
√
Pλ(n) = αw(pw,i)

√
Pλ(n), (A.5)

which results in (A.4) and

Er [Wwr (n)] = αw(pw,i). (A.6)

Then we maximize the crowd’s average weight corresponding to the correct class under the

constraint
∫
pw,i

Pr(pw,i = x)dx = 1, and the maximization problem is written as

A = Ep[Aw(pw,i)] =

∫
pw,i

αw(pw,i) Pr (pw,i = x) dx

≤
√√√√∫
pw,i

α2
w(pw,i) Pr (pw,i = x) dx

√√√√∫
pw,i

Pr (pw,i = x) dx (A.7)

, β. (A.8)
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The equality (A.7) holds only if

αw(pw,i)
√

Pr (pw,i = x) = β
√

Pr (pw,i = x), (A.9)

with β is a positive constant independent of pw,i, and we conclude that αw is also a positive quantity

independent of pw,i. Then from (A.6), we have

Er [Wwr (n)] = β. (A.10)

Since r(n) is the product of n variables, its distribution is not known a priori. A possible solution

to weight assignment is a deterministic value given by WwE[r(n)] = β and, therefore, we can

write the weight as Ww = β/µn. Note that if rw,i is known a priori or can be estimated, the

optimal weight assignment is simply Ww = β/r(n).

Then, we can express the crowd’s average weight contribution to all the classes defined in (4.2)

as

EO [W] =
W∑
w=1

Ep,r

[
N∑
n=0

βµ−n2N−nPλ (n)

]

=
W∑
w=1

N∑
n=0

βµ−n2N−n
(
N

n

)
(1−m)nmN−n

= Wβ

(
1−m
µ

+ 2m

)N
= K. (A.11)

Thus, β can be obtained from (A.11) and we get the weight by solving optimization problem (4.2)

to get:

Ww =
K

Wµn
(

1−m
µ

+ 2m
)N . (A.12)

Note that the weight derived above has a term that is common for every worker. Since the voting

scheme is based on comparison, we can ignore this factor and have the normalized weight as
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Ww = µ−n.

A.2 Proof of Proposition 2.3

Note that

Tw ∈ {−µ−N ,−µ−N+1, . . . ,−µ−1, 0, µ−1, . . . , µ−N+1, µ−N}, (A.13)

which can be written as

Tw = I(−1)t+1µ−n, t ∈ {0, 1}, I ∈ {0, 1}, n ∈ {1, . . . , N}, (A.14)

and leads to

Pr
(
Tw = I(−1)t+1µ−n|Hs

)
=

 Pr
(
Tw = (−1)t+1

µn
|Hs

)
, I = 1

Pr (Tw = 0|Hs) , I = 0
. (A.15)

These two terms can be expressed as

Pr

(
Tw =

(−1)t+1

µn
|Hs

)

= Pr (aw(i) = t|Hs) · Pλ (n|aw(i) = t,Hs)

= r
1−|s−t|
w,i (1− rw,i)|s−t|

∑
C

N∏
j=1
j 6=i

p
kj
w,j(1− pw,j)

1−kj , (A.16)

and Pr (Tw = 0|Hs) = pw,i.
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A.3 Proof of Proposition 2.4

Let qn,−N ≤ n ≤ N , represent the number of workers that submit |n| total definitive answers to

all the microtasks. Specifically, n < 0 indicates the group of workers that submit “0” for the ith bit

while n > 0 indicates “1”. For n = 0, q0 represents the number of workers that submit λ for the

ith bit. Since the workers independently complete the microtasks, recalling the results in (2.13),

the probabilities of the crowd’s answer profile for the ith bit {G0, G1, Gλ} can be obtained under

H1 and H0 given pw,i and rw,i are expressed by Fi(Q) and F ′i (Q), respectively. Thus, Pd,i given

pw,i and rw,i can be expressed as

Pd,i =
∑
S

(
W

Q

)
Fi(Q) +

1

2

∑
S′

(
W

Q

)
Fi(Q), (A.17)

where the first term on the right-hand side corresponds to the case where the aggregation rule gives

a result of “1” and the second term indicates the case where “1” is given due to the tie-breaking of

the aggregation rule.

Similarly, we can obtain Pf given pw,i and rw,i as

Pf,i =
∑
S

(
W

Q

)
Fi
′(Q) +

1

2

∑
S′

(
W

Q

)
Fi
′(Q). (A.18)

Then, it is straightforward to obtain the desired result.

A.4 Proof of Proposition 2.5

We can have a correct classification if and only if all the bits are classified correctly. Thus, the

expected probability of correct classification is given as Pc = E

[
N∏
i=1

Pc,i

]
,which can be expressed,

due to the independence of the microtasks, as Pc =
N∏
i=1

E [Pc,i] . Recall Pc,i from Prop. 2.4, and we
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can obtain:

E [Pc,i] =
1

2
+

1

2

∑
S

(
W

Q

)
(F (Q)− F ′ (Q))

+
1

4

∑
S′

(
W

Q

)
(F (Q)− F ′ (Q)) (A.19)

with F (Q) and F ′ (Q) defined in (2.19) and (2.20). Thus we have the desired result.

A.5 Proof of Proposition 2.6

WhenW goes to infinity, we show thatE [Pc,i] = Q
(
− M√

V

)
and the desired result can be obtained.

Based on the Central Limit Theorem [25], the test statistic in (2.12) is approximately Gaussian if

W →∞ :
W∑
w=1

Tw ∼

 N (M1, V1) , H1

N (M0, V0) , H0

, (A.20)

where Ms and Vs are the means and variances of the statistic
∑W

w=1 Tw under hypotheses Hs,

respectively.

For the wth worker, we have the expectation of Tw as

MH1 =
1∑
t=0

N∑
n=1

(−1)t+1µ−n(rw,i)
t(1− rw,i)1−tϕn(w). (A.21)

We define M1 as

M1 , WE [MH1 ]

= W

N∑
n=1

µ−n (2µ− 1)

(
N − 1

n− 1

)
(1−m)nmN−n

=
W (2µ− 1) (1−m)

µ

(
1

µ
−
(

1

µ
− 1

)
m

)N−1

. (A.22)
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Likewise, we define V1 as

V1 , W
(
E
[
T 2
w

]
− E2 [MH1 ]

)
= WE

[
1∑
t=0

N∑
n=1

µ−2n(rw,i)
t(1− rw,i)1−tϕn(w)

]
− M2

1

W

=
W (1−m)

µ2

(
1

µ2
−
(

1

µ2
− 1

)
m

)N−1

− M2
1

W
. (A.23)

Similarly, we can derive M ,M1 = −M0 and V , V1 = V0. By looking back at the decision

criterion for the ith bit (2.12), we obtain the desired result.

A.6 Proof of Proposition 3.1

Since the workers complete the microtasks independently, recall the results in (2.13) and we have

E [Pd,i] =
∑
S1

(
W

Q1

)
F (Q1) +

1

2

∑
S′1

(
W

Q1

)
F (Q1), (A.24)

and

E [Pf,i] =
∑
S1

(
W

Q1

)
F ′(Q1) +

1

2

∑
S′1

(
W

Q1

)
F ′(Q1), (A.25)

with F (Q1) and F ′(Q1) as given above. Then, it is straightforward to obtain the desired result.
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A.7 Proof of Proposition 3.3

If a spammer skips g out of G gold standard questions and answers the remaining G − g with

random guesses, the expected monetary reward E for the spammer is expressed as

E = (µmax − µmin)TG
G∏
i=1

αxi + µmin

= (µmax − µmin)TG(
1

2
)G−g(

1

T
)G−g + µmin

= (µmax − µmin)(
1

2
)G(2T )g + µmin, (A.26)

where p(x1, . . . , xG) is the probability that a spammer gives evaluations X = {x1, . . . , xG} for the

gold standard questions.

