650 research outputs found

    Trainyard is NP-Hard

    Get PDF
    Recently, due to the widespread diffusion of smart-phones, mobile puzzle games have experienced a huge increase in their popularity. A successful puzzle has to be both captivating and challenging, and it has been suggested that this features are somehow related to their computational complexity \cite{Eppstein}. Indeed, many puzzle games --such as Mah-Jongg, Sokoban, Candy Crush, and 2048, to name a few-- are known to be NP-hard \cite{CondonFLS97, culberson1999sokoban, GualaLN14, Mehta14a}. In this paper we consider Trainyard: a popular mobile puzzle game whose goal is to get colored trains from their initial stations to suitable destination stations. We prove that the problem of determining whether there exists a solution to a given Trainyard level is NP-hard. We also \href{http://trainyard.isnphard.com}{provide} an implementation of our hardness reduction

    Super Mario Bros. is Harder/Easier Than We Thought

    Get PDF
    Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the complexity of the less general case where the screen size is constant, the number of on-screen sprites is constant, and the game engine forgets the state of everything substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the other hand, if levels can be represented using run-length encoding, then the problem is weakly NP-hard (even if levels have only constant height, as in the video games). All of our hardness proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness proof

    Push-Pull Block Puzzles are Hard

    Full text link
    This paper proves that push-pull block puzzles in 3D are PSPACE-complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve, settling an open question by Zubaran and Ritt. Push-pull block puzzles are a type of recreational motion planning problem, similar to Sokoban, that involve moving a `robot' on a square grid with 1Ă—11 \times 1 obstacles. The obstacles cannot be traversed by the robot, but some can be pushed and pulled by the robot into adjacent squares. Thin walls prevent movement between two adjacent squares. This work follows in a long line of algorithms and complexity work on similar problems. The 2D push-pull block puzzle shows up in the video games Pukoban as well as The Legend of Zelda: A Link to the Past, giving another proof of hardness for the latter. This variant of block-pushing puzzles is of particular interest because of its connections to reversibility, since any action (e.g., push or pull) can be inverted by another valid action (e.g., pull or push).Comment: Full version of CIAC 2017 paper. 17 page

    Restricted Power - Computational Complexity Results for Strategic Defense Games

    Get PDF

    Restricted Power - Computational Complexity Results for Strategic Defense Games

    Get PDF
    We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and show PSPACE-completeness for the problem of deciding whether one player has a winning strategy for a given instance of the game. We also generalize our results in metatheorems, which consider a large set of strategic defense games. We achieve more detailed complexity results by restricting the possible strategies of one of the players, which leads us to Sigma^p_2- and Pi^p_2-hardness results

    Large Peg-Army Maneuvers

    Get PDF
    Despite its long history, the classical game of peg solitaire continues to attract the attention of the scientific community. In this paper, we consider two problems with an algorithmic flavour which are related with this game, namely Solitaire-Reachability and Solitaire-Army. In the first one, we show that deciding whether there is a sequence of jumps which allows a given initial configuration of pegs to reach a target position is NP-complete. Regarding Solitaire-Army, the aim is to successfully deploy an army of pegs in a given region of the board in order to reach a target position. By solving an auxiliary problem with relaxed constraints, we are able to answer some open questions raised by Cs\'ak\'any and Juh\'asz (Mathematics Magazine, 2000). To appreciate the combinatorial beauty of our solutions, we recommend to visit the gallery of animations provided at http://solitairearmy.isnphard.com.Comment: Conference versio

    Walking Through Doors Is Hard, Even Without Staircases: Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

    Get PDF
    A door gadget has two states and three tunnels that can be traversed by an agent (player, robot, etc.): the "open" and "close" tunnel sets the gadget's state to open and closed, respectively, while the "traverse" tunnel can be traversed if and only if the door is in the open state. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one remaining case, we prove NP-hardness. We also introduce and analyze a simpler type of door gadget, called the self-closing door. This gadget has two states and only two tunnels, similar to the "open" and "traverse" tunnels of doors, except that traversing the traverse tunnel also closes the door. In a variant called the symmetric self-closing door, the "open" tunnel can be traversed if and only if the door is closed. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of either type of self-closing door. Then we apply this framework to prove new PSPACE-hardness results for eight different 3D Mario games and Sokobond.Comment: Accepted to FUN2020, 35 pages, 41 figure
    • …
    corecore