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Social bookmarking systems allow people to create pointers to Web resources in a 

shared, Web-based environment.  These services allow users to add free-text labels, or “tags”, to 

their bookmarks as a way to organize resources for later recall.  Ease-of-use, low cognitive 

barriers, and a lack of controlled vocabulary have allowed social bookmaking systems to grow 

exponentially over time.  However, these same characteristics also raise concerns.  Tags lack the 

formality of traditional classificatory metadata and suffer from the same vocabulary problems as 

full-text search engines.  It is unclear how many valuable resources are untagged or tagged with 

noisy, irrelevant tags.   With few restrictions to entry, annotation spamming adds noise to public 

social bookmarking systems.  Furthermore, many algorithms for discovering semantic relations 

among tags do not scale to the Web.    

Recognizing these problems, we develop a novel graph-based Expert and Authoritative 

Resource Location (EARL) algorithm to find the most authoritative documents and expert users 

on a given topic in a social bookmarking system.  In EARL’s first phase, we reduce noise in a 

Delicious dataset by isolating a smaller sub-network of “candidate experts”, users whose tagging 

behavior shows potential domain and classification expertise.  In the second phase, a HITS-

based graph analysis is performed on the candidate experts’ data to rank the top experts and 

authoritative documents by topic.  To identify topics of interest in Delicious, we develop a 
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distributed method to find subsets of frequently co-occurring tags shared by many candidate 

experts. 

We evaluated EARL’s ability to locate authoritative resources and domain experts in 

Delicious by conducting two independent experiments.  The first experiment relies on human 

judges’ n-point scale ratings of resources suggested by three graph-based algorithms and Google.  

The second experiment evaluated the proposed approach’s ability to identify classification 

expertise through human judges’ n-point scale ratings of classification terms versus expert-

generated data. 
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1.0  INTRODUCTION 

Full-text search engines have become the most popular means of locating information on the 

Web. Despite their popularity, search engines still suffer from well-known vocabulary problems 

(i.e., synonymy and polysemy), a lack of well-defined topics or relations, and an increasing 

amount of noise on the Web.  In February, 2011, Google announced changes to its algorithm 

intended to lower the search result rankings of content farms – mass producers of low-quality 

content designed to match users’ queries (New York Times, 2011.)  Google’s changes came in 

response to complaints of irrelevant pages at the top of search results for some queries, 

illustrating how noise can prevent users from finding useful information on the Web. 

Prior to the rise of search engines, human-edited taxonomies of Web resources, such as 

Yahoo!’s Web directory, were the tools of choice for Web retrieval because of the more precise 

classification they offered.  Directory services like Yahoo! and the Open Directory Project 

(ODP) continue to be maintained by human editors, but the growth and churn of the Web has 

made such services too inefficient to maintain.   

Berners-Lee, Hendler and Lassila (2001) envisioned a Semantic Web that would address 

the limitations of HTML and supplant the need for full-text indexing.  Documents on the Web 

would be structured and marked up semantically, allowing machines to analyze and understand 

their contents.  Metadata describing the resources would be written in a standard structured 

language with standard vocabularies, such as the XML-based Resource Description Framework 
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(RDF).  Ontologies – shared conceptualizations of a domain (Gruber, 2003) – would formally 

describe the concepts and relationships in knowledge domains, linking resources together and 

allowing machines to make inferences through the expressed relationships.  

Ten years after Berners-Lee, Hendler and Lassila expressed their vision, little of the 

Semantic Web has actually been built.  Generating usable metadata either manually or 

automatically on the scale of the Web has proven to be an elusive goal.  Too many resources and 

not enough expert human metadata generators exist to perform the necessary annotations. 

Ontologies built for the Semantic Web become increasingly difficult to maintain as they grow.  

Agreement upon a single ontology for a domain (let alone the entire Semantic Web) is not 

feasible in a distributed environment such as the Web (Kalfoglou and Schorlemmer, 2003).  

Ontology mapping has the potential to solve the single-ontology dilemma, but research in the 

area is only beginning. 

Social bookmarking systems, such as Delicious, CiteULike, and Digg, allow people to 

create pointers to Web resources in a shared, Web-based environment.  These services also allow 

users to add free-text labels, or “tags”, to their bookmarks as a way to classify, organize, and 

recall resources at a later date.  Their ease-of-use, low cognitive barriers, and lack of controlled 

vocabulary have allowed them to grow exponentially in a matter of a few years.  With a wealth 

of metadata now available on millions of Web resources, researchers are examining ways to use 

tags on social bookmarks to build classification schemes. 

Social bookmarking systems are not without their problems. Without a controlled 

vocabulary, tags lack the formality of traditional classificatory metadata and suffer from the 

same vocabulary problems - synonymy and polysemy - as full-text search engines.  Despite the 

growing popularity of social bookmarking systems, the number of annotated resources is a small 
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fraction of the resources on the web.  It is unclear how many valuable resources are untagged, 

making low annotation coverage a concern. Algorithms for discovering semantic relations 

among tags work well on small data sets, but do not scale to the Web (Bao et al., 2007.)  

Annotation spamming (akin to link spamming) is another issue that future research must address 

(Bao et al, 2007; Hotho et al, 2008; Noll et al, 2009.)  

Given these problems with social bookmarking systems, this research introduces and 

evaluates a novel graph-based Expert and Authoritative Resource Location algorithm (EARL) to 

find the most authoritative documents and expert users on a given topic in a social bookmarking 

system.  In the first phase of EARL, we reduce the Delicious data to a smaller sub-network of 

“candidate experts”, users whose tagging behavior shows potential domain and classification 

expertise.  In the second phase, we perform a HITS-based graph analysis on the candidate 

experts’ data to rank the top experts and authoritative documents by topic.  To identify topics of 

interest in Delicious, we develop and use a distributed method to find subsets of frequently co-

occurring tags among the candidate expert users’ bookmarks. 

1.1 FOCUS OF STUDY 

Social bookmarking is the process of users saving pointers (i.e. social bookmarks) to Web-based 

resources in a shared, online environment, then providing annotations to those resources to 

facilitate later recall, or “personal re-discovery” (Trant, 2009).  Due to their relative ease-of-use, 

social annotation systems such as Delicious, CiteULike, and Flickr now contain annotated 

bookmarks to tens of millions of Web resources provided my millions of users.  Although social 

bookmarking is fundamentally a personal endeavor, the aggregation of social annotation data 
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yields shared meanings of resources and powerful network effects.  As a result, social annotation 

systems have drawn great interest from different segments of the research community.  

Researchers in the area of information retrieval are exploring ways to use social annotation data 

to improve indexing and retrieval for Web-based search.   Others have analyzed the dynamics of 

the social annotation systems themselves, exploring network growth and usage patterns over 

time, identifying communities of interest, and using these shared interests to make personalized 

resource recommendations.  Of particular interest to this work are those studies that attempt to 

reduce an entire graph to a small sub-sample containing the most influential nodes and edges, as 

well as work that removes noise from the network. Noise in the context of social bookmarking 

systems includes bookmarks with misleading annotations, irrelevant or potentially malicious 

resources (e.g., non-academic articles in CiteULike), and the users who post these annotations 

and resources, typically in an automated fashion.  Finally, many efforts focus on the semantics of 

annotations, with some attempting to organize social annotations via topic maps, faceted 

classifications, hierarchical classifications, or lightweight ontologies to improve searching and 

browsing of resources. 

Of the latter group of studies focusing on organizing social annotations, the majority of 

studies used one or more data clustering algorithms to classify tags, resources, and/or users with 

mixed results.   Some traditional machine learning algorithms, such as self-organizing maps 

(SOM) and K-means clustering, produced relatively poor results due to their inability to handle 

polysemous tags, idiosyncratic tags, or tags that are highly-correlated with a large number of 

other tags (e.g. “web” in Delicious.)  Other techniques that allow tags to appear in multiple 

clusters, such as maximal complete link clustering, produce superior classification schemes, but 

are too computationally expensive to scale well to large datasets.  Hierarchical agglomerative (or 
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“bottom-up”) clustering is the most promising algorithm in the literature in terms of 

classification quality and computational efficiency, but it is unclear how it will perform on very 

large samples of tag data. 

In this research, we develop an algorithm to locate expert users and authoritative 

documents in social bookmarking systems more accurately and efficiently than existing 

algorithms.  Because studies have shown that expertise and authoritativeness are topic dependent 

(Gobet & Simon, 1996; Ericsson & Lehmann, 1996; Ericsson, 2006), we also develop a method 

for extracting topics of interest from Delicious tag data without using machine learning 

algorithms.  We first begin with the premise that while some proponents of folksonomies as 

knowledge organization structures argue that all taggers in a social annotation system are equal 

(Kroski, 2005; Shirky, 2005), some taggers are, in fact, more equal than others.  In a preliminary 

analysis of a large sample of Delicious data (roughly 17 million bookmarks,) we found that 5% 

of the users contributed approximately 55% of the bookmarks.  Furthermore, the majority of 

these 5% consistently annotated their bookmarks with several tags per bookmark, a rich source 

of annotations that shows evidence of classification expertise. 

Thus, our first step is to reduce the graph around these users (i.e. influential graph nodes) 

using a series of simple statistics.  This initial step does not provide us any clue about the 

semantics of the annotations, nor does it measure the quality of the resources in the personal 

collections.  Do the annotations reflect a largely personal, idiosyncratic classification of the 

resources, or are there users who consistently provide annotations that accurately describe the 

topics of resource based on the community’s consensus view?  For the users and resources 

themselves, graph-based algorithms such as HITS and PageRank are effective tools for 

measuring the importance of nodes in a graph.  To determine the true experts and authoritative 
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documents among the influential graph nodes, we use a graph-based algorithm extended from 

HITS to rank experts and authoritative documents by topic.  We generate the topics for this study 

by extracting subsets of frequently co-occurring tags within and among the annotations of each 

expert.  We extract these co-occurring tags by determining the power set (i.e., all unique subsets 

of a given set) of each bookmark.   By finding subsets of co-occurring tags that many content 

experts utilize among their bookmarks, we believe we can uncover sets of tags that, despite the 

lack of controlled vocabulary, provide good topical descriptors for resources.  

In summary, this research addresses the following questions: 

• Using the judgments of independent human raters, does the EARL algorithm identify the 

best experts and most authoritative documents in Delicious on a given topic more 

accurately than existing algorithms, such as HITS, SPEAR, and Google’s PageRank? 

• Reducing the number of nodes in the Delicious data graph to a much smaller sub-network 

of candidate experts, does the EARL algorithm produce expert and authoritative 

document rankings on a given topic more efficiently than existing algorithms? 

• Can extracting power sets from bookmark tag sets produce meaningful subsets of tags 

that represent users’ topics of interest? 

1.2 DELICIOUS 

Delicious (http://delicious.com) is a social bookmarking service founded and launched by Joshua 

Schacter in September, 2003.  Originally named and located at the domain name “del.icio.us”, 

Delicious was acquired by Yahoo! in December, 2005, and then re-launched with a new user 

interface in November, 2007.  Yahoo! sold Delicious to AVOS Systems in April, 2011, who re-

http://delicious.com/
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launched the site with an updated interface in September, 2011. Delicious’ main purpose is to 

provide a centralized, Web-based system for users to store, organize, and share their bookmarks 

from any machine with Web access. Delicious allows users to add free-text labels, i.e. “tags”, to 

classify and organize their bookmarks. Users of, and visitors to, Delicious may freely browse the 

bookmarks of other users, discovering useful resources or tags via HTML or RSS feeds.  Figure 

1 shows an example of a resource page in Delicious as it appeared in 2010. Delicious also 

provides a Boolean search feature for users to search bookmarks by one or more tags.  

The current number of users, resources, tags, and bookmarks on Delicious is unknown.  

The last official figures published by Yahoo! claimed that Delicious had 5.3 million registered 

users and 180 million unique URLs bookmarked (Hood, 2008.)  Because Delicious is arguably 

the most popular general-purpose social bookmarking system available to the public, this 

research uses Delicious tag data collected from December, 2009 to August, 2010 (i.e. prior to the 

Figure 1. An example of a resource bookmarked on Delicious 
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sale to AVOS) to analyze the effectiveness of EARL and the topics-of-interest extraction 

method. 

1.3 LIMITATIONS AND DELIMITATIONS 

This study makes use of data from a single social bookmarking system, Delicious, imposing 

several limitations on this research: 

• The results may not be generalizable to other social annotation services, or even other 

social bookmarking systems.  Vander Wal (2005) notes the significant differences in the 

network structures of Delicious, a broad folksonomy where many users bookmark the 

same resources, and Flickr, a narrow folksonomy where most resources are bookmarked 

by only one user. Marlow et al. (2006) provide a taxonomy of social tagging systems, 

highlighting how user motivation, resource types, and tagging support can affect network 

structure. Santos-Neto, Ripeanu and Iamnitchi (2007) found that in CiteULike and 

BibSonomy a user’s tab vocabulary size was positively correlated with the size of his 

bookmark collection, but not in Delicious. 

• Despite being considered a general-purpose social bookmarking system, Delicious’ 

content skews toward technically-oriented resources (e.g., programming, web design.)  

Our dataset may be missing a significant number of authoritative resources of non-

technical domains that one may find on the Web, but have yet to be bookmarked by a 

Delicious user. 



 9 

• After being acquired by Yahoo, Delicious imposed stricter limitations on resource and 

user crawling.  Delicious limits the number of bookmarks per resource page to fifty, does 

not allow any sorting or filtering of bookmarks chronologically or by tag, and provides 

only the first forty pages.  Thus, our crawlers could only collect the 2,000 most recent 

bookmarks for a given resource, meaning the crawlers missed a significant percentage of 

the bookmarks for the most popular resources.  Collecting all of the resource’s older 

bookmarks from user-based crawling would be prohibitively time-consuming and 

expensive with no guarantee that the resource’s bookmark history is complete. 

When crawling a particular user, Delicious limits the number of bookmarks per 

page to 100, provides only the first forty pages, but does allow one to re-sort the 

bookmarks list in chronological order.  Thus, Delicious allows one to crawl a maximum 

of 8,000 bookmarks.  For the most prolific users – e.g., the Delicious user “angusf” has 

over 86,000 public bookmarks as of March, 2011 - we will inevitably miss some portion 

of their bookmarks. 

• Although our crawl collected 73 million bookmarks, this total did not include all of 

Delicious’ bookmarks as of August, 2010. Thus our dataset is missing some number of 

users and resources. Delicious’ restrictions aside and despite efforts to ensure that our 

crawling would produce a representative data sample, the data may be biased due to our 

partial crawl. 
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1.4 DEFINITION OF TERMS 

1.4.1 Annotation 

Annotation as defined by the Oxford English Dictionary is “[a] note added to anything written, 

by way of explanation or comment.” Vatton et al. (2004) define annotations as “comments, notes, 

explanations, or other types of external remarks that can be attached to a Web document or to a 

selected part of a document.”  Petkovic et al. (2005) write that “annotations can represent 

comments and remarks users create for themselves or for others, referring to a specific piece of 

content (word, paragraph, image region etc.)”  Together, these definitions emphasize that 

annotations 1) are created to communicate information about an entire document, or just part of a 

document, and 2) may be created for personal or collaborative use. 

In this study, annotation is defined as information attached to a resource by a person for 

the purpose of communicating or summarizing information related to some resource. The 

annotation may be intended for personal or public use. 

1.4.2 Bookmark 

Abrams, Baecker, and Chignell (1998) define bookmarks as “file surrogates (aliases) pointing to 

original files in ‘tertiary storage,’ the massive distributed file system located in Web servers 

distributed around the world.”  Here, bookmarks are defined as locally-stored pointers to URLs 

of Web resources for later recall.  Bookmarks are typically stored locally in a user’s Web 

browser. 
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1.4.3 Metadata 

Metadata as defined by the Oxford English Dictionary is “a set of data that describes and gives 

information about other data.” More simply, metadata are data about data.  In the context of the 

World Wide Web, metadata are structured or semi-structured data that describe a resource.  

Here, annotations on Web resources are defined as a form of semi-structured metadata. 

1.4.4 Social Annotation 

A social annotation is a piece of shared metadata generated by individuals on a collection of Web 

resources within the confines of Web-based annotation system. 

1.4.5 Social Bookmark 

A social bookmark is a specific kind of bookmark, defined here as a pointer to a specific 

resource, created by a specific user, organized via user-defined annotations, or “tags”, and stored 

in a shared, Web-based environment.  

1.4.6 Tag 

A tag is a free-text, open-ended annotation assigned to a bookmark by a user as metadata to 

describe a Web resource (Tonkin, 2006).  Most tags are arbitrary words or acronyms applied to a 

resource as a descriptor and/or a mnemonic device for later recall; however, a tag may consist of 
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any continuous set of characters (e.g., letters, digits, punctuation, or other special characters).  In 

most systems a tag is bounded by spaces. 

Additionally, a compound tag is a tag comprised of two or more dictionary terms 

separated by an optional separator character (e.g., “/”, “_”, “+”).  Variants of a compound tag are 

different forms of the tag that consist of the same dictionary terms in the same sequence, but use 

alternative separator characters.  For example, variants of the common compound tag 

“webdesign” include “web-design”, “web_design”, and “web+design.”  

1.4.7 Resource 

According to RFC 1736 (1995), an electronic resource may be “animate beings or physical 

objects with no electronic instantiation” or electronic, networked artifacts such as “an electronic 

document, an image, a server (e.g., FTP, Gopher, Telnet, HTTP), or a collection of items (e.g., 

Gopher menu, FTP directory, HTML page)” (RFC 1736, p.3.)  In this paper, a resource is a  

Web-based object - typically a document, image, audio, video, or other multimedia file - that is 

bookmarked and optionally annotated with tags by some user. 

1.4.8 URL 

RFC 1738 (1994) defines a Uniform Resource Locator (URL) as “a compact string 

representation for a resource available via the Internet.” (RFC 1738, p.1.)  URLs serve as 

abstract identifiers of a resource’s location (p.2.) Multiple URLs may point to a single resource; 

consequently, social bookmarking systems may contain bookmarks pointing to different URLs 

that identify a common resource. 
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1.4.9 Taxonomy 

Taxonomy as defined by the Oxford English Dictionary is “classification, esp. in relation to its 

general laws or principles; that department of science, or of a particular science or subject, 

which consists in or relates to classification; esp. the systematic classification of living 

organisms.” Garshol (2004) defines taxonomy as “a subject-based classification that arranges the 

terms in the controlled vocabulary into a hierarchy without doing anything further” (p.381.) 

Here, taxonomy is defined as any hierarchical classification system.  The controlled vocabulary 

aspect of Garshol’s definition does not apply to social bookmarking systems, although this 

research does intend to treat tags as pseudo-subjects, i.e., metadata to group and categorize 

resources. 

1.4.10 Folksonomy 

A folksonomy is the aggregate, user-generated network of tags applied to Web resources 

collected in a social tagging system. The term “folksonomy”, attributed to Vander Wal (2005) is 

derived from a combination of the words “folk” (i.e., non-expert users) and “taxonomy” (i.e. a 

classification structure).  Other terms used in the literature to describe this structure include 

“social classification” (Tonkin, 2006; Feinberg, 2006), “distributed classification” (Hammond et 

al., 2005; Speller, 2007), and “collaborative tagging.” (Golder and Huberman, 2006.) 

Like Trant (2009), this paper views “tagging” as a process and the folksonomy as the 

resulting “collective vocabulary” (Trant, p.4) and organizational structure of tags. 



 14 

1.4.11 Noise 

In information theory, noise is defined as “statistical and unpredictable perturbations” that 

interfere with the transmission of a signal (Shannon, 1949.) In the context of social bookmarks, 

noise refers to irrelevant tags used to classify resources.  Here, noise may also refer to 

idiosyncratic tags applied by only one user of a social bookmarking system. 

1.4.12 Power set 

The power set of a given set S is the set of all possible combinations of elements (i.e., subsets) of 

S (Dyrholm, 2009.)  Given that S contains n elements, the power set P(S) will contain 2n subsets, 

including the empty set.  In this paper, S is the set of tags applied to a given bookmark, and the 

power set P(S) is all possible combinations of tags within S. 
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2.0  RELATED WORK 

First, this chapter provides a brief review of research on annotations; bookmarks and social 

bookmarks - specific forms of Web-based annotations; classification schemes; how expert and 

novice classifiers classify documents; and domain expertise.  Second, it reviews research on 

methods for identifying expert users in Web-based systems.  Finally, the chapter concludes with 

a discussion of research on automatic classification of social bookmarking data. 

2.1 BACKGROUND 

2.1.1 Annotations 

For centuries, readers have annotated paper-based documents for a variety of purposes.  Copy 

editors annotate manuscripts to give authors feedback and type setters formatting instructions.  

Many students underline, highlight, or circle passages of text they believe raise salient points, or 

are otherwise useful to learning.  They may jot comments in the margins of text to summarize 

key topics, or describe in their own words what the author has written.  Instructors mark papers 

with comments, corrections, or counter-arguments as a dialog with their pupils.  In fact, Adler 

(1940) argues that annotating is an essential part of reading a book - “a conversation between 

[the reader] and the author” – and suggests several ways to properly annotate a document. 
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In his seminal paper “As We May Think”, Bush (1945) describes a prototype hypertext 

system, “Memex”, that would leverage the utility of annotations beyond any system yet 

described or developed.  Bush envisioned a system where researchers could easily copy and store 

manuscripts, photographs, and other materials on microfilm.  Researchers could access items by 

browsing their collections, or move immediately to an item by typing its assigned mnemonic 

code.  Information could then be edited or annotated in real-time.  The key to the system, as 

Bush notes, is the researcher’s ability to link any two items together with codes to build “trails” 

of information.  Bush saw the researcher’s “web of trails” as a more natural and efficient means 

of retrieval then traditional indexing, operating by association much like the human brain.   

Research on annotations has begun only recently (Choochaiwattana, 2008).  Marshall 

(1997, 1998) conducted a series of studies examining how people annotate books, and how such 

annotations could be made, stored, and used on Web documents.  Table 1 shows a series of 

dimensions proposed by Marshall (1998) for describing the forms, functions, and roles of 

annotations.  Marshall also notes the role annotations play when buyers of used textbooks make 

their selections – experienced buyers prefer books with hand-written annotations in the margins 

over books with only implicit annotations (e.g., highlighted or underlined passages.)  Buyers felt 

explicit annotations conveyed greater authority - i.e., “notes taken in class” – increasing the 

perceived value of the book. 

Choochaiwattana (2008) classifies the purposes of annotations into four categories: 
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• Annotation for Memory – used to help the reader locate useful sections of a document, or 

recall important concepts within a text. 

• Annotation for Communication – used to exchange information between the annotator 

and the reader.  The audience for these types of annotation can be any of the four 

audience groups (i.e. Global > Personal) defined by Marshall under her annotation roles. 

• Annotation for Collaboration – similar to communication, but used specifically by 

workgroups to exchange ideas, provide feedback, or facilitate workflow to achieve a 

common goal.  Collaborative annotations produced electronically may be shared in real-

time by team members in different locations. 

 

Table 1. Marshall's dimensions of annotations (1998) 

Forms of Annotation 
Formal Follows well-defined, standardized structural rules. 

Informal Follows no structural rules; ad-hoc. 
Tacit Meaning is understandable only to the annotator. 

Explicit Meaning is understandable to everyone. 

Functions of Annotation 
As reading Organization of content or navigational aids to assist the reader. 
As writing Commentary or explanation beyond the author’s text. 

Hyperextensive Focus is on linking documents (i.e., creating hyperlinks) 
Extensive Focus is on organizing similar documents (e.g., bookmarks) 
Intensive Focus is on a single document. 

Permanent Useful for an indefinite period. 
Transient Useful for the current reading session only. 

Roles of Annotation 
Published Everyone is authorized to read. 

Private Only certain individuals or groups are authorized to read. 
Global Audience is everyone. 

Institutional Audience is organization- or enterprise-wide. 
Workgroup Audience is the annotator and his/her colleagues. 

Personal Audience is the annotator. 
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• Annotation for Description – used to describe or classify objects.  Descriptive annotations 

can be used to improve retrieval of documents, images, or other objects. 

2.1.1.1  Bookmarks 

In the context of Web browsers, bookmarks are locally-stored pointers to URLs of Web 

resources – very similar in nature to the mnemonic codes in Bush’s Memex.  Bookmarks (also 

called “favorites” or “hotlists”) first appeared in NCSA’s Mosaic browser in 1993 and are now a 

standard feature of all major browsers.   Abrams, Baecker, and Chignell (1998) define 

bookmarks as “file surrogates (aliases) pointing to original files in ‘tertiary storage,’ the massive 

distributed file system located in Web servers distributed around the world.”  In addition to a 

resource’s URL, a bookmark typically stores the resource’s title, an optional user-supplied 

description, and an optional set of keywords.  

Along with queries issued to search engines, bookmarks are one of the most popular 

ways users locate information on the Web. Abrams, Baecker, and Chignell classify the reasons 

users create bookmarks into three categories: 

1. Reducing user load - make it easier to manage URLs; aiding memory and keeping 

history. 

2. Facilitating navigation/access - speeding information access; finding Web information. 

3. Collaborating/publishing/archiving - creating a personal Web information space; 

authoring and publishing Web pages; collaboratively using Web information. 

Keller et al. (1997) note that virtually all browsers allow users to create bookmark folders 

and organize their bookmarks hierarchically. Abrams, Baecker, and Chignell found that the use 
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and complexity of a personal hierarchical bookmark structure depended largely on the number of 

bookmarks a user has saved.  Thirty-seven percent of respondents to their bookmark-use survey 

did not organize their bookmarks in any way, but the majority of this group had less than 35 

bookmarks.  Users with 26-300 bookmarks were more likely to use a shallow hierarchy of 

bookmark folders, while users with more than 300 bookmarks tended to use multi-level 

hierarchies.  Abrams et al. also report that creators of multi-level bookmark hierarchies found it 

difficult to retrieve bookmarks from their collection, an observation consistent with Lansdale’s 

conclusion that users have great difficulty finding objects within deeply-nested hierarchies 

(Lansdale, 1983).  Creating a bookmark is very simple, but choosing the right location in a 

hierarchy for a new bookmark – let alone creating and maintaining a hierarchical structure – is a 

laborious process.    

2.1.1.2  Social Bookmarks 

Keller et al. noted the importance of the bookmark as a tool for storing, organizing, and recalling 

useful resources on the Web.   However, they felt the utility of browser-based bookmarks were 

limited by 1) a hierarchical organization scheme that is difficult to maintain and navigate, forcing 

users to place a bookmark in a single folder, 2) an inability to share bookmarks with other users, 

and 3) an inability to rank bookmarks by utility.  The authors built a proxy-based collaborative 

bookmarking system, WebTagger, that allowed users to categorize bookmarks in multiple 

categories and share bookmarks with others in a “group memory”, or store the bookmark 

privately in their “personal memory.”  WebTagger was not the first “public link management 

application” (Hammond et al., 2005), but was the first to abandon hierarchical folders in favor of 

multi-faceted, user-defined categories for bookmark organization. 



 20 

Heymann, Kouritka, and Garcia-Molina (2007), Hotho et al. (2006), and Dellschaft and 

Staab (2008) all define a social bookmark as a 3-tuple consisting of a user U, a resource R, and a 

set of tags, TS.  Golder and Huberman (2006) add that these annotations are “social” because 

users may view the bookmarks of other people, not just their own (p.201.)  Users may freely 

browse each other’s bookmarks to learn what resources interest fellow community members and 

how they classify these resources. 

Social bookmarks may fall into any of Choochaiwattana’s four categories of annotations.  

Many users create social bookmarks to store useful links so they or other users can recall the 

linked resource at a later date (i.e. annotation for memory.)  Some users add tags to their 

bookmarks to describe the resource’s content (i.e. annotation for description.)  Social 

bookmarking systems that focus on communities of interest in the enterprise, such as Dogear 

(Millen, Feinberg, & Kerr, 2006), or in the general public, such as CiteULike, encourage users to 

share their bookmarks and tags with other group members (i.e. annotation for collaboration and 

communication.) 

Hammond et al. (2005) provide an early review of social bookmarking systems, including 

those for general Web resources, such as Delicious, StumbleUpon, and Simpy, as well as 

systems concentrated in a particular domain, such as CiteULike and Connotea for academic 

papers.  They list the following elements as common characteristics of virtually all social 

bookmarking systems (p.11): 

• Personal user accounts (groups sometimes provided). 

• Mechanism for entering links, titles and descriptions. 

• Classification by 'open' or 'free' tagging 

• Search by tag or user (Boolean combinations sometimes allowed) 
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• Querying of links based on popularity, users, tags, etc. 

• RSS feeds 

• Extensions such as browser plug-ins 

Trant (2009) provides a review of social bookmarking system research, identifying three 

main themes in the literature.  First, researchers have studied using social bookmark tag sets as 

metadata to improve information retrieval.  Information from bookmarks may be used to enhance 

indexing algorithms, such as Hotho et al. (2006) and Bao et al. (2007), or to build classification 

schemes (to be discussed in section 2.3 of this chapter).  Hotho et al. (2006) present an adapted 

version of PageRank called FolkRank that converts the directed edges of users, tags, and 

resources into an undirected graph, and then calculates a topic-specific FolkRank score in the 

folksonomy. Bao et al. (2007) develop and test two ranking algorithms for folksonomies: 

SocialSimRank, a query-dependent score for social annotations that was successful in 

uncovering latent semantic relations among tags, and SocialPageRank, a query-independent rank 

to measure the popularity of a resource.  Wu et al. (2006) present an approach for disambiguating 

Delicious tags and uncovering semantic relations, as users annotate the resources they bookmark 

without using a controlled vocabulary or ontology.  Begelman et al. (2006) present several 

clustering algorithms to improve search results by locating tags semantically related to query 

terms.  Heymann et al. (2008) collect and analyze a large sample of Delicious data to evaluate its 

utility for improving Web retrieval.  They conclude that the service’s growth and substantial 

portion of unindexed pages may make it valuable to search despite the relatively high overlap of 

resources with prominent search results (p. 199) and tags with page titles and text (p. 202.)  

Choochaiwattana and Spring (2009) examine methods to use Delicious tag data to improve 

resource indexing and search result rankings.  They found that their Normalized Match Tag 
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Count method, which rewards resources with the highest percentage of Delicious users 

annotating them with matching terms for a given query, performs significantly better than 

methods that rely solely on resource popularity (i.e. bookmark count).  From these studies, we 

conclude that tags can improve the performance of information retrieval, particularly for query-

dependent algorithms, as well as when combined with the full text of resources. 

Secondly, many studies of social bookmarking system have focused on the tagging 

behavior of users.  Vander Wal (2005) notes the significant differences in the network structures 

of Delicious, a broad folksonomy where many users bookmark the same resources, and Flickr, a 

narrow folksonomy where most resources are bookmarked by only one user. Marlow et al. 

(2006) provide a taxonomy of social tagging systems, highlighting how user motivation, resource 

types, and tagging support can affect network structure. Bischoff et al. (2008) found that the 

prevalence of certain tag types varied among social bookmarking systems, depending on the 

system’s focus.  The authors found that “topic” tags – tags describing what a resource is about 

(e.g. “webdesign” or “java”) –  are the most common class of tags in Delicious, while “type” tags 

– tags describing what a resource is (e.g., “mp3”, “blog”) – appear most often in Last.fm, a social 

bookmarking system for music. Syn and Spring (2009) examined how well tags on bookmarked 

resources in CiteULike described content compared to author-assigned keywords from a 

controlled vocabulary on the same resources in the ACM Digital Library. Among their findings 

is that although keywords performed better than tags in describing content based on cosine 

similarity to terms in the titles and abstracts, the performance of tags (and keywords) increased 

as the number of terms used to annotate the resource increased.  When comparing tags to terms 

at different levels in the ACM Computing Classification systems, the authors found that tags did 

a significantly better job representing specific topics than general ones. 
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Golder and Huberman’s early paper on tagging patterns illustrated how the broad 

folksonomy in Delicious follows a Zipf distribution, or the power law, in terms of tag usage, 

resource selection, and system usage by user (Golder and Huberman, 2006). Halpin, Robu, and 

Shepherd (2007) and Wetzker, Zimmermann, and Bauckhage (2008) confirmed this observation 

regarding Delicious, noting the exponential growth of the system in a short period of time.  