Since 0 ≤ g ≤ G, E is maximized as following

if T <
1

2
⇒ g = 0, (A.27)

if T >
1

2
⇒ g = G. (A.28)
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A.8 Proof of Proposition 3.4

When there are M spammers in the crowd with M0 skipping and MN completing all the questions,

the expected weight contributed to the correct class is given by

EC [W] =
W−M∑
w=1

Ep,ρ

[
N∑
n=0

Wwρ(n)Pλ(n)

]
+

M0∑
w=1

Ww(n = 0)

+

MN∑
w=1

1

2N
Ww(n = N)

=
N∑
n=0

(W −M)Wwµ
n

(
N

n

)
(1−m)nmN−n

+
N∑
n=0

M0Wwδ(n) +
N∑
n=0

MN

2N
Wwδ(n−N)

=
N∑
n=0

(W −M)Wwµ
nP(n) +

N∑
n=0

M0

P(0)
WwP(n)δ(n)

+
N∑
n=0

MN

2NP(N)
WwP(n)δ(n−N)

=
N∑
n=0

WwS(n)P(n) (A.29)

where

P(n) =

(
N

n

)
(1−m)nmN−n, (A.30)

and

S(n) = (W −M)µn +
M0

mN
δ(n) +

MN

2N(1−m)N
δ(n−N). (A.31)

Note that
N∑
n=0

P(n) = 1, and then (A.29) is upper-bounded using Cauchy-Schwarz inequality
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as follows:

EC [W] =
N∑
n=0

WwS(n)P(n)

≤

√√√√ N∑
n=0

(WwS(n))2P(n)

√√√√ N∑
n=0

P(n). (A.32)

= α (A.33)

Also note that equality holds in (A.32) only if

WwS(n)
√
P(n) = α

√
P(n) (A.34)

where α is a positive constant, and

WwS(n) = α (A.35)

Therefore, the optimal behavior for the manager in terms of the weight assignment is obtained

Ww =

[
(W −M)µn +

M0

mN
δ (n) +

MN

2N(1−m)N
δ (n−N)

]−1

. (A.36)

Note that if a worker submits no definitive answers, i.e. n = 0, the corresponding weight

assigned is (W −M + M0

mN
)−1. However, since this worker skips all the questions, his/her decision

for a certain question is not taken into consideration in the fusion center. Thus, we can ignore the

weight assignment in such a case and write the scheme as

Ww =

[
(W −M)µn +

MN

2N(1−m)N
δ (n−N)

]−1

. (A.37)
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Lemma A.1. The update of the the algorithm can be written as

xk+1 = − 1

2c
W−1∇f(xk+1) +

W−1L+

2
(xk + ek)−W−1L−

2

(
k∑
s=0

xs + es

)
. (A.38)

Proof. Using the second step of the algorithm, we can write

αk+1 = αk + cL−(xk+1 + ek+1) (A.39)

and

αk = αk−1 + cL−(xk + ek). (A.40)

Sum and telescope from iteration 0 to k using (A.40), and we can get the following by assuming

α0 = 0

αk = cL−

k∑
s=0

(xs + es) . (A.41)

Substitute the above result to the first step in the algorithm and it yields

2cWxk+1 = −∇f(xk+1) + cL+(xk + ek)− cL−
k∑
s=0

(xs + es) , (A.42)

which completes the proof.

Lemma A.2. The sequences satisfy

L+

2
(zk+1 − zk)−Wek+1 = −Qrk+1 − 1

2c
∇f(xk+1) (A.43)

Proof. Based on Lemma A.1 and the fact W = 1
2
(L− + L+), we can write

W(xk+1 − xk − ek) + W(xk + ek)− L+

2
(xk + ek) = −Qrk − 1

2c
∇f(xk+1). (A.44)
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Subtracting L−
2

(xk+1 + ek+1) from both sides of the above equation provides

W(xk+1 − xk − ek) +
L−
2

(xk + ek)− L−
2

(xk+1 + ek+1) = −Qrk+1 − 1

2c
∇f(xk+1). (A.45)

Rearrange and we have the desired result.

Lemma A.3. The null space of Q null(Q) is span{1}.

Proof. Note that the null space of Q and L− are the same. By definition, L− = 1
2
M−MT

− and

M− = AT
1 − AT

2 . Recall that if (i, j) ∈ A and yij is the qth block of y, then the (q, i)th block

of A1 and the (q, j)th block of A2 are N × N identity matrices IN ; otherwise the corresponding

blocks are N ×N zero matrices 0N . Therefore, MT
− = A1−A2 is a matrix that each row has one

“1”, one “-1”, and all zeros otherwise, which means MT
−1 = 0, i.e., null(MT

−)=span{1}.

Note that L− = 1
2
M−MT

− and Q =
(

L−
2

) 1
2
, thus null(Q)=null(MT

−), completing the proof.

Lemma A.4. For some r∗ that satisfies Qr∗ + 1
2c
∇f(x∗) = 0 and r∗ belongs to the column space

of Q, the sequences satisfy

L+

2
(zk+1 − zk)−Wek+1 = −Q(rk+1 − r∗)− 1

2c
(∇f(xk+1)−∇f(x∗)) (A.46)

Proof. Using Lemma A.2, we have

L+

2
(zk+1 − zk)−Wek+1 = −Qrk+1 − 1

2c
∇f(xk+1). (A.47)

According to Lemma A.3, null(Q) is span{1}. Since 1T∇f(x∗) = 0,∇f(x∗) can be written as

a linear combination of column vectors of Q. Therefore, there exists r such that 1
2c
∇f(x∗) = −Qr.

Let r∗ be the projection of r onto Q to obtain Qr = Qr∗ where r∗ lies in the column space of Q.
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Hence, we can write

L+

2
(zk+1 − zk)−Wek+1 = −Q(rk+1 − r∗)− 1

2c
(∇f(xk+1)−∇f(x∗)) (A.48)

Lemma A.5. 〈x∗,Q〉 = 0.

Proof. Since the optimal consensus solution x∗ has an identical value for all its entries, x∗ lies

in the space spanned by 1. Thus, according to Lemma A.3, we have the desired result, and also

〈x∗,L−〉 = 0.

