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Abstract
Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros.
is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our
PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require
either arbitrarily large screens or a game engine that remembers the state of off-screen sprites.
We also analyze the complexity of the less general case where the screen size is constant, the
number of on-screen sprites is constant, and the game engine forgets the state of everything
substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we
prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the
other hand, if levels can be represented using run-length encoding, then the problem is weakly
NP-hard (even if levels have only constant height, as in the video games). All of our hardness
proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness
proof.
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1 Introduction

Super Mario Bros.1 is one of the most famous and iconic video games, launching the
1985 revolution in home console gaming known as the Nintendo Entertainment System
(NES/Famicon), and pioneering the genre of side-scrolling platform video games. Super
Mario Bros. also launched a series of over 20 games, in total selling over 260 million copies,
though the original game remains the best selling at over 40 million copies [11] (and for many
years, was even the best-selling video game of all time).

Super Mario Bros. is also well known for being a challenging game, starting the adjective
“Nintendo Hard” [6]. To formalize this concept mathematically, we study the computational
complexity of a generalized form of Super Mario Bros. Previous work presented at FUN

1 Super Mario Bros. is a trademark of Nintendo. Sprites are used and stripped and modified ROMs are
presented here under Fair Use for the educational purpose of illustrating mathematical theorems.
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2014 [1] proved that Super Mario Bros. 1–3, The Lost Levels, and Super Mario World are all
NP-hard, but left open whether they were in NP. Here we show that membership in NP is
unlikely: Super Mario Bros. is PSPACE-complete (Section 4). This proof uses a monster’s
location to store state and implement the doors in the PSPACE-completeness metatheorem
of [1, 9, 10].

Both our PSPACE-hardness proof and the original NP-hardness proof [1] generalize Super
Mario Bros. to have levels of arbitrary size, but also to have the entire level fit “on screen”,
or equivalently, to have a game engine that remembers the state of off-screen sprites (i.e.,
persistent monsters and items). While the generalization in level size is necessary to study
computational complexity, in the real games the screen is much smaller than the level, and
the game engine forgets the state of everything substantially off-screen.2 To model this more
“realistic” setup, we consider Super Mario Bros. generalized to have arbitrary level size but
only a constant screen size as well as allowing only a constant number of on-screen sprites.3
(Our “realistic” model also excludes fantastical gameplay elements like horses, boats, and
extrasolar objects that were present in Vargomax’s (humorous) investigation of Super Mario
Bros. and graph coloring [8].)

Within this bounded-screen-size model, we consider two possibilities for how levels can
be specified. First, if every tile is encoded explicitly, then we show that Super Mario Bros.
becomes solvable in polynomial time (Section 2). Second, if tiles can be encoded implicitly
using run-length encoding (where a row of k identical tiles gets encoded as one copy of the
tile with a binary encoding of k), then we show that Super Mario Bros. becomes weakly
NP-hard (Section 3).4 This hardness proof also works for levels of constant height, which
is a property shared by most Super Mario Bros. games; for example, even the very flexible
Super Mario Maker allows levels of height only double that of the screen, or 27 blocks, the
same as Super Mario Bros. 3, and about double that of Super Mario Bros. It also relies on
many mechanics of Super Mario Bros. previously not exploited: pipes, time limits, multiple
lives, 100 coins grant a free life, and levels have checkpoints. Furthermore, the underlying
decision problem is not whether Mario can complete a single level (referred to as “reaching
the flagpole”), but it is whether Mario can complete a sequence of levels (referred to as
“rescuing the princess”).

Both of our hardness proofs are resilient to known glitches [2, 5], where the implementation
of Super Mario Bros. is counter to the intuitive Mario physics with which most players are
familiar. Figure 1 shows examples of such glitches; see Section 2 for details. By contrast, the
previous NP-hardness proof [1] breaks when such glitch behaviors are permitted.