While the success of Delicious and other social bookmarking systems is due in large part to the 

ease with which one can save and freely annotate Web resources, this ease-of-use comes with 

potential costs.  Chi and Mytkowitcz (2008) analyze data from Delicious using several measures 

of entropy.  They conclude that Delicious’ tag vocabulary is becoming less efficient, making the 

site harder to navigate.  Guy and Tonkin (2006) provide suggestions to improve the quality of 

tags to make them more conducive to search and classification.   Syn (2010) presents a method 

for decomposing compound tags and two TF/IDF-inspired metrics, Annotation Dominance (AD) 

and Cross Resource Annotation Discrimination (CRAD), to reduce tag noise, as well as find 

professional-quality classificatory metadata in among tags in Delicious.  

Finally, a third stream of research examines social bookmarking systems as “socio-

technical systems” (Trant, p.17), i.e., how users within a system interact with each other and the 

system’s features.  Although Delicious permits users to freely tag their bookmarks with no set 

vocabulary, researchers have found evidence that the tag vocabularies of individuals tend to 

stabilize, and even converge, over time.  Udell (2005) observed that the number of new tags in a 

Delicious user’s vocabulary gradually decreases over time as he enters new bookmarks. Millen, 

Feinberg, and Kerr (2005) found a similar trend in their enterprise social bookmarking system, 

Dogear. Golder and Huberman (2006) found that a resource’s top tags tend to stabilize after the 

first 100 users have bookmarked the item. Dellschaft and Schaab (2008) present a model 
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showing strong evidence that a Delicious user’s own vocabulary and the previous tag 

assignments on a given resource heavily influence the user’s tagging behavior.  The authors also 

found a sharp drop in the frequency-rank distributions of tags on popular resources after Rank 7, 

possibly due to Delicious presenting users a maximum of seven tag suggestions at the point of 

bookmark creation. Li, Guo, and Zhao (2008) present their Internet Social Interest Discovery 

(ISID) system that uses tag-based discovery to cluster users with similar topics of interest, even 

if those users have no social connections to each other.  The authors’ algorithm looks for 

frequent co-occurrence patterns of tags to identify topics, and clusters both Delicious users and 

documents based on topic/interest similarity. Finally, Hassan-Montero & Herrero-Solana (2006) 

produce a clustered version of the popular tag cloud often used to visualize tag vocabularies.  

Rather than present tags in alphabetical order, the authors’ tag cloud presents semantically-

related tags in horizontal clusters, reducing the semantic density of the tag set. 

2.1.2 Classification 

Classification is the process of creating relations between objects and a pre-defined set of 

categories.  This pre-defined set of categories and its structure constitute a classification scheme 

(Fettke and Loos, 2002.)  Humans create classification schemes to better organize and retrieve 

information in a wide variety of domains, such as the Periodic Table of Elements for chemical 

elements, and the Dewey Decimal system for arranging documents in a library. Although many 

of the most-widely known classification schemes are hierarchical, several researchers (including 

Bailey, 1994; Gaus, 1995; Fettke and Loos, 2002) identify four types of classification schemes, 

shown in Table 2. 
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Bischoff et al. (2008) showed that the most prevalent tags in Delicious are those that 

describe what a resource is about.  In essence, Delicious users who provide these descriptive tags 

are classifying their bookmarked resources within their own personal taxonomy.  A professional 

librarian working in a traditional library creates more formal, but similar classificatory metadata 

for each resource called subjects.  One of the main objectives of this research is to see if 

Delicious contains users who annotate resources with comparable expertise to professional 

cataloguers.  In turn, can their annotations be used as “subjects” for a shared classification 

scheme to improve recall of resources in social bookmarking systems? 

This section first explores the main approaches to categorization, the ways in which 

humans recognize and differentiate objects, followed by a review of subject-based classification 

schemes. The section concludes with a review of the literature on subject analysis, the process 

expert cataloguers use to classify resources. 

Table 2. Types of Classification Schemes (from Fettke & Loos, 2002) 

Classification Type Description 
Basic or Enumerative Each object is an element of one class. Classes are defined by 

specific characteristics with no overlap.  The structure of a basic 
classification is flat. 

Hierarchical Similar to basic classification, but the classes are ordered 
hierarchically in a tree-based structure. One super-class can 
include one or more sub-classes. 

Faceted Each object is classified according to different viewpoints, 
called facets, which are completely distinct. Each object must 
be classified according to all facets. 

Characteristic-based Each classification object is characterized by several 
characteristics. In contrast to faceted classification, the 
characteristics do not need to be completely distinct 
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2.1.2.1  Approaches to Categorization 

Classical categorization originated with Plato and Aristotle, who were the first in the Western 

world to consider grouping and labeling objects with shared properties (Langridge, 1989.)  In 

Categories, Aristotle theorized that human knowledge may be divided into ten discrete 

categories.  This classification system served as the basis for modern taxonomies – hierarchical 

classification schemes – in which entities must reside in a single category.  Categories derived 

from the classical approach should be clearly-defined, perfectly discrete (i.e., no overlap or 

fuzziness), and collectively comprehensive.  Philosophically, classical categorization assumes 

that categories are objective, existing independent from human perception and defined strictly by 

the properties of its members (Lakoff, 1987.) 

Conceptual clustering is a recent derivation of classical categorization that serves as the 

foundation for unsupervised machine learning, algorithms that “learn from observation” 

(Michalski and Stepp, 1983a.)  In this approach, an algorithm accepts a series of object 

descriptions, and then uses an evaluation function to define logically disjoint conceptual 

descriptions.  Objects are then classified according to these descriptions.  The main goal of early 

conceptual clustering algorithms, such as CLUSTER/PAF (Michalski and Stepp, 1983b), was to 

produce a hierarchical classification scheme similar to traditional taxonomies.  Later conceptual 

clustering systems, such as COBWEB (Fisher, 1987), attempted to build hierarchical 

classifications through incremental learning, a process that better reflects the real-world 

environments a human might encounter when classifying objects. 

The best classification schemes produced from conceptual clustering exhibit high intra-

class similarity and low inter-class similarity (Fisher, 1987.)  Gluck and Corter (1985) developed 

a metric known as category utility, or category “goodness”, to measure this phenomenon.  To 
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Corter and Gluck (1992), a classification scheme is useful if a typical category label helps a 

person accurately determine what the properties of its objects are, and iteratively, knowledge of 

the properties helps a person accurately predict in what category an object belongs.  

Prototype theory, first described by Rosch (1973), is yet another approach to 

categorization.  Although hierarchical in nature, prototype theory is otherwise a radical departure 

from classical categorization.  According to the prototypical view, “natural” categories tend to be 

graded or fuzzy, not completely discrete classes as in classical categorization, with members that 

have similar, but unequal characteristics (Rosch, 1973.)  Certain members of a category are more 

representative, or central, to a category than others – i.e., a “robin” is more prototypical of “bird” 

than “penguin”.  Furthermore, categories and their meanings are rooted in, not separate from, 

human cognition (Lakoff, 1976.)  Rosch’s famous experiments involving categorization led her 

to theorize that humans recognize objects at the ‘basic level’ of understanding – the level at 

which humans are most likely to interact with them (Tanaka and Taylor, 1991.)  Objects may 

also be described at the super-ordinate (more general) or sub-ordinate (more specific) levels, but 

the basic level category is the one that is maximally informative, providing the highest category 

utility. 

2.1.2.2  Classification Structures 

Garshol (2004) provides an overview of subject-based classification structures and their 

effectiveness for organizing Web-based resources.  The author compares four traditional 

schemes from library science that used controlled vocabularies – taxonomies, thesauri, faceted 

classification, and ontologies – to topic maps, a relatively new classification structure:  

• Taxonomies are hierarchical classification schemes in which objects with similar 

properties are grouped together.  Subjects that encompass a broad array of objects reside 
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toward the top of a hierarchy (e.g., “animals”), while subjects that describe more specific 

sets of objects reside toward the bottom (e.g., “dogs”.)  Thus, taxonomies imply super-

ordinate/subordinate or “parent-child” relationships among subjects. While basic 

taxonomies are relatively simple structures to understand, they lack the ability to express 

more complex relationships among subjects (Garshol, 2004.)  Locating subjects within a 

taxonomy may be difficult for users who are unfamiliar with the subject vocabulary, or if 

the hierarchy is deeply-nested (Lansdale, 1983.)  

• Thesauri are extensions of taxonomies that are able to describe additional relationships 

between subjects.  Besides hierarchical relationships (i.e., “broader term” and “narrower 

term”) thesauri typically include synonyms, related terms to a subject that are neither 

synonyms nor parents/children, and scope notes that provide contextual descriptions of a 

subject when the subject’s meaning may be unclear (Garshol, 2004.)  By retaining the 

precise subject names and hierarchical structure of taxonomies, but including additional 

relationships and terms more in tune with how end users view and describe a domain, 

thesauri are appealing for Web-based resource classification. Still, the number of 

additional relationships is very limited, so thesauri are typically not powerful enough to 

precisely describe a domain.  
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• Faceted classification, originally proposed by Ranganathan (1963), is a scheme where 

resources are described by selecting a single term from multiple axes or “facets”, 

allowing for multiple classifications of a set of resources rather than a single taxonomy.  

Table 3 shows an example of a resource classified using the five facets of Ranganthan’s 

Colon Classification (Garshol, 2004.)  Faceted classification generally permits a subject 

to be included in only one of the facets.  Garshol notes that while faceted classification 

may seem radically different, it may actually be a more disciplined form of thesaurus 

suitable for classification purposes (p. 383.) 

• Ontologies in the information sciences are formal, explicit, shared conceptualizations of a 

domain (Gruber, 1993.)  These structures allow classifiers to very precisely describe both 

an object and its relationships with other objects in a domain.  Garshol notes that 

 

Table 3. An example of a faceted classification of a hypothetical book on 17th century 
Norwegian architecture using Ranganathan's Colon Classification (reproduced from 

Garshol, 2004.) 

Facet Description Example 
Personality Primary subject of the resource; 

considered the main facet. 
Architecture 

Matter Material or substance of the 
resource’s subject 

Wood 

Energy Key process or activity described 
by the resource. 

Design 

Space Location of the resource’s 
subject. 

Norway 

Time Time period described by the 
resource 

17th Century 
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ontologies do not use a controlled vocabulary, but efforts such as the Web Ontology 

Language (OWL) try to standardize descriptions of Web-based ontologies.  Ontologies 

have the most descriptive power of the classification schemes mentioned, but are also the 

most difficult to build and maintain.  High-quality ontologies require significant domain 

expertise to build.  Experts in the same domain may have very different viewpoints about 

how a domain should be conceptualized.  Multiple ontologies may be built if builders 

cannot come to an agreement, leading to the problem of how to make the ontologies 

semantically interoperable (i.e., ontology mapping.)  Given the fluidity and distributed 

nature of the Web, ontologies have yet to become a popular form of Web resource 

classification. 

• Topic maps are a relatively new form of classification first described in Pepper (2000).  

As described by Garshol (2004) and shown in Figure 2, topic maps appear to be 

standardized lightweight ontologies (or meta-structures for other classification schema) 

where topics (i.e. real-world entities) are linked together through one or more 

associations to form a semantic network.  Occurrences of topics, such as Web resources, 

typically form a distinct layer separate from the topics and associations (although the 

occurrence “Curing the Web’s Identity Crisis” is depicted on the same layer in Figure 2.)  

Topic maps themselves are not ontologies, because their main goal is make information 

easier to locate, not to specify a precise model of a domain.  However, Garshol and 

Pepper argue that topic maps are flexible enough to express any subject-based 

classification from complex ontologies to basic taxonomies. While this flexibility may be 

an advantage, it also means that topic maps will suffer from the same problems as the 

classification scheme they most closely represent.  Even as a lightweight ontology, a 
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topic map may be difficult to build and maintain, may not scale well on the Web, and 

may be difficult to merge or map with other topic maps. 

 

Figure 2. A topic map describing topic maps.  Large shapes are topics. Arrows denote relations.  
The paper icon in the top left corner represents and occurrence (i.e. resource) of topic maps 

(reproduced from Garshol, 2004.)   
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2.1.2.3  Subject Analysis - Classification by Experts 

Much like annotation, subject analysis - also called “subject indexing” by Voss (2007) - has only 

become a focus of research in the past twenty-five years.  Subject analysis is the process of 

determining what a resource is about conceptually and expressing this as index terms in the 

vernacular of a controlled vocabulary (Lancaster, 2003; Langridge, 1989; Taylor, 1999.)  

Langridge argues that is the most significant activity of information specialists, whose 

responsibility it is to organize our collective knowledge in as accessible a manner as possible.  

Langridge (1989) and Voss (2007) also argue that there are two steps in the process – conceptual 

analysis and translation.  While distinct activities, their boundaries are often blurred by those too 

focused on fitting a resource into a classification’s structure. 

Table 4. Langridge's steps in the conceptual analysis phase of subject analysis 
(reproduced from Appendix 3 of Langridge, 1989.) 

I. Examination of Text II. Analysis of each unit III. Summarization of 
findings 

1. Preliminaries: Title, sub-
title, author, contents 
list, chapter headings. 

1. Determine fundamental 
form of knowledge (e.g., 
Science) 

Write down complete 
analysis in own words (i.e. 
one summary for a 
homogenous work; 
separate summaries each 
unit of composite works.) 

2. Read introduction and 
dust jacket. 

2. Determine discipline 
(e.g., Zoology) 

3. If necessary, sample text, 
check external 
information, e.g. book 
reviews. 

3. Determine topic (e.g., 
Respiration in Fish) 

4. Determine whether 
homogenous or 
composite work. 

4. Determine nature of 
thought (e.g. instructive 
monograph in English, 
elementary level.) 

 



 33 

Here, we are most interested in how an expert performs conceptual analysis, because we 

assert “expert” social bookmarking users to engage in a similar activity when tagging their 

resources.  Our interest in translation is limited to the number of terms the cataloguer ultimately 

selects, which may provide clues into how much metadata a typical expert may add to a resource. 

Unlike professional cataloguers, users of public social bookmarking do not have to map their 

annotations to a shared, controlled vocabulary. 

Table 4 shows Langridge’s suggested steps for conceptual analysis, a process similar to 

that suggested by Taylor (1999), but only partially observed by Sauperl (2002) in her study of 

twelve professional cataloguers.  Langridge stresses the importance of looking at the title, 

author(s), dust jackets, introduction, and chapter headings for the author’s view of the resource’s 

subject matter. He also reminds cataloguers to examine the resource’s forms of knowledge and 

writing, and determine its topic and discipline to avoid indexing mistakes from taking a title at 

face-value.  Sauperl, however, found little evidence of her subjects using Langridge’s theoretical 

distinctions among knowledge, form, topic, and discipline when selecting tentative headings. 

In the summarization step – the one akin to tag selection by social bookmarking system 

users – Langridge suggests that cataloguers write down concisely the form of knowledge and 

precise topic of the resource in their own words – not necessarily in the vocabulary of a 

classification scheme’s subject headings.  This summarization is typically a series of terms, or a 

few sentences if the resource has multiple units.  The goal of summarization is to distinguish the 

resource as much as possible from others, grouping the resource with the few documents whose 

conceptual analysis yielded similar results (Langridge, 1989.)  Sauperl (2002) notes that this 

fine-grained classification is what distinguishes domain experts from novices – the expert’s 

schema is more complex, but is better organized and can handle exceptions more efficiently. 
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Prior to electronic records, the number of subject headings assigned to a resource tended 

to be low to reduce the number of entries in the card catalogue.  Bates (1986) found that the 

Library of Congress and large academic libraries average about two subject headings per 

resource.  Khosh-khui (1987) confirmed this number, and found no correlation between the 

number of terms in the subject headings and the number of subject headings applied.  As 

computerized records reduced the cost of adding and maintaining additional subject headings, 

the number of headings began to steadily rise.  Chan and Hodges (2000) note that the Library of 

Congress recommends that six headings are appropriate, on average, and that ten headings are 

the maximum. 

2.1.3 Domain Expertise 

The Oxford English Dictionary defines expertise as “the quality or state of being expert; skill or 

expertness1 in a particular branch of study or sport”, and defines domain in this context as “a 

sphere of thought or action; field, province, scope of a department of knowledge, etc.”  Ericsson 

(2006, p.3) states that expertise “refers to the characteristics, skills, and knowledge that 

distinguish experts from novices and less experienced people.”   Domains may be formal areas of 

knowledge, such as chemistry and the performing arts, or informal ones like cooking and sewing 

(Chi, 2006.)  Research interest in domain expertise has grown over the past several decades, 

particularly with the advent of artificial intelligence and expert systems.  Most research on 

expertise has sought to isolate the skills and factors that contribute to expert performance.  Some 

efforts focus on a single domain (e.g. chess), while others attempt to develop a general 

                                                 

1 The O.E.D. defines expertness, a term that pre-dates ‘expertise’, as “skill derived from practice; readiness, 
dexterity.” 
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theoretical framework of expertise across multiple domains.  Because social bookmarking 

systems attract users from various domains, this review focuses on work describing general 

theoretical frameworks of domain expertise. 

Ericsson (2006) divides theoretical frameworks for expertise into five categories (Table 

5.)  In 1869, Galton proposed the first framework of expertise, arguing that outstanding 

intellectual achievement was the result of individual differences in mental capacities, differences 

that were hereditary and generalizable across multiple domains.  Later research, however, found 

no evidence to support Galton’s hypothesis. For example, Djakow, Petrowski and Rudik (1927) 

found that expert performance is often very domain-specific and not generalizable to other areas. 

Table 5. Ericsson’s list of general theoretical frameworks of domain expertise (2006) 

Theoretical Framework of Expertise Description 

Individual differences in mental 
capacities 

General, hereditary mental capacities 
lead to expert performance in most 
domains. 

Extrapolation of everyday skill in 
extended experience 

Expertise is a natural extension of years 
of domain experience; over time, experts 
learn patterns and strategies to achieve 
superior performance.   

Qualitatively different knowledge 
representation and organization 

Experts store and organize accumulated 
knowledge differently than non-experts; 
expert systems codify these knowledge 
representation patterns to emulate expert 
performance. 

Elite achievement due to superior 
learning environments 

Early instruction, exceptional teachers, 
and family support lead to expert 
performance. 

Reliably superior performance on 
representative tasks 

Expert performance in many domains can 
be reproduced and measured in 
controlled environments through a series 
of representative tasks. 
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Ericsson and Lehmann (1996) concluded that mental capacities are not valid predictors for 

expertise; any significant performance differences between experts and non-experts resulted 

from experts acquiring key skills and knowledge during lengthy training. 

A second framework views expertise as an extrapolation of skills and knowledge 

acquired through extended experience.  Early studies, including Bryan and Harter (1899), 

believed domain expertise was the natural consequence of lengthy experience; even today, many 

people equate length of experience with expertise. Research by de Groot in the 1940s, followed 

by Simon and Chase (1973), found that elite chess players’ superiority was due to their ability to 

recall complex patterns and strategies learned through experience.  Simon and Chase’s work on 

experts’ pattern formation and memory influenced a third theoretical framework of expertise 

based on the notion that experts store and organize knowledge in memory in fundamentally 

different ways than non-experts.  Early research focused on this framework aimed to build 

computer-based models, i.e. expert systems, around experts’ domain knowledge to replicate 

expert performance. 

Ericsson defines the fourth theoretical framework of domain expertise as expert 

performance resulting from superior learning environments.  Bloom (1985) interviewed elite 

performers from six domains to collect information about the major influences on the 

performers’ development.  Bloom et al. found that all participants provided evidence of 

favorable learning environments – early instruction, supportive families, and exceptional 

teachers throughout development. Finally, the most recently-developed theoretical framework of 

expertise centers on the notion that reliably superior performance on representative tasks in a 

given domain measures expertise. Ericsson and Smith (1991) argued that expertise can be studied 

in a controlled setting, because many domains have specific tasks that serve as good benchmarks 
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for comparing the performance of experts with non-experts.  In fact, Camerer and Johnson 

(1991) found that in some domains, such as medicine and stock-picking, people identified as 

experts through reputation and experience performed no better on representative tasks than less-

experienced peers.  However, using controlled studies, researchers can also look to isolate the 

skills, abilities, or other characteristics that lead to expert performance.  Subsequent studies 

conclude that consistent, deliberate practice – a planned regimen of persistent learning within a 

domain – is a better predictor of expertise than the number of years of experience (Ericsson, 

Krampe, & Tesch-Römer, 1993; Ericsson & Lehmann, 1996.) 

Alternatively, Chi (2006) divides the study of expertise into two approaches: absolute 

and relative.  In the absolute approach, researchers focus solely on exceptional individuals, 

trying to understand how they achieve superior performance in their respective domains.  

Exceptional performers may be identified retrospectively (e.g., assessments of bodies of work), 

concurrently (e.g., results of aptitude tests), or independently through some representative 

Table 6. Chi's list of domain experts' strengths and shortcomings (Chi, 2006) 

Experts’ Strengths Experts’ Shortcomings 

• Generating the best solutions faster 
and more consistently 

• Strong pattern detection and 
feature recognition 

• Qualitative analyses 
• Keener self-monitoring 
• Identifying appropriate problem-

solving strategies 
• Opportunistic – better at working 

with limited resources 
• Exerting less cognitive effort to 

retrieve relevant knowledge and 
strategies 

• Expertise is domain-limited 
• Over-confidence 
• Glossing over details and surface 

features 
• Dependence on context 
• Inflexible - adapt poorly when 

confronted with a profound structural 
change to a problem. 

• Inaccurate predictions of novice 
performance 

• Functional fixedness 
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domain task.  Regardless of the measurement, the implicit assumption of the absolute approach is 

that the exceptional individual possesses inate talent or characteristics that explain their superior 

performance.  The relative approach directly compares domain experts with non-experts, where 

“experts” are more knowledgeable or skilled in a domain compared to less proficient “non-

experts”.  This approach assumes that non-experts can attain domain expertise over time; 

therefore, the goal of research is to identify the processes and factors that allowed experts to 

become proficient so others can reach the same level.    

Chi then summarizes the general strengths and shortcomings of domain experts identified 

throughout the literature (see Table 6.)  Some of the strengths and shortcomings listed by Chi 

have particular relevance in the context of public social bookmarking systems such as Delicious.  

Experts’ strong feature recognition skills and ability to find the best solutions faster and more 

consistently than non-experts can help us locate domain and classification experts in Delicious.  

We expect domain experts in Delicious are those users who, on a consistent basis, identify the 

best resources in their respective domains faster than most peers.  Given that expertise is often 

domain-limited, we assume domain expertise in Delicious will be topic dependent.  Furthermore, 

because classification is itself a separate domain, we cannot assume that a domain expert in 

Delicious is also a classification expert across all domains.  Domain experts often know highly-

relevant terms to describe resources pertaining to their area(s) of expertise, but 1.) they may not 

use them to annotate their bookmarks, and 2.) they may not be as successful choosing the best 

terms to describe resources outside their domain expertise. 
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2.2 IDENTIFYING EXPERT USERS IN WEB-BASED SYSTEMS 

When searching for useful information on the Web or enterprise system, users often look to 

sources – documents or people – they believe are the most authoritative.  Such sources are more 

likely to provide reliable information and solutions to users’ queries and problems, leading to 

reduced search and implementation costs for the user.  Locating authoritative people and 

resources in the Web’s vast and ever-expanding information repository, however, continues to be 

a challenge for researchers.  Even with the emergence of social mechanisms such as community 

ratings in question-and-answer forums or the aggregation of social bookmarking data, the sheer 

volume of data on the Web causes many helpful resources and people to go undiscovered. This 

section describes the research on expertise in the bipartite graphs (i.e., users and documents) of 

traditional Web-based systems and the tripartite graphs (i.e., users, documents, and tags) of 

social bookmarking systems, both in the enterprise and on the public Web.  

2.2.1 Identifying Expert Users in Bipartite Graphs 

Ideally, an expert search system will include user profiles consisting of a series of documents 

(e.g., home page, research interest pages, meeting notes) that describe the expertise of each 

candidate (Macdonald, Hannah & Ounis, 2008).  If such profiles are available, as is often the 

case in enterprise systems, the search system ranks the profiles against the user’s query, 

providing a list of candidates whose expertise best matches the user’s needs.  Becerra-Fernandez 

(2006) provides a survey of early, Web-based expert locator systems in enterprise settings.  

Virtually all of these systems used a taxonomy of knowledge domains to help define an expert’s 

area(s) of specialization, while the author’s own system, Expert Seeker, used a clustering 
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algorithm to define areas of expertise.  Recent work on expert search focuses on techniques to 

improve candidate rankings, such as using query expansion and query term-proximity within 

documents (Petkova and Croft, 2006) and improving document clustering to better describe a 

candidate’s expertise (Macdonald, Hannah & Ounis, 2008.) 

Profiles work well in an enterprise where user identities can be verified, but are a poor fit 

for the World Wide Web where such verification is often impossible. In the absence of formal 

descriptions of document authors, graph-based algorithms are used to find authoritative resources 

produced by experts.  The notion of authority is critical in Web retrieval and a key underpinning 

of the most recognizable graph-based algorithms, PageRank (Brin and Page, 1998) and HITS 

(Kleinberg, 1999.)  In both PageRank and HITS, a document derives its authority based on the 

number and quality of its incoming links.  If many documents link to a resource R, and those 

documents are also considered authoritative resources themselves, R’s PageRank and HITS 

Authority scores will be high.  HITS also computes a Hub score for each resource based on the 

weights of its outgoing links; that is, if R links to many other authoritative documents, R’s Hub 

score will be high.  A resource with both high HITS Authority and Hub scores is very much like 

a human expert who is deemed an authority in an area by many knowledgeable people (i.e., 

incoming links) and has great command of the area’s literature (i.e., outgoing links.) 

Several studies have evaluated the performance of PageRank and HITS for finding 

experts in online communities.  Campbell et al. (2003) used HITS and PageRank to find and rank 

subject experts in email correspondence, finding graph-based networks rank experts better than 

content analysis. Zhang, Ackerman, and Adamic (2007) tested their ExpertiseRank algorithm, 

based on PageRank, against other graph-based algorithms for finding expert users in Sun’s Java 

Forum.   Two human raters who were Java programming experts judged the expertise of the Java 
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Forum users, and the algorithms’ performance were evaluated against their ratings.  The authors 

found that all graph-based methods did a good job finding experts, but ExpertiseRank did not 

significantly outperform the simpler algorithms. When the authors tested the algorithms on 

simulated networks of varying structures, they found the performance of the algorithms varied 

greatly.  The results suggested that a network’s structure may be exploited to locate expert users, 

but that one must factor in the nature of the structure when selecting a technique to rank users. 

Bharat and Mahaila (2000) developed a prototype search engine, Hilltop, that employed a 

relatively small index (2.5 million pages) of “expert documents” to harvest authoritative web 

pages.  These “expert documents” contained at least five (5) non-affiliated links to target pages 

on a particular topic. In an evaluation, Hilltop performed significantly better than AltaVista and 

nearly as well as Google in tests of average recall and precision at k.  Bharat and Mahaila’s 

findings are noteworthy for this research, because they showed that reducing noise to produce a 

much smaller “expert index” still allowed Hilltop to locate relevant, authoritative documents on 

par with the top commercial search engines.   

The sheer size of Web-scale networks prevents the use of some algorithms for various 

retrieval and summarization tasks.  Evidence by Lee et al. (2006); Leskovec and Faloutsos 

(2006); and Shi et al., (2008) suggest carefully sampled sub-graphs can provide accurate 

depictions of the entire underlying graph.  Shi et al. introduce the vertex-graph importance 

synopsis approach, which finds important, highly-connected vertices in a series of web and 

online social network datasets and efficiently builds accurate synopses of their respective graphs.  

The authors evaluate their approach on a series of bipartite graphs, including data from 

BuddyZoo (AOL), TREC Blog-Track, and Xerox PARC’s “Web in a box” project.  Unlike the 

findings of Zhang, Ackerman, and Adamic, Shi et al. found that their graph compression scheme 
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performs consistently regardless of the underlying network’s structure.  Given that experts in the 

context of the network tend to be highly-active users with many connections, graph compression 

may be a promising approach to locating experts in online communities. 

2.2.2 Identifying Expert Users in Tripartite Graphs 

With the rising popularity of social bookmarking systems – especially systems such as 

CiteULike that attracts academic professionals, or Delicious with its technical experts – there has 

been growing interest in utilizing data from these systems to identify users with expertise and the 

resources they bookmark. The most popular public social tagging systems lack explicit 

mechanisms for users to proclaim or verify each other’s expertise in a particular domain based 

on tag or resource selection.   A few papers have explored ways to implicitly determine user 

expertise based on a user’s tagging patterns.  Others have proposed mechanisms that social 

tagging systems could employ to help the community identify authoritative users and resources.  

Feinberg (2006) discusses how a user’s level of domain expertise may influence the form and 

semantics of their tags.  Van Setten et al. (2006) argue that User A may find User B’s 

annotations more relevant to their goals and needs if they knew who User B was.  John and 

Seligmann (2006) propose a PageRank-based algorithm, ExpertRank, for measuring expertise in 

an enterprise social bookmarking system.  Their mechanism assigns an authority weighting 

based on the number of resources a user has contributed to a particular tag, and by propagating 

that weighting to highly-related tags.  The authors intended to use ExpertRank as one component 

in determining the expertise of a user in a closed enterprise system containing additional 

background information on all users. 
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Finding expertise in public social bookmarking systems is a greater challenge, because 

they typically lack detailed profiles about users’ backgrounds and the institutional controls of an 

organization or enterprise to discourage abuse of the system, or “spamming”.  Similar to link 

farms that attempt to game Web search engines, spammers of social bookmarking systems create 

hundreds or thousands of bookmarks promoting their own content with popular tags, or listing 

popular resources with misleading tags, often under multiple user accounts.  A few studies 

propose algorithms and techniques to identify and analyze the effects of malicious tagging 

behavior.  Koutrika et al. (2008) examine how spamming affects different types of social tagging 

systems and social search models, using both a synthetic dataset and a sample Delicious dataset.   

They introduce a metric, SpamFactor, to measure the impact of malicious tagging behavior on 

search results from social tagging data.  They conclude that all social tagging systems can 

tolerate a spam threshold of approximately 15-20% of posts before search performance 

deteriorates significantly. Systems that allow multiple users to produce their own tag sets on a 

resource (e.g., Delicious) are less susceptible to spamming than systems that do allow such 

duplication, requiring users to collectively annotate the resource in a single set (e.g., YouTube, 

Flickr.)  Among the systems that allow tag duplication, those with 1) a small core of active, 

responsible users and 2) no limit on the number of tags per post – thus encouraging duplication 

of “good” tags by many users - are less susceptible to spamming than systems with low activity 

and few tags per bookmark.  Search models based on tag coincidences among users and 

resources, akin to a graph-based model like PageRank, are also less susceptible to spamming 

than Boolean or tag frequency models. 
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Noll et al. (2009) introduce a graph-based algorithm, SPEAR (SPamming-resistant 

Expertise Analysis and Ranking), to produce ranked lists of users in a social bookmarking system 

that promotes experts on a given topic while demoting spammers.  The authors argue that users 

with great expertise not only identify high-quality resources on the Web, they bookmark them 

with good descriptive tags before other users.  Thus, SPEAR is an extension of HITS, but gives 

more weight to users who annotate a resource with a given query tag (or set of tags) before 

others.  By injecting simulated users representing different types of experts and spammers (Table 

7) into a sample Delicious dataset, the authors show that SPEAR performs significantly better 

than HITS and simple tag frequencies in ranking experts ahead of spammers.  Noll et al. focused 

solely on the ranking of users; how well SPEAR ranks resources remains an open question. 