A.9 Proof of Theorem 5.1

Proof. We prove the first part in Theorem 5.1. Assuming f(x) is convex, we can have

f(xk+1)− f(x∗) ≤ 〈xk+1 − x∗,∇f(xk+1)〉. (A.49)

By Lemma A.2, it yields

f(xk+1)− f(x∗) ≤〈xk+1 − x∗, 2cWek+1 − 2cQrk+1 − cL+(zk+1 − zk)〉 (A.50)

=〈xk+1 − x∗, cL+(zk − zk+1)〉+ 〈xk+1 − x∗, 2cWek+1〉 (A.51)

+ 〈xk+1 − x∗,−2cQrk+1〉 (A.52)

=〈zk+1 − z∗, cL+(zk − zk+1)〉 − 〈ek+1, cL+(zk − zk+1)〉 (A.53)

+ 〈zk+1 − z∗,−2cQrk+1〉 − 〈ek+1,−2cQrk+1〉+ 〈ek+1, 2cW(xk+1 − x∗)〉

(A.54)

=2〈zk+1 − z∗,
cL+

2
(zk − zk+1)〉+ 2〈rk − rk+1, c(rk+1 − r′)〉 (A.55)

+ 〈ek+1, cL+(zk+1 − zk) + 2cQrk+1 + 2cW(xk+1 − x∗)〉. (A.56)
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If the algorithm stops at T -th iteration, then the function value f(xT ) is affected by the error ek

with k = 0, 1, . . . , T − 1. Thus, we can set k = T − 1 and eT = 0 in the above bound, and obtain

f(xT )− f(x∗) ≤‖zT−1 − z∗‖2
cL+
2

− ‖zT − z∗‖2
cL+
2

− ‖zT−1 − zT‖2
cL+
2

(A.57)

+ c‖rT−1 − r′‖2
2 − c‖rT − r′‖2

2 − c‖rT−1 − rT‖2
2 (A.58)

≤‖qT−1 − p‖2
G. (A.59)
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Now we prove the second part in Theorem 5.1. By convexity, for any r ∈ RDN , we can have

f(xk+1)− f(x∗)

c
+ 2r′Qxk+1 (A.60)

≤〈xk+1 − x∗,−L+(xk+1 − xk)− L+(xk − zk)− 2Q(rk+1 − r) + L−(zk+1 − xk+1)〉 (A.61)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈xk+1 − x∗, 2Q(r− rk+1)〉

(A.62)
+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉 (A.63)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈zk+1 − x∗, 2Q(r− rk+1)〉

(A.64)
+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.65)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈rk+1 − rk, 2(r− rk+1)〉 (A.66)

+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.67)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G − ‖pk+1 − pk‖2

G) + 〈xk+1 − x∗,L+(zk − xk)〉 (A.68)

+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.69)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qxk+1‖2

2 − ‖Qek+1‖2
2 + 2〈L+

2
(xk+1 − x∗), zk − xk〉

(A.70)
+ 〈ek+1, 2Q(rk+1 − r)〉 (A.71)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− σmin(L−)

2
‖xk+1 − x∗‖2

2 − ‖Qek+1‖2
2 (A.72)

+
1

α
‖L+

2
(xk+1 − x∗)‖2

2 + α‖zk − xk‖2
2 + 〈ek+1, 2Q(rk+1 − r)〉 (A.73)

α =
σ2
max(L+)

2σmin(L−)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qek+1‖2

2 +
σ2

max(L+)

2σmin(L−)
‖zk − xk‖2

2 (A.74)

+ 〈ek+1, 2Q(rk+1 − r)〉 (A.75)

≤1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G) +

σ2
max(L+)

2σmin(L−)
‖ek‖2

2 + 〈ek+1, 2Q(rk+1 − r)〉. (A.76)

By letting r = 0, telescope and sum from k = 0 to T − 1 (the error for the last iteration eT = 0),
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and we obtain

1

c

T∑
k=1

(
f(xk)− f(x∗)

)
≤ 1

c
‖p0 − p‖2

G +
T−1∑
k=0

(
σ2

max(L+)

2σmin(L−)
‖ek‖2

2 + 〈ek, 2Qrk)〉
)
. (A.77)

Rearrange and we have the desired result.

A.10 Proof of Theorem 5.2

Proof. By v-strong convexity, we obtain

v‖xk+1 − x∗‖2
2 ≤〈xk+1 − x∗,∇f(xk+1)−∇f(x∗)〉 (A.78)

=〈xk+1 − x∗, cL+(zk − zk+1) + 2cWek+1 − 2cQ(rk+1 − r∗)〉 (A.79)

=〈xk+1 − x∗, cL+(zk − zk+1)〉+ 〈xk+1 − x∗, 2cWek+1〉 (A.80)

+ 〈xk+1 − x∗,−2cQ(rk+1 − r∗)〉 (A.81)

=〈zk+1 − z∗, cL+(zk − zk+1)〉 − 〈ek+1, cL+(zk − zk+1)〉 (A.82)

+ 〈xk+1 + ek+1 − x∗,−2cQ(rk+1 − r∗)〉 (A.83)

− 〈ek+1,−2cQ(rk+1 − r∗)〉+ 〈ek+1, 2cW(xk+1 − x∗)〉 (A.84)

=2〈zk+1 − z∗,
cL+

2
(zk − zk+1)〉+ 2〈rk − rk+1, c(rk+1 − r∗)〉 (A.85)

+ 〈ek+1, cL+(zk+1 − zk) + 2cQ(rk+1 − r∗) + 2cW(xk+1 − x∗)〉 (A.86)

=‖qk − q∗‖2
G − ‖qk+1 − q∗‖2

G − ‖qk − qk+1‖2
G (A.87)

+ 〈ek+1, cL+(zk+1 − zk) + 2cQ(rk+1 − r∗) + 2cW(xk+1 − x∗)〉 (A.88)

For any λ > 0, using the basic inequality

‖a + b‖2
2 + (λ− 1)‖a‖2

2 ≥ (1− 1

λ
)‖b‖2

2 (A.89)
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we can write for λ1 > 1 and λ2 > 1

σ2
max(L+)

4
‖zk+1 − zk‖2

2 +
(λ1 − 1)L2‖xk+1 − x∗‖2

2

4c2
(A.90)

≥ ‖L+

2
(zk+1 − zk)‖2

2 + (λ1 − 1)‖ 1

2c

(
∇f(xk+1)−∇f(x∗)

)
‖2

2 (A.91)

≥
(

1− 1

λ1

)
‖Wek+1 −Q(rk+1 − r∗)‖2

2 (A.92)

≥
(

1− 1

λ1

)
(1− 1

λ2

)‖Q(rk+1 − r∗)‖2
2 −

(
1− 1

λ1

)
(λ2 − 1)‖Wek+1‖2

2 (A.93)

≥
(

1− 1

λ1

)
(1− 1

λ2

)σ2
min(Q)‖rk+1 − r∗‖2

2 −
(

1− 1

λ1

)
(λ2 − 1)σ2

max(W)‖ek+1‖2
2. (A.94)

Thus, for a positive quantity δ,

δσ2
max(L+)λ1λ2

4σ2
min(Q)(λ1 − 1)(λ2 − 1)

‖zk+1 − zk‖2
2 +

δλ1λ2L
2‖xk+1 − x∗‖2

2

4c2σ2
min(Q)(λ2 − 1)

(A.95)

≥ δ‖rk+1 − r∗‖2
2 −

δλ2σ
2
max(W)

σ2
min(Q)

‖ek+1‖2
2. (A.96)

Since xk+1 − x∗ = zk+1 − z∗ − ek+1, for any λ3 > 1, we can get

‖xk+1 − x∗‖2
2 ≥

(
1− 1

λ3

)
‖zk+1 − z∗‖2

2 − (λ3 − 1) ‖ek+1‖2
2. (A.97)



140

Therefore, the addition of (A.95)×c2 and (A.97)× δc2σ2
max(L+)λ3

4(λ3−1)
yields

c2δσ2
max(L+)λ1λ2

4σ2
min(Q)(λ1 − 1)(λ2 − 1)

‖zk+1 − zk‖2
2 +

(
δλ1λ2L

2

4σ2
min(Q)(λ2 − 1)