1.1 Playable gadgets

Our reductions have been implemented and tested in the original NES Super Mario Bros.
game. Our modified ROMs can be downloaded from http://giovanniviglietta.com/
files/SMB/gadgets.zip. We also implemented the two gadgets of Section 4 in Super Mario
Maker, although with some minor modifications to cope with the slightly different physics.

2 The source code [3] defines two screen sizes – the visible screen and the somewhat larger relevant screen
– and all sprites outside of the relevant screen are forgotten.

3 The Nintendo Entertainment System could draw only eight sprites per scanline (row of the screen)
without flickering.

4 The source code [3] implements such a run-length encoding for runs of blocks or coins of length up
to 16, so we consider the natural generalization to runs of blocks or coins of arbitrary length with an
efficient encoding.

http://giovanniviglietta.com/files/SMB/gadgets.zip
http://giovanniviglietta.com/files/SMB/gadgets.zip
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Figure 1 Two glitches: going through a wall and jumping through a brick with a monster on top.

The level IDs are 92F8-0000-005D-F452 (crossover gadget) and A8B5-0000-005D-E79A
(open-close door gadget).

2 Standard SMB is polynomial-time solvable

In this section we consider a generalization of the standard Super Mario Bros. (from now on,
SMB) game that is still quite close to the original, and we prove that the solvability of its
levels, and even sequences of levels, can be decided in polynomial time.

2.1 Basic gameplay of SMB-standard
In each level, Mario starts from a specific location, and his goal is to reach a flagpole (or an
axe, in boss levels), which marks the end of the level and leads to the next one, or to the
endgame sequence. If Mario dies in a level, he loses one life (of the initial three) and has
to play the same level again from the beginning. Nonetheless, each level has a checkpoint
which, when reached, becomes the new starting location. Occasionally there are hidden warp
pipes that let Mario skip some levels.

Next we describe SMB-standard, which is our first generalization of SMB. We allow the
designer to construct arbitrarily large 2-dimensional levels with arbitrarily many objects
in them. Accordingly, we allow the initial timer and the amount of lives of Mario to be
exponentially large integers (with respect to the size of the level). However, we keep the
physics and local effects unaltered, and we keep the screen’s size constant, allowing only
a constant number of objects on screen, as in the original SMB (where the screen’s size is
16× 16 tiles, and there can be at most six sprites on screen, including Mario). The screen
follows Mario’s movements, and all the objects and enemies that exit the screen are forgotten
by the game. This means that there is rectangular region in which the action takes place and
objects are animated. When this region moves and new elements enter the active area, they
are loaded from a read-only level file. On the other hand, the elements that exit the screen
are no longer active. As a consequence, if Mario kills an enemy, goes to some other area and
then comes back, the enemy is reloaded from the level file in its original position and state,
as if it was never killed. In SMB the screen can only scroll to the right, but nothing changes
if we allow it to move in all directions in SMB-standard.

There is some pseudo-randomness in SMB: a 7-byte memory area is used as a pseudo-
random register; it is deterministically updated at every frame (starting from a fixed seed),
and looked up whenever a random number is needed. The illusion of randomness comes from
the fact that the frame-by-frame sequence of button presses of a human player is hardly ever
the same. In other words, the player’s input is the only real source of randomness in the
game.

The types of enemies and game elements of SMB are too many to be listed here. A
complete definition of all the game mechanics can be found in the game’s commented source

FUN 2016
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Figure 2 World 7-4: if Mario does not guess the correct path, he is sent back a few screens.

code [3]. However, for the purpose of this paper, it is sufficient to highlight just a few aspects
of the game. Some of them will be described in this section; others will be introduced when
they are needed.

An interesting game element is the Loop Command object, which is an invisible tile
that is used in some castle levels to make Mario go back a few screens if he does not follow
the right path, as Figure 2 exemplifies. When a Loop Command object enters the screen,
Mario’s position in the screen is checked: if he is in the wrong place, the screen’s coordinates
change (typically, the x coordinate is decreased by a constant amount). Sometimes, Loop
Command objects are cumulative: in World 7-4, Mario can be sent back only every third
Loop Command object that he encounters, and only if he failed the test on at least one of
the previous three Loop Command objects. In SMB-standard, we can generalize this “three”
to any (exponentially large) number.