Table 7. Noll et al.'s classification of experts and spammers in a social bookmarking system 

Type of Expert Description 
Geek A user who is among the most active bookmarkers, and tends to be 

among the first to bookmark popular resources.  These are the “best” 
experts. 

Veteran Similar to a “geek”, but not as active; has significantly more 
bookmarks than the average user, but significantly less than a geek; is 
also likely to be among the first to discover popular resources. 

Newcomer A newer user who occasionally discovers new resources, but mainly 
tags popular resources long after they have been discovered. 

Type of Spammer Description 
Flooder A user who bookmarks thousands of popular resources, usually in an 

automated fashion (i.e. hundreds or thousands of bookmarks posted on 
the same day); always bookmarks resources long after they have 
become popular. 

Promoter A user who bookmarks many of their own resources (e.g., postings on 
their blogs), but has few followers, if any; tends to ignore popular 
resources. 

Trojan A user who mimics regular users (such as a “newcomer”), but also 
adds bookmarks to their own malware-infected or phishing resources  
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2.3 CLASSIFICATION IN SOCIAL ANNOTATION SYSTEMS 

The aspects of social annotation systems that have made them so successful in terms of user 

adoption – low barriers to entry, low cognitive load when annotating, no rigid classification rules 

or controlled vocabulary to follow (Trant, 2009) – also make resource discovery very difficult.  

The joys of serendipitous browsing aside, social annotation systems can become more useful as 

sense-making tools if some semantic structure(s) could be teased from the plethora of seemingly 

unstructured annotations.  One major research direction within the area of social annotations and 

the Social Web is the need to organize and classify tags within various types of semantic 

structures, including topic maps, hierarchies, ontologies, and faceted classifications. 

Many studies have attempted to build classification schemes either using modified or un-

modified versions of well-known data clustering algorithms.   Some of the most efficient 

machine learning algorithms, such as self-organizing maps (Choy and Lui, 2007) and K-means 

clustering (Gemell et al., 2008), produce the worst results if left un-modified, due to their 

inability to cope with the vocabulary problems associated with social tags.  K-means also suffers 

from the fact that researchers must specify a fixed number of clusters a priori, often resulting in 

either few clusters that are too broad, or many single-tag clusters.  Conversely, Gemell et al. 

demonstrated that maximal complete link clustering produces superior classifications of 

Delicious data, but is too computationally expensive to scale well to large datasets.  In a paper 

using social annotations to improve indexing for Web retrieval, Ramage et al. (2008) found that 

adding tags naively to indexed Web page text improves K-means clustering, but concatenating 

the word and tag vectors for a particular resource allows the author’s Multi-Multinomial Latent 

Dirichlet Allocation (LDA) algorithm to significantly outperform K-means. Krestel, Fankhauser 

and Nedjl (2009) compared LDA’s ability to find and recommend tags belonging to latent topics 
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to an association rules-based approach proposed by Heymann, Ramage, and Garcia-Molina 

(2008.) The authors concluded that LDA’s tag recommendations were more accurate and 

specific than those identified by association rules.  Begelman et al. (2006) used a far simpler 

approach, generating clusters from pairs of strongly-related tags based on tag co-occurrences that 

are more frequent than expected.  

The most useful clustering algorithm from the literature appears to be hierarchical 

agglomerative clustering, which iteratively combines many clusters – each initially containing 

one item – into a single monolithic cluster containing all items.  Hierarchical agglomerative 

clustering is more computationally efficient than many other algorithms, and has more flexible 

tuning capabilities. Kome (2005) shows that a large proportion of tags in Delicious fit the 

hierarchical relationships as defined in the appropriate ANSI/NISO and ALCTL taxonomy 

standards.  Heymann and Garcia-Molina (2006) interpreted this as meaning users annotate 

resources with tags at multiple levels of their personal mental models, a key notion underlying 

their hierarchical clustering algorithm.  Work by Brooks et al. (2006), Li et al. (2008), and 

Gemell et al. (2008) also showed hierarchical agglomerative clustering to be effective for 

building taxonomies and improving personalized search.  Li et al.’s work is of particular interest 

here, as they found tag traces (subsets of 2 or more co-occurring tags) generated from rule-based 

associations often found in data mining applications produced better results than the tag pairs 

used by Brooks et al. (2006.)  Their dataset was also significantly larger (200,000 users; 4.3 

million bookmarks) than those of Brooks et al. and Gemell et al. 

Some studies have sought to combine social annotation data with more formal semantic 

structures, namely ontologies.  Mika (2007) discusses and evaluates two lightweight ontologies 

constructed from Delicious social annotations linking actors (users) and concepts (tags), where a 
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link’s weight is the number of times an actor has a concept as an annotation.  In the first 

ontology, semantic relations are formed between two concepts if they share many common 

resources.  In the second ontology – and the one deemed more accurate by expert judges in an 

evaluation - concepts are linked semantically if they share many users in common.  Mika 

concludes that identifying communities of interests may yield the best ontological structures.  

Specia and Motta (2007) generated clusters of tags from Delicious and Flickr by computing an 

N×N co-occurrence matrix of all tags, then using cosine similarity on the resulting tag vectors 

(i.e. matrix rows and columns) to find similar tags.  They then queried Swoogle, the semantic 

web search engine, with tag pairs from each tag cluster to see if their clusters could be mapped to 

existing ontological concepts.   The authors were able to map some tag pairs to existing 

ontologies, though the number of pairs was small (under 20%), the majority of which only 

mapped to nodes in WordNet. We also note that the authors performed some simple pre-

preprocessing of the data, combining morphologically highly-similar tags into one group via the 

Levenshtein distance and removing idiosyncratic and non-alphanumeric tags. 
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3.0  PRELIMINARY ANALYSIS 

3.1 INTRODUCTION 

 

The objective of this study is to develop an algorithm that can identify experts and authoritative 

documents in social bookmarking systems more efficiently and more accurately than existing 

algorithms.  To accomplish this goal, we need to define the following within the context of 

public social bookmarking systems: 

1. Who is an expert user? 

2. What is an authoritative resource? 

3. What tags describe the topic of a resource, or a user’s topic of interest? 

This chapter begins by summarizing key observations made on social bookmarking 

systems that can help us not only identify and rank experts and authoritative documents, but also 

reduce the size of the data set as one part of improving computability.  Other characteristics of 

tagging in social bookmarking systems, such as tag frequencies and tag co-occurrences, are 

useful for describing resources’ topics or users’ topics of interest. After defining expert users and 

authoritative resources in public social bookmarking systems, we describe the Expert and 

Authoritative Resource Locator (EARL) algorithm developed in this study for selecting and 
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ranking candidate experts and resources by topic of interest.  The chapter concludes by 

presenting the results of preliminary analyses with a partially-implemented EARL laying the 

groundwork for the  main studies. 

3.2 SOCIAL BOOKMARKING SYSTEMS 

This section begins with a few observations about social bookmarking system: 

1. Users bookmark resources that are relevant to their interests.  Thus, a bookmark is a 

positive “vote” for a resource. 

2. Users may create at most one bookmark for a given resource, and cannot use a given 

tag on a given resource more than once.  More importantly, users cannot explicitly 

assign weights to tags based on importance. 

3. Users create tags for a variety of purposes, including tags to describe the topic of a 

resource (e.g., “programming”), personal ratings of the resource (e.g., “****”), and 

personal tags that are idiosyncratic to the user (e.g., “IS3925”). 

4. Public social bookmarking systems, such as Delicious, have no controlled 

vocabulary. Users may enter any string of printing characters as a tag.  Whitespace 

indicates a tag boundary. 
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3.2.1 Usage Patterns 

Early research on social bookmarking systems (Shirky, 2003; Vander Wal, 2005; Golder and 

Huberman, 2006; Millen and Feinberg, 2006) showed that these systems typically evolve as 

scale-free networks whose structures follow power laws, much like the World Wide Web from 

which their content is derived.  Figure 3 shows a frequency distribution of the number of 

bookmarks per user from our preliminary Delicious dataset of 30,159,279 bookmarks made by 

723,342 users on 12,815,856 unique resources, hereafter referred to as the study’s preliminary 

main dataset.  Nearly 92% of the users in the preliminary main dataset (664,783 of 723,342 

users) have less than ten bookmarks in their accounts, while 1.1% (8,141 users) have more than 

1000 bookmarks.  Resources exhibit a similar power curve – only 0.3% of the (41,643 out of 

12.8 million) have been bookmarked by more than 1000 users. 

 

 
Figure 3. Frequency-rank distribution of the number of bookmarks per user for all users in the 

preliminary main dataset. 

1

10

100

1000

10000

100000

1000000

1
26

6
53

1
79

6
10

61
13

26
15

91
18

56
21

21
23

86
26

51
29

16
31

81
34

46
37

11
39

76
42

41
45

06
47

71
50

36
53

01
55

66
58

31
60

96
63

61
66

26
68

91
71

56
74

21
76

86
79

51

U
se

r C
ou

nt
 

# of Bookmarks 



 51 

 

Figure 4. Frequency-rank distribution of the number of tags per bookmark for bookmarks in the 
preliminary main dataset. 

 

 
Despite the lack of controlled vocabulary, tags also show similar patterns of usage in 

terms of tags per bookmark, and tag frequencies per user and resource. As seen in Figure 4, the 

number of tags per bookmark shows a clear power law distribution starting at one tag.  Sixty-
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bookmarks having less than 5 tags.  For comparison, Kipp and Campbell (2006) found that 65% 

of the users in their sample Delicious dataset annotated a bookmark with 1-3 tags.  Udell (2005), 

Golder and Huberman (2006), and Millen and Feinberg (2006) found that a user’s tag vocabulary 

stabilizes over time, while Golder and Huberman observed that a resource’s tag distribution 

tends to stabilize after 100 bookmarks.  Delicious’ interface promotes reuse of tags during the 
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Staab (2008) provide evidence (Figure 5) that Delicious’ suggestions influence tag selection for a 

given resource over time, creating a pronounced drop-off after the seventh-ranked tag. 

These findings suggest that we can extract a small subset of the preliminary main 

dataset’s graph comprised of active users and resources to find expert and authoritative 

documents – most Delicious users and resources lack the requisite bookmarks to be identified 

authorities on some domain.  Reducing the nodes in this manner allows us to analyze it more 

efficiently with less computational complexity while still maximizing the chances of finding 

domain experts and authoritative documents.  Another goal of this study is to find users who do a 

consistently good job of providing tags that accurately describe the topics of resources.  Whether 

this can be done is less clear.  Collectively, users appear to reach a consensus over time about 

how to describe a given resource, making tags attractive as topical terms. On an individual basis, 

 

Figure 5. Dellschaft and Staab's (2008) comparison between the actual frequency-
rank distribution of tags on the NetVibes home page (shown in grey), versus simulated 
tag stream models (dashed and solid lines) assuming users see the top 7 most popular 

tags as they enter their own tags. 
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however, most users annotate their bookmarks with few or no tags.  Again, this suggests that we 

can focus on the subset of users who consistently use some minimal threshold of tags to describe 

a resource, but it is not clear how many tags are necessary to accurately describe a particular 

topic.  

3.2.2 Topics of Interest in Social Bookmarking Systems 

We observe several factors that influence what tags make good topic descriptors, and the number 

of tags needed to accurately classify a resource: 

• Resources may be about a single topic (e.g., Roy Fielding’s dissertation on REST), or 

multiple topics (e.g., the W3Schools homepage with tutorials on many web design and 

development technologies.) 

• A single tag may suffice to represent a topic (e.g., “programming”), or multiple tags may 

be necessary (e.g., “graphic” and “design”). 

• Because social bookmarking systems do not allow spaces within tags, users concatenate 

multiple words with strong semantic ties into a “compound” tag.  Compound tags may 

represent phrases or proper nouns found in natural language (e.g., “BillGates”), or 

represent hierarchical structures (e.g., “programming/java”).  

• Users commonly annotate resources with tags at multiple levels of categorization, using 

tags that describe a broad topic (e.g., “programming”) along with tags that describe more 

specific topics (e.g. “java”) or even highly-specialized topics (e.g. “jsp”). 

• Semantically-related tags co-occur frequently in the tag sets of many users. 
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Li et al. (2008) examine how many tags are necessary to describe a topic.  The author’s 

Internet Social Interest Discovery (ISID) algorithm used frequent tag co-occurrences across 

multiple users to form tag clusters that represent users’ topics of interest.  They conclude that 1-5 

tags can fully describe a single topic; anything beyond six tags lacks enough of a consensus to be 

a reliable topic description. Given that a resource may be about multiple topics, this suggests that 

a bookmark should contain multiple tags to accurately describe the resource’s content. 

3.3 FINDING EXPERTS AND AUTHORITATIVE RESOURCES 

3.3.1 Defining experts and authoritative resources 

A common thread in the literature on expertise in social bookmarking systems is the notion that 

expertise may be derived from a combination of the user’s analytical skills and domain 

knowledge.  Therefore, we define an expert in a social bookmarking system as someone who has 

both classification expertise and domain expertise.  A user with classification expertise, much 

like a traditional librarian, carefully selects tags that accurately summarize a resource’s content.  

They are conscientious annotators, consistently applying tags to all of their bookmarks.  Though 

their effort is most likely for personal organization and recall, their tag selections help others in 

the community find useful resources through social search – much like a librarian who carefully 

places resources in categories where patrons expect to find those resources. We define a domain 

expert in a social bookmarking system similarly to Noll et al. – a user who bookmarks many 

high-quality, authoritative resources on a topic, and is among the first to bookmark those 

resources.  Domain expertise derives from a combination of the quantity and quality of the 
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resources in their bookmark collection.  Some top domain experts may reach their position 

through sheer bookmarking volume – think of an academic who publishes conference papers 

prolifically – or by introducing a smaller number of highly-influential resources – the academic 

whose occasional journal publications become widely-cited. 

This study makes the distinction between classification and domain expertise, because we 

observe that not all domain experts are good classifiers, nor are all good classifiers necessarily 

domain experts.  Many librarians have no expertise on the topics of the resources they catalog, 

but they know what portions of the resource to look at (e.g., title, table of contents, publisher’s 

notes on the jacket) in order to choose good classification terms.  In social bookmarking systems, 

newer users can easily choose good descriptive tags based on others’ tag assignments without 

understanding the underlying resource.  Conversely, some users consistently discover and 

bookmark authoritative resources, but annotate the bookmarks with idiosyncratic tags, or no tags 

at all. 

This brings us to the next question: what is an authoritative resource?  This study defines 

an authoritative resource as any document that is a valuable source of information on some topic, 

according to the social bookmarking community.  An authoritative resource may be a document 

with core information about a topic (i.e., an “authority”, as defined by Kleinberg, 1999) or a 

collection of useful links on a topic (i.e., a “hub”.)  Like experts, a resource derives its 

authoritativeness based on the number of top experts who have bookmarked the resource, and its 

topical authority on the number of top experts who annotated those bookmarks with the tag(s) 

that represent a given topic.  Given this mutual reinforcement between experts and authoritative 

resources, this study introduces and implements the graph-based EARL algorithm to find top 
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users and resources based on the social bookmarking system’s link topology.  The next section 

discusses EARL and how we view a social bookmarking system as a network. 

3.3.2 EARL algorithm 

The EARL algorithm finds expert users and authoritative documents in a social bookmarking 

system through a two-stage process that is conceptually similar to Hilltop (Bharat and Mahaila, 

2000.)  In the first stage, we reduce the number of nodes to a much smaller subset of influential 

users, who are referred to as “candidate experts”.  We reduce the nodes by using a series of 

simple statistics to locate users with consistent patterns of system usage and tagging behavior.  

We refer to this filtered subset of bookmarks as the preliminary candidate expert dataset.  In the 

second stage, we select a topic and use a graph analysis scheme similar to HITS and SPEAR to 

rank candidate experts and authoritative documents.  To find topics, we look for frequent tag co-

occurrences shared by multiple candidate experts.  We find tag co-occurrences by computing the 

power set of each bookmark in the preliminary candidate expert dataset, tabulating the subsets 

within each power set. We then select those subsets that 1) have tags that co-occur more 

frequently than a defined threshold, and 2) are shared by multiple candidate experts.  Each stage 

is explained in more detail below. 

 

Stage 1:  Finding the Influential Users on Delicious 

We observed in a preliminary manual examination of users’ bookmarks in the 

preliminary main dataset that some Delicious users appear and disappear very rapidly – 

experimenting briefly with the system before abandoning it.  Another group of users periodically 

and consistently adds bookmarks to Delicious, but annotate their bookmarks with few tags.  We 
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expect a candidate expert, one who is conscientious about applying terms to describe a resource, 

to use several tags. For users with few bookmarks and/or few tags per bookmark, we cannot 

draw any reliable conclusions about their domain or classification expertise; thus, we 

immediately eliminate any user who 1) has less than 10 bookmarks, or 2) uses less than 5 tags 

per bookmark, on average.  As a result, we eliminated 97.7% of the users in the dataset, leaving a 

list of 16,981 candidate experts. We emphasize that the first stage’s goal is to maximize the 

density of potential (i.e. “candidate”) experts in the remaining subset.  Some non-experts may 

remain in the subset, while some experts may have been excluded. 

This first stage identifies a much smaller subset of influential users who have created 

enough bookmarks to be potential domain experts and use enough tags to potentially be 

classification experts.   However, we still cannot make any qualified judgments about each 

User 1 
User 2 

User 3 

User 4 

CNN 

Reading 
Eagle 

N.Y. 
Times 

Figure 6. A partial view of a social bookmarking system as a graph.  All edges (i.e. 
bookmarks) are directed from users to resources. 
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candidate’s expertise, because we do not know what resources they have bookmarked or what 

tags they have used (and how often) on those bookmarks.  Who among these candidates are the 

best experts on “Java programming”, “Android development”, or some other topic?  The next 

step is to rank the candidate experts by topic based on the number and quality of accurately 

tagged resources each has bookmarked. 

 

Stage 2: Identifying topical experts and authoritative resources 

In this stage, we use an iterative graph-based algorithm similar to HITS and SPEAR to 

rank experts and authoritative resources by topic.  Like Noll et al, we view the topology of a 

social bookmarking network as a directed graph with two distinct types of nodes, users and 

resources, with all edges pointing directly from users to resources (see Figure 6.)  By creating a 

Figure 7. Pseudocode for the second stage of EARL. 
 

ComputeEARL(Topic T)  
      Retrieve all bookmarks BT annotated with T from the expert dataset. 
      Sort BT by resource identifier, date bookmarked. 
      Set a vector of expertise scores  𝐸�⃑   to (1,1,1,…1) with M experts. 
      Set a vector of authority scores  𝐴  to (1,1,1,…1) with N resources. 
     For each bookmark bT in BT: 
 Set the weight w of bT. 
 Add (bT, w) to the adjacency list of inlinks Li. 

Add (bT, w) to the adjacency list of outlinks Lo. 
     For k iterations, where k = 25: 
 Compute authority scores 𝐴 from ∑𝐸 × 𝐿𝑖 
 Compute expertise scores 𝐸�⃑  from ∑𝐴 × 𝐿𝑜 
 Normalize 𝐸�⃑ . 
 Normalize 𝐴. 
     Return list of authoritative documents sorted by authority score in 𝐴. 
     Return list of experts sorted by expertise score in 𝐸�⃑ . 
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bookmark, the user creates an outlink to a resource, but the reverse is not possible – resources 

cannot bookmark users.  Borrowing Kleinberg’s terminology, social bookmarking users act as 

hubs to a collection of resources on a particular topic, while resources containing useful 

information on the topic act as authorities with inlinks from one or more users. 

As shown in the pseudocode in Figure 7, we begin by choosing a topic T, where one or 

more tags {t1, t2…tn} represents T, such that: 

{t1, t2…tn} ∈ T (1) 

We select all bookmarks BT annotated with T from the candidate expert dataset sorted in 

chronological order, where each bookmark bT is a tuple comprised of a Delicious username u, 

resource identifier r, the topic T, and the creation date of the bookmark d:  

𝑏𝑇 = (u, r, T, d) (2) 

We then define two vectors: 𝐸�⃑ = (e1, e2…eM)  to hold the expertise scores, where M is 

the number of unique candidate experts in BT, and 𝐴 = (a1, a2…aN) to hold the authority scores, 

where N is the number of unique resources in BT.  The expertise score of a candidate expert u 

depends on the sum of the authority scores of the resources tagged with T in his collection, while 

an authority score of a resource r depends on the sum of the expert scores of the candidate 

experts who annotated the resource with T.  All scores in 𝐸�⃑  and 𝐴 are initialized to 1. 
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To calculate the scores based on this mutually reinforcing relationship, we run an 

iterative process similar to HITS and SPEAR.  Due to the sparseness of the preliminary 

candidate expert dataset and limitations of the machine used for this preliminary analysis, we set 

up two adjacency lists (Figure 8) in lieu of an adjacency matrix to hold the outlinks of all 

candidate experts (Lo) and the inlinks of all resources (Li) from BT.   Thus, we only add links to 

the lists if an edge (i.e., bookmark) exists between a candidate expert and a resource.  If we 

modeled the algorithm directly after HITS, each link would be assigned a weight of 1.   In 

EARL, we assign a positive weight w to the bookmark made by user ui on resource rj annotated 

with T based on additional criteria to measure the bookmark’s quality as shown in Equation 3: 

𝑤𝑢𝑖,𝑟𝑗𝑇 = ��𝐵𝑟𝑗𝑇 − 𝑚𝑑−1 −
𝑛 − 1

2 �  ×
𝐵𝑟𝑗𝑇
𝐵𝑟𝑗

× �𝐵𝑟𝑗𝑑′ (3) 

where 𝐵𝑟𝑗𝑇 is the number of bookmarks made on rj annotated with topic T; md-1 is the number of  

bookmarks on rj  and annotated with T created before the day ui bookmarked rj; n is the number 

of users who bookmarked rj on a given day; 𝐵𝑟𝑗 is the number of bookmarks made on rj; and 

𝐵𝑟𝑗𝑑′ is the number of bookmarks made on rj since the date 𝑑′.   For the preliminary analysis, we 

Figure 8. Outlink and inlink adjacency lists used in EARL. 

Adjacency List Lo 

(outlinks) 

 

Adjacency List Li (inlinks) 

 

User 1 

User 2 

User 3 

User 4 

CNN 

NYT 

R.E. 

{(CNN,w)} 

{CNN,w; NYT,w} 

{NYT,w; R.E.,w} 
 

{CNN,w; NYT,w} 
 

{(1,w),(2,w),(4,w)} 
 

{(2,w),(3,w),(4,w)} 

{(3,w)} 
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set 𝑑′ to August 5, 2009, which is six months prior to our final collection date of February 5, 

2010. 

    We now describe in greater detail the four criteria used to establish the weights for 

each link in EARL’s adjacency lists: 

1. Temporal sequence: users who bookmark a resource first with the given topic tag(s) get 

more credit, an idea adopted from SPEAR.  As Noll et al. explain, the best experts are the 

people who not only have a good command of the literature in their field, but also 

discover (or even contribute) top resources before others, a more challenging task than 

adding a bookmark to a resource that is clearly popular.  Thus, the links of discoverers in 

BT are assigned higher weights than followers.  The temporal sequence portion of 

EARL’s weight is based on the number of bookmarks m made prior to user ui creating 

his/her bookmark. 

2. Normalized expert agreement: the greater the percentage of candidate experts who 

applied T to a resource, the more credit is given to the link.  The goal here is to improve 

the rankings of resources where T is a central topic.   For example, suppose 100 candidate 

experts bookmarked Resource A, and 1,000 candidate experts bookmarked Resource B.   

Overall, Resource B is the more popular resource.  However, suppose 80 of the 100 

candidate experts who bookmarked A annotated their bookmarks with T, while 200 of 

Resource B’s 1,000 annotators used T.   Because a greater percentage of users (80%) 

believe Resource A is about T than Resource B (20%), EARL gives greater weight to 

Resource A’s bookmarks.  
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3. Sustained popularity of a resource: resources that continue to be bookmarked regularly 

carry a higher weight than resources that may have been popular in the past, but are no 

longer favored by the community.  Once-popular resources that are no longer 

bookmarked by experts – for example, defunct search engines such as Cuil and 

Powerset.com – should have lower authority scores relative to actively-bookmarked 

resources.  We also view this as a way to measure the expertise of a user:  people who are 

considered experts are those who have a strong command of information currently 

deemed most useful by the community.  Even if the expert is no longer active, we still 

consider him or her a valuable hub of information if the experts’ bookmarked resources 

continue to be tagged routinely by others. 

4. Extreme bursts of activity:  in cases where hundreds or thousands of users bookmark a 

particular resource in a single day, credit is distributed equally among the users for that 

day.  Table 8 shows an example of how this portion of EARL’s weight is calculated 

given a resource’s temporal bookmarking sequence among seven users, where Users 3 

through 6 bookmarked the resource on the same day.  Resources that experience these 

brief, but very intense bursts of popularity typically do so because of a response to some 

Table 8. An example illustrating the calculation of the temporal sequence portion of 
EARL’s weight, factoring in daily bursts of activity. 
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external factor – e.g., widespread blog and mainstream media coverage of an event.  The 

users who bookmarked the resource earliest could very well be experts, but it is just as 

likely they are average users who happened to be the first to respond to the external 

event.  From the perspective of the EARL algorithm, these bursts of activity skew the 

importance of temporal sequence – why should the first user to bookmark a resource 

receive so much more credit than the 200th user who bookmarked the resource a mere two 

hours later?  Thus, all users who bookmark a given resource with topic T on the same day 

receive the same temporal sequence weighting – i.e., the average of the original temporal 

sequence weights (𝐵𝑟𝑗𝑇 − 𝑚) assigned to the first and last users to bookmark the 

resource on that day.  The values in the last column of Table 8 for Users 3 through 6 

reflect this weight calculation. 

Finally, we run this portion of EARL for 25 iterations, then sort the expert and authority 

scores from highest to lowest. 

3.3.3 Selecting topics of interest 

Like HITS and SPEAR, EARL is a topic-dependent graph-based algorithm – it ranks experts and 

authoritative documents in the context of a pre-defined topic.  Previous studies have selected 

topics from popular Delicious tags (Noll et al., 2009), frequently co-occurring Delicious tags 

(Heymann and Garcia-Molina, 2006; Li et al., 2008), or from external sources such as Open 

Directory Project categories (Ramage et al., 2009) and Library of Congress subject headings 

(Smith, 2007.)  In this study, we follow Li et al. by examining frequently co-occurring tags 

among the candidate experts, because 1) tags describe the content of resources according to 
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users’ judgments, and 2) multiple co-occurring tags can provide a more precise description of 

topics of interest than single tags alone (Li et al, p. 682.)  While Li et al.’s ISID used association 

rules to extract topics, we use a simpler, distributed algorithm that constructs the power set of 

each user’s bookmark and tabulates the number of times the elements of all the power sets – i.e., 

tag subsets - occur in the user’s bookmark collection and with each other.  The goal is to find tag 

subsets that co-occur frequently in the bookmark collections of multiple users – subsets of tags 

that represent shared topics of interest. 

A power set is simply an array of all subsets of a set of elements S, including the empty 

set and S itself.  Table 9 shows an example of a tag set containing three tags and the resulting 

power set consisting of eight elements.  By definition, S’s power set contains 2n items, where n is 

the number of elements in S; thus, if a bookmarks contains 50 tags, the subsequent power set will 

contain 1.1 quadrillion elements. 

Table 9. The power set elements for a bookmark tag set consisting of the tags "css", 
"webdesign", and "tips" 

Tag Set : { css, webdesign, tips } 

# Subset 

1 {} 

2 { css } 

3 { webdesign } 

4 { tips } 

5 { css, webdesign } 

6 { css, tips } 

7 { webdesign, tips } 

8 { css, webdesign, tips } 
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Our goal is to take each bookmark in a user’s collection, generate its power set, and add 

all tag subsets to a frequency table counting the subsets’ occurrences throughout the user’s 

bookmarks.  Given the limitations of our hardware, we cannot possibly generate and store power 

sets for all bookmarks, particularly those with more than 32 tags (i.e., > 4 billion tag subsets.)  

Furthermore, users who have thousands of bookmarks, thousands of unique tags, and high tag-

per-bookmark averages produce extremely large tag subset frequency tables – occasionally 

larger than we can store in memory.  We found that for any given user, we can reliably produce 

power sets and store tag subsets for bookmarks containing 14 or fewer tags.  We make no 

attempt to produce power sets from bookmarks with more than 14 tags.   However, after 

processing all of a user’s bookmarks with 14 or fewer tags, we compare and record any matching 

subsets in the tag subset frequency table and the tag sets of the bookmarks that have more than 

14 tags.  This method may miss some novel tag subsets within the heavily-tagged bookmarks by 

only considering existing subsets. Given that only 5% of the bookmarks in the candidate expert 

data set contain more than 14 tags, it is highly unlikely that we will ignore any meaningful 

shared topics of interest. 

Figure 9 shows the psuedocode of the topic selection process.  For each candidate expert, 

we generate the power set of each bookmark’s tag set, tabulating the frequencies of all tag 

subsets as we go along.  Note that given our processing rules, a tag subset contains at least one 

tag, but no more than 14 tags.  After extracting tag subsets from the last bookmark, we eliminate 

any tag subset that occurs in less than 5 of the candidate expert’s tag sets.  The choice of five 

occurrences follows Bharat and Mahaila (2000), who only considered documents with at least 5 

links on a given topic as candidate expert documents for Hilltop. 
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Having filtered out infrequent tag subsets, we then identify tag subsets whose constituent 

tags frequently co-occur.  We do this using an agglomerative, bottom-up approach that matches 

frequently co-occurring tag pairs, then tag triples, etc., up to a maximum of 6 tags (as per Li et 

al.)  In other words, we start by finding broad topics described by a few tags, working our way to 

narrower topics described by several tags.  Starting with n = 1, where n is the number of tags in a 

given tag subset, we select all subsets from the candidate’s expert’s tag subset table containing n 

tags. For each tag subset sn, we then find any subset sn+1 containing n + 1 tags where 𝑠𝑛 ∈ 𝑠𝑛+1.  

For example, if the selected sn is {“ajax”}, occurring in 150 of the candidate expert’s bookmarks, 

FindTopics()  
     Retrieve all candidate expert usernames from the expert dataset. 
     For each candidate expert: 
 Retrieve the candidate expert’s bookmarks. 
        For each bookmark: 
    If the bookmark’s tag set has ≤ 14 tags: 
   Generate the tag set’s power set. 
   Record each power set element (tag subset) & increment count. 
    Otherwise, postpone processing of bookmark.    
 Remove all tag subsets appearing in < 5 bookmarks. 
 For each bookmark tag set containing > 14 tags: 
        Find matches with recorded tag subsets & increment counts. 
 Starting at n=1, do while n < 7, where n is the number of tags in a tag subset: 
        Set the minimum frequency threshold 𝜏, where 0.5 ≤ 𝜏 ≤ 1. 

       Select all tag subsets with n tags. 
       For each selected tag subset, s

n
: 

    Retrieve all tag subsets with n+1 tags that contain s
n
.  