+
δc2σ2

max(L+)λ3

4(λ3 − 1)

)
‖xk+1 − x∗‖2

2

(A.98)

≥ δc2‖rk+1 − r∗‖2
2 +

δc2σ2
max(L+)

4
‖zk+1 − zk‖2

2 −
(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2

(A.99)

≥ δ‖c(rk+1 − r∗)‖2
2 + δ‖cL+

2
(zk+1 − zk)‖2

2 −
(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2

(A.100)

= δ‖qk+1 − q∗‖2
G −

(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2. (A.101)

Choose δ to be such that

c2δσ2
max(L+)λ1λ2

4σ2
min(Q)(λ1 − 1)(λ2 − 1)

≤ c2σ2
min(L+)

4
(A.102)(

δλ1λ2L
2

4σ2
min(Q)(λ2 − 1)

+
δc2σ2

max(L+)λ3

4(λ3 − 1)

)
≤ v, (A.103)

and we can have

c2σ2
min(L+)

4
‖zk+1 − zk‖2

2 + v‖xk+1 − xk‖2
2 ≥ (A.104)

δ‖qk+1 − q∗‖2
G −

(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2. (A.105)
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Thus, it is straightforward to write

‖qk+1 − qk‖2
G + v‖xk+1 − xk‖2

2 (A.106)

≥ ‖c(rk+1 − rk)‖2
2 + ‖cL+

2
(zk+1 − zk)‖2

2 + v‖xk+1 − xk‖2
2 (A.107)

≥ c2‖rk+1 − rk‖2
2 +

c2σ2
min(L+)

4
‖zk+1 − zk‖2

2 + v‖xk+1 − xk‖2
2 (A.108)

≥ c2‖rk+1 − rk‖2
2 + δ‖qk+1 − q∗‖2

G −
(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2.

(A.109)

Recall the result in (A.78) regarding the bound to v‖xk+1 − xk‖2
2, and we can further write

‖qk − q∗‖2
G − ‖qk+1 − q∗‖2

G (A.110)

+ 〈ek+1, cL+(zk+1 − zk) + 2cQ(rk+1 − r∗) + 2cW(xk+1 − x∗)〉 (A.111)

≥ δ‖qk+1 − q∗‖2
G −

(
c2δλ2σ

2
max(W)

σ2
min(Q)

+
δc2σ2

max(L+)λ3

4

)
‖ek+1‖2

2 (A.112)

Let P = c2δλ2σ2
max(W)

σ2
min(Q)

+ δc2σ2
max(L+)λ3

4
. Rearrange the expression and we get

‖qk+1 − q∗‖2
G ≤
‖qk − q∗‖2

G

1 + δ
+

P

1 + δ
‖ek+1‖2

2 (A.113)

+
1

1 + δ
〈ek+1, cL+(zk+1 − zk) + 2cQ(rk+1 − r∗) + 2cW(xk+1 − x∗)〉

(A.114)
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Lemma A.6. Let β ∈ (0, 1+δ
4

), b ∈ (0, 1), λ4 > 1, and then we have

(1− b)
(

1

4
− β

1 + δ

)
σ2

min(L+)‖zk+1 − z∗‖2
2 +

(
1− 4β

1 + δ

)
‖rk+1 − r∗‖2

2 (A.115)

+ b

(
1

4
− β

1 + δ

)
σ2

min(L+)

(
1− 1

λ4

)
‖xk+1 − x∗‖2

2 (A.116)

≤ 1/4 + β

1 + δ
σ2

max(L+)‖zk − z∗‖2
2 +

1

1 + δ
‖rk − r∗‖2

2 (A.117)

+

[
P + 1/2β

(1 + δ)c2
+ b

(
1

4
− β

1 + δ

)
σ2

min(L+)(λ4 − 1)

]
‖ek+1‖2

2 (A.118)

+
4βσ2

max(W)

1 + δ
‖xk+1 − x∗‖2

2. (A.119)

Proof. First, we rewrite the result in Lemma 5.2 in the following form

‖cL+

2
(zk+1 − z∗)‖2

2 + ‖c(rk+1 − r∗)‖2
2 ≤

1

1 + δ

(
‖cL+

2
(zk − z∗)‖2

2 + ‖c(rk − r∗)‖2
2

)
(A.120)

+
P

1 + δ
‖ek+1‖2

2 +
1

1 + σ
〈ek+1, cL+(zk+1 − zk) + 2cQ(rk+1 − r∗) + 2cW(xk+1 − x∗)〉

(A.121)

≤ 1

1 + δ

(
‖cL+

2
(zk − z∗)‖2

2 + ‖c(rk − r∗)‖2
2

)
+

(
P

1 + δ
+

1/2β

1 + δ

)
‖ek+1‖2

2 (A.122)

+
β

1 + δ
‖cL+

2
(zk+1 − zk) + cQ(rk+1 − r∗) + cW(xk+1 − x∗)‖2

2 (A.123)

≤ 1

1 + δ

(
‖cL+

2
(zk − z∗)‖2

2 + ‖c(rk − r∗)‖2
2

)
+

(
P

1 + δ
+

1/2β

1 + δ

)
‖ek+1‖2

2 (A.124)

+
β

1 + δ
‖cL+

2
(zk+1 − zk) + cQ(rk+1 − r∗) + cW(xk+1 − x∗)‖2

2 (A.125)

≤ 1

1 + δ

(
‖cL+

2
(zk − z∗)‖2

2 + ‖c(rk − r∗)‖2
2

)
+

(
P

1 + δ
+

1/2β

1 + δ

)
‖ek+1‖2

2 (A.126)

+
4β

1 + δ
‖cL+

2
(zk+1 − z∗)‖2

2 +
4α

1 + δ
‖cL+

2
(zk − z∗)‖2

2 (A.127)

+
4β

1 + δ
‖cQ(rk+1 − r∗)‖2

2 +
4β

1 + δ
‖cW(xk+1 − x∗)‖2

2 (A.128)

where β > 0.
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Rearranging the inequality provides

(
1− 4β

1 + δ

)
‖cL+

2
(zk+1 − z∗)‖2

2 +

(
1− 4β

1 + δ

)
‖c(rk+1 − r∗)‖2

2 (A.129)

≤
(

1

1 + δ
+

4β

1 + δ

)
‖cL+

2
(zk − z∗)‖2

2 +
1

1 + δ
‖c(rk − r∗)‖2

2 (A.130)

+
P + 1/2β

1 + δ
‖ek+1‖2

2 +
4β

1 + δ
‖cW(xk+1 − x∗)‖2

2. (A.131)

Note that the parameters should be chosen such that
(
1− 4β

1+δ

)
> 0.

Then we can write

(
1

4
− β

1 + δ

)
σ2

min(L+)‖zk+1 − z∗‖2
2 +

(
1− 4β

1 + δ

)
‖rk+1 − r∗‖2

2 (A.132)

≤
(

1

4(1 + δ)
+

β

1 + δ

)
σ2

max(L+)‖zk − z∗‖2
2 +

1

1 + δ
‖rk − r∗‖2

2 (A.133)

+
P + 1/2β

(1 + δ)c2
‖ek+1‖2

2 +
4βσ2

max(W)

1 + δ
‖xk+1 − x∗‖2

2. (A.134)

Since we have the inequality ‖zk+1 − z∗‖2
2 ≥

(
1− 1

λ4

)
‖xk+1 − x∗‖2

2 − (λ4 − 1)‖ek+1‖2
2, for

b ∈ (0, 1), we can get

b

(
1

4
− β

1 + δ

)
σ2

min(L+)‖zk+1 − z∗‖2
2 ≥b

(
1

4
− β

1 + δ

)
σ2

min(L+)

(
1− 1

λ4

)
‖xk+1 − x∗‖2

2

(A.135)

− b
(

1

4
− β

1 + δ

)
σ2

min(L+)(λ4 − 1)‖ek+1‖2
2.