2.2 Glitches
There are also several glitches in SMB, some of which are documented in [2, 5]. None of
the known glitches affects the results of this section, so we may as well include them in
SMB-standard. However, a couple of them will be relevant in the next sections, as they
make the game behave counter-intuitively in certain situations (see Figure 1). Namely, when
a vertical wall is at least two tiles high, Mario can slightly penetrate between two tiles
by jumping towards them at the right speed. Then, if he suddenly steers in the opposite
direction, the wall pulls him inside instead of pushing him out. This makes Mario potentially
able to walk through every wall consisting of more than a single tile. Also, if Mario is small
(i.e., he has not eaten a Super Mushroom) and he hits a brick block with his head twice fast
enough, he can jump through the block, provided that there is a monster on top of it.

2.3 Reaching the flagpole in SMB-standard
We start by proving that solving a single level of SMB-standard is a polynomial-time task.
For this, we only need a very small set of assumptions, which the interested reader can verify
by inspecting [3].

I Theorem 1. Reaching the flagpole in a level of SMB-standard without losing lives is a
polynomial-time task.

Proof. Mario’s position in the screen is encoded as a pair of integer coordinates (with a
precision of 1/16 of a pixel). Hence the possible positions of Mario within the screen are
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finitely many. Mario’s velocity vector is encoded similarly, and his speed never exceeds a
constant value. The same holds for all monsters and moving objects. All the state transitions
of each object, as well as all possible interactions between objects, can be computed in
constant time. Hence, the transition from one frame to the next can be computed in constant
time, because the screen has constant size and there can be only a constant number of
interacting objects in it.

It follows that there is only a polynomial number of possible configurations, where a
configuration represents the state of the game at a given frame, and is characterized by a
screen position within the level, at most a constant number of objects on screen (each with a
constant-size state), a constant-size pseudo-randomly-generated number, a polynomial-size
Loop Command object counter, a Loop Command “failure flag”, and the player’s input for
that frame (which is a combination of button states). Moreover, all the possible one-frame
transitions between configurations can be determined in polynomial time. This means we
can efficiently construct a polynomial-size configuration graph, with several starting vertices
s1, . . . , sk, each corresponding to an initial pseudo-random register, and several finish vertices
t1, . . . , tk′ , each corresponding to a configuration in which Mario touches the flagpole.

Now, because each directed edge in this graph corresponds to a feasible move (assuming
the player hits the right buttons), and such a move makes the timer decrease by a constant
fraction 1/f of a time unit, solving the level amounts to finding a shortest path from each si

to any tj , which is done via a breadth-first traversal of the configuration graph. If any of the
shortest paths is longer than f times the available number of time units, then the level is
unsolvable. J

2.4 Rescuing the princess in SMB-standard
In order to extend the previous proof to sequences of levels, we have to recall how lives work
in SMB. Mario gets an extra life whenever he collects a 1-Up Mushroom, or repeatedly jumps
on enemies without touching the ground, or collects (a multiple of) 100 coins. He loses a life
whenever he fails to reach the flagpole, either because he is killed or because he runs out of
time. When he loses the last life, the game is over. Note that Mario does not lose his coins
when he dies or completes a level.

The classic SMB game has a fixed limit on the maximum number of lives that Mario can
have. In SMB-standard we allow Mario’s number of lives to grow unboundedly, which makes
our next theorem a little stronger.

I Theorem 2. Rescuing the princess in SMB-standard is a polynomial-time task.

Proof. We will reason as in Theorem 1, with the additional difficulty that now we have to
keep track of the number of lives gained and lost.

Let the game have n levels. Each level has a checkpoint, which splits it into two chunks.
When Mario reaches the same horizontal coordinate of a checkpoint (regardless of his vertical
coordinate), the checkpoint is considered reached. Then, the next time he dies in the level,
he will restart from the checkpoint, at the smallest possible vertical coordinate. So, the first
chunk of each level can only be played from one initial location. The second chunk of a level
can be played from at most v possible initial locations, where v is the (polynomial) number
of possible vertical coordinates. Indeed, the location with smallest vertical coordinate is
the one that occurs after Mario dies in the second chunk of the level, and the other initial
locations may occur the first time that Mario enters the second chunk from the first chunk.