    For each selected tag subset with n+1 tags, s
n+1

: 
   Find the percentage of bookmarks tagged with s

n+1
 vs. s

n
. 

   Record s
n+1

 if the percentage ≥ 𝜏. 
        Add all recorded tag subsets to the global topic table.  

Figure 9. Pseudocode for EARL's topic selection approach. 
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we will grab the sn+1 subset {“ajax”, “javascript”} occurring in 100 bookmarks.  Then, for each 

selected sn, we compute the normalized frequency of each sn+1 relative to sn: 

𝑠𝑛+1
𝑠𝑛

 →  
𝐶𝑜𝑢𝑛𝑡 {"𝑎𝑗𝑎𝑥", "𝑗𝑎𝑣𝑎𝑠𝑐𝑟𝑖𝑝𝑡"}

𝐶𝑜𝑢𝑛𝑡 {"𝑎𝑗𝑎𝑥"}
=  

100
150

= 0.67 

To put the above example in plain language, when we focus on the candidate expert’s 

150 bookmarks annotated with the tag “ajax”, we see that the tag “javascript” also occurs in 100 

of those bookmarks, a two-thirds majority of the time.  However, if we instead focus on the sn 

{“javascript”} occurring in 400 of the candidate expert’s bookmarks, we notice that only one-

quarter of those bookmarks also contain “ajax”: 

𝑠𝑛+1
𝑠𝑛

 →  
𝐶𝑜𝑢𝑛𝑡 {"𝑎𝑗𝑎𝑥", "𝑗𝑎𝑣𝑎𝑠𝑐𝑟𝑖𝑝𝑡"}

𝐶𝑜𝑢𝑛𝑡 {"𝑗𝑎𝑣𝑎𝑠𝑐𝑟𝑖𝑝𝑡"}
=  

100
400

= 0.25 

Our interpretation is that “ajax” and “javascript” are semantically related, where “ajax” is 

a narrow topic related to the much broader topic “javascript”, given that “javascript” occurs in 

the majority of the bookmarks tagged with “ajax”.  But how large must the normalized frequency 

be to accept sn as a topic of interest?  In this study, we compare each normalized frequency to a 

minimum threshold τ, defined in Equation 4: 

 𝜏 =  1 −
1

2n
 (4) 

If at least one of sn+1’s normalized frequencies relative to sn is greater than τ, we keep 

sn+1 as a topic of interest; otherwise, we remove sn+1 from the tag subset table.  We increase τ as n 

increases to reduce the effects of tag noise.  Put another way, there is an inverse relationship 

between tag subset size and frequency in a user’s bookmark collection – tag subsets with 5 or 6 

six tags usually appear in less than 20 bookmarks.  Given these smaller counts, we would be 
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more likely to erroneously associate unrelated tags to tag subsets if we use a constant threshold.   

In our example, because “javascript” appears in more than half of the candidate expert’s 

bookmarks tagged with “ajax” (𝑠𝑛+1
𝑠𝑛

= 0.67 ≥ 𝜏𝑛=1 → 0.5), we keep the tag subset {“ajax”, 

“javascript”} as a topic of interest for further processing. We perform this routine up to n = 6 for 

the current candidate expert, then add all frequently-occurring tag subsets to a global tag subset 

table. As the remaining candidate experts are processed, we increment the global tag subset 

frequencies when we discover overlapping topics of interest.  

3.4 FINDING EXPERTS AND AUTHORITATIVE RESOURCES 

Preliminary analyses using the expert and main datasets were performed to answer the following 

questions: 

1. Is there evidence that candidate experts, as a whole, exhibit both domain and 

classification expertise? 

2. What are the most popular topics, using the topic selection scheme of EARL? 

3. How do  the rankings of experts and authoritative documents of EARL compare to those 

of HITS and SPEAR? 

3.4.1 Candidate Expert Tagging Patterns 

In the first stage of EARL, candidate experts are selected from the main dataset based on two 

simple criteria, bookmark count (domain expertise) and average tags per bookmark 

(classification expertise).   We eliminate users with less than ten bookmarks, because they 
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provide too little information to reliably judge their domain expertise on any topic.  While some 

of these users may actually be domain experts, we cannot verify the expertise of someone who 

does not share their knowledge.  Similarly, we eliminate users who annotate their bookmarks 

sporadically with very few tags – we cannot tell if they are good classifiers if they use few or no 

tags on their bookmarks. After eliminating users who seldom bookmark or annotate their 

bookmarks, we are left with a small subset of users, resources, tags, and bookmarks for the 

preliminary candidate expert dataset (see Table 10.)  To be clear, we do not expect every user in 

the candidate expert dataset to be a domain expert on one or more topics, nor do we expect each 

 one to be an expert classifier.  However, we believe there are some users who do qualify as both 

domain and classification experts.  The first set of analyses explores the tagging patterns of the 

candidate experts on a per-resource basis to find evidence of the two types of expertise. 

Table 10. Basic statistics for the preliminary main and candidate expert datasets. 

 Main 
Dataset 

Candidate 
Expert Dataset 

Candidate 
Expert % 

User Count 723,342 16,981 2.3% 

Resource Count 12,815,856 2,076,391 16.2% 

Bookmark Count 30,159,279 3,883,661 12.9% 

Distinct Tag Count 
(ignoring case) 

1,577,610 505,964 32.1% 

Tag Instance Count 94,439,113 25,907,044 27.4% 

 



 70 

Table 11 shows tag frequency tables for three popular resources in Delicious, comparing 

the candidate experts’ tag frequencies with those of all users in the preliminary main dataset.  We 

observe that for popular resources bookmarked by at least 100 users in both the preliminary main 

and candidate expert datasets, the top seven tags by popularity are the same for 72.9% of the 

resources (1027 of 1408), though the rank order was typically different – only 9.5% of the 

resources had lists that were completely identical in tag composition and rank.  However, the 

percentage of candidate experts who used each top n tags on a given resource (i.e., agreement) is 

always greater than the corresponding percentage among all users.  It is possible that this greater 

tag usage agreement among candidate experts may simply be a by-product of the initial 

candidate expert selection process that focuses on prolific annotators. By filtering out users who 

use few or no tags, we remove most of the empty tag sets that contributed to the denominator of 

the tag usage percentage (i.e., count of users bookmarking the given resource) but not the 

numerator (i.e., number of users bookmarking and annotating the resource with the given tag), 

thus raising the percentages.  Still, we believe the identical relative frequencies and greater 

agreement support the idea that the initial selection process helps isolate classification expertise.  

Not only are the candidate experts consistently using multiple tags on their bookmarks, but they 

are also using (and are more likely to use) tags that reflect the beliefs of the entire community. 

Observation 1 

Candidate experts use tags on resources with similar relative frequencies as all users, 
but with greater agreement. 
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Table 11. Comparison of the top seven tags, frequencies, and usage percentages in the 
preliminary candidate expert dataset versus the main dataset for three popular resources 

in Delicious. 

Resource URL: script.aculo.us 
Candidate Expert Dataset Main Dataset 

Tag Use Count Expert % Tag Use Count All Users % 
javascript 591 87.8% javascript 3571 67.7% 
ajax 540 80.2% ajax 2877 54.6% 
programming 418 62.1% web2.0 1429 27.1% 
web2.0 385 57.2% programming 1402 26.6% 
web 342 50.8% web 1086 20.6% 
webdesign 321 47.7% webdesign 1144 21.7% 
css 280 41.6% css 824 15.6% 
Total Bookmarks: 673   5272  
 
Resource URL: kuler.adobe.com 

Candidate Expert Dataset Main Dataset 
Tag Use Count Expert % Tag Use Count All Users % 
color 414 82.6% color 1609 56.3% 
design 387 77.2% design 1333 46.7% 
webdesign 354 70.7% webdesign 889 31.1% 
tools 332 66.3% tools 733 25.7% 
adobe 325 64.9% adobe 594 20.8% 
graphics 268 53.5% graphics 380 13.3% 
colour 202 40.3% colour 375 13.1% 
Total Bookmarks: 501   2857  

 
Resource URL:  www.alvit.de/handbook/ 

Candidate Expert Dataset Main Dataset 
Tag Use Count Expert % Tag Use Count All Users % 

webdesign 446 80.4% webdesign 2329 52.4% 
css 439 79.1% css 2230 50.2% 
reference 385 69.4% reference 1531 34.5% 
web 353 63.6% web 1312 29.5% 
design 335 60.4% design 1217 27.4% 
development 310 55.9% development 996 22.4% 
html 293 52.8% html 876 19.7% 
Total Bookmarks: 555   4444  
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The initial candidate expert filtering process produces the candidate expert subset based on one 

element of domain expertise – number of bookmarks.  As Noll et al. demonstrated, bookmark 

count alone does a poor job measuring expertise in a public social bookmarking system.  To 

make a preliminary assessment of the level of domain expertise in the candidate expert dataset, 

we examined how many resources in the main dataset were introduced by candidate experts.  We 

have complete histories for some, but not all of the resources in the preliminary main dataset; 

therefore, we selected the data for all resources from the preliminary main dataset 1) with 

complete histories and 2) bookmarked by at least 200 users – popular resources with stabilized 

tagging patterns that may serve as authoritative documents. 

Table 12 shows the results of the analysis on the 1,678 resources with at least 200 

bookmarks and complete histories in the preliminary main dataset.  Of the 870,595 total 

bookmarks in this sample, candidate experts contributed 84,146, or 9.7%, well below their 

contribution of 12.9% of all preliminary main dataset bookmarks (Table 10).  Candidate experts 

Observation 2 

Candidate experts, as a whole, introduce few resources and their corresponding popular 
tags to Delicious.  
 

 

Table 12. All user versus candidate expert bookmark contributions to resources in the 
preliminary main dataset with complete histories and ≥ 200 bookmarks (n = 1,678) 

 Avg. per 
resource 

All Users  Candidate 
Experts  

Candidate 
Expert % 

Count of All Bookmarks: 519 870,595 84,146 9.7% 
Count of First Bookmarks: - 1,678 157 9.3% 
Count of Bookmarks until 
all top 7 tags appear: 

28 46,988 3,808 8.1% 
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were the first to discover and bookmark 157 (9.3%) of the resources, also below their 

contribution percentage to the preliminary main dataset.  If we expand the analysis to include all 

bookmarks made by early adopters – bookmarks made until each of the resources’ top seven tags 

appear in at least one tag set – the percentage of candidate expert bookmarks falls to 8.1%.  We 

conclude that the initial candidate expert selection process, relying on a single element of domain 

expertise (bookmark count), does not isolate domain experts in Delicious. 

One reason for the low percentage of domain experts in the preliminary candidate expert 

dataset may be that users who qualify as good classifiers – i.e., multiple tags per bookmark – are 

more likely to be copiers than early adopters of popular resources, because they have the benefit 

of Delicious’ tag suggestions to select good descriptive tags.  Annotating bookmarks with 

multiple tags takes far less cognitive effort and analytical skill when the system’s interface 

provides the top tags.  A more optimistic interpretation is that the combination of domain and 

classification expertise is a rare breed in social bookmarking systems, as it is in the real world.  If 

the initial selection process focused primarily on domain expertise – for example, selecting the 

first n bookmarks from popular resources and extracting the top m users who contribute the most 

bookmarks to this subset – we will likely find that few of the candidates exhibit classification 

expertise. 

3.4.2 Topics of Interest 

Before beginning studies with EARL, it is important to identify topics we can use to measure the 

domain expertise of specific candidate experts.  Although we consider any tag based on 

dictionary terms (including compound tags) as potential topics, this exploratory analysis focuses 

on combinations of tags that describe topics.  One goal of the topic extraction is to explore the 
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semantic relations among topics’ constituent tags.  For instance, popular tags that provide little 

informational content in isolation, such as “web” or “tools”, become more useful for 

classification when combined with semantically related tags.  Another goal of extracting topics 

of interest is simply to get a sense of the breadth and depth of the candidate experts’ interests.  

Because we are using data from Delicious, we expect topics related to information technology to 

dominate the list – so much so that the technical bias is considered a limitation of this work. 

Using the technique described in section 3.3.3., topics of interest were extracted from the 

bookmark collections of all 16,981 candidate experts.  Overall, the candidate expert dataset 

contains 216,183 topics of interest comprised of at least two tags and with a minimum of two 

Figure 10. Frequency-rank distribution of topics of interest in the preliminary candidate expert 
dataset. Each topic listed on the horizontal axis represents a decrease of 10,000 in rank position. 
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users contributing to the topic.  Figure 10 shows the frequency-rank distribution for all topics, 

where each topic listed on the horizontal axis represents a decrease in rank of 10,000, starting 

from the most popular topic “design webdesign” at rank 1.  Even at logarithmic scale, the topic 

distribution shows a clear power curve; only 1,861 of the topics have at least 100 candidate 

experts contributing to the topic, given the topic extraction rules described in section 3.3.3.  

Table 13 shows the top forty topics of interest by candidate expert count, all of which are directly 

or indirectly related to information technology.   In fact, an overwhelming majority of the topics 

in the complete list deal with information technology.  Popular, non-technical topics such as 

“cooking food recipes” (rank 450) and “finance money” (rank 149) are rare, confirming our 

suspicions of poor topic coverage in non-technical domains.  In both Figure 10 and Table 13, the 

tags within each topic of interest are listed in alphabetical order. 

Looking at the topics in Table 13, we can infer some of the semantic relationships among 

the component tags.  Although the reader may argue that we misclassified some of the following    

topics, we believe all of the topics consist of tags with strong semantic ties: 

• Named Entity: “mac osx” (17), “apple mac” (31). 

• Parent-Child: “design webdesign” (1), “javascript ajax” (11, order reversed), “software 

windows” (27). 

• Synonyms: “development programming” (9), “fonts typography” (37). 

• Singular-Plural/Part-Whole: “tutorial tutorials” (12), “blog blogs” (18), “tool tools” (29). 

• Compound tag with component tags: “design web webdesign” (8). 

For the purpose of this research, we enumerate the types of semantic relationships mainly to 

show that EARL’s topic extraction method effectively finds and groups semantically-related tags 

together based on frequent co-occurrences. 
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Table 13. Top 40 topics of interest of candidate experts 

Rank Topic # of Candidate Experts 
1 design webdesign 2229 
2 css webdesign 1886 
3 design inspiration 1662 
4 web webdesign 1560 
5 css design 1455 
6 design graphics 1430 
7 css design webdesign 1379 
8 design web webdesign 1316 
9 development programming 1302 
10 freeware software 1290 
11 ajax javascript 1246 
12 tutorial tutorials 1216 
13 art design 1216 
14 photo photography 1207 
15 software tools 1156 
16 photography photos 1155 
17 mac osx 1118 
18 blog blogs 1117 
19 css web webdesign 1106 
20 design typography 1081 
21 webdesign webdev 1062 
22 opensource software 1055 
23 mp3 music 1048 
24 css html 1048 
25 howto tutorial 1019 
26 design inspiration webdesign 1006 
27 software windows 1005 
28 funny humor 972 
29 tool tools 966 
30 tools utilities 940 
31 apple mac 934 
32 html webdesign 925 
33 css design web webdesign 917 
34 css design web 912 
35 design web 908 
36 css web 859 
37 fonts typography 857 
38 tools web2.0 813 
39 css html webdesign 800 
40 audio music 792 
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3.4.3 EARL versus HITS and SPEAR  

The second phase of EARL introduces three factors to better identify experts and authoritative 

resources – normalized expert agreement, sustained resource popularity, and extreme bursts of 

activity – and adopts a fourth factor, temporal sequence from Noll et al.’s SPEAR algorithm. To 

gauge EARL’s effectiveness, we implemented and conducted preliminary tests with HITS, 

SPEAR, and EARL on 25 topics of interest, including single-tag topics (e.g., “javascript”.)  

Preliminary tests were run only on the candidate expert dataset.  We present the results for one 

very popular topic, “design, web” (rank: 35) in Table 14, and one moderately popular topic, “rest 

webservices” (rank: 3940) in Table 15.   Because Noll et al.’s research focused exclusively on 

expert rankings, these preliminary tests were the first opportunity we had to compare all three 

algorithms’ abilities to rank both experts and resources. 

We observe the following regarding the results shown in Tables 14 and 15:  

• The expert rankings vary greatly between HITS and SPEAR/EARL, but vary little 

between SPEAR and EARL.  For moderately popular topics, HITS tends to favor users 

with the largest number of bookmarks on the given topic, while SPEAR and EARL favor 

users who are early bookmarkers of popular resources, regardless of how many 

bookmarks they have tagged with the given topic query.  This suggests that temporal 

sequence, introduced in SPEAR, is an important factor for ranking experts, but that 

EARL’s factors have little effect. 

• In terms of resources, all three algorithms seem to do a good job identifying resources on 

topic, even though we are only using tags and ignoring resource titles and content.  For 

moderately popular topics, there tends to be a stronger correlation between rank and 

resource count in SPEAR and EARL than in HITS. 
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• Although SPEAR’s and EARL’s resource rankings only differ at rank 9 for the topic “rest 

webservices” in Table 15, their tends to be more variability in their resource rankings on 

par with the results for “design, web” in Table 14, regardless of resource popularity.   

Note that for this preliminary study, two aspects of the EARL algorithm are not implemented: 

sustained popularity of a resource, and extreme bursts of activity.  We believe both will affect 

EARL’s expert and resource rankings, especially those of rapidly-evolving topics in which once-

Table 14. Comparison of HITS', SPEAR's, and EARL's rankings of the top 10 experts 
and resources in the candidate expert dataset for the topic “design, web” 

Topic: “design, web” 
 HITS SPEAR EARL 

Rank User ID User ID User ID 
1 cristhianfs cristhianfs cristhianfs 
2 Bhooshan clouseau clouseau 
3 andysowards ballicky Boubahou 
4 blackveins everlaster ceez 
5 cmrsampaio Boubahou ballicky 
6 cerasoli ceez everlaster 
7 2raj Elix Elix 
8 everlaster chriskeane adamharte 
9 clouseau chosco chriskeane 
10 dedesk 5ndime chosco 
 
Rank URL URL URL 
1 alvit.de/handbook/ alvit.de/handbook/ alvit.de/handbook/ 

2 
www.smashing- 
magazine.com/2007/... 

www.smashing- 
magazine.com/2007/... www.oswd.org/ 

3 browsershots.org browsershots.org webdesignfromscratch.com 

4 www.oswd.org www.oswd.org 
www.smashing- 
magazine.com/2007/... 

5 webdesignfromscratch.com webdesignfromscratch.com browsershots.org 
6 www.csszengarden.com www.csszengarden.com www.csszengarden.com 
7 960.gs alistapart.com alistapart.com 
8 www.cssbeauty.com 960.gs bestwebgallery.com 
9 typetester.maratz.com www.cssplay.co.uk 960.gs 
10 alistapart.com bestwebgallery.com www.designmeltdown.com 

 



 79 

popular resources can quickly become obsolete.  It is also worth noting a difference in how 

candidate experts for the topic generation process are selected versus the computation of EARL 

scores.  For the topic generation process, only candidate experts who have annotated at least five 

of their bookmarks with a given series of tags that form a topic of interest as contributors to that 

Table 15. Comparison of HITS', SPEAR's, and EARL's rankings of the top 10 experts 
and resources in the candidate expert dataset for the topic “rest webservices” 

Topic: “rest, webservices” 
 HITS SPEAR EARL 
Rank User ID User ID User ID 
1 dhinchcliffe clouseau clouseau 
2 bruce.healy domix bcp 
3 clouseau behruz domix 
4 bcp divadsirrah behruz 
5 cmrsampaio detobin divadsirrah 
6 domix bcp detobin 
7 behruz CAStrauss CAStrauss 
8 drawkbox colin.surprenant colin.surprenant 
9 berberich cpjobling durdn 
10 evangineer durdn dobersch 
 
Rank URL URL URL 

1 
www.ics.uci.edu/~fielding/ 
pubs/dissertation/top.htm 

www.xfront.com/ 
REST-Web-Services.html 

www.xfront.com/ 
REST-Web-Services.html 

2 www.xml.com/pub/at/34 www.restlet.org/ www.restlet.org/ 

3 
www.xml.com/pub/a/ 
2004/12/01/restful-… 

www.ics.uci.edu/~fielding/ 
pubs/dissertation/top.htm 

www.ics.uci.edu/~fielding/ 
pubs/dissertation/top.htm 

4 
duncan-cragg.org/blog/post/ 
strest-service-trampled… 

java.sun.com/developer/ 
technicalArticles/… 

java.sun.com/developer/ 
technicalArticles/… 

5 
www.prescod.net/rest/ 
mistakes/ 

www.infoq.com/articles/ 
rest-introduction 

www.infoq.com/articles/ 
rest-introduction  

6 
www.prescod.net/rest/ 
rest_vs_soap_overview/ enunciate.codehaus.org enunciate.codehaus.org 

7 
particletree.com/features/ 
how-to-add-an-api-…. 

en.wikipedia.org/wiki/ 
Representational_... 

en.wikipedia.org/wiki/ 
Representational_... 

8 
hinchcliffe.org/archive/ 
2005/08/18/1675.aspx wadl.dev.java.net wadl.dev.java.net 

9 
www.infoq.com/articles/ 
tilkov-rest-doubts jersey.dev.java.net 

http://www.infoq.com/ 
articles/sanjiva-rest-myths 

10 
hinchcliffe.org/archive/ 
2008/02/27/16617.aspx 

bitworking.org/news/ 
201/RESTify-DayTrader 

bitworking.org/news/ 
201/RESTify-DayTrader 
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topic are considered.  In other words, at the very least, a user must demonstrate consistent 

interest in a topic before we can even consider that person an expert.  However, for the 

calculation of EARL’s rankings, this minimum threshold is not used.   
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4.0  RESEARCH DESIGN 

The goal of this research was to develop an algorithm that can identify experts and authoritative 

documents in social bookmarking systems more efficiently and more accurately than existing 

algorithms.  We expect enhanced efficiency will be achieved by reducing the nodes in the 

Delicious data graph to a smaller subset of active users who consistently use several tags on their 

bookmarks. The additional factors in EARL used to model expertise are expected to lead to more 

accurate rankings of expert users and authoritative documents for a given topic. 

The main questions we address in this research are: 

• Does the EARL algorithm identify the experts and authoritative documents on a given 

topic in Delicious more accurately and more efficiently than existing algorithms? 

• Does node reduction of the Delicious data graph to a smaller, sub-network of candidate 

experts produce expert and authoritative document rankings on a given topic that are on 

par with, or better, than those produced from the entire Delicious network? 

4.1 DELICIOUS DATA 

This research used data collected from the social bookmarking system, Delicious.  Delicious was 

founded in 2003 by Joshua Schachter, and acquired by Yahoo! in December, 2005.  Yahoo! then 
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sold Delicious to AVOS Systems in April, 2011. The current number of bookmarks, users, and 

resources on Delicious is unknown.  The last public disclosure of these statistics was made by 

Delicious in 2008, stating that the site had 5.3 million registered users with bookmarks on 180 

million unique resources.  

The data used in this research were initially crawled between November, 2009 and 

February, 2010.  After completing the preliminary studies discussed in the previous chapter, we 

expanded the dataset with a subsequent crawl of Delicious between May, 2010 and August, 

2010.  Due to limitations in crawling, we are unable to collect all bookmarks for all users and 

resources.  For instance, Delicious restricts the viewing (and thus, crawling) of resource 

bookmarks to the most recent 2,000 entries.  Despite these limitations, our goal for crawling was 

to collect as many bookmarks as possible, and construct a sample dataset that was representative 

of Delicious in its entirety.  Bookmarks were collected on a per-user basis and per-resource 

basis, with care taken to ensure that tags were stored in the same order and case as originally 

entered by their authors.  We accepted all bookmarks regardless of tag semantics, language, 

resource popularity, or user history.  The main dataset used in this study includes 73,223,114 

bookmarks made by 723,342 users (identical to the preliminary studies’ main dataset) on 

41,469,488 unique resources. 

Based on the expanded main dataset, an initial list of candidate experts was generated.  

This research identifies candidate experts as Delicious users who have bookmarked at least 10 

resources and used, on average, at least four tags per bookmark – as opposed to five in the 

preliminary analysis.  The four-tag cutoff was used for the following reasons: 

1. The four-tag cutoff follows Li et al.’s (2008) conclusion that one to five tags best 

represent a single topic of a resource, as well as the observations of Bates (1986) and 
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(2000) that multiple Library of Congress subject headings are appropriate for resource 

classification. 

2. Many resources present information about more than one topic.  In turn, some topic terms 

contain more than one word.  Users may use a compound tag to represent the multiple-

word term, or use separate tags for each word on the term.  

3. We expect good classifiers to assign tags that describe the content of the resource at more 

than one level.  For example, the tag set of a bookmarked resource about Java Servlets 

would not only contain specific topical tags (i.e. “servlets”, “java”), but also more general 

topical tags (e.g., “programming”, “webdev”.) 

4. A four-tag cutoff ensures adequate topic coverage within the candidate expert dataset.  

Many users who barely met the cutoff in the preliminary analysis fell below the five-tag 

threshold after gathering more of their bookmark data. 

By reducing the cutoff to four tags per bookmark, the candidate expert dataset includes 23,066 

users, or 3.2% of all users in the expanded main Delicious dataset.  Table 16 summarizes the 

user, resource, and bookmark statistics of the main and candidate expert datasets. 

 

Table 16. Basic statistics for the main and candidate expert datasets 

 Main 
Dataset 

Candidate 
Expert Dataset 

Candidate 
Expert % 

User Count 723,342 23,066 3.2% 

Resource Count 41,469,488 4,493,594 10.8% 

Bookmark Count 73,216,330 8,794,186 12.0% 
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4.2 PRE-PROCESSING OF DATA 

Prior to using the main and candidate expert datasets for experiments, the following steps were 

taken to prepare the data:  

1. Convert all tag instances to lowercase.  Delicious does not impose any restrictions on 

case when users enter tags.  Case is not important for this study’s purposes, so all 

alphanumeric characters were converted to lowercase. 

2. Remove bookmarks with bogus dates, as it appears to be corrupt data on Delicious.  

While crawling on a per-user basis, our crawlers occasionally collected bookmarks dated 

prior to the start of Delicious, evidence of data corruption. These bookmarks appear 

under the user’s bookmark list on Delicious, but not the corresponding resource’s 

bookmark list.  With 40 million unique resources in the database, we do not have the time 

and resources to collect the ‘first bookmarked’ date of all resources.   Any bookmark with 

a creation data before  February 24, 2002 - the date of Joshua Schacter’s earliest 

bookmarks2 and the first bookmarks posted to Delicious was removed. 

3. If a resource has multiple URLs, combine all bookmarks under one resource ID.  

Many popular resources on Delicious may be accessed on the Web via multiple URLs, 

and thus, have multiple URLs within Delicious. Multiple URLs dramatically affects the 

rankings of HITS, SPEAR, and EARL, especially when the bookmarks of a few popular 

resources are involved.   Consider the users who bookmarked the main Google page.  

Some Delicious users bookmarked the URL “google.com”, while others bookmarked 

“www.google.com.”  In Delicious, the two URLs have distinct Delicious IDs – Delicious 

                                                 

2 http://www.delicious.com/joshua?sort=userdate&order=asc 

http://www.delicious.com/joshua?sort=userdate&order=asc
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creates its URL identifiers by hashing the URL – yet both URLs ultimately point to the 

same resource, the main Google page.  Delicious assumes that when you look up either 

URL for Google (http://delicious.com/url/), you’d like to see everyone’s bookmarks for 

the resource, not just that URL.  Thus, the bookmark lists on Delicious for “google.com” 

and “www.google.com” are identical.  Considering that we crawled Delicious on a per-

user basis AND a per-resource basis, we find one of three problems in our main dataset 

for bookmarks on resources with multiple URLs: 

• At one extreme, if 1,000 users bookmarked Google, and we collected the bookmarks 

on a per-user crawl, our data has 1,000 bookmarks. Five hundred of the bookmarks 

use  the “google.com” URL identifier, while the other 500 bookmarks use  the 

“www.google.com” identifier. 

• At the other extreme, if 1,000 users bookmarked Google, and we crawled both URL 

identifiers on a per-resource crawl, our data will have 2,000 bookmarks for Google – 

i.e., two entries for each user, one with the “google.com URL identifier and a second 

with the “www.google.com” identifier. 

• In most cases, the third scenario is a mix of the two: some users have two bookmarks 

for Google, while most have only one bookmark with one of the two identifiers. 

Unfortunately, Delicious does not provide a mechanism that lists all the URL 

identifiers for a particular resource. We combine multiple URLs with a semi-automatic 

procedure used during the preliminary work for this dissertation.  First, we run EARL, 

SPEAR, and HITS on some topic and list all relevant URLs, their corresponding Delicious 

URL identifiers, and their bookmark counts.  We sort the list of URLs alphabetically, and 

manually group “sibling” URLs that point to the same resource.  In most cases, these siblings 

http://delicious.com/url/
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only differ by the presence or absence of a leading “www” in the domain name, or trailing 

“index.*” or “home.*” page name in the full address.  In other cases, sibling URLs may 

include a query-string with referrer information that is harder to detect automatically.  

Finally, for each URL group representing a common resource, we select the identifier of the 

most popular URL based on bookmark count, then update the identifiers of all the resource’s 

bookmarks in our data to the most popular identifier.  

4.3 METHODOLOGY 

To evaluate the performance of EARL versus other ranking algorithms, this research uses 

relevance measurements made by expert judges on documents from Delicious and Google.  

Documents were presented in random order to the judges, who rated each document’s relevancy 

on a graded scale.  We use Normalized Discounted Cumulative Gain (NDCG) to measure the 

performance of the ranking algorithms against the experts’ ratings. The expert judges’ collective 

ratings are considered ideal.   

NDCG is a metric developed by Jarvelin and Kekalainen (2002) to assess how well 

information retrieval (IR) systems rank documents in response to a given query compared to an 

ideal ranking based on graded relevance judgments: 

𝑁𝐷𝐶𝐺𝑞 = 𝑀𝑞  �
2𝑟(𝑗) − 1

log (1 + 𝑗)

𝐾

𝑗=1

 

where r(j) is an integer denoting a graded relevance judgment (e.g., 1 = “irrelevant”, 2 = 

“somewhat relevant”, and 3 = “highly relevant”) for a document at position j; K is the length of 
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the result vector to evaluate (i.e., the top K documents); and Mq is a normalization constant such 

that a perfect ordering of documents for the given query q gets a value of 1.  The underlying 

notion behind NDCG is that an IR system should present highly relevant documents at the 

beginning of a ranked result list, followed by marginally relevant documents, followed by 

irrelevant documents.  Highly relevant documents should be presented in the top positions 

(Jarvelin and Kekalainen, 2002).  When calculating NDCG, a document’s contribution to the 

final score directly relates to its position in the ranked list – the higher its position in the list, the 

more it contributes to the final NDCG score.   Thus, algorithms that place the most highly 

relevant documents in the top K ranking positions achieve the highest NDCG scores. 

4.4 EXPERIMENT 1:  EVALUATING EARL’S ABILITY TO LOCATE 

AUTHORITATIVE RESOURCES 

In the first experiment, we evaluated a technique for filtering candidate experts from Delicious 

and three algorithms for ranking authoritative resources in Delicious.  The goals of the first 

experiment are 1) to discover which algorithm does the best job ranking authoritative resources 

on a given topic in Delicious, and 2) to test how effectively the candidate expert filtering 

procedure identifies Delicious users who possess domain expertise. 