(A.136)
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Thus,

(1− b)
(

1

4
− β

1 + δ

)
σ2

min(L+)‖zk+1 − z∗‖2
2 +

(
1− 4β

1 + δ

)
‖rk+1 − r∗‖2

2 (A.137)

+ b

(
1

4
− β

1 + δ

)
σ2

min(L+)

(
1− 1

λ4

)
‖xk+1 − x∗‖2

2 (A.138)

≤ 1/4 + β

1 + δ
σ2

max(L+)‖zk − z∗‖2
2 +

1

1 + δ
‖rk − r∗‖2

2 (A.139)

+

[
P + 1/2β

(1 + δ)c2
+ b

(
1

4
− β

1 + δ

)
σ2

min(L+)(λ4 − 1)

]
‖ek+1‖2

2 (A.140)

+
4βσ2

max(W)

1 + δ
‖xk+1 − x∗‖2

2. (A.141)

Defining

A1 =
4

(1− b)σ2
min(L+)

, (A.142)

and

A2 =
4

(1 + 4β)σ2
max(L+)

, (A.143)

we have the desired result.

A.11 Proof of Theorem 5.3

A.11.1 Eliminate ‖xk+1 − x∗‖22

First, we want to eliminate the term ‖xk+1 − x∗‖2
2 in Lemma A.6, which requires

b

(
1

4
− β

1 + δ

)
σ2

min(L+)

(
1− 1

λ4

)
≥ 4βσ2

max(W)

1 + δ
(A.144)
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and it is equivalent to that

β ≤
b(1 + δ)σ2

min(L+)
(

1− 1
λ4

)
4bσ2

min(L+)
(

1− 1
λ4

)
+ 16σ2

max(W)
(A.145)

Then we can write

(1− b)
(

1

4
− β

1 + δ

)
σ2

min(L+)‖zk+1 − z∗‖2
2 +

(
1− 4β

1 + δ

)
‖rk+1 − r∗‖2

2 (A.146)

≤ 1/4 + β

1 + δ
σ2

max(L+)‖zk − z∗‖2
2 +

1

1 + δ
‖rk − r∗‖2

2 (A.147)

+

[
P + 1/2β

(1 + δ)c2
+ b

(
1

4
− β

1 + δ

)
σ2

min(L+)(λ4 − 1)

]
‖ek+1‖2

2 (A.148)

(A.149)

which can be further simplified

‖zk+1 − z∗‖2
2 + A1‖rk+1 − r∗‖2

2 ≤ B(‖zk − z∗‖2
2 + A2‖rk − r∗‖2

2) + C‖ek+1‖2
2 (A.150)

We require the following for convergence analysis

A1 ≥ A2 (A.151)

which leads to the requirement

(1− b)σ2
min(L+) ≤ (1 + β)σ2

max(L+). (A.152)

Note that this requirement is satisfied intrinsically.
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Therefore, we get

‖zk+1 − z∗‖2
2 + A1‖rk+1 − r∗‖2

2 ≤ Bk+1

(
‖z0 − z∗‖2

2 + A2‖r0 − r∗‖2
2 +

k+1∑
s=1

B−sC‖es‖2
2

)
(A.153)

and we have the desired result since A1‖rk+1 − r∗‖2
2 > 0.

A.11.2 B ∈ (0, 1)

The above convergence result requires that B ∈ (0, 1). First, having β in Theorem 5.3 at hand, we

can make sure that B is greater than 0. Then, it requires that B < 1 and correspondingly

(1 + 4β)σ2
max(L+) ≤ (1− b)(1 + δ − 4β)σ2

min(L+) (A.154)

which is equivalent to that

β ≤ (1− b)(1 + δ)σ2
min(L+)− σ2

max(L+)

4σ2
max(L+) + 4(1− b)σ2

min(L+)
(A.155)

and

(1− b)(1 + δ)σ2
min(L+)− σ2

max(L+) > 0. (A.156)

Since b can be arbitrarily chosen from (0, 1), we also need

0 <
σ2

max(L+)

(1 + δ)σ2
min(L+)

< 1 (A.157)

One intuition is that we should design a network such that σ2
max(L+)

σ2
min(L+)

is the smallest possible. Sub-
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stituting δ in the expression and we have

σ2
min(L+)

σ2
max(L+)

>
L2 − 2v +

√
(L2 + 2v)2 + 16v2 λ2−1

λ2
σ2

min(Q)

4v λ2−1
λ2

σ2
min(Q) + 2L2

. (A.158)

A.12 Proof of Theorem 5.4

Note that δ is chosen as

δ = min

{
(λ1 − 1)(λ2 − 1)σ2

min(Q)σ2
min(L+)

λ1λ2σ2
max(L+)

,
4v(λ2 − 1)(λ3 − 1)σ2

min(Q)

λ1λ2(λ3 − 1)L2 + c2λ3(λ2 − 1)σ2
max(L+)σ2

min(Q)

}
(A.159)

We choose c such that

λ1λ2(λ3 − 1)L2 = c2λ3(λ2 − 1)σ2
max(L+)σ2

min(Q), (A.160)

which yields

c =

√
λ1λ2(λ3 − 1)L2

λ3(λ2 − 1)σ2
max(L+)σ2

min(Q)
(A.161)

and

δ = min

{
(λ1 − 1)(λ2 − 1)σ2

min(Q)σ2
min(L+)

λ1λ2σ2
max(L+)

,
2v(λ2 − 1)σ2

min(Q)

λ1λ2L2

}
(A.162)

=
(λ2 − 1)σ2

min(Q)

λ2

min

{
(λ1 − 1)σ2

min(L+)

λ1σ2
max(L+)

,
2v

λ1L2

}
(A.163)

It is desirable that δ can achieve its maximum, which is obtained by

(λ1 − 1)σ2
min(L+)

λ1σ2
max(L+)

=
2v

λ1L2
. (A.164)
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Therefore, we can set λ1 as

λ1 = 1 +
2vσ2

max(L+)

L2σ2
min(L+)

, (A.165)

and thus, we have δ as

δ =
(λ2 − 1)

λ2

2vσ2
min(Q)σ2

min(L+)

L2σ2
min(L+) + 2vσ2

max(L+)
(A.166)

The constraint on β in Theorem 4 ensures that B > 0.

Note that λ3 only appears in C and P . It is straightforward to derive the optimal λ3 to minimize

C, and we arrive at

λ3 =

√
L2σ2

min(L+) + 2vσ2
max(L+)

βλ1L2vσ2
min(L+)

+ 1 (A.167)

thus resulting in

C =

4δλ2σ2
max(W)

σ2
min(Q)

+ σ2
max(L+)

(√
δ +
√

2(λ2−1)σ2
min(Q)

βλ1λ2L2

)2

(1− b)(1 + δ)(1 + δ − 4β)σ2
min(L+)

+
b(λ4 − 1)

1− b
(A.168)

A.13 Proof of Corollary 5.1

A.13.1 First one:

According to the result in Theorem 5.3, we have

‖zk+1 − z∗‖2
2 ≤ Bk+1(‖z0 − z∗‖2

2 + A1‖r0 − r∗‖2
2) +Bk+1

k+1∑
s=1

B−sC‖es‖2
2 (A.169)
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and then

‖zk+1 − z∗‖2
2 ≤ Bk+1(‖z0 − z∗‖2

2 + A1‖r0 − r∗‖2
2) + CeBk+1

k+1∑
s=1

B−s (A.170)

= Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2) + Ce
1−Bk+1

1−B
(A.171)

≤ Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2) +
Ce

1−B
. (A.172)

Since B ∈ (0, 1), we have the desired result.

