645 research outputs found

    Classical and quantum partition bound and detector inefficiency

    Full text link
    We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that the experiment succeeds (neither of the detectors fails). When the players share a quantum state, this gives rise to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). We give an example of a quantum distribution where the violation can be exponentially bigger than the previously studied class of normalized Bell inequalities. For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.Comment: 21 pages, extended versio

    Robust Bell Inequalities from Communication Complexity

    Get PDF
    The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bounds. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities

    Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

    Full text link
    We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate secure private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.Comment: Main text: 5 pages, 2 figures, 1 table. Supplementary Information: 7 pages, 2 figure

    Alternative schemes for measurement-device-independent quantum key distribution

    Full text link
    Practical schemes for measurement-device-independent quantum key distribution using phase and path or time encoding are presented. In addition to immunity to existing loopholes in detection systems, our setup employs simple encoding and decoding modules without relying on polarization maintenance or optical switches. Moreover, by employing a modified sifting technique to handle the dead-time limitations in single-photon detectors, our scheme can be run with only two single-photon detectors. With a phase-postselection technique, a decoy-state variant of our scheme is also proposed, whose key generation rate scales linearly with the channel transmittance.Comment: 30 pages, 5 figure

    The communication cost of simulating POVMs over maximally entangled qubits

    Get PDF
    In [Toner and Bacon, Phys. Rev. Lett. 91, 187904 (2003)], 11 bit of communication was proven to be enough to simulate the statistics of local projective measurements over the maximally entangled state. Ever since then, the question of whether 11 bit is also enough for the case of generalized measurements has been open. In this thesis, we retort to inefficiency-resistant Bell functionals, a powerful technique to prove lower bounds communication complexity, to numerically study this question. The results obtained suggest that, indeed, as is the case with projective measurements, 11 bit of communication suffices to simulate POVMs over maximally entangled qubits

    Multipartite Nonlocal Quantum Correlations Resistant to Imperfections

    Full text link
    We use techniques for lower bounds on communication to derive necessary conditions in terms of detector efficiency or amount of super-luminal communication for being able to reproduce with classical local hidden-variable theories the quantum correlations occurring in EPR-type experiments in the presence of noise. We apply our method to an example involving n parties sharing a GHZ-type state on which they carry out measurements and show that for local-hidden variable theories, the amount of super-luminal classical communication c and the detector efficiency eta are constrained by eta 2^(-c/n) = O(n^(-1/6)) even for constant general error probability epsilon = O(1)
    • …
    corecore