4.4.1 Participants  

Thirty participants were recruited from the University of Pittsburgh’s School of Information 

Sciences and Department of Computer Science.  The sample size was chosen according to power 
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analysis (Cohen, 1988) for a two-way Analysis of Variance (ANOVA.)  The power analysis 

suggested a minimum sample size of twenty participants assuming a large effect size (f = .75) 

and a significance level of p = .05 with a confidence of 0.8. Because a pilot test showed that six 

tasks required too much time for subjects to complete comfortably in one session, each subject’s 

workload was reduced to four tasks.  We recruited thirty participants and assigned them four 

tasks, such that each of the six tasks was performed by twenty participants.  

4.4.2 Variables and Expected Results  

For the first experiment, the two independent variables are 1) the ranking algorithm (EARL, 

HITS, SPEAR, and Google) and 2) the selected dataset (the main dataset and the candidate 

expert dataset.)  Table 17 summarizes the independent variables and seven conditions in the first 

experiment.  The dependent variable is the mean of nDCG10 for a given ranking algorithm and 

dataset selection; i.e., the performance of each method’s resource rankings against the ideal 

rankings of authoritative documents. 

We expect EARL to outperform HITS, SPEAR, and Google in ranking authoritative 

resources.  We also expect the use of the filtered expert dataset to produce authoritative resource 

rankings as good as, or better than, an unfiltered Delicious dataset.  

 

Table 17. Independent variables and conditions in the first experiment. Each subject ranks 
results lists from all seven conditions. 

 Ranking algorithm 
Dataset EARL HITS SPEAR Google 
Main 1 3 5 

7 Expert 2 4 6 
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4.4.3 Hypotheses of the 1st Experiment  

H1-0:  There is no statistically-significant difference among the means of the nDCG10 of 

Google and the HITS-based ranking algorithms. (µGOOGLE = µEARL = µSPEAR = µHITS) 

H1-1:  There is a statistically-significant difference among the means of the nDCG10 of 

Google and the HITS-based ranking algorithms. (µGOOGLE ≠ µEARL ≠ µSPEAR ≠ µHITS) 

H2-0:  There is no statistically-significant difference between the means of the nDCG10 of 

the main and expert datasets. (µMAIN = µEXPERT) 

H2-1:  There is a statistically-significant difference between the means of the nDCG10 of 

the main and expert datasets. (µMAIN ≠ µEXPERT) 

4.4.4 Subjects, Evaluation, and Analysis Procedure  

Thirty students from the School of Information Sciences and the Department of Computer 

Science were recruited as subjects for the experiment3.  To be eligible for the experiment, a 

student must have completed one course in the Java programming language, or have developed 

an application using the language4. Each subject was given four questions related to Java 

programming (please see section 5.1.)  Prior to the start of the experiment, each subject was 

given a brief training session to ensure that they met the minimum requirements, understood 

their tasks, and understood how to use the experimental system.  Subjects then formulated 

queries to locate resources that helped them answer each given question. They were asked to rate 
                                                 

3 The study was approved as ‘exempt’ by the Institutional Review Board of the University of Pittsburgh 
(PRO12010167). 
4 The courses that appeared in the recruitment announcement were INFSCI 0017 (Fundamentals of Object-Oriented 
Programming) and CS 0401 (Intermediate Programming using Java).  Equivalent courses at other schools were also 
accepted. 
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the relevancy of the retrieved resources to their given queries on a scale of 1 to 5, where “1” is 

“completely irrelevant” and “5” is “highly relevant.” Figure 11 shows the interface subjects used 

to rate the relevancy of retrieved resources. 

To retrieve a list of resources, the experimental system submits the subject’s query to 

both Google and our own social annotation-based retrieval system.  The experimental system 

only selects resources that exactly match the subject’s query; i.e., all terms must have been used 

as tags on the resources from the Delicious datasets, or appear in the documents retrieved from 

Google.  The experimental system receives the top 20 search results from Google, as well as 

separate top 20 lists from the social annotation-based retrieval system using each of the three 

HITS-based algorithms – EARL, SPEAR, and HITS – on both the main and candidate expert 

Delicious datasets. The experimental system combines the results from the seven conditions, 

removes duplicate results, and presents the combined result list to the subject in randomized 

Figure 11.  Experiment 1’s user interface. 
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order. Subjects were reminded before submitting each query that their results sets appear in 

random order.  For a given query, a subject rates a maximum of 140 results (i.e., the results sets 

of all seven conditions are completely distinct), and a minimum of twenty (i.e., the results sets 

overlap perfectly.)  We expected significant overlap in the results sets from all four search 

algorithms, but did not expect the result sets to overlap perfectly. 

The system recorded all relevancy ratings for each resource appearing in the subjects’ 

result set lists.  Using the subjects’ ratings and the rank positions of resources for a given query 

and experimental condition (i.e. dataset and algorithm combination), we calculate the value of 

nDCG10 for each dataset/ranking method based on each query.    

Two-way between-subjects Analysis of Variance (ANOVA) is applied to test the 

hypotheses. The null hypothesis is rejected if the results from the F-test show a significant 

difference at the 0.05 confidence level. If one of the null hypotheses is rejected, all pairwise 

differences are examined with the Scheffe procedure. 

4.5 EXPERIMENT 2:  EVALUATING EARL’S ABILITY TO LOCATE DOMAIN 

EXPERTS 

In the second experiment, we evaluate a technique for filtering candidate experts from Delicious, 

as well as three algorithms for ranking candidate experts with domain expertise.  The goals of the 

second experiment are 1) to discover which algorithm does the best job ranking domain experts 

on a given topic in Delicious, and 2) to test how effectively the candidate expert filtering 

procedure identifies Delicious users who possess domain expertise. 
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4.5.1 Participants  

The thirty participants recruited from the University of Pittsburgh’s School of Information 

Sciences for Experiment 1 also participated in Experiment 2.  Because all of the resources in all 

of the rank lists produced in Experiment 1 were present in at least one of the top candidate 

expert’s bookmark lists in Experiment 2, it was feasible to utilize the participants’ ratings for 

both experiments. Similar to experiment 2, the sample size was chosen according to power 

analysis (Cohen, 1988) for a two-way Analysis of Variance (ANOVA.)  The power analysis 

suggested a minimum sample size of twenty participants assuming a large effect size (f = .75) 

and a significance level of p = .05 with a confidence of 0.8. Because a pilot test showed that six 

tasks required too much time for subjects to complete comfortably in one session, each subject’s 

workload was reduced to four tasks.  Thus, we recruited thirty participants and assigned them 

four tasks, such that each of the six tasks was performed by twenty participants. 

4.5.2 Variables and Expected Results  

For the second experiment, the two independent variables are 1) the ranking algorithm and 2) the 

selected dataset.  Table 18 summarizes the independent variables and the six conditions in the 

Table 18. Independent variables and conditions in the second experiment.  Each subject 
ranks domain expert data from all six conditions. 

 Ranking Algorithm 
Dataset EARL HITS SPEAR 
Main 1 3 5 
Expert 2 4 6 
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second experiment.  The dependent variable is the mean of nDCG10 for a given ranking 

algorithm and dataset selection; i.e., the performance of each method’s resource rankings against 

the ideal ranking of domain experts. 

We expect EARL to outperform HITS and SPEAR in locating expert users and ranking 

domain expertise.  We also expect the use of the filtered expert dataset to produce domain expert 

rankings as good as, or better than, an unfiltered Delicious dataset. 

4.5.3 Hypotheses of the 2nd Experiment 

H1-0:  There is no statistically-significant difference among the means of the nDCG10 of 

the candidate expert rankings for EARL, SPEAR, and HITS. (µEARL = µSPEAR = µHITS) 

H1-1:  There is a statistically-significant difference among the means of the nDCG10 of the 

candidate expert rankings for EARL, SPEAR, and HITS. (µEARL ≠ µSPEAR ≠ µHITS) 

H2-0:  There is no statistically-significant difference between the means of the nDCG10 of 

the candidate expert rankings for the candidate expert and main datasets. (µMAIN = µEXPERT) 

H2-1:  There is a statistically-significant difference between the means of the nDCG10 of 

the candidate expert rankings for the candidate expert and main datasets. (µMAIN ≠ µEXPERT) 
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4.5.4 Subjects, Evaluation, and Analysis Procedure  

Thirty students from the School of Information Sciences and Department of Computer Science 

were recruited as subjects for the experiment5.  As stated in section 4.5.1, the same thirty 

subjects who participated in Experiment 1 also participated in Experiment 2. To be eligible for 

the experiment, a student must have completed one course in the Java programming language, or 

have developed an application using the language6. Each subject was given four questions 

related to Java programming (please see section 5.1.)  Prior to the start of the experiment, each 

subject was provided with a brief training session to ensure that they met the minimum 

requirements, understood their tasks, and understood how to use the experimental system. 

Providing subjects with lists of candidate experts (i.e. usernames) to rate directly will not 

provide reliable ratings of domain expertise.  To assess domain expertise, subjects were asked to 

rate the resources bookmarked by the highest-ranked candidate experts by each algorithm.  We 

expect that the top experts in Delicious on a given topic have bookmarked the top authoritative 

resources.  Similar to the first experiment, subjects formulated topic queries to locate resources 

that provide relevant information on each topic. They were asked to rate the relevancy of the 

retrieved resources to their given queries on a scale of 1 to 5, where “1” is “completely 

irrelevant” and “5” is “highly relevant.”  Subjects used the same interface (Figure 11) as in 

Experiment 1 to rate the relevancy of resources. 

                                                 

5 The study was approved as ‘exempt’ by the Institutional Review Board of the University of Pittsburgh 
(PRO12010167). 
 
6 The courses that appeared in the recruitment announcement were INFSCI 0017 (Fundamentals of Object-Oriented 
Programming) and CS 0401 (Intermediate Programming using Java).  Equivalent courses at other schools were also 
accepted. 
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To generate a list of results for subjects to rate, the experimental system submits the 

subject’s topic query to the social annotation-based retrieval system.  As in Experiment 1, the 

experimental system only selects resources that exactly match the subject’s query; i.e., all terms 

must have been used as tags on the resources from the Delicious datasets.  In return, the 

experimental system receives separate top 15 lists of candidate experts for each of the three 

ranking algorithms on both the main and candidate expert Delicious datasets.   For each retrieved 

candidate expert in the six conditions, the experimental system extracts the expert’s top resources 

by authority score, up to a maximum of ten.  The experimental system then combines the 

resource lists, removes any duplicate results, and presents the filtered result list to the subject in 

randomized order. Subjects were reminded before submitting each query that their search results 

would appear in random order.  For a given topic query, a subject may rate a maximum of 900 

results (i.e., the top 10 resources of each expert, as well as the list of experts from all six 

conditions, are completely distinct), and a minimum of fifteen (i.e., the same top 15 experts in all 

six conditions, as well as each expert’s top 10 resources.)  We expected significant overlap in the 

results sets from all six conditions, but did not expect the result sets to overlap perfectly. 

The system records all relevancy ratings for each resource appearing in the subjects’ 

result set lists.  Using the subjects’ ratings of resources for a given query, we calculated two 

composite scores for each expert. The first composite score is the mean rating of a candidate 

expert’s top resources by authority score matching that query, up to a maximum of ten resources. 

The second composite score is the percentage of high-quality resources (i.e., rated “4” or above 

by subjects) bookmarked by the candidate expert, assuming a minimum of five high-quality 

resources bookmarked. The choice of five resources follows Bharat and Mahaila’s (2000) criteria 

used to select “expert” documents for inclusion in Hilltop’s index. After generating the two 
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composite scores for each retrieved candidate expert, we calculated separate nDCG10 values for 

the candidate expert rankings for each query and experimental condition (i.e. dataset and 

algorithm combination.)    

Two-way between-subjects Analysis of Variance (ANOVA) is applied to test the 

hypotheses. The null hypothesis is rejected if the results from the F-test show a significant 

difference at the confidence level of α = 0.05. If one of the null hypotheses is rejected, all 

pairwise differences are examined with the Scheffe procedure. 

4.6 EXPERIMENT 3:  EVALUATING TOPICS OF INTEREST TO LOCATE 

CLASSIFICATION EXPERTS 

The third experiment evaluates a technique that filters candidate classification experts from 

Delicious, generates power sets of the candidate experts’ tag sets, and selects frequently co-

occurring terms shared by many candidate experts to classify resources.  The goals of the third 

experiment are 1) to test the effectiveness of aggregating shared power sets among many users 

for finding good classification terms, and 2) to test how well the candidate expert filtering 

procedure identifies Delicious users with classification expertise. 

4.6.1 Experimental Data 

The third experiment utilized data from three sources: the candidate expert and main Delicious 

datasets, and category labels collected from the Open Directory Project (ODP), a hierarchical 

directory of web resources maintained by volunteer editors.  The Delicious datasets represent 
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classification terms created by novice users, and the ODP categories represent those generated by 

human-expert classifiers using a controlled vocabulary. 

Twenty-five web resources (Table 19) were randomly selected from ODP and the 

Delicious datasets that meet the following criteria: 

1. The resource must be found in all three data sources. 

2. The resource must have been bookmarked by at least 100 users in each of the 

Delicious datasets to ensure that the resources’ tagging patterns have stabilized. 

3. The resource is currently available on the Web. 

Table 19. List of resources selected for Experiment 3 

 Title URL 
1 Gazelle http://www.gazelle.com/ 
2 MIT OpenCourseWare http://ocw.mit.edu/OcwWeb/index.htm 
3 Android Developers http://developer.android.com/ 
4 Geni http://www.geni.com 
5 Lynda.com http://www.lynda.com/ 
6 Clearleft http://www.clearleft.com/ 
7 Monster http://www.monster.com/ 
8 MOO http://www.moo.com/ 
9 WordReference.com http://www.wordreference.com/ 
10 HubbleSite http://hubblesite.org/ 
11 Twitter http://twitter.com 
12 EasyBib http://www.easybib.com/ 
13 timeanddate.com http://www.timeanddate.com/ 
14 Paint.NET http://www.getpaint.net/ 
15 Python http://www.python.org/ 
16 Toggl http://www.toggl.com/ 
17 Yahoo! Finance http://finance.yahoo.com/ 
18 Alexa http://www.alexa.com/ 
19 Hulu http://www.hulu.com/ 
20 Wired.com http://www.wired.com/ 
21 Wikispaces http://www.wikispaces.com/ 
22 PayPal http://paypal.com/ 
23 Wolfram MathWorld http://mathworld.wolfram.com/ 
24 ipl2 http://www.ipl.org/ 
25 Free Music Archive http://freemusicarchive.org/ 
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Satisfying these criteria limited the selected resources to high-level web pages (i.e., home pages 

of web sites), as opposed to low-level, specific web pages (e.g., news articles), because ODP 

tends to include only high-level web pages in its collection.  

Classification terms were collected for each resource from its ODP category labels, the 

ten most frequently-used tags in the main Delicious dataset, and tags gathered from the twenty 

most frequently-shared topics of interest related to the resource among candidate experts.  Figure 

12 illustrates how classification terms were extracted from candidate experts’ topics of interest.  

For each resource, we selected all of its bookmarks in the candidate expert dataset.  For each 

bookmark, we identified the candidate expert who made the bookmark, and selected all of their 

topics of interest previously collected using the technique described in section 3.4.2.  Finally, we 

compared the bookmark’s set of tags to each topic of interest.  If the bookmark’s tag set contains 

all of the terms in the topic of interest, we select that topic of interest as a potentially good source 

of classification terms for the given resource.  As we iterated over bookmarks for the given 

resource and selected matching topics of interest, we kept a running tally of the number of 

candidate experts who share a particular topic of interest on the given resource.  We repeated this 

process on the candidate expert dataset for all twenty-five resources, storing the twenty most 

frequently-shared topics of interest of each resource.  
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 Additionally, we generated potential topics of interest using the same power set 

generation process described in section 3.3.3, but tabulated the subset frequencies on a per-

resource basis.  For each resource listed in Table 19, we generated and tabulated the top 20 

subsets of frequently co-occurring tags by count based on the resource’s bookmarks in the 

candidate expert dataset.  Table 20 shows the top 20 subsets of frequently co-occurring tags from 

candidate experts’ bookmarks on the Gazelle home page (http://www.gazelle.com.) 

 

 
Topics of Interest 
Cand. Expert Topic of Interest 
Alice search searchengine 
Alice google searchengine 
Alice images search 
Bob google searchengine  
Bob search tools 
Bob searchengine web 
Cindy engine search 
Cindy google search 
Cindy search web 
Dave search searchengine  
Dave google search 
Dave search tools 

 

Resource: Google (http://www.google.com) 
Cand. Expert Tag Set 
Alice search searchengine google 
Bob searchengine google tools 
Cindy search engine google 
Dave searchengine search google 

 

Shared Topics of Interest for Google 
Topic of Interest Count 
google search 2 
google searchengine 2 
search searchengine 2 
engine search 1 

 
Figure 12. Example of extracting relevant, shared topics of interest from candidate 

experts’ bookmarks of the Google homepage. 
 

http://www.gazelle.com/
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4.6.2 Participants 

Twenty participants were recruited from the University of Pittsburgh’s School of Information 

Sciences, Pittsburgh libraries, and other libraries in Pennsylvania.  The sample size was chosen 

according to power analysis (Cohen, 1988) for a one-way Analysis of Variance (ANOVA.)  The 

power analysis suggested a minimum sample size of sixteen participants assuming a large effect 

size (f = .75) and a significance level of p = .05 with a confidence of 0.8. Thus, we recruited 

twenty participants to perform Experiment 3. 

Table 20. The top 20 subsets of frequently co-occurring tags from candidate 
experts’ bookmarks on http://www.gazelle.com, as identified by the topic of 

interest process described in Section 3.3.3. 

Rank Tag Subset Count 
1 electronics recycle 69 
2 electronics gadgets 67 
3 electronics shopping 63 
4 electronics recycling 59 
5 gadgets shopping 57 
 gadgets recycle 57 

7 recycle shopping 56 
8 electronics gadgets recycle 55 
9 electronics used 54 
 electronics gadgets shopping 54 

 sell shopping 54 
12 electronics sell 53 

 recycle sell 53 
14 shopping used 52 

 electronics recycle shopping 52 
16 gadgets recycling 51 

 electronics gadgets recycling 51 
18 selling shopping 48 

 electronics recycle sell 48 
 recycling used 48 

 

http://www.gazelle.com/


 101 

 Cataloging knowledge and skill – whether through coursework or professional experience 

– was a critical factor in recruiting subjects for this experiment.  Participants were expected to 

analyze a series of resources and rate the relevancy of potential classificatory terms as 

information organization professionals.  Therefore, we focused our recruitment efforts on 

persons who would most likely have classification expertise: professional librarians and graduate 

students in the Library and Information Science program who have completed courses in 

information organization7.  

4.6.3 Variables and Expected Results 

The independent variable is the source of classification terms (ODP category labels, Top 10 

Delicious tags, or Candidate Expert power sets.)  The dependent variable is the mean of NDCG 

of a given source of classification terms; i.e., the rankings of the classification terms selected 

from a data source versus the ideal rankings of classification terms generated by subjects. 

We expected the classification terms selected by the power sets of candidate experts’ tag 

sets for a given resource to be as good as, or better, than the resource’s Top 10 tags from the 

main dataset, the ODP category terms, and the terms selected from the power sets of the 

resource’s tag sets.  We also expected to find that the candidate experts are more likely to tag 

resources with good classification terms than the average Delicious user. 

                                                 

7 The courses that appeared in the recruitment announcement were LIS2005 (Organizing & Retrieving Information) 
and LIS2405 (Introduction to Cataloging).  
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4.6.4 Hypotheses of the 3rd Experiment 

H1-0:  There is no statistically-significant difference among the means of the NDCG of 

classification terms selected by candidate experts’ power sets, top 10 tags from the main dataset, 

the ODP category terms, and the most-frequently co-occurring subsets of tags among a 

resource’s tag sets. (µPOWERSETS_EXPERT = µTOP10 = µODP = µSUBSETS_RESOURCE) 

H1-1:  There is a statistically-significant difference among the means of the NDCG of 

classification terms selected by candidate experts’ power sets, top 10 tags by popularity from the 

main dataset, the ODP category terms, and the most-frequently co-occurring subsets of tags 

among a resource’s tag sets. (µPOWERSETS ≠ µTOP10 ≠ µODP ≠ µSUBSETS_RESOURCE) 

H2-0:  There is no statistically-significant difference between the mean percentages of 

candidate experts using high-quality tags (i.e., tags rated as “good” or “excellent” classification 

terms) on resources versus all users in the main dataset. (µEXPERT_RATINGS = µMAIN_RATINGS) 

H2-1:  There is a statistically-significant difference between the mean percentages of 

candidate experts using high-quality tags on resources versus all users in the main dataset. 

(µEXPERT_RATINGS ≠ µMAIN_RATINGS) 

The null hypotheses are rejected if the results from the corresponding F-test indicate a 

significant difference at the 0.05 level. If a null hypothesis is rejected, all pairwise differences are 

examined to find which dataset yielded the most relevant terms for classification. 

4.6.5 Subjects, Evaluation, and Analysis Procedure 

Twenty participants were recruited as subjects for the third experiment, including students from 

the University of Pittsburgh’s Library and Information Science program, professional librarians 
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at the University, catalogers at the Carnegie Library System, and professional librarians from 

Berks County, Pennsylvania8.  To be eligible for the experiment, a participant must have either 

1) completed one course in classification, or 2) have professional cataloging experience. Prior to 

the start of the experiment, each subject was provided with a brief training session to ensure that 

they understood their tasks, and understood how to use the experimental system. 

Each subject was presented with all twenty-five resources (Table 19) and a list of terms 

corresponding to each resource.  For each resource, the system selects and presents terms from 

the matching candidate expert/resource power sets, the top seven tags by popularity in the main 

dataset, the ODP category terms, and the terms from the most frequently co-occurring subsets of 

tags among the resource’s tag sets.  Any duplicate terms among the four sources were removed, 

so that subjects do not rate the same term more than once.  If a term is a compound tag, the 

                                                 

8 The study was approved as ‘exempt’ by the Institutional Review Board of the University of Pittsburgh 
(PRO12010167). 

Figure 13.  Experiment 3’s user interface. 
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system splits the compound tag and present the resulting terms separated by a space (e.g., 

“webdesign” is presented as “web design”.)  Subjects were asked to rate each term’s relevancy to 

the given resource on a five-point scale, where “1” means the term is a very poor classificatory 

term for the resource; “3” is an acceptable term; and “5” is an excellent term.  Because the 

subjects recruited for this experiment are classification experts, their ratings are considered ideal. 

Figure 13 shows the interface participants used to rate the relevancy of terms to a given resource. 

Two analyses were performed using the subjects’ ratings.  In the first analysis, the 

relevance ratings of tags from the Delicious datasets and ODP’s expert-generated category terms 

were evaluated using a one-way Analysis of Variance (ANOVA) test.  Prior to running the test, 

we calculated a composite rating for each candidate expert power set whose component terms 

were presented to subjects.   A power set’s composite rating was computed as the mean rating of 

the set’s component terms.  For the second analysis, the percentages of candidate experts and 

average Delicious users using high-quality tags were evaluated using a one-way Analysis of 

Variance (ANOVA) test. 
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5.0  RESULTS 

This chapter presents the results of the three experiments.  The first section of the chapter 

describes the selection process for the Java programming-related questions presented to subjects 

when collecting ratings data for Experiments 1 and 2.  The second section presents an analysis of 

the consistency of subjects’ ratings collected for Experiments 1 and 2, as well as the participants’ 

ratings in Experiment 3.  The third, fourth, and fifth sections review the results of Experiments 1 

to 3, respectively.  The final section of the chapter provides a discussion of the results. 

5.1 QUESTIONS USED IN EXPERIMENTS 1 & 2 

As discussed in Sections 4.4.1 and 4.5.1, thirty participants were recruited from the University of 

Pittsburgh to provide ratings data for Experiments 1 and 2.  Because all resources in all of the 

authoritative resource rank lists were present in at least one of the top candidate expert’s 

bookmarked resource lists, subjects produced the ratings data for both experiments in a single 

session.  Each subject was given four tasks to complete, all related to Java programming.  This 

research relies heavily on subjects’ relevancy ratings to evaluate the performance of the proposed 

candidate expert filtering and ranking algorithms. Thus, it was important to identify question 

topics familiar to the subject population, either through coursework in Java programming or 

practical experience building a Java application. 
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 To select appropriate topics for the experiments’ questions, syllabi from two University 

of Pittsburgh undergraduate courses were reviewed: INFSCI 0017 (Fundamentals of Object-

Oriented Programming) and CS 0401 (Intermediate Programming in Java.)  Table 21 shows the 

six questions written and used for Experiments 1 and 2 based on the material covered in the two 

Java programming courses.  Questions A through D are similar to those used by 

Choochaiwattana (2008.)  All questions are exploratory in nature, asking for broader information 

about a topic rather than specific answers to narrowly-defined problems.  Choosing exploratory 

questions for the experiments allows us to better analyze both the breadth and depth of candidate 

experts’ knowledge in Java programming topics. 

As mentioned in Section 4.5.1, each of the thirty subjects who rated web resources for 

Experiments 1 and 2 completed search tasks for four of the six questions. Because a pilot test 

Table 21. List of questions used in Experiments 1 and 2. 

Question Question Text/Task Description 
A 
 
 

There are many different sorting algorithms, such as Bubble Sort, Merge Sort, 
and Heapsort.  Find web pages that explain sorting algorithms.   

B Programmers use Integrated Development Environments (IDEs) to help them 
develop applications.  Find web pages that provide information on an IDE for 
Java. 

C An error or exception can disrupt the normal flow of a program.  Find web pages 
that explain exceptions in Java. 

D Students and professionals often expand their knowledge of a programming 
language by studying working examples of code.  Find web pages that provide 
examples of Java code. 

E The Java Collections Framework provides a set of ready-to-use data structures, 
such as Lists, Queues, and Maps.  Find web pages that discuss Collections in 
Java. 

F “Swing” is the name of Java’s main toolkit of components for building graphical 
user interfaces (GUIs).   Find web pages that present a tutorial related to Java 
Swing. 
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showed that six tasks could not be completed comfortably by a subject within a single session, 

the workload for subjects was reduced to four tasks.  Using a Latin square, the choice and 

sequence of questions for each subject session were assigned prior to the experiments.  Questions 

were assigned to subjects such that each task would be completed by twenty subjects. 

5.2 ASSESSMENT OF THE SUBJECTS’ RELEVANCY RATINGS 

To assess the inter-rater reliability of subjects’ ratings, Fleiss’ kappa (Fleiss, 1971) was 

calculated separately on the ratings of Java programming resources collected in Experiments 1 

and 2, as well as those of the classificatory terms produced in Experiment 3.  Fleiss’ kappa is a 

statistical measure of inter-rater reliability among multiple raters who assigned ratings to items 

based on a fixed-number of categories (e.g., a five-point Likert scale.) Equation 5 defines Fleiss’ 

kappa as: 

 
𝜅 =  

𝑃� −  𝑃𝑒�
1 −  𝑃𝑒�

 
(5) 

where the denominator 1 −  𝑃𝑒�  represents the level of inter-rater agreement that can possibly be 

obtained above random, and the numerator 𝑃� −  𝑃𝑒�  is the actual, observed level of agreement 

among raters achieved beyond random.  A 𝜅 value of 1 indicates perfect agreement among the 

raters, while a value of 0 indicates no agreement among raters beyond what could be expected 

from chance. 
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5.2.1 Inter-rater Reliability for Experiments 1 & 2 

As explained in the previous chapter, the subjects recruited to provide the ratings used in 

Experiments 1 and 2 were given a series of questions related to Java programming, then asked to 

formulate their own topic queries to locate resources that provide useful information for 

answering those questions.   Subjects were permitted to generate their own queries for each 

question in order to imitate a real-world, information-seeking scenario.  Although we expected 

and observed some overlap in their queries for a particular question, subjects typically issued 

diverse queries to the experimental system.  As a result, the experimental system returned 

different sets of search results for a given question to each subject, meaning not all resources 

were rated by the same number of users.  This poses a problem when calculating Fleiss’ kappa, 

because the calculation assumes that all items have been rated by an equal number of raters.  

To assess the consistency of subjects ratings on the resources presented in Experiments 1 

and 2 and despite the limitation of unequal of numbers of raters, we proceed in calculating using 

the ratings of those resources judged by at least 50% of the subjects for a given question.  The 

maximum number of subjects that could potentially rate a resource is twenty; therefore, we select 

all resources that were judged by at least ten subjects.  Of the 1,576 resources presented to 

subjects across the six questions, 525 resources (33.3%) were rated by at least ten subjects.  

Using the ratings on these 525 resources (shown in Appendix A), Fleiss’ kappa is calculated as 

follows: 

 
𝜅1&2  =  

𝑃� −  𝑃𝑒�
1 −  𝑃𝑒�

=
. 4 −  .21
1 −  .21

= 0.239  
(6) 
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Based on a 𝜅1&2 value of 0.239, we conclude that there was fair agreement9 among the subjects. 

However, we acknowledge that the unequal number of raters per resource limits our ability to 

draw conclusions about the true reliability of the subjects’ ratings based on the statistic as 

computed.  

5.2.2 Inter-rater Reliability for Experiment 3 

The twenty participants in Experiment 3 were asked to judge the relevancy of a fixed set of 

classification terms on a series of twenty-five web resources using a five-point scale.  Unlike the 

design of Experiments 1 and 2, there was no variability in the information presented to 

Experiment 3’s participants; i.e., all twenty subjects rated identical sets of terms on the same 

twenty-five web resources. Thus, the Fleiss’ kappa statistic can be calculated using all ratings 

provided by subjects on all classification terms. 

 During an experimental session, each subject rated 425 classification terms over the 

twenty-five web resources presented to them. Using the ratings assigned by subjects on the 425 

items, Fleiss’ kappa is computed as follows: 

 
𝜅3  =  

𝑃� −  𝑃𝑒�
1 −  𝑃𝑒�

=
. 32 −  .23

1 −  .23
= 0.125  

(7) 

Based on a 𝜅3 value of 0.125, we conclude that there was only slight agreement among the 

subjects. The level of agreement is lower than expected, considering the cataloging experience of 

the subjects and the consistency with which the experiment task was explained to subjects.  On 

the other hand, subjects were asked to rate the relevancy of terms as keywords to a particular 

                                                 

9 Fleiss and Koch (1977) provide a table to interpret the resulting 𝜅 value.  According to  Fleiss and Koch, a 𝜅 value 
between 0.21 and 0.40 represents “fair” agreement.  
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resource based on their own judgments without the benefit of a controlled vocabulary.  Subjects 

tended to agree much more with each other when rating very specific classificatory terms, or 

terms that appeared prominently on the resource.  However, most of the terms shown to subjects 

represented broader categories or descriptive terms that did not appear prominently on resources, 

leaving the relevancy of the terms more open to interpretation. 

5.3 EXPERIMENT 1:  RANKING OF AUTHORITATIVE DOCUMENTS 

The goals of the first experiment are 1) to discover which ranking algorithm – HITS, SPEAR, or 

EARL – does the best job ranking authoritative resources on a given topic in Delicious, and 2) to 

test how effectively the candidate expert filtering procedure identifies domain experts in 

Delicious who are good sources of bookmarks on authoritative resources.  The results of the 

three ranking algorithms are compared to those from Google, which is considered the top 

commercial Web retrieval system for locating authoritative documents.  The details of Google’s 

current algorithm are not publicly available, nor is it known how much the PageRank algorithm 

influences Google’s search results. We also compare the ranked lists presented by the three 

ranking algorithms incorporated in our social annotation-based retrieval system when using the 

filtered candidate expert dataset versus the unfiltered main dataset. 

For each of the four questions randomly assigned to them (Table 21), subjects were asked 

to formulate topic queries and rate the relevancy of each returned result to the given question. 