Recall that the pseudo-random register is deterministically updated at every frame, and
let k be the constant number of possible values that the pseudo-random register can assume.

FUN 2016
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The crucial observation is that, if the game is beatable with an infinite initial supply of lives,
then it is beatable with an initial supply of 2kvn lives. Indeed, there are 2n level chunks
in total, each of which can be replayed several times before moving on to the next one. In
turn, there are at most v possible initial positions for Mario in each chunk, and at most k

possible initial values of the pseudo-random register. A chunk may be impossible to beat
from some initial vertical positions, or for some initial values of the register. Moreover, even if
a chunk is always beatable, it may be necessary to finish it when the pseudo-random register
has a specific value, because that initial value may be required to beat the next chunk, etc.
However, if a specific final value is attainable at all, it must be attainable at the cost of at
most k lives.

Because 100 coins grant an extra life and it is impossible to lose coins, we can equivalently
think of a coin as 1/100 of a life. For each of the 2n chunks, we build a configuration graph
G as in Theorem 1, also adding to the state the initial vertical coordinate of Mario, and
the (fractional) number of lives ` that Mario has. By the above argument, if at any point
` ≥ 2kvn, we can safely assume ` to be infinite. Hence we only need encode 200 · kvn + 1
possible values for `, which can be done using only O(log n) bits.

Now we connect together the graphs corresponding to different chunks, in such a way
that each final vertex of a chunk leads to the initial vertex of the next chunk having a
matching pseudo-random register in its state. We also add similar edges corresponding to
warp pipes. Furthermore, we add edges corresponding to Mario’s deaths, which either lead
to the beginning of the current chunk, with one less life, or to a special Game Over vertex
having no outgoing edges. We add an extra “zeroth” chunk corresponding to the title screen,
with k vertices, one for each possible initial value of the pseudo-random register. Finally, we
put a last vertex t, which is reached after beating the last chunk.

The game starts from the vertex s in the zeroth chunk having the appropriate pseudo-
random seed, and then proceeds by following the edges in this “macro-graph” corresponding
to the player’s inputs (or lack thereof) at each frame. For instance, waiting in the zeroth
chunk without pressing buttons only makes the pseudo-random register change, while pressing
the Start button leads to the appropriate initial vertex of the first chunk. Because the macro-
graph has polynomial size, verifying if the vertex t can be reached from s is a polynomial-time
task. J

3 SMB with run-length encoding is weakly NP-hard

Levels in the original SMB game are encoded using a limited form of compression. For
example, a run of up to 16 consecutive coins can be encoded using the same space as a
single coin. In this section we consider the hardness of a SMB variation with levels that
allow arbitrary run-length encoding (RLE), meaning that m consecutive blocks of a fixed
type along an individual row can be encoded using O(log m) bits. We extend this concept to
entire levels, as well: we can encode m consecutive copies of the same level by attaching an
O(log m)-bit number to the encoding of the level. We refer to this variation as SMB-RLE,
and we prove that rescuing the princess in this game is weakly NP-hard.

Our reduction is from the Knapsack problem. The main idea is to model item weights by
time, and item values by coins. We create a level in which Mario is faced with n independent
choices of either collecting vi coins at a cost of wi time, or skipping past the coins by using
a pipe. Each of these choices corresponds to either adding item i to the knapsack or not,
respectively. We set a time limit of W to the level to restrict Mario’s choices, and we force
Mario to collect at least V coins – and thus bV/100c extra lives – by separating Mario from
the princess by a sequence of levels, each of which will cause him to lose one life.
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Besides the addition of RLE, our new variation of SMB is similar to the SMB-standard
variation introduced in Section 2. In particular, we do not require the persistence or non-
persistence of any game elements. However, to make our result stronger, we use levels of
constant height that cannot scroll to the left (such as the ones in the original SMB).