A.13.2 Second one:

Recall the result in (A.150),

‖zk+1 − z∗‖2
2 ≤ Bk+1(‖z0 − z∗‖2

2 + A1‖r0 − r∗‖2
2) +Bk+1

k+1∑
s=1

B−sC‖es‖2
2 (A.173)

which then can be written as

‖zk+1 − z∗‖2
2 ≤ Bk+1(‖z0 − z∗‖2

2 + A1‖r0 − r∗‖2
2) +Bk+1C

k+1∑
s=1

B−sRs‖e0‖2
2 (A.174)

≤ Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2) +Bk+1C‖e0‖2
2

k+1∑
s=1

(
R

B

)s
(A.175)

≤ Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2) +Bk+1C‖e0‖2
2

R

B −R
(A.176)

= Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2 +
RC‖e0‖2

2

B −R
) (A.177)

completing the proof.
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A.13.3 Third one:

Recall the result in (A.150),

‖zk+1 − z∗‖2
2 + A1‖rk+1 − r∗‖2

2 ≤ B(‖zk − z∗‖2
2 + A2‖rk − r∗‖2

2) + C‖ek+1‖2
2. (A.178)

If C‖ek+1‖2
2 ≤ B(A1 − A2)‖rk − r∗‖2

2, we can write

‖zk+1 − z∗‖2
2 + A1‖rk+1 − r∗‖2

2 ≤ B(‖zk − z∗‖2
2 + A2‖rk − r∗‖2

2) + C‖ek+1‖2
2 (A.179)

≤ B(‖zk − z∗‖2
2 + A2‖rk − r∗‖2

2) +B(A1 − A2)‖rk − r∗‖2
2

(A.180)

≤ B(‖zk − z∗‖2
2 + A1‖rk − r∗‖2

2). (A.181)

Then we have

‖zk+1 − z∗‖2
2 + A1‖rk+1 − r∗‖2

2 ≤ Bk+1(‖z0 − z∗‖2
2 + A1‖r0 − r∗‖2

2), (A.182)

which leads to

‖zk+1 − z∗‖2
2 ≤ Bk+1(‖z0 − z∗‖2

2 + A1‖r0 − r∗‖2
2), (A.183)

completing the proof as B ∈ (0, 1).

A.14 Useful Lemmas

Lemma A.7. There exists a vector y ∈ RN and σmin(yyT ) = 1, such that ∀x ∈ RN , yTx ≥ ‖x‖.

Proof. Since ∀x ∈ RD, yTx ≥ ‖x‖, it leads to

xTyyTx ≥ xTx, (A.184)
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which is equivalent to

σmin(yyT ) = 1. (A.185)

A.15 Proof of Lemma 5.1

Proof. First, for any r ∈ RDN , we obtain

f(xk+1)− f(x∗)

c
+ 〈2Qr,xk+1〉 (A.186)

=〈xk+1 − x∗,−L+(xk+1 − xk)− 2Q(rk+1 − r)〉 (A.187)

=〈xk+1 − x∗,−L+(xk+1 − xk)− 2Q(rk+1 − r)〉 (A.188)

=〈xk+1 − x∗,−L+(xk+1 − xk)〉+ 〈rk+1 − rk,−2(rk+1 − r)〉. (A.189)

Telescope and sum from k = 0, . . . , T , we can get

1

c

T∑
k=1

f(xk)− f(x∗) + 2r′Qxk (A.190)

≤‖x0 − x∗‖2
L+
2

− ‖xT − x∗‖2
L+
2

−
T∑
k=1

‖xk − xk−1‖2
L+
2

(A.191)

+ ‖r0 − r‖2
2 − ‖rT − r‖2

2 −
T∑
k=1

‖rk − rk−1‖2
2 (A.192)

Therefore, we obtain

1

c

T∑
k=0

f(xk)− f(x∗) + 2r′Qxk ≤ ‖x0 − x∗‖2
L+
2

+ ‖r0 − r‖2
2 (A.193)
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Define x̂T =
∑T
k=1 xk

T
and we get the following by Jensen’s inequality as

f(x̂T )− f(x∗) + 2cr′Qx̂T ≤
c

T
‖p0 − p‖2

G. (A.194)

If we choose r = 0, we obtain

f(x̂T )− f(x∗) ≤ c

T

(
‖x0 − x∗‖2

L+
2

+ ‖r0‖2
2

)
. (A.195)

The saddle point inequality implies

f(x∗)− f(x̂T ) ≤ 2c〈Qr∗, x̂T 〉. (A.196)

Thus, using (A.193), it yields

2c〈Qr∗, x̂T 〉 ≤ f(x̂T )− f(x∗) + 2c〈Q2r∗, x̂T 〉 ≤
c

T

(
‖x0 − x∗‖2

L+
2

+ ‖r0 − 2r∗‖2
2

)
(A.197)

Now we let r = r∗ + y with y chosen according to Lemma A.7. Thus, we obtain

f(x̂T )− f(x∗) + 2c〈Qr∗, x̂T 〉+ 2cyTQx̂T ≤
c

T

(
‖x0 − x∗‖2

L+
2

+ ‖r0 − r∗ − y‖2
2

)
. (A.198)

Since (x∗, r∗) is a primal-dual optimal solution, the saddle point inequality provides

f(x̂T )− f(x∗) + 2c〈Qr∗, x̂T 〉 ≥ 0. (A.199)

Using Lemma A.7, we obtain

2c

T

T∑
k=1

‖Qxk‖ ≤ c

T

(
‖x0 − x∗‖2

L+
2

+ ‖r0 − r∗ − y‖2
2

)
, (A.200)
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which yields

1

T

T∑
k=1

‖Qxk‖ ≤ 1

2T

(
‖x0 − x∗‖2

L+
2

+ 2‖r0 − r∗‖2
2 + 2

)
. (A.201)

Choose the starting point x0 = 0 and thus r0 = 0, and we have

1

T

T∑
k=1

‖Qxk‖ ≤ 1

2T

(
‖x∗‖2

L+
2

+ 2‖r∗‖2
2 + 2

)
≤ 1

4T

(
σmax(L+)V 2

1 +
2V 2

2

σmin(L−)c2
+ 4

)
.