Please note that the subjects’ ratings of Java programming resources were used for both 

Experiments 1 and 2. 
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5.3.1 Analysis of Entry Questionnaire Responses 

Prior to the experiment, subjects were asked to fill out an entry questionnaire (Appendix B) 

similar to the one used by Choochaiwattana (2008), but with age, gender, and age of schooling 

questions removed.  Table 22 summarizes the questionnaire responses. Of the thirty subjects 

recruited to provide ratings of Java programming resources for Experiments 1 and 2, 73% were 

students in either the undergraduate (BSIS) or graduate (MSIS) Information Sciences programs 

at the University of Pittsburgh; 13% were Computer Science students; 10% were students in the 

Telecommunications program; and one was a student in the Computer Engineering program.  

Seventy-seven percent of the subjects self-reported their knowledge of Java as “Intermediate”; 

16.7% reported their knowledge level as “Novice”; and 6.7% reported their knowledge as 

“Expert”.  The subjects who reported their knowledge level of Java as “Novice” were monitored 

throughout the experiment to be sure they understood the question topics. 

Fifty-three percent of the subjects had used Java for 1 to 3 years; 20% for more than 4 

years; and 26.7% for less than one year. The most commonly-reported programming languages 

learned other than Java were C (63%) and C++ (43%.) Most of the subjects (63%) reported 

issuing fifteen or more queries to a search engine per day. Finally, subjects were also asked to 

self-rate their success rate in finding relevant information though a search engine. The majority 

of subjects (77%) said they are successful most of the time. 
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5.3.2 Analysis of Authoritative Document Rankings by Algorithm & Dataset 

The following hypotheses were tested in Experiment 1: 

H1-0:  There is no statistically-significant difference among the means of the nDCG10 of 

Google and the HITS-based ranking algorithms. (µGOOGLE = µEARL = µSPEAR = µHITS) 

H1-1:  There is a statistically-significant difference among the means of the nDCG10 of 

Google and the HITS-based ranking algorithms. (µGOOGLE ≠ µEARL ≠ µSPEAR ≠ µHITS) 

H2-0:  There is no statistically-significant difference between the means of the nDCG10 of 

the main and expert datasets. (µMAIN = µEXPERT) 

H2-1:  There is a statistically-significant difference between the means of the nDCG10 of 

the main and expert datasets. (µMAIN ≠ µEXPERT) 

Two-way between-subjects Analysis of Variance (ANOVA) was used to test the two sets 

of hypothesis.  Figures 14 and 15 show the results of Experiment 1.  Please note that one 

observation is missing from each condition (n=119) due to the lack of data for one task by one 

subject. We reject both null hypotheses, H1-0 and H2-0, as there is evidence that the means of the 

nDCG10 of Google and the HITS-based ranking algorithms are significantly different at the α = 

.05 level, as well as the means of the nDCG10 of the main and expert datasets, F(6, 832) = 

41.241, p < .001, and η2 = .230. 
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 Pairwise comparisons using the Scheffe procedure were then performed to determine the 

pattern of differences among the ranking algorithms.  Because there are only two datasets, 

pairwise comparisons using the Bonferroni adjustment were used in lieu of post-hoc  

comparisons with the Scheffe procedure to find the pattern of differences between the main and 

expert dataset.  Figure 16 shows the results of the comparisons.  The nDCG10 of Google was 

significantly higher than all three of the HITS-based ranking algorithms, but there were no 

significant differences in resource ranking performance among the three HITS-based algorithms.  

The comparisons of the datasets suggest that the candidate expert filtering procedure (EXPERT) 

performed significantly worse in ranking resources compared to no filtering (MAIN) for the 

HITS algorithm only.  There were no significant differences in resource rankings for SPEAR or 

EARL when the candidate expert filtering procedure was applied compared to when the filtering 

procedure was not applied. 

Figure 14.  The results of two-way between-subjects ANOVA for Experiment 1 
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Figure 15.  The means and standard deviations of nDCG10 for Experiment 1 (n=833.) 
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  Figure 16. Comparisons to find significant differences in nDCG10 among the ranking algorithms 
and use of filtering procedure, respectively. 
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5.4 EXPERIMENT 2: RANKING OF DOMAIN EXPERTS 

The goals of the second experiment are 1) to discover which ranking algorithm – HITS, SPEAR, 

or EARL – does the best job ranking domain experts on a given topic in Delicious, and 2) to test 

how effectively the candidate expert filtering procedure identifies domain experts in Delicious 

who possess expertise.  Please note that the same thirty subjects from Experiment 1 provided 

ratings data concurrently for Experiment 2.  As in Experiment 1, subjects were asked to 

formulate topic queries to locate resource relevant to the four questions randomly assigned to 

them (Table 20), then rate the relevancy of each returned result to the given question. 

The following hypotheses were tested in Experiment 2: 

H1-0:  There is no statistically-significant difference among the means of the nDCG10 of 

the candidate expert rankings for EARL, SPEAR, and HITS. (µEARL = µSPEAR = µHITS) 

H1-1:  There is a statistically-significant difference among the means of the nDCG10 of the 

candidate expert rankings for EARL, SPEAR, and HITS. (µEARL ≠ µSPEAR ≠ µHITS) 

H2-0:  There is no statistically-significant difference between the means of the nDCG10 of 

the candidate expert rankings for the candidate expert and main datasets. (µMAIN = µEXPERT) 

H2-1:  There is a statistically-significant difference between the means of the nDCG10 of 

the candidate expert rankings for the candidate expert and main datasets. (µMAIN ≠ µEXPERT) 
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5.4.1 Analysis of Domain Expert Rankings by Algorithm & Dataset: Average Ratings 

The first analysis evaluates the composite candidate expert scores calculated from the mean 

ratings of each candidate expert’s top resources by authority score, up to a maximum of ten 

resources. Two-way between-subjects Analysis of Variance (ANOVA) was used to test the two 

sets of hypothesis.  Figures 17 and 18 present the results of the analysis of the average ratings of 

the resources bookmarked by candidate experts.  Please note that one observation is missing 

from each condition (n=119) due to the lack of data for one task by one of the subjects. Using the 

composite scores based on the mean ratings of candidate experts’ top resources, we accept both 

null hypotheses, H1-0 and H2-0, as there is no significant difference in the means of the nDCG10 of 

the candidate expert ratings among EARL, SPEAR, and HITS (µEARL = µSPEAR = µHITS) at the α = 

.05 level; nor is there a significant difference in the means of the nDCG10 of the candidate expert 

ratings between the main and expert datasets (µMAIN = µEXPERT), F(5, 713) = 2.382, p < .037, and 

η2 = .017. 

 Figure 17. The results of the two-way between-subjects ANOVA for Experiment 2, mean 
ratings of candidate experts top bookmarked resources. 



 118 

 

 
Figure 18. The means and standard deviations of nDCG10 of candidate expert rankings for 

Experiment 2, mean ratings of candidate experts’ top bookmarked resources. 
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5.4.2 Analysis of Domain Expert Rankings by Algorithm & Dataset: % of Highly-Rated 

Resources 

The second analysis evaluates the composite candidate expert scores calculated from the 

percentage of high-quality resources (i.e., resources rated “mostly relevant” or higher by 

subjects, on average) bookmarked by each candidate expert for a given query, assuming a 

minimum of five resources. Two-way between-subjects Analysis of Variance (ANOVA) was 

used to test the two sets of hypothesis.  Figures 19 and 20 present the results of the analysis of 

the candidate expert rankings based on the percentage of highly-rated resources bookmarked.  

Please note that one observation is missing from each condition (n=119) due to the lack of data 

for one task by one of the subjects. 

Using the composite scores based on the percentage of highly-rated bookmarked 

resources for a given query, we reject both null hypotheses, H1-0 and H2-0.  The means of the 

nDCG10 of EARL, SPEAR, and HITS are significantly different (µEARL ≠ µSPEAR ≠ µHITS) at the α 

= .05 confidence level, as well as the means of the nDCG10 of the main and expert datasets 

(µMAIN ≠ µEXPERT), F(5, 713) = 40.271, p < .001, and η2 = .221. Pairwise comparisons using the 

Scheffe procedure were then performed to determine the pattern of differences among the 

ranking algorithms.  Because there are only two datasets, marginal comparisons were used in lieu 

of post-hoc comparisons with the Scheffe procedure to find the pattern of differences between 

the expert dataset (i.e., candidate filtering procedure applied) and main dataset (i.e., no filtering 

applied.)  Figures 21 and 22 present the results of the comparisons of the ranking algorithms and 

filtering procedure, respectively. 

 



 120 

 

Figure 19. The means and standard deviations of the nDCG10 of candidate expert rankings for 
Experiment 2, percentage of highly-rated resources bookmarked (n=714.) 
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Among the ranking algorithms (Figure 21), the means of the nDCG10 of EARL’s 

candidate expert rankings were significantly higher than those of SPEAR (p < .001) and HITS (p 

= .002) across both datasets at the α = .05 confidence level.  We also note that the means of the 

nDCG10 of SPEAR’s candidate expert rankings were significantly lower than HITS’ rankings (p 

< .001) across both datasets at the α = .05 confidence level.  The relatively poor performance of 

SPEAR in this analysis is largely due to the assumption that candidate experts are expected to 

bookmark at least five resources related to a given topic query, similar to the criteria used in 

Hilltop (Bharat and Mihaila, 2000.)  SPEAR tends to rank highly users who are among the first 

to bookmark one or two very popular resources on a given topic, but have no other bookmarks 

related to that topic.  Because the computation for this analysis used a five-resource minimum 

when calculating the percentage of high-quality resources bookmarked, many of SPEAR’s top-

ranked candidate experts actually had very few highly-relevant bookmarks in their collections. 

Figure 20. The results of the two-way between-subjects ANOVA for Experiment 2, percentage 
of highly-rated resources bookmarked. 
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On the other hand, the results also suggest that EARL’s additional expertise factors helped to 

improve candidate expert rankings. 

For the comparisons of the use of the candidate expert filtering procedure (Figure 22) 

among the ranking algorithms, the means of the nDCG10 of the candidate expert rankings using 

the filtering procedure (i.e., the expert dataset) were significantly lower than those of the main 

dataset for HITS, F(1, 708) = 5.573, p = .019, as well as for EARL, F(1, 708) = 11.380, p = .001.  

These results suggest that the candidate expert filtering procedure is likely removing users with 

domain expertise in the chosen topics, or at the very least, removing users who tend to 

selectively bookmark resources of higher quality. 

Figure 21. Comparisons to find significant differences in nDCG10 of the candidate expert 
rankings among the ranking algorithms. 
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Figure 22. Comparisons to find significant differences in the nDCG10 of the candidate expert 
rankings of the main dataset (no filtering procedure) versus the candidate expert dataset 

(filtering procedure used) for each ranking algorithm. 
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5.5 EXPERIMENT 3: CLASSIFICATION EXPERTISE AND RANKING OF TOPICS 

OF INTEREST 

Experiment 3 evaluates a technique that filters candidate classification experts from Delicious, 

generates power sets of the candidate experts’ tag sets, and selects frequently co-occurring terms 

shared by many candidate experts to classify resources.  The goals of the third experiment are 1) 

to test the effectiveness of aggregating shared power sets among many users to find good 

classification terms, and 2) to test how well the candidate expert filtering procedure identifies 

Delicious users with classification expertise. 

 Twenty subjects were recruited to analyze twenty-five resources and rate the relevancy of 

a series of terms as keywords for each page.  For each resource, terms were selected from 

corresponding ODP categories labels (ODP), the top ten tags by frequency in the main dataset 

(TOP10), the shared tag subsets derived from candidate experts’ power sets 

(POWERSETS_EXPERTS), and the most-frequently occurring tag subsets derived from the 

resource’s bookmark tag sets only (SUBSETS_RESOURCES.)  The twenty subjects each rated 

the same twenty-five resources and corresponding sets of classification terms; however, the 

resources and the terms were presented in random order to each subject.  Because the subjects 

are considered experts in this experiment, their term relevancy ratings are considered ideal. 

 The following hypotheses were tested in Experiment 3: 

H1-0:  There is no statistically-significant difference among the means of the nDCG10 of 

classification terms selected by candidate experts’ power sets, top 10 tags from the main dataset, 

the ODP category terms, and the most-frequently co-occurring subsets of tags among a 

resource’s tag sets. (µPOWERSETS_EXPERT = µTOP10 = µODP = µSUBSETS_RESOURCE) 
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H1-1:  There is a statistically-significant difference among the means of the nDCG10 of 

classification terms selected by candidate experts’ power sets, top 10 tags by popularity from the 

main dataset, the ODP category terms, and the most-frequently co-occurring subsets of tags 

among a resource’s tag sets. (µPOWERSETS_EXPERT ≠ µTOP10 ≠ µODP ≠ µSUBSETS_RESOURCE) 

H2-0:  There is no statistically-significant difference between the mean percentages of 

candidate experts using high-quality tags (i.e., tags rated as “good” or “excellent” classification 

terms) on resources versus all users in the main dataset. (µEXPERT_RATINGS = µMAIN_RATINGS) 

H2-1:  There is a statistically-significant difference between the mean percentages of 

candidate experts using high-quality tags on resources versus all users in the main dataset. 

(µEXPERT_RATINGS ≠ µMAIN_RATINGS) 

5.5.1 Analysis of Entry Questionnaire Response 

Prior to the experiment, subjects were asked to fill out an entry questionnaire (Appendix C) 

similar to the one used by Syn (2010).  Of the twenty subjects recruited to provide ratings of 

classification terms for Experiment 3, 65% were professional librarians; 25% were current 

Master of Library and Information Science (MLIS) students; one subject was an MLIS degree 

holder; and one subject was a current Ph.D. student.  All current and former LIS students 

reported completing the Organization of Information course (LIS2005), while 43% reported 

completing the Introduction to Cataloging and Classification course (LIS2405). 
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Figure 23 summarizes the responses to the self-assessment portion of the questionnaire. 

Subjects were asked to rate on a five-point scale – 1: Very Poor, 2: Poor, 3: Average, 4: Good, 5: 

Excellent – their own professional ability to classify resources (µ = 3.8, σ = 0.81), understanding 

of the basics and concepts of classification schemes (µ = 3.8, σ = 0.81), understanding of 

subjects headings (µ = 4.0, σ = 0.71), and personal organization skills in daily life 

(µ = 4.1, σ = 1.03.)  Οf the items subjects said they organize in their personal lives, the most 

commonly-cited items were personal computer files and folder (95%), personal documents 

(95%), and web pages (85%). 

5.5.2 Analysis of Subjects’ Ratings of Classificatory Terms: nDCG 

The first analysis evaluates the performance of the four conditions (ODP, TOP10, 

POWERSETS_EXPERT, SUBSETS_RESOURCE) used to rank topics of interest based on 
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5. Ability to classify resources

6. Understanding of classification schemes

7. Understanding of subject headings

8. Personal organization skills in daily life
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Figure 23.  Average Ratings of Self-Assessment Questions (n=20.) 
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subjects’ ratings of classificatory terms presented in random order. As described in section 4.6.5., 

composite ratings were computed for each POWERSETS_EXPERT and 

SUBSETS_RESOURCE item as the mean rating of the item’s component terms. One-way 

Analysis of Variance (ANOVA) was used to test Experiment 3’s first hypothesis of any 

significant differences in the performance of the four methods to rank topics of interest as 

measured by nDCG10. Figure 24 present the results of the ANOVA.  Figure 25 shows the means 

and standard deviations of the nDCG10 of the four conditions’ topics of interest rankings. 

Based on the results of the ANOVA, we reject the null hypothesis H1-0.  There was a 

significant difference in the nDCG10 means of the topics of interest rankings among ODP, 

TOP10, POWERSETS_EXPERT, SUBSETS_RESOURCE at the α = .05 confidence level 

(µPOWERSETS_EXPERT ≠ µTOP10 ≠ µODP ≠ µSUBSETS_RESOURCE), F(3, 99) = 11.975, p < .001, and η2 = 

.272.  Post-hoc pairwise comparisons using the Scheffe procedure were then performed to 

determine the pattern of differences among the four conditions. As shown in Figure 26, the mean 

nDCG10 of POWERSETS_EXPERT’s topic of interest rankings was significantly lower than that 

of SUBSETS_RESOURCE, p = .009 at a confidence level of α = .05.  There were no significant 

 

  

Figure 24. The results of the one-way ANOVA for Experiment 3, means of the nDCG10 of 
the four methods to rank topics of interest. 
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Figure 25. The means and standard deviations of the nDCG10 of the topic of interest 
rankings, Experiment 3 (n=100.) 
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differences in the means of nDCG10 of POWERSETS_EXPERT, TOP10, and ODP.   These 

results suggest that although aggregating the shared, power-set-derived tag subsets of candidate 

experts identifies topics of interest comparable to Open Directory Project’s category labels and 

the top ten tags in the main dataset for a given resource, the method’s performance versus 

professionally-assigned metadata and individual Delicious tags does not justify the additional 

data processing. 

 On the other hand, the mean nDCG10 of SUBSETS_RESOURCE’s topic of interest 

rankings was significantly higher than that of ODP, p < .001 at a confidence level of α = .05, but 

not significantly different from that of TOP10.  These results suggest that using power sets to 

find frequently co-occurring subsets of tags on the resources identifies relevant classificatory 

terms than the Open Directory Project’s category labels and the candidate experts’ shared topics 

of interest.  However, the resource tag subsets did not significantly outperform the top ten 

Figure 26. Comparisons to find significant differences in nDCG10 of the topic of interest rankings 
among the four conditions. 
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individual resource tags from the main Delicious dataset, again suggesting that deriving 

frequently co-occurring tags subsets from power sets does not necessarily yield results that 

justify the processing expense. 

5.5.3 Analysis of High-quality Tag Use by Candidate Experts vs. Average Delicious Users 

The second analysis evaluates how well the candidate filtering procedure identifies classification 

experts in Delicious by comparing the mean percentages of high-quality tag use by candidate 

experts to those of average users in the main dataset.  Using subjects’ ratings on the twenty-five 

resources selected for Experiment 3, the tags with mean ratings of 4.00 or above (i.e., “good” to 

“excellent” classificatory terms) were identified for each resource.  Then for each highly-relevant 

tag Ti on resource Rj, the percentages of candidate experts who used Ti on Rj were calculated and 

compared with the percentages of average users in the main dataset who used Ti on Rj. One-way 

Analysis of Variance (ANOVA) was used to test Experiment 3’s second hypothesis of any 

significant differences in the percentages of high-quality tag use between candidate experts and 

average users. Figure 27 present the results of the ANOVA.  Figure 28 presents the means and 

standard deviations of the percentages of high-quality tag use. 

Figure 27. The results of the one-way ANOVA for Experiment 3, percentages of 
high-quality tag use by candidate experts and average Delicious users. 
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 We reject the null hypothesis H2-0 of Experiment 3, as the mean percentages of high-

quality tag use by candidate experts were significantly higher than those of average users 

(µEXPERT_RATINGS ≠ µMAIN_RATINGS) at the α = 0.05 confidence level, F(1, 239) = 99.304, p < .001, η2 

Figure 28. The means and standard deviations of the nDCG10 of the topic of interest 
rankings, Experiment 3 (n=240.) 
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= .294.  These results confirm the preliminary findings presented in Table 11 (Section 3.4.1.) that 

candidate experts are more likely to annotate resources with high-quality tags than the average 

Delicious user.  As discussed in section 3.4.1., the higher tag-usage agreement among candidate 

experts may simply be a by-product of the initial candidate expert selection process that focuses 

on prolific annotators, immediately eliminating users whose bookmarks contain no tags. 

However, we conclude the similar rank-order lists and greater agreement support the notion that 

the candidate expert selection process helps isolate classification expertise.  Not only do 

candidate experts consistently annotate their bookmarks with multiple tags, but they also choose 

(and are more likely to choose) tags that reflect the beliefs of the Delicious community and 

independent expert judges. 

5.6 DISCUSSION OF RESULTS 

5.6.1 Authoritative Resource Rankings 

The first experiment evaluated the authoritative resource rankings of four ranking algorithms – 

EARL, SPEAR, HITS, and Google – as well as a candidate expert filtering procedure for 

reducing noise in the Delicious data graph. With the inclusion of the normalized expert 

agreement and sustained popularity factors to improve topic relevance and demote obsolete 

resources, respectively, EARL’s authoritative resource rankings were expected to outperform 

those of HITS and SPEAR, and be at least on par with Google’s resource rankings.  Instead, 

there were no significant differences in ranking performance among the three graph-based 

algorithms providing rankings from Delicious data whether the candidate expert filtering 
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procedure was used or not, and all three algorithms performed significantly worse than Google in 

all conditions.  

One reason for EARL’s poor performance against Google is the use of an indexing 

approach that only considered Delicious tags, not the content of the resources themselves.  The 

indexing approach used in Experiments 1 and 2 was similar to the “annotation-indexing” 

approach tested by Choochaiwattana (2008), an approach found to be inferior to an indexing 

method that combined social annotations with the content of resources.  Despite these findings, 

the annotation-only indexing approach was chosen for this research to ensure that 1) the factors 

that were the focal points of this work – the query-dependent ranking algorithms and candidate 

expert filtering approach – could be tested properly without a third, confounding factor; and 2) 

that the indexing approach would not bias the results in favor of any particular algorithm. 

A second reason for EARL’s, SPEAR’s, and HITS’ weak results compared to Google’s 

was the presence of dead links in the ranked Delicious resource results.  The most recent 

bookmarks in the Delicious datasets were collected in August of 2010.  Experimental sessions 

with subjects began in April, 2012.  Of the 2,891 unique resource URL’s presented to subjects 

during the experimental sessions, 354 resources (12.2%) were no longer available to rate.  While 

we believe Google would have still produced better resource rankings than the three query-

dependent algorithms had all resources been available, the mean nDCG10 of EARL, SPEAR, and 

HITS would have been greater, possibly changing the significance of the results. 

As for EARL’s performance against SPEAR and HITS, EARL’s mean rankings did not 

meet expectations, as they were not significantly different from those of the other two 

algorithms.  Neither the normalized expert agreement nor the sustained popularity factors 

appeared to have improved EARL’s authoritative resource rankings.  Normalized expert 
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agreement itself was expected to improve EARL’s rankings because of its relation to topical 

relevance: the greater the percentage of candidate experts who agree (i.e. tagged) a resource is 

about the given topic, the more EARL promotes the resource in the rankings.  While it may be 

worth revisiting the relative weight of this factor for EARL’s rankings, another possible solution 

is to look at how concentrated a resource is on a given topic.  Similar to normalized expert 

agreement, if a greater percentage of a resource’s total tag instances match a given query, the 

more EARL will promote the resource in its rankings.  This factor reflects subjects’ ratings of 

resources in Experiments 1 and 2, who tended to provide the highest ratings to resources whose 

content focused specifically on their search topic. 

Finally, the results for the candidate expert filtering procedure in Experiment 1 are 

mixed.  EARL’s and SPEAR’s resource rankings using the filtered candidate expert dataset were 

not significantly different from their rankings utilizing all Delicious data from the main dataset. 

Although the rankings did not improve with the filtering procedure, the results suggest we can 

use a smaller subset of the Delicious graph with EARL and SPEAR to provide ranked result lists 

of comparable quality more efficiently.  However, the mean nDCG10 of HITS’ resource rankings 

was significantly lower with the candidate expert filtering procedure applied.   The fact that the 

filtering procedure only affects HITS’ ranking performance significantly reflects the impact of 

the long tail of average Delicious users on HITS’ rankings.  Although each user removed by the 

filtering procedure bookmarked few resources (i.e., no more than ten), these users tend to 

bookmark popular, highly-rated resources. Eliminating these users and their bookmarks on 

popular resources means fewer inlinks to these resources, reducing the resources’ authority 

scores, and leading to the relatively poor performance of HITS’ rankings with the candidate 

expert dataset. 
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5.6.2 Domain Expert Rankings 

Experiment 2 evaluated the domain expert rankings of the three query-dependent, graph-based 

algorithms, and the ability of the candidate expert filtering procedure to isolate domain expertise 

and reduce noise in the Delicious data graph. Given the four criteria described in Section 3.3.2 to 

establish the weights for each link in EARL’s adjacency lists, EARL’s domain expertise rankings 

were expected to outperform those of HITS and SPEAR.  When we computed the mean nDCG10 

of each algorithm’s domain expert rankings using a composite score based on the mean rating of 

users’ top ten resources by authority score, the ranking performance of the three algorithms 

showed no significant differences.  However, when we calculated users’ composite scores based 

on the percentage of high-quality resources bookmarked on the given topic with a five-resource 

minimum - as used by Bharat and Mihaila (2000) to define “expert” documents in Hilltop’s 

index - EARL’s domain expert rankings were significantly better than those of HITS’ and 

SPEAR’s, confirming our expectations.  The second method for calculating the composite 

domain expert scores is more consistent with the expertise model presented in this research: 

domain experts in Delicious on a given topic should provide many bookmarks to highly-relevant 

resources consistently over time.  

We note that SPEAR’s ranking performance decreased dramatically when we utilized the 

percentage of high-quality resources as the composite score for calculating nDCG10.  This drop is 

due to the five-resource minimum used to calculate the composite score.  Because temporal 

bookmarking sequence is the only additional weight factor, SPEAR tends to strongly promote 

users who bookmark only one or two very popular resources on a given topic, but do so early in 

each resource’s history.  Therefore, if a user bookmarked just two resources on a given topic, the 

highest composite score that user can receive in this scenario is 0.4 (2/5), assuming both 
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resources are highly relevant to the topic.  We expect a domain expert on a given topic to 

consistently find and bookmark many highly-relevant resources over time, not just a few obvious 

resources. 

Overall the results for the candidate expert filtering procedure in Experiment 2 suggest 

the procedure actually harms domain expert rankings, especially for those of EARL and HITS.  

EARL’s and HITS’ domain expert rankings generated from the filtered candidate expert dataset 

were lower than those produced from the main dataset under both methods of calculating users’ 

composite scores, although the mean nDCG10 of the scores based on the mean ratings of users’ 

top ten resources by authority score were not significant at the 95% confidence level.   The 

results suggest the filtering procedure removes domain experts who provide important resources 

on a given topic, but whose classification skills outside their area(s) of domain expertise were not 

strong enough for them to be considered classification experts. 

5.6.3 Classification Expertise and Rankings of Topics of Interest 

Experiment 3 analyzed the candidate expert filtering procedure’s ability to filter classification 

experts from Delicious, as well as a technique that generates power sets of the candidate experts’ 

tag sets, selecting frequently co-occurring terms shared by many candidate experts as topics of 

interest.  Based on the preliminary analysis, we expected the candidate experts to annotate their 

bookmarks with highly-relevant tags more often than the average Delicious user.  We also 

expected the candidate experts’ shared topics of interest derived from power sets of tags used 

throughout all experts’ bookmark collections would identify highly relevant classificatory terms 

for a given resource better than expert-generated ODP category labels or individual tags applied 

by average Delicious users.  As expected, the candidate experts did, on average, apply highly-
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relevant tags to a given resource with significantly greater frequency than the average Delicious 

user.   This provides evidence that the candidate expert filtering procedure locates Delicious 

users with characteristics we expect of a classification expert: the consistent use of multiple 

terms to describe a resource’s content, and the consistent application of terms that accurately 

reflect the topic(s) of a resource. 

 However, the mean nDCG10 of the classificatory term rankings produced from the 

candidate experts’ shared topics of interest were not significantly different from those of the 

ODP category labels and individual tags applied by average Delicious users.  In fact, the mean 

rankings of candidate experts’ shared topics of interest performed significantly worse than the 

rankings of frequently co-occurring subsets of tags identified by the same power set technique 

but used only on the bookmarks of individual resources.  As described in section 4.6.1, the 

technique for selecting and ranking matching topics of interest on a particular resource chose 

topics based on how frequently they were shared by candidate experts throughout the entire 

dataset, not for the particular resource itself.   The matching candidate experts’ topics of interest 

tended to produce more general terms that were only moderately relevant to the resource due to 

the lack of focus on that particular resource.  As the expert judges’ ratings indicated, using the 

same power set technique on a more focused, per-resource basis identified and ranked frequently 

co-occurring subsets tags that better represented the topical nature of resources, on average.  This 

suggests that 1) there is utility to using power sets to find good classificatory terms, and 2) that 

further exploration is necessary to see if the shared experts’ topics of interest could be used to 

generate the higher levels of a classification scheme for resources in Delicious. 
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6.0  CONCLUSION 

This chapter presents the conclusions of this research, including its contributions and 

implications.  Plans for future work are also discussed.   

6.1 CONTRIBUTIONS & IMPLICATIONS 

This dissertation analyzes data from the Delicious social bookmarking system to find the most 

authoritative documents and expert users in Delicious for a given topic. Given the amount of 

noise in social bookmarking systems – irrelevant tags on resources, untagged resources, and 

users who abandon the system after little use – this research developed a novel algorithm, EARL,  

to better identify authoritative documents and expert users in these systems. The major questions 

addressed by this research include: 

• Using a model to identify both domain and classification expertise, can a novel algorithm 

be developed to identify the best experts and most authoritative documents in Delicious 

on a given topic more accurately than existing algorithms? 

• Can noise in the Delicious data graph be reduced, allowing an algorithm to better locate 

expert users and authoritative documents? 
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• Can extracting power sets from bookmark tag sets produce meaningful subsets of tags 

that represent users’ topics of interest? 

In the first phase of EARL, we reduce noise in the Delicious data by isolating a smaller 

sub-network of “candidate experts”, users whose tagging behavior shows potential domain and 

classification expertise.  In the second phase, a HITS-based graph analysis is performed on the 

candidate experts’ data to rank the top experts and authoritative documents by topic.  To identify 

topics of interest in Delicious, this research proposed and used a distributed method for finding 

the power sets of bookmark tag sets to identify subsets of frequently co-occurring tags shared 

among many candidate experts.  Based on preliminary analyses of EARL and the method for 

finding topics of interest, the assumptions prior to the formal evaluations were that EARL’s more 

explicit model of expertise and resource authoritativeness would produce superior rankings of 

authoritative resources and domain experts when compared to those of other HITS-based 

algorithms, as well as Google’s ranking of resources.  This research also assumed that the 

candidate filtering procedure would effectively reduce noise in the Delicious data graph, also 

contributing to comparable or superior ranking of domain experts and authoritative resources.  

Finally, the use of power sets to generate frequently co-occurring subsets of tags shared by many 

candidate experts would identify relevant topics of interest better than expert-generated metadata 

and individual Delicious tags. 

Using human judges’ relevancy ratings of resources related to a series of Java 

programming topics, the first evaluation found that EARL’s rankings of authoritative documents 

were comparable to HITS and SPEAR, but significantly underperformed the rankings of Google.  

We note that this study, to the best of our knowledge, was the first to evaluate SPEAR’s ability 

to rank resources.  We also observed that the candidate expert filtering procedure had no effect 
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on EARL’s or SPEAR’s resource rankings, but led to significantly worse HITS rankings 

compared to those when the filtering procedure was not applied. 

In the second evaluation focusing on domain expertise, there were no differences 

observed in the rankings of domain experts among the three HITS-based algorithms when 

composite candidate expert scores calculated from the mean ratings of each candidate expert’s 

top-ten resources by authority score were used.  At the same time, the candidate expert filtering 

procedure had no effect on domain expert rankings.  However, when we calculated the 

composite candidate expert scores based on the percentage of high-quality human-rated 

resources bookmarked by each candidate expert, EARL produced the best domain expert 

rankings among the three algorithms.  We also observed in this scenario that the candidate expert 

filtering procedure significantly decreased the performance of EARL and HITS (but not 

SPEAR), leading them to produce worse rankings compared to conditions without filtering.  