The remainder of this section formalizes our Knapsack problem, clarifies our assumptions
about the various game elements, and then describes individual levels and overall reduction.
Ultimately, we briefly discuss the variation of SMB in which run-length encoding can be
applied to blocks but not to whole levels. This version is also weakly NP-hard, provided
that the number of coins that grant an extra life (which normally is 100) can be configured
arbitrarily.

3.1 Knapsack problem
The following version of the Knapsack problem is also known as the 0-1 Knapsack problem
because each item is indivisible and is either inserted into the knapsack or not.

Knapsack problem
Input: Item weights w1, w2, . . . , wn and values v1, v2, . . . , vn, a total weight capacity of
the knapsack W and a target value V .
Output: Is there a subset of items with total weight

∑
wi ≤W and value

∑
vi ≥ V ?

The problem is NP-complete even if each item’s weight is proportional to its value [4],
and there is also a well-known dynamic-programming algorithm for solving it. The algorithm
runs in pseudo-polynomial time, meaning that its running time is polynomial with respect to
the magnitude of the numbers involved (as opposed to the number of bits used to represent
them). Thus, the problem is weakly NP-complete. We will find it convenient to reduce from
a constrained version of the problem in which each item weight is at least 100 times as large
as its value.

I Lemma 3 (Knapsack with Large Weights). The Knapsack problem is weakly NP-complete
when restricted to inputs with wi ≥ 100 · vi for all 1 ≤ i ≤ n.

Proof. The decision problem is unchanged by multiplying the item weights and total capacity
by a fixed positive integer. If the integer is an item value, then the maximum magnitude of
the numbers in the resulting problem is at most squared. Therefore, the result follows from
multiplying every item weight by 100 · v′, where v′ is the maximum value in {v1, . . . , vn}. J

3.2 Game elements and controls
The only game elements we use are solid blocks, pipes, coins, checkpoints, and the timer.
We clarify our assumptions about these elements and other aspects about the levels below.

A level can have arbitrary width, but we only use levels that have a constant height. This
differs from the NP-hardness result in [1], which relied upon having levels of arbitrary
height and width. In fact, we only use levels that are two blocks high.
A level consists of a single room. In other words, our hardness result does not require the
use of any side rooms or bonus areas.
A level can have an arbitrary number of pipes. For a Knapsack problem with n items
we create a level with n pairs of pipes. The pipes do not nest, in the sense that the x

coordinates of the entrances and exits satisfy in1 < out1 < in2 < out2 < · · · < inn < outn.

FUN 2016
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…… …

skip item 1

select item 1
…

…

checkpoint
(time 100)

… …… …

skip item 2

select item 2

time 100

…

Figure 3 Sketch of a choice level including the first two decision sections.

Going through a pipe takes constant time, regardless of the distance traveled.
The screen never scrolls left. This fact, combined with our use of pipes, implies that no
game element can be revisited. Thus, persistence is a non-issue, and our reduction will
work regardless of whether or not it is assumed.
The timer for each level can be arbitrarily large. However, we assume that it is always a
multiple of 100 to keep it as close to the original game as possible.
There is one checkpoint per level. If Mario dies after the checkpoint, but before the
flagpole, then he is respawned at the checkpoint instead of the beginning of the level. As
in the original game, the timer after respawning can differ from the original timer.

Mario will never have reason to jump, move left, move up, or stop running in the levels
we create. Furthermore, our designs have natural “walking analogues” that are functionally
equivalent if Mario is forbidden from running. Thus, our problem will remain weakly NP-hard
if Mario’s controls are limited to any subset that includes and .

3.3 Choice level
A choice level is parameterized by 2n + 1 integers: w1, . . . , wn, v1, . . . , vn, and W . The level
is comprised of n + 3 sections (see Figure 3) in the following order.