(A.202)
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A.16 Proof of Theorem 5.5

For any r ∈ RDN , we can write

f(xk+1)− f(x∗)

c
+ 2r′Qxk+1 (A.203)

≤〈xk+1 − x∗,−L+(xk+1 − xk)− L+(xk − zk)− 2Q(rk+1 − r) + L−(zk+1 − xk+1)〉 (A.204)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈xk+1 − x∗, 2Q(r− rk+1)〉

(A.205)
+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉 (A.206)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈zk+1 − x∗, 2Q(r− rk+1)〉

(A.207)
+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.208)

=〈xk+1 − x∗,L+(xk − xk+1)〉+ 〈xk+1 − x∗,L+(zk − xk)〉+ 〈rk+1 − rk, 2(r− rk+1)〉

(A.209)
+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.210)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G − ‖pk+1 − pk‖2

G) + 〈xk+1 − x∗,L+(zk − xk)〉 (A.211)

+ 〈xk+1 − x∗,L−(zk+1 − xk+1)〉+ 〈ek+1, 2Q(rk+1 − r)〉 (A.212)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qxk+1‖2

2 − ‖Qek+1‖2
2 + 2〈L+

2
(xk+1 − x∗), zk − xk〉

(A.213)
+ 〈ek+1, 2Q(rk+1 − r)〉 (A.214)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− σmin(L−)

2
‖xk+1 − x∗‖2

2 − ‖Qek+1‖2
2 (A.215)

+
1

α
‖L+

2
(xk+1 − x∗)‖2

2 + α‖zk − xk‖2
2 + 〈ek+1, 2Q(rk+1 − r)〉 (A.216)

α =
σ2
max(L+)

2σmin(L−)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qek+1‖2

2 +
σ2

max(L+)

2σmin(L−)
‖zk − xk‖2

2 (A.217)

+ 〈ek+1, 2Q(rk+1 − r)〉 (A.218)

=
1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qek+1‖2

2 +
σ2

max(L+)

2σmin(L−)
‖zk − xk‖2

2 (A.219)

+ ‖2Qek+1‖‖rk+1 − r‖ (A.220)
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Algorithm ROAD guarantees that
∑k

t=1 ‖Qzt‖ ≤ 2EU/
√

2 =
√

2EU , and
∑k

t=1 ‖QXt‖ ≤
√

2EU due to the thresholding as well. Thus, we have
∑k

t=1 ‖Qet‖ ≤ 2
√

2EU . Then, we can have

f(xk+1)− f(x∗)

c
+ 2r′Qxk+1 ≤1

c
(‖pk − p‖2

G − ‖pk+1 − p‖2
G)− ‖Qek+1‖2

2 (A.221)

+
σ2

max(L+)

σ2
min(L−)

‖Qek‖2
2 + ‖2Qek+1‖(

√
2EU + ‖r‖). (A.222)

Telescope and sum from k = 0 to T − 1 (eT = 0 since it is the last iteration), and we get

T∑
k=1

f(xk)− f(x∗) + 2cr′Qxk ≤ ‖p0 − p‖2
G − ‖pT − p‖2

G + 2c
T∑
k=1

‖Qek‖(
√

2EU + ‖r‖)

(A.223)

+ c
σ2

max(L+)− σ2
min(L−)

σ2
min(L−)

T∑
k=1

‖Qek‖2
2 (A.224)

≤ ‖p0 − p‖2
G − ‖pT − p‖2

G + c4
√

2EU(
√

2EU + ‖r‖)

(A.225)

+ c
σ2

max(L+)− σ2
min(L−)

σ2
min(L−)

8E2U2 (A.226)

= ‖p0 − p‖2
G − ‖pT − p‖2

G + c4
√

2EU‖r‖ (A.227)

+ c
σ2

max(L+)

σ2
min(L−)

8E2U2. (A.228)

Choosing r = 0, we obtain

f(x̂T )− f(x∗) ≤ 1

T

(
‖p0 − p‖2

G + 8c
σ2

max(L+)

σ2
min(L−)

E2U2

)
. (A.229)

A.17 Proof of Theorem 6.1

The proof uses the following inequality.
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Lemma A.8. [McDiarmid’s Inequality [74]] Let f : Xm → R be a function such that for all

i ∈ {1, . . . ,m}, there exist ci ≤ ∞ for which

sup
X∈Xm,x̃∈X

|g(x1, . . . , xi−1, x̃, xi+1, . . . , xm)| ≤ ci, (A.230)

where g(x1, . . . , xi−1, x̃, xi+1, . . . , xm) = f(x1, . . . , xm)− f(x1, . . . , xi−1, x̃, xi+1, . . . , xm). Then

for all probability measure p and every ε > 0,

PX (f(X)− EX [f(X)] > ε) < exp

(
− 2ε2∑m

i=1 c
2
i

)
, (A.231)

whereX denotes (x1, . . . , xm), EX [·] denotes the expectation over them random variables xi ∼ p,

and PX denotes the probability over these m variables.

To apply the McDiarmid’s inequality, we first define the following quantity

4m(xα) = MMD2(xm,im ,y)−MMD2(xm′,im′ ,y) (A.232)

where xα := {xm,im ,xm′,im′ ,y} consists of 3n data samples.

Given Hi, it can be shown that

E[MMD2(xm,im ,y)] ≤ DI (A.233)

E[MMD2(xm′,im′ ,y)] ≥ DO. (A.234)

We next define xα−s the same as xα except that the s-th component xαs is removed. We also

define x̃αs as another sequence generated by the same underlying distribution for xαs . Then, xαs

affects4m(xα) via the following three cases.

• Case 1: xαs is in the sequence xm,im . In this case, xαs affects4m(xα) through the following
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terms

2

n(n− 1)

n∑
l=1,l 6=s

k(xαs ,xm,im(l))− 2

n2

n∑
l=1

k(xαs ,y(l)).

• Case 2: xαs is in the sequence xm′,im′ . In this case, xαs affects4m(xα) through the following

terms

2

n(n− 1)

n∑
l=1,l 6=s

k(xαs ,y(l))− 2

n2

n∑
j=1

k(xαs ,xm′,im′ (l)).

• Case 3: xαs is in the sequence y. In this case, xαs affects 4m(xα) through the following

terms

2

n2

n∑
l=1

k(xαs ,xm,im(l))− 2

n2

n∑
l=1

k(xαs ,xm′,im′ (l)).

Thus, since the kernel is bounded, i.e., 0 ≤ k(x; y) ≤ K for any (x, y), considering the above three

cases, the variation in the value of4m(xα) when xαs varies is bounded by 4K
n

. Then,

| 4m (xα−s,x
α
s )−4m(xα−s, x̃

α
s )| ≤ 8K

n
. (A.235)

We now apply Lemma A.8 and obtain

P
(
MMD2(xm,im ,y) ≥ MMD2(xm′,im′ ,y)

)
= P (MMD2(xm,im ,y)−MMD2(xm′,im′ ,y) ≥ 0)

= P (4m(xα)− E[4m(xα)] ≥ −E[4m(xα)])

≤ P (4m(xα)− E[4m(xα)] ≥ DO −DI)

≤ exp

(
−2(DO −DI)

2

64K2 3
n

)
= exp

(
−n(DO −DI)

2

96K2

)
. (A.236)
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The first inequality is based on the results in (A.233) and (A.234) that −E[4m(xα)] ≥ DO −DI .

Therefore,

Pe = P
(
∃m′ 6= m, i′m ∈ I

M ′m
1 ,4m(xα) ≥ 0,∀im ∈ IMm

1

)
≤ 1

M

M∑
m=1

∑
m′ 6=m

min
im∈IMm1

exp

(
−n(DO −DI)

2

96K2

)
≤M exp

(
−n(DO −DI)

2

96K2

)
. (A.237)

Thus, D = log e
96K2 (DO −DI)

2.

A.18 Proof of Theorem 6.2

We first introduce two lemmas to help establish the theorem.

Lemma A.9. [73] Suppose x is generated by p and Fx(a) is the corresponding empirical c.d.f..