The third evaluation analyzed the effectiveness of the distributed, power-set-based 

method to identify topics of interest that are highly relevant to a given resource, as well as the 

ability of the candidate expert filtering procedure to isolate Delicious users with classification 

expertise.  Using human judges’ relevancy of ratings of classificatory terms on a series of 

resources, we found that candidate experts’ shared topics of interest identified high-quality 

classificatory terms no better than expert-generated ODP category labels and the top ten 

individual tags of each resource.  We also observed that frequently co-occurring subsets of tags 

generated solely from the power sets of a resource’s bookmarks identified and ranked high-

quality topics of interest better than the candidate experts’ globally-shared topics of interest and 

the expert-generated metadata.  Finally, we observed that the candidate expert filtering procedure 
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does isolate Delicious users who, on average, use high-quality tags on their bookmarks with 

significantly greater frequency than the typical Delicious user. 

While social bookmarking systems provide a way for people to bookmark and annotate 

useful resources on a given topic, the level of noise in these systems can prevent users from 

locating potentially useful, accurately-annotated information.  To address this issue, this research 

contributes a model of expertise in the context of a social bookmarking system that helps reduce 

noise in the tag data’s graph.  The EARL algorithm that implements this model is another 

contribution to the small, but growing body of literature on expertise in social bookmarking 

systems. We also believe the evaluation framework for assessing the domain expertise and 

authoritative resource rankings of graph-based algorithms on social bookmarking data is a 

valuable tool for future research. Based on the evaluation, we conclude that EARL can identify 

domain experts in the Delicious social bookmarking systems better than existing methods, but 

more work remains to be done to improve resource and topics of interest rankings. 

6.2 FUTURE WORK 

Given the mixed results of the candidate expert filtering procedure, resource rankings, and the 

method for selecting classification terms based on shared topics of interest among users, we plan 

to pursue the following research directions to address more questions related to this work.  

First, improved indexing methods beyond simple annotation-based indexing will be 

implemented and tested.  Currently, EARL’s index only considers the tags placed on bookmarks 

of a particular resource. Methods that incorporate the full text of the resource – e.g., document 

title, major headings and the subsequent text of the sections – will be evaluated to determine how 
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both resource and expert rankings are influenced.  We will also modify EARL to rank resources 

based on query similarity beyond simply exact matches.  We believe both annotation-based 

indexing and the reliance on exact matching to users’ queries contributed to the poor 

performance of EARL’s, SPEAR’s, and HITS’ resource rankings to Google’s. 

Second, we plan to further refine and tune the expertise model of EARL to improve 

authoritative document and domain expert ranking performance.  Additional studies will be 

conducted to analyze the impact of each of EARL’s four weighting criteria on the overall 

weights.  Measurement of the effects of each criterion was not included in this study’s design. 

Third, new approaches to the candidate expert filtering procedure will be developed and 

evaluated.  The current procedure had no effect on EARL’s resource rankings, and significantly 

reduced the performance of EARL’s expert rankings based on the percentage of high-quality 

resources bookmarked.  Using the topics of interest generated for Experiment 3, development 

will focus on filtering techniques that identify users with domain and classification expertise 

within specific topics, not based solely on general, topic-independent statistics.  Although such 

approaches will be more processing-intensive, they will be more likely to retain a greater 

percentage of domain experts who use high-quality tags on a particular topic without punishing 

them for less rigorous tag use on resources outside their areas of expertise.  

Fourth, EARL and the distributed method for identifying topics of interest will be tested 

using data from the current version of Delicious, as well as data from other social bookmarking 

systems, such as CiteULike. The Delicious data collected for this research was gathered prior to 

Delicious’ sale to AVOS systems in December, 2011.  Many inactive users and their bookmarks 

were removed from Delicious during the transition, although the exact number is unknown.  

With these changes to the Delicious data graph and the website’s design, we will evaluate EARL 
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and the distributed method for identifying topics of interest to test if they are general enough to 

apply to any social bookmarking system. 

Finally, although topics of interest shared among many users did not identify relevant 

classificatory terms better than other expert-generated metadata or individual tags, we will 

investigate other potential uses for these frequently co-occurring subsets of tags.  Classification 

schemes are one such use, as these globally-shared tag subsets tend to describe more general 

topics of interest.  We will also test different values of the threshold for determining when the 

component terms of a topic of interest are deemed frequently co-occurring. 
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APPENDIX A 

INTER-RATER RELIABILITY FOR EXPERIMENTS 1 & 2 

 

 

Question Resource URL 1 2 3 4 5 # of raters P i

A http://en.w ikipedia.org/w iki/Sorting_algorithm 0 0 0 1 19 20 0.9
A http://cg.scs.carleton.ca/~morin/misc/sortalg/ 1 0 3 4 11 19 0.374269
A http://people.cs.ubc.ca/~harrison/Java/sorting-demo 0 1 0 4 14 19 0.5672515
A http://csunplugged.org/sorting-algorithms 2 4 3 8 2 19 0.2280702
A http://w w w .cs.princeton.edu/~rs/strings/ 6 5 3 1 1 16 0.2333333
A http://w w w .unicode.org/reports/tr10/ 7 5 1 2 1 16 0.2666667
A http://googleresearch.blogspot.com/2006/06/extra-e 8 4 2 1 1 16 0.2916667
A http://w w w .cprogramming.com/tutorial/computersci 0 1 3 6 9 19 0.3157895
A http://lbrandy.com/blog/2008/10/algorithms-in-real-lif 3 7 5 1 3 19 0.2163743
A http://david-royal-martin.blogspot.com/2008/11/sortin 16 0 0 0 0 16 1
A http://en.w ikipedia.org/w iki/Category:Sorting_algorith 0 0 0 3 7 10 0.5333333
A http://dukesoferl.blogspot.com/2009/07/osmos.html 6 6 3 1 0 16 0.275
A http://corte.si/posts/code/timsort/ 0 3 6 3 4 16 0.225
A http://w w w .catonmat.net/blog/three-beautiful-quicks 1 3 3 8 4 19 0.2339181
A http://w w w .cs.ubc.ca/~harrison/Java/sorting-demo 0 1 2 4 12 19 0.4269006
A http://corte.si/posts/code/visualisingsorting/index.htm 0 2 0 4 10 16 0.4333333
A http://w w w .cs.princeton.edu/courses/archive/spr0 1 1 7 3 4 16 0.25
A http://betterexplained.com/articles/sorting-algorithms 0 0 2 3 6 11 0.3454545
A http://w iki.python.org/moin/How To/Sorting 1 4 6 1 4 16 0.225
A http://w w w .cs.princeton.edu/~rs/AlgsDS07/04Sorti 0 0 1 2 8 11 0.5272727
A http://w w w .iti.fh-f lensburg.de/lang/algorithmen/sort 1 0 4 2 9 16 0.3583333
A http://w w w .evanmiller.org/how -not-to-sort-by-aver 8 4 5 1 1 19 0.2573099
A http://w w w .sorting-algorithms.com/ 0 1 1 5 12 19 0.4444444
A http://w w w .codinghorror.com/blog/archives/001015 4 4 6 1 4 19 0.1929825
A http://iaroslavski.narod.ru/quicksort/ 8 7 2 0 2 19 0.2982456
A http://sortvis.org/index.html 0 4 3 5 7 19 0.2339181
A http://linux.w ku.edu/~lamonml/algor/sort/sort.html 16 1 0 1 1 19 0.7017544
A http://w w w .algolist.net/Algorithms/ 1 1 2 3 9 16 0.3333333
A http://vision.bc.edu/~dmartin/teaching/sorting/anim-h 19 0 0 0 0 19 1
A http://w w w .bitw iese.de/2007/06/highly-eff icient-4-w 3 3 3 5 5 19 0.1695906
A http://w w w .dangermouse.net/esoteric/intelligentdes 3 9 2 1 1 16 0.3333333
A http://epaperpress.com/sortsearch/dow nload/sortse 1 1 1 1 11 15 0.5238095
A http://w w w .igvita.com/2009/03/26/ruby-algorithms-s 1 6 6 0 6 19 0.2631579
A http://w w w .youtube.com/w atch?v=JdXoUgYQebM 5 3 5 3 3 19 0.1695906
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Question Resource URL 1 2 3 4 5 # of raters P i

A http://atschool.eduw eb.co.uk/mbaker/sorts.html 0 0 0 4 15 19 0.6491228
A http://new s.ycombinator.com/item?id=478632 10 4 2 0 0 16 0.4333333
A http://w w w .i-programmer.info/new s/150-training-a- 0 0 4 6 6 16 0.3
A http://w w w .iti.fh-f lensburg.de/lang/algorithmen/sort 6 4 5 0 1 16 0.2583333
A http://w w w .cs.ubc.ca/spider/harrison/Java/sorting- 0 0 2 3 11 16 0.4916667
A http://c2.com/cgi/w iki?SortingAlgorithms 0 0 1 7 11 19 0.4444444
A http://w w w .nihilogic.dk/labs/sorting_visualization/ 1 5 5 3 5 19 0.1929825
A http://home.w estman.w ave.ca/~rhenry/sort/ 5 1 2 3 8 19 0.245614
A http://w w w .davekoelle.com/alphanum.html 3 4 5 3 4 19 0.1637427
A http://epaperpress.com/sortsearch/ 1 1 1 2 5 10 0.2444444
A http://w w w .hatfulofhollow .com/posts/code/timsort/i 1 3 6 2 7 19 0.2339181
A http://w w w .sorting-algorithms.com/? 0 0 1 7 11 19 0.4444444
A http://w w w .cs.rit.edu/~atk/Java/Sorting/sorting.html 0 0 1 10 8 19 0.4269006
A http://w w w .hatfulofhollow .com/posts/code/visualis 0 1 2 6 10 19 0.3567251
A http://w w w .concentric.net/~ttw ang/sort/sort.htm 0 0 1 7 10 18 0.4313725
A http://en.w ikipedia.org/w iki/Trie 5 4 4 3 0 16 0.2083333
A http://coderaptors.com/?Sorting_algorithms 1 0 2 4 9 16 0.3583333
A http://w w w .cs.princeton.edu/~rs/ 7 6 3 2 1 19 0.2339181
A http://w w w .math.ucla.edu/~rcompton/musical_sortin 3 2 5 3 3 16 0.1666667
A http://users.aims.ac.za/~mackay/sorting/sorting.htm 0 0 7 3 6 16 0.325
A http://w w w .topcoder.com/tc?module=Static 2 4 6 1 3 16 0.2083333
B http://w w w .openlaszlo.org/ 6 5 3 1 2 17 0.2132353
B http://tiny.spket.com/ 2 5 6 2 3 18 0.1960784
B http://sourceforge.net/projects/rubyeclipse 6 3 4 4 0 17 0.2205882
B http://netbeans.org/features/java/profiler.html 0 0 2 2 6 10 0.3777778
B http://w w w .jetbrains.com/ 6 6 4 1 1 18 0.2352941
B http://w w w .jedit.org/ 3 11 4 1 0 19 0.374269
B http://w w w .jformdesigner.com/ 2 3 1 5 7 18 0.2287582
B http://w w w .borland.com/jbuilder/ 13 2 4 0 0 19 0.497076
B http://w w w .myeclipseide.com/ 2 2 5 3 6 18 0.1960784
B http://netbeans.org/features/java/javase.html 0 1 1 4 6 12 0.3181818
B http://w w w .phpeclipse.de/ 16 1 1 0 0 18 0.7843137
B http://eclipsesql.sourceforge.net/index.php 4 7 3 4 0 18 0.2352941
B http://pollo.sourceforge.net/ 11 5 2 0 0 18 0.4313725
B http://w w w .w avemaker.com/ 12 4 2 0 1 19 0.4269006
B http://w w w .aquafold.com/ 9 7 1 0 1 18 0.372549
B https://abeille.dev.java.net/ 15 1 1 0 0 17 0.7720588
B http://tivohme.sourceforge.net/ 8 3 6 1 0 18 0.3006536
B http://w w w .netbeans.org/dow nloads/index.html 0 1 3 4 10 18 0.3529412
B https://netbeans-opengl-pack.dev.java.net/ 18 0 0 0 0 18 1
B http://w w w .eclipse.org/buckminster/ 8 3 4 2 1 18 0.248366
B http://w w w .borland.com/ 12 3 2 0 1 18 0.4575163
B http://w w w .objectcentral.com/vide.htm 15 2 1 0 0 18 0.6928105
B http://w w w .refactorit.com/ 18 0 0 0 0 18 1
B http://w w w -128.ibm.com/developerw orks/opensou 2 4 6 2 4 18 0.1895425
B http://w w w .aptana.com/ 3 5 2 5 3 18 0.1764706
B http://w w w .omnicore.com/ 16 1 0 0 0 17 0.8823529
B http://w w w .nbextras.org/ 11 1 2 4 0 18 0.4052288
B http://netbeans.org/kb/docs/ide/java-db.html 1 4 3 4 0 12 0.2272727
B http://w w w .w illryan.co.uk/WWWorkspace/ 7 1 3 5 2 18 0.2287582
B http://w w w .yourkit.com/index.jsp 8 4 3 3 0 18 0.2614379
B http://w w w .yoxos.com/ondemand/ 4 4 5 3 2 18 0.1699346
B http://w w w .jetbrains.com/idea/features/ruby_devel 2 3 3 7 3 18 0.2026144
B http://jvi.sourceforge.net/ 2 5 4 6 1 18 0.2091503
B http://alexdp.free.fr/violetumleditor/page.php?id=fr:u 14 3 1 0 0 18 0.6143791
B http://w w w .eclipse.org/ 3 8 4 3 2 20 0.2157895
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Question Resource URL 1 2 3 4 5 # of raters P i

B http://mevenide.codehaus.org/ 4 5 4 5 0 18 0.2091503
B http://w w w .intelligentedu.com/blogs/post/Best_New 2 3 5 2 6 18 0.1960784
B http://w w w .aspectprogrammer.org/blogs/adrian/200 2 1 5 6 4 18 0.2091503
B http://w w w .axiomsol.com/ 14 2 2 0 0 18 0.6078431
B http://w w w .eclipse.org/pulsar/ 7 5 5 1 1 19 0.2397661
B http://aptana.com/ 2 2 7 2 6 19 0.2280702
B http://w w w .jcreator.com/ 1 0 2 8 8 19 0.3333333
B http://springide.org/project 19 0 0 0 0 19 1
B http://w w w .greenfoot.org/ 5 2 9 0 3 19 0.2923977
B http://w w w .junit.org/new s/article/index.htm 11 4 2 0 1 18 0.4052288
B http://jdee.sourceforge.net/ 1 1 4 6 7 19 0.245614
B http://dmy999.com/article/29/using-eclipse-eff iciently 2 2 5 6 3 18 0.1960784
B http://w w w .eclipsezone.com/ 6 6 6 0 1 19 0.2631579
B http://w w w .plentyofcode.com/2007/07/most-useful 16 1 1 0 0 18 0.7843137
B http://blogs.sun.com/cw ebster/entry/netbeans_6_w 16 0 1 0 0 17 0.8823529
B http://w w w .eclipseplugincentral.com/displayarticle4 2 7 5 1 3 18 0.2287582
B http://help.eclipse.org/galileo/index.jsp 2 2 5 4 5 18 0.1830065
B http://w w w .eclipse.org/dow nloads/ 0 1 6 2 9 18 0.3398693
B http://w w w .easyeclipse.org/site/home/ 1 5 3 5 5 19 0.1929825
B http://w w w .slickedit.com/ 6 3 6 1 2 18 0.2222222
B http://w w w .jsurfer.org/ 16 2 0 0 0 18 0.7908497
B http://syntori.com/mochacode/ 1 3 4 7 3 18 0.2156863
B http://w w w .eclipse.org/dow nloads/moreinfo/jee.php 0 2 3 1 5 11 0.2545455
B http://w w w .cs.brow n.edu/people/acb/codebubbles 15 0 2 0 1 18 0.6928105
B http://w w w .mindview .net/WebLog/w iki-0047 18 0 0 0 0 18 1
B http://w w w .jetbrains.org/display/IJOS/Home 2 2 5 5 3 17 0.1838235
B http://w w w .springsource.com/products/sts 3 3 4 3 5 18 0.1633987
B http://w w w .cs.brow n.edu/people/acb/codebubbles 15 4 0 0 0 19 0.6491228
B http://netbeans.dzone.com/ 3 5 5 3 2 18 0.1764706
B http://ejp.sourceforge.net/ 7 5 2 3 1 18 0.2287582
B http://ant.apache.org/ 7 3 5 3 0 18 0.2418301
B http://code.google.com/p/counterclockw ise/ 5 7 6 0 0 18 0.3006536
B http://w w w .netbeans.org/kb/trails/java-se.html 2 3 4 5 4 18 0.1699346
B http://w w w .eclipseplugincentral.com/ 5 3 5 3 3 19 0.1695906
B http://eclipsew iki.editme.com/ 18 0 0 0 0 18 1
B http://w w w .vogella.de/eclipse.html 0 3 4 6 5 18 0.2222222
B http://netbeans.org/kb/docs/java/quickstart.html 0 0 1 4 12 17 0.5294118
B http://mevenide.codehaus.org/mevenide-ui-eclipse/f 8 4 4 2 0 18 0.2679739
B http://w w w .jgrasp.org/ 3 3 5 5 2 18 0.1764706
B http://w w w .xored.com/trustudio 18 0 1 0 0 19 0.8947368
B http://maven.apache.org/guides/mini/guide-ide-eclips 1 5 6 6 1 19 0.2339181
B http://w w w .gexperts.com/ 10 4 4 0 0 18 0.372549
B http://code.google.com/p/yamleditor/ 6 7 4 1 0 18 0.2745098
B http://blogs.sun.com/roller/page/toddfast/20041203# 17 0 0 0 0 17 1
B http://w w w .planetnetbeans.org/ 3 5 5 5 0 18 0.2156863
B http://w w w .eclipseproject.de/ 18 0 0 0 0 18 1
B http://w w w .eclipse.org/dow nloads/packages/eclips 1 0 1 4 6 12 0.3181818
B http://w w w .eclipse.org/w ebtools/ 4 3 5 3 3 18 0.1633987
B http://w w w .borland.com/us/products/jbuilder/index. 12 4 0 2 0 18 0.4771242
B http://w w w .netbeans.org/ 0 0 2 2 16 20 0.6421053
B http://marketplace.eclipse.org/ 4 6 2 4 2 18 0.1895425
B http://eclim.sourceforge.net/ 2 4 7 4 2 19 0.2046784
B http://jcsc.sourceforge.net/ 5 2 7 3 1 18 0.2287582
B http://w w w .eclipse.org/dow nloads/packages/eclips 0 2 5 6 5 18 0.2352941
B http://w w w .omondo.com/ 5 6 3 2 2 18 0.1960784
B http://eclipse-plugins.2y.net/eclipse/index.jsp 14 2 1 0 0 17 0.6764706
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B http://en.w ikipedia.org/w iki/Eclipse_(softw are) 0 0 3 2 13 18 0.5359477
B http://quantum.sourceforge.net/ 3 6 9 0 0 18 0.3529412
B http://w w w .elixirtech.com/ 12 3 3 0 0 18 0.4705882
B http://code.google.com/p/q4e/ 2 4 6 4 2 18 0.1895425
B http://netbeans.org/kb/docs/java/profiler-intro.html 0 0 2 4 4 10 0.2888889
B http://w w w .codegear.com/ 6 7 2 1 2 18 0.248366
B http://w w w .devx.com/Java/Article/34009/ 8 0 3 3 4 18 0.2614379
B http://w w w .gentlew are.com/uml-softw are-commun 7 5 6 0 0 18 0.3006536
B http://eclipse-plugins.info/eclipse/plugins.jsp 16 1 0 1 0 18 0.7843137
B http://springide.org/blog/ 19 0 0 0 0 19 1
B http://w w w .mpsoftw are.dk/phpdesigner.php 8 7 3 1 0 19 0.3040936
B http://javaforge.com/project/HGE 2 4 8 1 3 18 0.248366
B http://netbeans.org/kb/docs/java/editor-codereferen 0 0 1 5 5 11 0.3636364
B http://w w w .bluej.org/index.html 3 2 7 3 4 19 0.1988304
B http://w w w .gentlew are.com/ 12 4 1 1 0 18 0.4705882
B http://w w w .netbeans.org/sw itch/ 0 1 4 6 8 19 0.2865497
B http://w w w .eclipse.org/dow nloads/moreinfo/java.ph 0 0 4 3 12 19 0.4385965
B http://w w w .apl.jhu.edu/~hall/java/IDEs.html 0 0 2 1 8 11 0.5272727
B http://w w w .easyeclipse.org/site/distributions/index 1 2 4 7 5 19 0.2222222
B http://w w w .jetbrains.com/idea/index.html 0 1 2 5 12 20 0.4052632
B http://w w w .oracle.com/technology/products/jdev/in 2 1 6 2 8 19 0.2631579
B http://w w w .devdirect.com/ALL/CODEDEBUG_PCAT 5 6 4 3 0 18 0.2222222
B http://netbeans.org/features/w eb/java-ee.html 0 1 1 5 10 17 0.4044118
B http://w w w .oracle.com/technology/products/enterp 2 4 3 6 3 18 0.1830065
C http://rymden.nu/exceptions.html 1 0 1 3 11 16 0.4833333
C http://w w w .octopull.demon.co.uk/java/ExceptionalJa 18 0 0 0 0 18 1
C http://radio.w eblogs.com/0122027/stories/2003/04/0 0 3 8 6 1 18 0.3006536
C http://w w w .javabeginner.com/java-exceptions.htm 0 1 1 1 16 19 0.7017544
C http://onjava.com/pub/a/onjava/2003/11/19/exceptio 3 0 2 8 5 18 0.2745098
C http://today.java.net/pub/a/today/2006/04/06/except 0 1 2 6 11 20 0.3736842
C http://w w w .subbu.org/w eblogs/w elcome/2005/07/e 16 0 0 0 0 16 1
C http://docs.oracle.com/javase/6/docs/api/java/lang/E 0 0 1 5 5 11 0.3636364
C http://docs.oracle.com/javase/tutorial/essential/exce 0 0 0 2 18 20 0.8105263
C http://cafe.elharo.com/java/internal-and-external-exc 0 0 3 8 5 16 0.3416667
C http://littletutorials.com/2008/04/27/exceptional-java- 0 1 0 5 10 16 0.4583333
C http://forum.springsource.org/show thread.php?t=63 5 4 6 1 0 16 0.2583333
C http://en.w ikibooks.org/w iki/Java_Programming/Thro 1 0 1 3 9 14 0.4285714
C http://w w w .javaw orld.com/javaw orld/javaqa/2003- 0 0 7 7 2 16 0.3583333
C http://w w w -128.ibm.com/developerw orks/java/libra 5 7 4 0 0 16 0.3083333
C http://w w w .tutorialspoint.com/java/java_exceptions 0 0 2 4 13 19 0.497076
C http://java.sun.com/docs/books/tutorial/essential/exc 1 0 0 2 15 18 0.6928105
C http://w w w .infoq.com/resource/presentations/effec 2 4 5 3 2 16 0.175
C http://w w w .hietavirta.net/blog/item/2007/06/do-not-s 16 0 0 0 0 16 1
C http://w w w .manageability.org/blog/stuff/exceptiona 1 0 6 4 7 18 0.2745098
C http://w w w .javaw orld.com/javaw orld/jw -07-2005/jw 1 3 2 7 3 16 0.2333333
C http://w w w .roseindia.net/java/java-exception/index 0 0 2 2 12 16 0.5666667
C http://w w w .javamex.com/tutorials/exceptions/excep 0 0 2 7 8 17 0.3676471
C http://googletesting.blogspot.com/2009/09/checked- 9 3 3 2 1 18 0.2810458
C http://java.sun.com/docs/books/tutorial/essential/ind 1 2 7 5 1 16 0.2666667
C http://w w w .ibm.com/developerw orks/java/library/j-j 1 0 7 8 2 18 0.3267974
C http://java.sun.com/docs/books/tutorial/essential/exc 0 0 8 5 5 18 0.3137255
C http://blog.objectmentor.com/articles/2009/07/13/end 13 2 1 0 0 16 0.6583333
C http://w w w -128.ibm.com/developerw orks/java/libra 0 2 6 6 2 16 0.2666667
C http://dev2dev.bea.com/pub/a/2006/12/incremental-c 13 0 1 2 0 16 0.6583333
C http://blog.robw helan.com/2008/10/05/an-approach- 0 0 4 7 5 16 0.3083333
C http://w w w .c2.com/cgi/w iki?CheckedException 0 1 9 4 2 16 0.3583333
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C http://w w w .onjava.com/pub/a/onjava/2006/01/11/ex 1 2 7 6 2 18 0.248366
C http://w w w .artima.com/intv/solid3.html 2 3 7 4 0 16 0.2583333
C http://w w w .c2.com/cgi/w iki?RefineExceptions 0 7 7 2 0 16 0.3583333
C http://w w w .artima.com/intv/solid.html 3 5 7 2 1 18 0.2287582
C http://w w w .c2.com/cgi/w iki?HomogenizeExceptions 1 3 5 5 2 16 0.2
C http://w w w .artima.com/intv/handcuffs.html 2 2 8 5 1 18 0.2614379
C http://w w w .c2.com/cgi/w iki?CheckedExceptionsAre 0 1 8 7 2 18 0.3267974
C http://w w w .c2.com/cgi/w iki?ExceptionTunneling 0 3 7 4 2 16 0.2583333
C http://jug.org.ua/w iki/display/JavaAlmanac/Handling      12 3 0 1 0 16 0.575
C http://littletutorials.com/2008/05/23/exceptional-java- 0 0 8 3 5 16 0.3416667
C http://davidvancouvering.blogspot.com/2008/09/curs 2 5 1 7 1 16 0.2666667
C http://w eblogs.goshaky.com/w eblogs/alexkli/entry/e 17 0 0 0 0 17 1
C http://blog.thinkrelevance.com/2008/2/4/layering-and 8 5 2 1 0 16 0.325
C http://w w w .odi.ch/prog/design/new bies.php 6 4 6 0 0 16 0.3
C http://w w w .blueskyline.com/ErrorPatterns/A2-Long 6 1 4 5 2 18 0.2091503
C http://w w w .onjava.com/pub/a/onjava/2003/11/19/ex 2 0 5 6 3 16 0.2416667
C http://softarc.blogspot.com/2007/06/exception-hand 2 3 5 4 2 16 0.175
C http://blogs.concedere.net:8080/blog/discipline/softw  16 0 0 0 0 16 1
C http://w w w .onjava.com/pub/a/onjava/2006/01/11/ex 1 2 6 5 2 16 0.225
C http://dev2dev.bea.com/pub/a/2006/11/effective-exc 14 1 3 0 0 18 0.6143791
C http://w w w .javaw orld.com/javaw orld/javatips/jw -ja 1 3 9 2 1 16 0.3333333
C http://w w w .mindview .net/Etc/Discussions/Checked 0 0 11 5 4 20 0.3736842
C http://w uhrr.w ordpress.com/2007/11/22/java-excep 0 2 8 2 4 16 0.3
C http://tutorials.jenkov.com/java-exception-handling/e 2 0 7 5 6 20 0.2473684
C http://w w w .javapractices.com/topic/TopicAction.do 0 0 5 8 5 18 0.3137255
C http://pages.cs.w isc.edu/~hasti/cs368/JavaTutorial/ 0 0 0 1 11 12 0.8333333
C http://w w w .onjava.com/pub/a/onjava/2003/11/19/ex 1 0 5 5 7 18 0.2679739
C http://w w w .javaw orld.com/javaw orld/jw -11-2007/jw 1 2 7 2 8 20 0.2684211
C http://w w w .jroller.com/page/hackingarchitect?entry 1 1 7 7 2 18 0.2810458
C http://w w w .javaw orld.com/javaw orld/jw -07-1998/jw 0 0 3 6 10 19 0.3684211
C http://w w w .oracle.com/technology/pub/articles/dev 14 1 2 1 0 18 0.6013072
C http://w w w .w ikijava.org/w iki/10_best_practices_w 0 1 1 7 9 18 0.372549
C http://jakarta.apache.org/commons/lang/api/org/apac 16 0 0 0 0 16 1
C http://w w w .javaw orld.com/jw -07-1998/jw -07-exce 0 0 1 5 7 13 0.3974359
C http://w w w -106.ibm.com/developerw orks/java/libra 0 0 5 6 5 16 0.2916667
C http://w w w .jenkov.com/training/trails.tmpl 14 2 0 0 0 16 0.7666667
C http://tutorials.jenkov.com/java-exception-handling/e 0 1 5 6 6 18 0.2614379
C http://w w w .javaw orld.com/javaw orld/jw -10-2003/jw 1 4 5 4 2 16 0.1916667
C http://nat.truemesh.com/archives/000698.html 6 3 5 1 1 16 0.2333333
C http://w w w .cajoon.com/ 16 0 0 0 0 16 1
C http://tutorials.jenkov.com/java-exception-handling/in 1 0 2 4 13 20 0.4473684
C http://accu.org/index.php/journals/236 0 1 7 5 3 16 0.2833333
C http://w w w .javaspecialists.eu/archive/Issue162.htm 0 0 3 5 10 18 0.379085
C http://today.java.net/pub/a/today/2003/12/04/except 0 1 4 5 10 20 0.3210526
C http://w w w .oracle.com/technetw ork/articles/java/ja 0 2 1 6 3 12 0.2878788
C http://w w w .infoq.com/new s/2008/01/presentation-c 10 6 0 0 0 16 0.5
C http://w w w .javaw orld.com/javaw orld/jw -03-2002/jw 0 2 4 4 6 16 0.2333333
C http://jakarta.apache.org/commons/lang/api/org/apac 16 0 0 0 0 16 1
C http://w w w .codingthearchitecture.com/2008/01/14/j 4 6 6 0 0 16 0.3
C http://w w w .javaw orld.com/javaw orld/jw -11-2007/jw 0 1 8 4 3 16 0.3083333
C http://developingdeveloper.w ordpress.com/2008/02 3 1 10 2 0 16 0.4083333
C http://w w w .javaw orld.com/javaw orld/jw -08-2001/jw 0 0 6 9 3 18 0.3529412
C http://w w w -128.ibm.com/developerw orks/library/j-e 16 0 0 0 0 16 1
C http://w w w .mortench.net/blog/2006/08/08/dos-and- 16 0 0 0 0 16 1
C http://w iki.java.net/bin/view /Javapedia/Exception 7 2 2 2 3 16 0.225
C http://w w w -06.ibm.com/jp/developerw orks/java/040 16 0 0 0 0 16 1
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D http://w w w .superliminal.com/sources/JarLoader.jav 0 0 3 1 6 10 0.4
D http://w ikis.sun.com/display/code/Home#j2ee 10 0 0 0 0 10 1
D http://w w w .java-examples.com/ 0 0 2 6 10 18 0.3986928
D http://codingbat.com/example.html 1 0 0 0 16 17 0.8823529
D http://javaalmanac.com/ 0 3 3 3 8 17 0.2720588
D http://w w w .javacodeexamples.com/ 0 0 2 6 6 14 0.3406593
D http://w w w .exampledepot.com/egs/java.net/Post.ht 0 1 1 4 11 17 0.4485294
D http://w w w .bejug.org/confluenceBeJUG/display/Be   0 1 2 0 7 10 0.4888889
D http://snippets.dzone.com/tag/java 0 1 3 2 4 10 0.2222222
D http://w w w .w ickedcooljava.com/dow nloads.jsp 1 0 1 4 4 10 0.2666667
D http://w w w .exampledepot.com/ 0 1 6 5 6 18 0.2614379
D http://w w w .javareference.com/ 7 1 1 1 0 10 0.4666667
D http://w w w .idevelopment.info/data/Programming/jav 13 0 0 0 0 13 1
D http://w w w .pscode.com/vb/default.asp?lngWId=2#c 3 1 2 3 1 10 0.1555556
D http://littletutorials.com/2008/03/14/console-applicatio 0 0 2 3 5 10 0.3111111
D http://java.sun.com/docs/books/tutorial/uisw ing/com 0 0 2 1 7 10 0.4888889
D http://sujitpal.blogspot.com/ 3 0 2 0 5 10 0.3111111
D http://w w w .javacodegeeks.com/2012/01/java-7-pro 0 0 1 3 10 14 0.5274725
D http://w w w .example-code.com/ 4 4 4 2 2 16 0.1666667
D http://w w w .roseindia.net/java/ 2 1 6 2 7 18 0.248366
D http://javafaq.nu/modules.php?name=Encyclopedia 10 0 0 0 0 10 1
D http://javaalmanac.com/egs/java.lang/pkg.html 1 2 0 2 5 10 0.2666667
D http://java-source.net/ 2 0 4 4 0 10 0.2888889
D https://f ilthyrichclients.dev.java.net/ 9 1 0 0 0 10 0.8
D http://w w w .kodejava.org/ 1 0 0 5 12 18 0.496732
D http://w w w .jexamples.com/ 2 2 7 2 4 17 0.2205882
D http://w w w .bigbold.com/snippets/ 6 2 4 3 5 20 0.1842105
D http://w w w .google.com/search?hl=en 5 3 2 0 0 10 0.3111111
D http://netbeans.dzone.com/new s/simple-mysql-integ 0 1 5 2 2 10 0.2666667
D http://en.w ikipedia.org/w iki/Category:Articles_w ith_ 3 2 2 3 2 12 0.1363636
D http://64.18.163.122/rgagnon/how to.html 5 0 2 1 2 10 0.2666667
D http://w w w .uize.com/javascript-examples.html 2 2 2 2 2 10 0.1111111
D http://kickjava.com/src/ 6 2 3 0 1 12 0.2878788
D http://lombok.demon.co.uk/tapestry5Demo/ 3 1 4 0 2 10 0.2222222
D http://labs.oreilly.com/code/ 10 0 0 0 0 10 1
D http://w w w .javapractices.com/index.cjp 0 2 1 1 6 10 0.3555556
D http://w w w .makeuseof.com/tag/top-10-professiona 4 3 6 2 1 16 0.2083333
D http://w w w .codefetch.com/ 10 0 0 0 0 10 1
D http://w w w .myhomepageindia.com/index.php/2009/ 5 1 2 1 1 10 0.2444444
D http://w w w .leepoint.net/notes-java/index.html 1 0 5 6 7 19 0.2690058
D http://w w w .exampledepot.com/egs/index.html 0 1 5 1 3 10 0.2888889
D http://w w w .oracle.com/technology/sample_code/te 10 0 0 0 0 10 1
D http://forums.sun.com/thread.jspa?threadID=538656 10 0 0 0 0 10 1
D http://w w w 2.cs.uic.edu/~sloan/CLASSES/java/ 0 0 2 6 10 18 0.3986928
D http://oreilly.com/catalog/javanut/examples/ 1 0 1 7 10 19 0.3859649
D http://kickjava.com/ 3 3 4 4 4 18 0.1568627
D http://w w w .java2s.com/Code/Java/CatalogJava.htm 0 3 1 5 7 16 0.2833333
D http://w w w .java2s.com/ 4 4 4 3 5 20 0.1631579
D http://pleac.sourceforge.net/ 6 1 3 1 0 11 0.3272727
D http://w w w .javabat.com/ 0 3 2 3 2 10 0.1777778
D http://w w w .movesinstitute.org/~mcgredo/mv3500/rm 10 0 0 0 0 10 1
D http://w w w .techfaq360.com/tutorial/hibernate.jsp 7 3 3 3 1 17 0.2205882
D http://w w w .java2s.com/Code/Java/CatalogJava.htm 0 3 1 5 7 16 0.2833333
D http://w w w .java2s.com/ 4 4 4 3 5 20 0.1631579
D http://pleac.sourceforge.net/ 6 1 3 1 0 11 0.3272727
D http://w w w .javabat.com/ 0 3 2 3 2 10 0.1777778
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D http://w w w .movesinstitute.org/~mcgredo/mv3500/rm 10 0 0 0 0 10 1
D http://w w w .techfaq360.com/tutorial/hibernate.jsp 7 3 3 3 1 17 0.2205882
D http://w w w .java-tips.org/index.html 1 2 3 1 3 10 0.1555556
D http://w ikis.sun.com/display/code/Home 10 0 0 0 0 10 1
D http://w w w .eclipse.org/sw t/snippets/ 2 0 3 4 1 10 0.2222222
D http://nicolaslecoz.blogspot.com/2007/05/how -to-f in 9 1 0 0 0 10 0.8
D http://w w w .makeuseof.com/tag/top-5-w ebsites-for 4 0 5 4 4 17 0.2058824
D http://w w w .javapractices.com/TableOfContents.cjp 1 0 2 2 5 10 0.2666667
D http://sites.google.com/a/pintailconsultingllc.com/java 2 4 1 0 3 10 0.2222222
D http://w w w .zvon.org/xxl/XPathTutorial/General/exa 12 2 2 0 0 16 0.5666667
D http://snippets.dzone.com/ 2 3 2 2 4 13 0.1538462
D http://w w w .javadb.com/ 3 1 3 1 5 13 0.2051282
D http://w w w .springbyexample.org/ 5 4 4 1 3 17 0.1838235
D http://examples.oreilly.com/jsw ing2/code/ 0 1 0 1 8 10 0.6222222
D http://java.sun.com/docs/books/tutorial/uisw ing/com 10 0 0 0 0 10 1
D http://snobol.cs.berkeley.edu/prospector/ 10 0 0 0 0 10 1
D http://w w w .javapassion.com/ 4 2 2 2 0 10 0.2
D http://snipplr.com/ 3 2 3 2 1 11 0.1454545
D http://ajaxtags.sourceforge.net/ 3 1 6 0 0 10 0.4
E http://w w w .roseindia.net/java/jdk6/introduction-colle 0 3 2 4 8 17 0.2794118
E http://trove4j.sourceforge.net/ 5 5 7 1 1 19 0.2397661
E http://people.csail.mit.edu/milch/blog/apidocs/commo 2 1 7 2 2 14 0.2637363
E http://w w w .ibm.com/developerw orks/java/library/j-5 1 1 5 3 2 12 0.2121212
E http://bitw orking.org/new s/358/restful-json 10 3 2 0 0 15 0.4666667
E http://w w w .ociw eb.com/jnb/jnbApr2008.html 1 2 4 2 3 12 0.1666667
E http://stackoverflow .com/questions/629804?sort=ol 1 0 5 6 1 13 0.3205128
E http://github.com/jorgeortiz85/scala-javautils 4 6 3 1 0 14 0.2637363
E http://publicobject.com/glazedlists/ 13 1 3 0 1 18 0.5294118
E http://w w w .xylax.net/hibernate/index.html 13 1 0 0 0 14 0.8571429
E http://w w w .exampledepot.com/egs/java.util/coll_Ma 0 2 7 2 1 12 0.3484848
E http://w w w .odi.ch/prog/design/new bies.php 4 6 3 0 0 13 0.3076923
E http://rickyclarkson.blogspot.com/2007/09/point-free 5 3 3 1 0 12 0.2424242
E http://w w w .infoq.com/new s/2007/10/collections-ap 0 0 4 5 4 13 0.2820513
E http://josql.sourceforge.net/index.html 7 1 3 0 1 12 0.3636364
E http://blog.jayw ay.com/2009/10/22/google-collection 0 4 5 3 1 13 0.2435897
E http://codemunchies.com/2009/10/diving-into-the-go 3 3 5 2 1 14 0.1868132
E http://w w w .javamex.com/tutorials/collections/ 0 1 1 4 12 18 0.4705882
E http://w w w .youtube.com/w atch?v=ZeO_J2OcHYM 5 3 2 3 0 13 0.2179487
E http://w eblogs.java.net/blog/jhook/archive/2006/12/c 3 5 3 1 1 13 0.2051282
E http://w w w .kellyrob99.com/blog/2010/05/15/achievi 0 1 5 7 1 14 0.3406593
E http://w w w .hazelcast.com/ 11 4 0 1 1 17 0.4485294
E http://w w w .infoq.com/articles/in-depth-look-clojure- 5 6 2 0 0 13 0.3333333
E http://tutorials.jenkov.com/java-collections/index.htm 0 0 0 5 9 14 0.5054945
E http://w w w .ibm.com/developerw orks/java/library/j-5 0 0 3 3 9 15 0.4
E http://xircles.codehaus.org/projects/quaere 12 1 1 0 0 14 0.7252747
E http://smallw ig.blogspot.com/2007/12/w hy-does-set 4 5 3 1 1 14 0.2087912
E http://w w w .rgagnon.com/javadetails/java-0633.htm 1 2 3 5 2 13 0.1923077
E http://w w w .ibm.com/developerw orks/java/library/j-5 0 1 3 4 7 15 0.2857143
E http://joda-primitives.sourceforge.net/ 4 0 4 4 2 14 0.2087912
E http://w w w .javaw orld.com/javaw orld/jw -11-2004/jw 6 6 1 0 0 13 0.3846154
E http://w w w .infoq.com/new s/2010/01/google_collec 0 4 8 4 1 17 0.2941176
E http://code.google.com/p/google-collections/ 13 2 3 2 0 20 0.4368421
E http://marxsoftw are.blogspot.com/ 5 7 1 0 0 13 0.3974359
E http://docs.oracle.com/javase/tutorial/essential/conc 0 0 4 3 3 10 0.2666667
E http://labs.carrotsearch.com/hppc.html 0 2 5 3 1 11 0.2545455
E http://sourceforge.net/projects/high-scale-lib 3 8 2 1 0 14 0.3516484
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E http://codemunchies.com/2009/10/beautiful-code-w 4 3 2 2 2 13 0.1538462
E http://code.google.com/p/concurrentlinkedhashmap/ 5 1 4 2 2 14 0.1978022
E http://codemunchies.com/2009/11/functional-java-f il 2 3 4 4 0 13 0.2051282
E http://fastutil.dsi.unimi.it/ 0 3 7 2 5 17 0.2573529
E http://jtheque.developpez.com/ 10 3 1 0 0 14 0.5274725
E http://crazybob.org/2008/01/in-hot-seat.html 7 4 1 0 0 12 0.4090909
E http://people.cs.aau.dk/~torp/Teaching/E01/Oop/han 0 0 0 0 11 11 1
E http://javolution.org/ 9 5 5 0 0 19 0.3274854
E http://w w w .developer.com/java/other/article.php/37 5 4 2 1 1 13 0.2179487
E http://w eblogs.java.net/blog/van_riper/archive/2008 1 5 4 3 0 13 0.2435897
E http://w w w .javabeginner.com/java-collections-fram 1 0 0 0 11 12 0.8333333
E http://gleichmann.w ordpress.com/2008/01/13/buildin 0 1 3 3 6 13 0.2692308
E http://en.w ikipedia.org/w iki/Java_collections_framew 0 0 0 2 16 18 0.7908497
E http://code.google.com/p/guava-libraries/ 4 6 4 0 0 14 0.2967033
E http://w w w .jot.fm/issues/issue_2004_09/column1/ 2 3 5 3 1 14 0.1868132
E http://publicobject.com/2007/09/series-recap-coding 4 4 3 4 1 16 0.175
E http://w w w .theserverside.com/tt/blogs/show blog.ts 5 7 1 0 0 13 0.3974359
E http://w w w .caughtbyjava.com/new -java-6-collectio 9 1 3 0 0 13 0.5
E https://w w w .sdn.sap.com/irj/sdn/w eblogs?blog=/pu 5 2 3 3 1 14 0.1868132
E http://larvalabs.com/collections/ 3 1 6 1 3 14 0.2307692
E http://java.sun.com/j2se/1.4.2/docs/guide/collections 0 0 0 6 5 11 0.4545455
E http://codemunchies.com/2009/11/preconditions-mu 3 2 3 3 2 13 0.1410256
E http://w w w .recursionsw .com/Products/jgl.html 13 0 0 0 0 13 1
E http://commons.apache.org/primitives/ 8 3 1 2 0 14 0.3516484
E http://w w w .onjava.com/pub/a/onjava/2002/06/12/tro 3 3 4 2 0 12 0.1969697
E http://w w w .artima.com/intv/bloch.html 6 4 4 1 0 15 0.2571429
E http://blogs.azulsystems.com/clif f /2008/01/adding-tr 13 0 1 0 0 14 0.8571429
E http://github.com/scalaj/scalaj-collection 2 1 9 1 1 14 0.4065934
E http://w w w .fromdev.com/2008/05/java-collections-q 0 0 4 3 11 18 0.4183007
E http://pcj.sourceforge.net/ 0 4 2 5 6 17 0.2352941
E http://docs.oracle.com/javase/1.4.2/docs/api/java/ut 0 0 2 4 10 16 0.4333333
E http://java.sun.com/developer/onlineTraining/collectio 1 0 0 1 15 17 0.7720588
E http://locut.us/SimpleBloomFilter/ 13 0 0 0 0 13 1
E http://jnb.ociw eb.com/jnb/jnbApr2010.html 3 6 3 1 1 14 0.2307692
E http://w w w .tutorialspoint.com/java/java_collections 0 0 0 1 15 16 0.875
E http://java.sun.com/docs/books/tutorial/collections/in 0 0 1 4 8 13 0.4358974
E http://w w w .javamex.com/tutorials/collections/using_ 0 0 1 2 7 10 0.4888889
E http://gee.cs.osw ego.edu/cgi-bin/view cvs.cgi/jsr16 6 2 5 0 0 13 0.3333333
E http://tutorials.jenkov.com/ 2 2 5 1 4 14 0.1978022
E http://w w w .javaw orld.com/javaw orld/jw -10-2004/jw 4 2 3 3 1 13 0.1666667
E http://tobega.blogspot.com/2008/05/beautiful-enums 6 3 4 1 0 14 0.2637363
E http://docs.oracle.com/javase/tutorial/collections/intr 0 0 1 1 8 10 0.6222222
E http://users.mafr.de/~matthias/articles/google-collec 1 2 5 7 3 18 0.2287582
E http://jakarta.apache.org/commons/collections/ 2 0 3 4 6 15 0.2380952
E http://w w w .onjava.com/lpt/a/3286 3 3 3 3 1 13 0.1538462
E http://jakarta.apache.org/commons/jxpath/ 5 5 3 1 0 14 0.2527473
E http://code.google.com/p/lambdaj/ 10 3 6 0 0 19 0.3684211
E http://w w w .space4j.org/ 5 5 2 1 0 13 0.2692308
E http://w w w .angelikalanger.com/GenericsFAQ/JavaG 7 4 3 0 0 14 0.3296703
E http://spin.atomicobject.com/2010/02/23/better-java- 2 5 3 3 1 14 0.1868132
E http://java.sun.com/javase/6/docs/technotes/guides 0 0 1 1 9 11 0.6545455
E http://snehaprashant.blogspot.com/2008/10/quick-re 0 0 0 1 13 14 0.8571429
E http://commons.apache.org/collections/ 1 2 8 2 3 16 0.275
E http://code.google.com/p/pcollections/ 0 4 3 3 1 11 0.2181818
E http://bw interberg.blogspot.com/2009/09/introductio 1 4 5 3 2 15 0.1904762
E http://w w w .javalobby.org/articles/google-collections 6 4 3 2 2 17 0.1911765
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Question Resource URL 1 2 3 4 5 # of raters P i