The checkpoint section begins with a blank screen followed by a checkpoint that will reset
the timer to 100 upon Mario’s death.
The empty section requires 100 time units to traverse and is otherwise empty.
There are n decision sections, each of which begins with one pipe and ends with one pipe.
Taking the first pipe will transport Mario to the second pipe, thereby skipping over the
entire section. Otherwise, Mario travels from the first pipe to the second pipe on foot
and can collect a series of coins. The number of coins along the ith decision section is vi

and these coins are surrounded by at least one empty screen to the left and right. The
path from the first pipe to the second pipe requires wi units of time to traverse.
The final section is a flagpole section and is the end of the level.

Notice that the first two sections force Mario to complete the level in one life. More
specifically, if he respawns at the checkpoint, then he cannot pass the empty section due to
the timer. Also notice that the ith decision section is only well defined if ti is large enough
to accommodate ci coins and the empty screens to the left and right. This will not be an
issue with our reduction because we use the constraint discussed in Lemma 3. The level’s
timer is T = W + ε, where ε is the time required to complete the level using all n pipe pairs.

3.4 Coin level
A c-coin level contains c coins for some 0 ≤ c ≤ 99 (see Figure 4 (a)). Its time limit of 200 is
sufficient for completing the level either by running or walking for all c.
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time 150

…

checkpoint
(time 100)

time 150 checkpoint
(time 200)

…

time 150

…

(a) (b)

Figure 4 (a) A coin level, and (b) a kill level.

3.5 Kill level
A kill level takes 300 time units to complete but only provides a timer of 200 (see Figure 4
(b)). It also has a checkpoint halfway through the level that provides 200 time units after
respawning. Mario can complete the level by expending one life to reach the checkpoint, and
then by continuing to the flagpole after respawning.

3.6 Weak NP-hardness of SMB-RLE
Now we prove the main result of this section.

I Theorem 4. Rescuing the princess in SMB-RLE is weakly NP-hard, even when using
levels of height 2, any subset of buttons including and , and the elements in Section 3.2.

Proof. Consider an instance of the Knapsack problem satisfying Lemma 3. Let dV/100e = `.
We create an SMB-RLE game consisting of the following levels:

World 1-1 is a choice level using the integers w1, . . . , wn, v1, . . . , vn, and W from the
Knapsack problem instance.
World 1-2 is a c-coin level, where c = 100 · `− V .
World 2-x is a kill level for all 1 ≤ x ≤ ` + 2.

These levels are well defined by Lemma 3 and the discussion in Section 3.1. For the ` + 2
copies of the kill level in World 2 we make use of run-length encoding, as they could be
exponentially many. Notice that Mario can rescue the princess if and only if he has at least
` + 3 lives after completing World 1-2. Considering that Mario starts the game with three
lives, this is equivalent to collecting V + c coins on Worlds 1-1 and 1-2, which in turn is
equivalent to collecting V coins on World 1-1. Mario can collect V coins on World 1-1 if and
only if there is a solution to the Knapsack problem. J

3.7 Weak NP-hardness without using run-length encoding for levels
In this section, we show that weak NP-hardness holds even when run-length encoding is
allowed only for the blocks within a single level, and not for encoding an entire sequence of
levels. (The proof above uses run-length encoding on the level sequence to (just) create the
kill levels that force Mario to lose a certain number of lives.) To achieve this goal, we add a
different assumption: the amount of coins that Mario has to collect to get an extra life is no
longer 100, but it can be any number (decided by the game designer). Then we can modify
our previous NP-hardness reduction as follows:

V coins grant an extra life.
World 1-1 is a choice level using the integers w1, . . . , wn, v1, . . . , vn, and W from the
Knapsack problem instance.
Worlds 2-1, 2-2, and 2-3 are kill levels.

FUN 2016
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Because there are only three kill levels, they can be represented explicitly without using
run-length encoding. In order to pass them, Mario needs to have at least four lives by the
time he reaches World 2-1. In turn, this is possible if and only if he can collect at least V

coins in World 1-1, considering that he starts the game with three lives, and V coins grant an
extra life. Hence he can finish all the levels if and only if the Knapsack problem is solvable.