Then

P

(
sup
a∈R

∣∣∣∣Fx(a)− Fp(a)

∣∣∣∣ > ε

)
≤ 2 exp

(
− 2nε2

)
.

Lemma A.10. Suppose two distribution clusters P1 and P2 satisfy (6.2). Assume that for j = 1, 2,

xj ∼ pj satisfying pj ∈ Pj . Then for any x3 ∼ p3 satisfying p3 ∈ P1,

P

(
dKS(x1,x3) ≥ dKS(x2,x3)

)
≤ 6 exp

(
− n(DO −DI)

2

8

)
.

Proof. By the triangle inequality and the property of supremum, we have

dKS(x1,x3) < dKS(p1,x1) + d1 + dKS(p3,x3),

dKS(x2,x3) > −dKS(p3,x3) + d2 − dKS(p2,x2).
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where DI < d1 < d2 < DO. Then

P

(
dKS(x1,x3) ≥ dKS(x2,x3)

)
≤ P

(
dKS(p1,x1) + dKS(p3,x3) + 2dKS(p2,x2) > d̂

)
≤ P

(
dKS(p1,x1) >

d̂

4

)
+ P

(
dKS(p3,x3) >

d̂

4

)
+ P

(
dKS(p2,x2) >

d̂

4

)
≤ 6 exp

(
− nd̂2

8

)
.

where d̂ = d2 − d1. Then, we have the desired result.

Without loss of generality, assume that the probability that y is generated from pk,ik is 1
M

for all

m ∈ {1, . . . ,M} and im ∈ {1, . . . ,Mm}. By Lemma A.10 and the union bound, the probability

of error is bounded by

Pe ≤
M∑
m=1

Mm∑
im=1

∑
m′ 6=m

Mm′∑
im′=1

P

(
dKS(xm,im ,y) ≥

dKS(xm′,im′ ,y)
∣∣y ∼ pm,im , im ∈ {1, . . . ,Mm}

∣∣) 1

M

≤ 6M exp
(
− n(DO −DI)

2

8

)
. (A.238)

Thus, the achievable discrimination rate is log e
8

(DO −DI)
2.

A.19 Proof of Remark 6.1

Here we provide an alternative proof for Remark 6.1, which is different from that given in [Lemma

2.10 [110]].
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By Fano’s inequality [22], we obtain

H(h|y) ≤ 1 + Pe log(M − 1). (A.239)

Since h is uniformly distributed over all the hypotheses, we have that

log(M) = H(h) = I(h; y) +H(h|y)

≤ I(h; y) + 1 + Pe logM. (A.240)

Let Ph(h), Py(y), and Ph,y(h,y) represent the marginal and joint distributions of h and y. Recall

that we represent the likelihood function of y underm as P (y|h) = ph(y). The mutual information

between h and y can be expressed in terms of likelihood functions as

I(h; y) =
M∑
h=1

∑
y

Ph,y(h,y) log
Ph,y(h,y)

Ph(h)Py(y)

=
1

M

M∑
h=1

∑
y

ph(y) log
ph(y)

Py(y)

=
1

M

M∑
h=1

∑
y

ph(y) log
ph(y)∑M

h′=1
1
M
ph′(y)

=
1

M

M∑
h=1

∑
y

ph(y)

[
log ph(y)−log

M∑
h′=1

1

M
ph′(y)

]

Applying Jensen’s inequality, the mutual information can be further upper bounded as

I(h; y) ≤ 1

M

M∑
h=1

∑
y

ph(y)

[
log ph(y)−

M∑
h′=1

1

M
log ph′(y)

]
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Simplifying, we finally have

I(h; y) ≤ 1

M

M∑
h=1

∑
y

ph(y)

·

[
M∑
h′=1

1

M
log ph(y)−

M∑
h′=1

1

M
log ph′(y)

]

=
1

M

1

M

M∑
h=1

M∑
h′=1

∑
y

ph(y) log
ph(y)

ph′(y)

=
1

M

1

M

M∑
h=1

M∑
h′=1

nDKL(ph‖ph′)

=nEh,h′DKL(ph‖ph′). (A.241)

where h′ has the same distribution as h, but is independent from h. Substituting (A.241) into the

(A.240), we obtain

logM ≤ nEh,h′DKL(ph‖ph′) + 1 + logMPe (A.242)

which implies that

logM

n
≤ Eh,h′DKL(ph‖ph′)

1− Pe
+

1

n(1− Pe)
. (A.243)

Since M = 2nD, we can have

D ≤ Em,m′DKL(pm‖pm′)
1− Pe

+
1

n(1− Pe)
. (A.244)

Thus, for any test that satisfies Pe → 0 as n → ∞, D ≤ lim supM→∞Em,m′DKL(pm‖pm′) as

n→∞. Therefore,

D̄ ≤ lim sup
M→∞

Em,m′DKL(pm‖pm′). (A.245)
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A.20 Sketch of the Proof for (6.24) and (6.25)

To prove (6.24), we follow the steps to obtain (A.236). Note that now xα := {xm,im ,xm′,im′ ,y}

consists of n + γm(n) + γm′(n) data samples, and | 4m (xα−s,x
α
s ) −4m(xα−s, x̃

α
s )| ≤ 8K

n′
, where

n′ ∈ {n, γm(n), γm′(n)} and the corresponding choice is based on the location of xαs . Then, we

can write

P
(
MMD2(xm,im ,y) ≥ MMD2(xm′,im′ ,y)

)
= P (MMD2(xm,im ,y)−MMD2(xm′,im′ ,y) ≥ 0)

= P (4m(xα)− E[4m(xα)] ≥ −E[4m(xα)])

≤ P (4m(xα)− E[4m(xα)] ≥ DO −DI)

≤ exp

− 2(DO −DI)
2

64K2
(

1
n

+ 1
γm(n)

+ 1
γm′ (n)

)


≤ exp

(
−min{n, γmin(n)}(DO −DI)

2

96K2

)
. (A.246)

Thus, it yields

Pe = P
(
∃m′ 6= m, i′m ∈ I

M ′m
1 ,4m(xα) ≥ 0,∀im ∈ IMm

1

)
≤ 1

M

M∑
m=1

∑
m′ 6=m

min
im∈IMm1

exp

(
−n(DO −DI)

2

96K2

)
≤M exp

(
−min{n, γmin(n)}(DO −DI)

2

96K2

)
. (A.247)

To prove (6.25), we follow the steps to obtain (A.238). Note that if the sequences y,xm,im ,xm′,im′
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have length of n, γm(n), γm′(n) respectively, we can obtain

P

(
dKS(xm,im ,y) ≥ dKS(xm′,im′ ,y)

)
≤2 exp

(
− n(DO −DI)

2

8

)
+ 2 exp

(
− γm(n)(DO −DI)

2

8

)
+ 2 exp

(
− γm′(n)(DO −DI)

2

8

)
≤6 exp

(
− min{n, γmin(n)}(DO −DI)

2

8

)
. (A.248)

Thus, it yields

Pe ≤
M∑
m=1

Mm∑
im=1

∑
m′ 6=m

Mm′∑
im′=1

P

(
dKS(xm,im ,y) ≥

dKS(xm′,im′ ,y)
∣∣y ∼ pm,im , im ∈ {1, . . . ,Mm}

∣∣) 1

M

≤ 6M exp
(
− min{n, γmin(n)}(DO −DI)

2

8

)
. (A.249)
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