E http://java.sun.com/docs/books/tutorial/collections/in 0 0 4 5 10 19 0.3567251
E http://today.java.net/pub/a/today/2006/11/07/nuance 5 3 3 1 0 12 0.2424242
E http://docs.oracle.com/javase/1.5.0/docs/api/java/ut 1 0 1 5 3 10 0.2888889
E http://w w w .op4j.org/ 6 2 3 6 1 18 0.2222222
E http://jaggregate.sourceforge.net/ 4 3 6 4 0 17 0.2205882
E http://docs.oracle.com/javase/tutorial/collections/ind 0 0 4 7 8 19 0.3216374
F http://w eblogs.java.net/blog/claudio/archive/nb-reus 4 2 0 3 3 12 0.1969697
F http://java.sun.com/developer/onlineTraining/collectio 2 3 5 3 0 13 0.2179487
F http://w w w .apl.jhu.edu/~hall/java/Sw ing-Tutorial/Sw 1 2 0 6 5 14 0.2857143
F http://today.java.net/pub/a/today/2007/05/17/uispec4 1 5 4 1 2 13 0.2179487
F http://java.sun.com/docs/books/tutorial/uisw ing/com 2 1 5 4 3 15 0.1904762
F http://java.sun.com/docs/books/tutorial/uisw ing/misc 13 0 0 0 0 13 1
F http://w w w .ibm.com/developerw orks/view s/w eb/lib   7 4 1 1 0 13 0.3461538
F http://java.sun.com/products/jlf /at/book/Idioms5.html 5 3 5 0 0 13 0.2948718
F http://java.sun.com/docs/books/tutorial/uisw ing/look 0 2 2 6 5 15 0.2571429
F http://java.sun.com/docs/books/tutorial/uisw ing/look 1 2 5 3 2 13 0.1923077
F http://w w w .apl.jhu.edu/~hall/java/Sw ing-Tutorial/ 0 0 0 4 10 14 0.5604396
F http://netbeans.org/kb/docs/java/gui-binding.html 4 1 5 3 0 13 0.2435897
F http://docs.oracle.com/javase/tutorial/uisw ing/compo 0 0 0 6 11 17 0.5147059
F http://junit.sourceforge.net/doc/testinfected/testing.h 5 2 5 2 0 14 0.2417582
F http://zetcode.com/tutorials/javasw ingtutorial/ 0 0 0 1 18 19 0.8947368
F http://w w w .java2s.com/Code/Java/Sw ing-Compone 0 1 2 6 4 13 0.2820513
F http://java.sun.com/products/jfc/tsc/articles/threads 2 1 2 4 4 13 0.1794872
F http://w w w .cise.ufl.edu/~amyles/tcpchat/ 0 0 1 6 7 14 0.3956044
F http://java.sun.com/developer/technicalArticles/java 2 2 5 4 3 16 0.175
F http://w w w .informit.com/articles/article.aspx?p=101 7 4 2 0 0 13 0.3589744
F http://java.sun.com/j2se/1.5.0/docs/api/javax/sw ing/ 1 2 3 7 0 13 0.3205128
F http://w w w .netbeans.org/kb/articles/matisse.html 15 0 0 0 0 15 1
F http://w w w .sw ingw iki.org/ 1 0 7 4 6 18 0.2745098
F http://w w w .jroller.com/gfx/date/20050214 3 1 7 1 2 14 0.2747253
F http://w w w .netbeans.org/kb/articles/gui-functionalit 2 1 3 2 6 14 0.2197802
F http://w eblogs.java.net/blog/tpavek/archive/2006/02 12 1 0 0 0 13 0.8461538
F http://java.sun.com/docs/books/tutorial/uisw ing/pain 0 1 3 7 2 13 0.3205128
F http://java.sun.com/docs/books/tutorial/uisw ing/com 0 0 1 7 9 17 0.4191176
F http://w w w .java2s.com/Tutorial/Java/0240__Sw ing 0 0 0 2 12 14 0.7362637
F http://w w w .tutorialized.com/tutorial/SWT-Tutorial/77 13 0 0 0 0 13 1
F https://openjfx.dev.java.net/JavaFX_Programming_L 14 0 0 0 0 14 1
F http://w w w .guj.com.br/java.tutorial.artigo.147.1.guj 3 1 4 4 1 13 0.1923077
F http://w w w .netbeans.org/kb/60/java/gui-db.html 17 0 0 0 0 17 1
F http://w w w .daltonfilho.com/articles/sw ingw x/ 4 2 2 4 1 13 0.1794872
F http://w w w .exampledepot.com/egs/index.html 1 4 5 2 1 13 0.2179487
F http://w w w .ibm.com/developerw orks/java/library/j-s 3 3 3 5 0 14 0.2087912
F http://java.sun.com/developer/technicalArticles/J2SE 8 3 2 3 0 16 0.2916667
F https://appframew ork.dev.java.net/intro/index.html 15 0 0 0 0 15 1
F http://w w w .netbeans.org/kb/docs/java/gui-db.html 13 0 0 0 0 13 1
F http://w w w .sw ingw iki.org/table_of_contents 0 0 2 4 9 15 0.4095238
F http://java.sun.com/docs/books/tutorial/uisw ing/layo 0 0 5 5 3 13 0.2948718
F http://w w w .netbeans.org/kb/60/java/quickstart-gui.h 0 0 2 8 7 17 0.3676471
F http://today.java.net/pub/a/today/2006/03/30/introdu 2 4 2 2 3 13 0.1538462
F http://w w w .netbeans.org/kb/trails/matisse.html 0 2 3 4 8 17 0.2794118
F http://cs.nyu.edu/~yap/classes/visual/03s/lect/l7/ 0 0 0 0 17 17 1
F http://w w w .javabeginner.com/java-sw ing/java-sw in 0 0 0 2 17 19 0.8011696
F http://w w w .sw ingw iki.org/table_of_contents#best_ 0 0 2 3 8 13 0.4102564
F http://java.sun.com/products/jfc/tsc/articles/painting 1 0 2 6 4 13 0.2820513
F http://w w w .anyang-w indow .com.cn/construction-o 6 5 1 0 0 12 0.3787879
F http://java.sun.com/docs/books/tutorial/uisw ing/learn 0 0 2 4 8 14 0.3846154
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. 

Question Resource URL 1 2 3 4 5 # of raters P i

F http://java.sun.com/docs/books/tutorial/uisw ing/conc 0 3 4 5 3 15 0.2095238
F http://w w w .javalobby.org/articles/jtable/ 2 1 2 8 4 17 0.2647059
F http://w eblogs.java.net/blog/kirillcool/archive/2005/0 2 2 4 3 2 13 0.1538462
F http://w w w .jroller.com/santhosh/date/20050610#jtre 1 2 5 5 1 14 0.2307692
F http://w w w .javaw orld.com/javaw orld/jw -07-2007/jw 3 4 7 1 0 15 0.2857143
F http://today.java.net/pub/a/today/2007/02/22/how -to 0 0 2 7 10 19 0.3918129
F http://java.sun.com/docs/books/tutorial/uisw ing/exam 0 0 1 1 14 16 0.7583333
F http://developerlife.com/tutorials/?p=15 3 1 4 3 2 13 0.1666667
F http://java.sun.com/docs/books/tutorial/uisw ing/com 0 2 3 3 5 13 0.2179487
F http://java.sun.com/docs/books/tutorial/ui/index.html 0 1 4 5 3 13 0.2435897
F http://java.sun.com/products/jfc/tsc/articles/actions/ 1 0 4 4 4 13 0.2307692
F http://java.sun.com/docs/books/tutorial/extra/fullscre 3 2 8 0 1 14 0.3516484
F http://java.sun.com/docs/books/tutorial/uisw ing/com 0 2 1 3 8 14 0.3516484
F http://w w w .javatutorialhub.com/java-sw ing-gui.htm 0 0 0 3 13 16 0.675
F http://java.sun.com/products/jfc/tsc/articles/cardpan 2 3 7 1 0 13 0.3205128
F http://java.sun.com/docs/books/tutorial/2d/index.htm 1 7 3 3 0 14 0.2967033
F http://homepage.mac.com/svc/ 12 1 0 0 0 13 0.8461538
F http://w eblogs.java.net/blog/g_s_m/archive/2007/09 0 0 4 6 3 13 0.3076923
F http://w w w .javabeginner.com/java-sw ing-tutorial.ht 0 0 0 3 11 14 0.6373626
F http://w w w .roseindia.net/java/example/java/sw ing/ 1 0 1 2 12 16 0.5583333
F http://java.sun.com/docs/books/tutorial/uisw ing/exam 0 0 1 2 10 13 0.5897436
F http://w w w .javafree.org/content/view .jf?idContent= 4 5 2 1 1 13 0.2179487
F http://java.sun.com/docs/books/tutorial/uisw ing/dnd/ 4 2 3 2 2 13 0.1538462
F http://java.sun.com/docs/books/tutorial/index.html 1 2 8 2 3 16 0.275
F http://w w w .netbeans.org/kb/60/java/gui-saf.html 13 0 0 0 0 13 1
F http://java.sun.com/docs/books/tutorial/uisw ing/ 0 0 0 7 12 19 0.5087719
F http://today.java.net/pub/a/today/2006/02/21/building 0 3 5 5 2 15 0.2285714
F http://netbeans.org/kb/docs/java/quickstart-gui.html 0 0 1 5 5 11 0.3636364
F http://w w w .javasw ingtutorial.com/ 0 0 2 3 6 11 0.3454545
F http://java.sun.com/products/jfc/tsc/articles/sw ing2d 1 3 2 3 4 13 0.1666667
F http://java.sun.com/docs/books/tutorial/uisw ing/com 1 3 3 4 2 13 0.1666667
F http://w w w .ociw eb.com/jnb/jnbOct2005.html 3 4 3 3 0 13 0.1923077
F http://w w w .new t.com/java/sw ing.html 0 0 1 8 5 14 0.4175824
F http://w w w .netbeans.org/community/magazine/html 1 4 2 5 1 13 0.2179487
F http://java.sun.com/docs/books/tutorial/uisw ing/exam 0 0 0 2 11 13 0.7179487
F http://w w w .jgoodies.com/ 5 7 5 0 0 17 0.3014706
F http://java.sun.com/developer/technicalArticles/java 2 0 2 6 6 16 0.2666667
F http://w w w .javasw ing.net/ 8 0 3 1 1 13 0.3974359
F http://java.sun.com/docs/books/tutorial/uisw ing/look 2 1 3 5 3 14 0.1868132
F http://today.java.net/pub/a/today/2004/01/05/sw ing. 0 3 6 3 1 13 0.2692308
F http://w w w .javalobby.org/articles/miglayout/ 10 4 1 0 0 15 0.4857143
F http://jug.org.ua/w iki/display/JavaAlmanac/Inserting      9 4 0 0 0 13 0.5384615
F http://java.sun.com/j2se/1.5.0/docs/api/javax/sw ing/ 6 5 2 1 0 14 0.2857143
F http://java.sun.com/docs/books/tutorial/uisw ing/pain 12 0 1 0 0 13 0.8461538
F http://java.sun.com/docs/books/tutorial/uisw ing/TOC 0 0 1 1 17 19 0.7953216
F http://docs.oracle.com/javase/tutorial/uisw ing/TOC.h 0 0 0 2 10 12 0.6969697
F http://w iki.netbeans.org/NBDemoFlickr 5 3 3 2 0 13 0.2179487
F http://w w w .guj.com.br/java.tutorial.artigo.140.1.guj 3 0 2 7 1 13 0.3205128
F http://w w w .javafaq.nu/java-allbooks.html 3 2 3 1 5 14 0.1868132
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APPENDIX B 

ENTRY QUESTIONNAIRE FOR EXPERIMENTS 1 & 2 (JAVA PROGRAMMING 

STUDY) 

The purpose of this research study is to improve methods for locating expert users in 

social bookmarking systems. For this purpose, we will give participants a series of search tasks 

for finding information on topics related to the Java programming language.  Participants will 

enter queries into an experimental system, and then judge how relevant the returned web 

resources are to the given topics.  Participants will be asked to complete one session lasting 

approximately 2 hours.  The session includes training on the experimental system, answering 

the pre-questionnaire below, and performing the actual experiment. 

 

Prior to the research experiment, please provide answers to following questions. 

 

1.   What is your major of study? 

_____ Computer Science 

_____ Information Science 

_____ Other (Please specify ………………………………………………) 

 

2.   How would you rate your knowledge of the Java programming language? 

_____ Expert 

_____ Intermediate 

_____ Novice 
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_____ I have no knowledge of Java. 

 

3.   How did you learn Java? (please check all that apply) 

_____ Self-study 

_____ Programming courses that used Java 

_____ On-the-job training 

_____ Other (Please specify ……………………………………………….) 

 

4.   How long have you used Java? 

_____ less than 1 year 

_____ 1-3 years 

_____ 4 years or more 

 

5.   In how many projects have you used Java as a development tool? 

_____ 3 or less 

_____ 4 – 6 projects 

_____ 7 – 9 projects 

_____ 10 or more 

 

6.   Describe those projects: 

_____ All academic assignments 

_____ Some academic assignments and some non-academic projects 

_____ All non-academic projects 

_____ Other (Please specify ………………………………………………..) 

 

7.   Other than Java, what programming languages do you use? 

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 
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8.   How many hours per day do you use a computer? 

_____ less than 3 hours 

_____ between 3 and 6 hours 

_____ between 6 and 9 hours 

_____ between 9 and 12 hours 

_____ more than 12 hours 

 

9.   How many times per day do you search for information on the web? 

_____ 5 or less times per day 

_____ 6 – 10 times per day 

_____ 11- 15 times per day 

_____ 15 or more times per day 

 

10. When searching for information on the web, how many terms do you use on average in your 

search queries? 

_____ 1 term 

_____ 2 terms 

_____ 3 terms 

_____ 4 terms 

_____ 5 or more terms 

 

11. How would you describe your ability to find information on the web using a search engine? 

_____ I always find what I want 

_____ Most of the time I find what I want 

_____ Half of the time I find what I want 

_____ Rarely do I find what I want 

_____ I never find what I want 
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APPENDIX C 

ENTRY QUESTIONNAIRE FOR EXPERIMENT 3 (CLASSIFICATION STUDY) 

The purpose of this research study is to improve methods for locating expert users in 

social bookmarking systems. For this purpose, we ask participants to judge how relevant a 

series of terms represent the topics of web resources. Participants will be asked to complete one 

session lasting approximately 1-2 hours.  The session includes training on the experimental 

system, answering the pre-questionnaire below, and performing the actual experiment. 

 

Prior to the research experiment, please provide answers to following questions. 

 

1.   I am a… (Please check all that apply) 

_____ librarian at _______________________________ 

_____ MLIS degree holder 

_____ MLIS student 

_____ PhD Student in LIS 

 

2.   If you are a librarian, what is your specialty (i.e., major tasks) in your library? 
 

 

3.   If you are a graduate student, what is your specialty (track or research interest)? 
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4.   If you are a graduate student in LIS, please check all of the course(s) you have taken. 

_____ Organizing & Retrieving Information (LIS2005)  

_____ Introduction to Cataloging and Classification (LIS2405) 

_____ Advanced Cataloging and Classification (LIS2406) 

_____ Metadata (LIS2407) 

_____ Indexing and Abstracting (LIS2452) 

_____ Thesaurus Construction (LIS2453) 

 

5.   How would you rate yourself as a professional in resource classification? 
 

Very Poor Poor Fairly Good Good Excellent 
1 2 3 4 5 

 

 

6.   How well do you understand the basics and concept of classification schemes? 
 

Very Poor Poor Fairly Good Good Excellent 
1 2 3 4 5 

 

 

7.   How well do you understand the basics and concept of subject headings? 
 

Very Poor Poor Fairly Good Good Excellent 
1 2 3 4 5 

 

 

8.   How would you rate your organization skills in your day-to-day life? 
 

Very Poor Poor Fairly Good Good Excellent 
1 2 3 4 5 

 

 

9.   What do you organize for yourself in ordinary life? (Please check all that apply)  

_____ Personal Library (i.e., books) 

_____ Personal Pictures (i.e., photo albums) 

_____ Personal Computer Folders and Files  
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_____ Web Pages (e.g. favorites, bookmarks) 

_____ Emails/Mails (e.g. folders) 

_____ Important Documents (e.g. contracts, receipts, etc.) 

_____ Other: 
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