As a consequence, Theorem 4 also extends to this more natural variation of the game.

4 SMB with no reset of off-screen objects is PSPACE-complete

In this section, we assume that the screen does not move in a fixed direction, and that objects
off-screen are not reset. In particular, we assume that the engine remembers the positions of
all monsters. Reasoning as in Section 2, it is not hard to prove that this variation of SMB,
which we call SMB-general, is solvable in PSPACE. Indeed, each game configuration can be
stored in polynomial space, and the configuration graph can be efficiently navigated. This
shows that SMB-general is in NPSPACE, and thus in PSPACE by Savitch’s Theorem. In
the rest of this section, we prove that SMB-general is PSPACE-complete.

4.1 PSPACE-hardness framework
To prove that SMB-general is PSPACE-hard, we use the “open-close door” framework from
[1], similar to metatheorems of [9, 10]. The framework is based on a reduction from Quantified
Boolean Formula involving the following elements:

a player-controlled avatar,
a starting location and an exit location,
arbitrarily oriented paths arranged in a plane,
crossover gadgets, and
open-close door gadgets.

A crossover gadget is a region in which two paths A and B cross each other without
leakage. That is, if the avatar is walking along A and traverses the crossover gadget, it
cannot end up on B, and vice versa.

An open-close door gadget is an object with two states – open and closed – and is
intersected by three disjoint paths:

a traverse path, which can be traversed by the avatar if and only if the door is in the
open state;
a close path which, when traversed by the avatar, causes the door to close; and
an open path which, when traversed by the avatar, allows the player to open the door,
but may not force them to. (The open path may also be a dead end.)

If all the above elements can be implemented in a game, then it is PSPACE-hard [9, 10, 1].

4.2 Starting/exit locations and paths
Of course SMB already has the first three elements, while arbitrarily oriented paths can
be implemented by using solid blocks. We will put no Super Mushrooms in our levels, so
we may assume that Mario will always be small, and therefore it is sufficient to implement
1-tile-high paths going horizontally and diagonally. It is not hard to construct them without
creating walls that are higher than one tile, thus avoiding the walk-through-walls glitch.
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(a) (b)

Figure 5 PSPACE-hardness reduction: crossover gadget. (a) Mario can avoid the pit by simply
running forward at full speed. (b) If Mario tries to change path, the lack of momentum makes him
fall into the pit.

4.3 Crossover gadget

Crossover gadgets are easy to implement with pipes. However, if we insist on not using
pipes, we can achieve the same result by using only Mario’s physics, thanks to the gadget in
Figure 5. A bonus feature of this gadget is that it can be easily adapted to work in almost
any platform game. As the first figure shows, Mario can go from the top-left path to the
bottom-right path by simply running at full speed. He cannot jump across the 3-tile-wide gap,
due to the low ceiling. Moreover, if he tries to go from the top-left path to the bottom-left
path, he has to switch direction in mid-air, which makes him lose all his momentum, and
makes him fall into the pit, as shown in the second figure. Once in the pit, he can never
get out, because it is too deep. Similarly, if he tries to jump from the bottom-right to the
bottom-left path, he ends up falling into the pit, because the 13-tile gap between the two
paths is too wide. Of course, the gadget works symmetrically in the right-to-left direction.

4.4 Open-close door gadget

Our implementation of the open-close door gadget is illustrated in Figure 6. The three flames
represent tiles where rotating firebars are attached (for clarity, only the first flame of each
firebar is drawn). Note that firebars do not necessarily have to be attached to solid blocks in
SMB (an example is the underwater part of World 8-4).

The monster on the right is a Spiny, which keeps walking back and forth in the 4-tile-wide
tunnel. When the Spiny is in this area, the door is considered open. Indeed, in this case
Mario can freely walk through the traverse path. However, Mario cannot walk through the
close path, because the Spiny is in the way. This is a tough monster, which can be killed
only by the fireballs that Mario shoots after picking up a Fire Flower, which is not available
in our level. In particular, Small Mario dies if he jumps on a Spiny. If, however, Mario takes
the tunnel that runs below the Spiny, he can hit the brick block from below, as in Figure 7.
If this is done with the correct timing, it makes the Spiny bounce through the central firebar,
and to the other side of the gadget. Note that the brick block does not break, because Mario
is small. The purpose of the firebar attached to the brick block is to kill Mario if he triggers
the jump-through-brick glitch. Similarly, the central firebar prevents Mario from taking the
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open

traverse

traverse close

close

Figure 6 PSPACE-hardness reduction: open-close door gadget (in the open state).

shortcut between the traverse and the close paths, but it does not harm or obstruct the
Spiny.

When the Spiny is on the left-hand side of the gadget, Mario can safely go through the
close path (see Figure 7). Then the Spiny starts walking back and forth in the 4-tile-wide
tunnel on the left, and the door is considered closed. Indeed, by a symmetric argument,
Mario is now unable to go through the traverse path because the Spiny is in the way, and he
has to reach the open path underneath if he wants to send the Spiny back to the right-hand
side, thus opening the door again, and resetting the gadget to its original state.

4.5 PSPACE-hardness of SMB-general
To finalize our construction, we make sure to give Mario enough time to complete the level
(provided that it is feasible), by setting the timer to some linear function of the configuration
space’s size.

Note that the walk-through-walls glitch cannot be exploited in our crossover and open-
close door gadgets, because none of them contains 2-tile-high vertical walls. Therefore, as
explained in Section 4.1, we have our main result.

I Theorem 5. Reaching the flagpole in SMB-general is PSPACE-complete.

4.6 Proper generation of Spinies
A possible point of criticism on our open-close door gadget is that, although the SMB engine
allows the designer to place Spinies anywhere in the levels, the official SMB levels never make
use of such a feature. Spinies are never found at specific locations, but they are dynamically
thrown at Mario by floating Lakitus, as Figure 8 exemplifies.

It is not too hard to incorporate this feature into our levels, if we align all the door
gadgets in the upper part of the construction. As the level starts, we can force Mario to walk
above each door gadget, where a Lakitu throws a Spiny at him, which eventually falls into
a pit that leads to the door gadget below. We can time everything in such a way that the
Lakitu can throw only one Spiny per door gadget, if Mario runs at full speed. We can also
prevent Mario from entering door gadgets through these pits, by placing firebars in them.

5 Open Problems

There are several natural open problems that arise naturally from our results. We name a
few.
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Figure 7 If the Spiny is in Mario’s way, it has to be moved to the other side of the gadget. This
can be done by hitting the brick block from below.

Figure 8 Lakitu throwing Spiny Eggs, which hatch as they hit the ground, becoming Spinies.

FUN 2016



13:14 Super Mario Bros. is Harder/Easier Than We Thought

Is reaching the flagpole of run-length-encoded constant-height Super Mario Bros. weakly
NP-hard? Is it also NP-complete? Our reduction in Section 3 critically relies on having
multiple levels, so we wonder about the complexity of a single level. We note that the strategy
of Section 3 could be altered to use multiple checkpoints in a single level instead of multiple
levels, but we view this as “cheating” because the original Super Mario Bros. uses at most
one checkpoint per level (while Super Mario Maker allows two per level).

To prove Theorem 4, we assumed that run-length encoding could be used to represent
sequences of levels, as well as sequences of tiles. Then, in Section 3.7 were able to remove
this assumption, by introducing the ability to configure the number of coins that have to be
collected to gain an extra life. Does Theorem 4 hold if run-length encoding for sequences of
levels is not allowed (but it is for blocks), and exactly 100 coins grant an extra life?

Our PSPACE-hardness reduction of Section 4 produces levels of unbounded size in both
dimensions. Note that the same result can be obtained for levels of constant height, provided
that pipes are used. Is Super Mario Bros. PSPACE-complete also for levels of constant
height that do not contain pipes? There is hope for proving this given that constant-width
Nondeterministic Constraint Logic is PSPACE-complete [7].

Finally, we suspect that our proofs can be adapted to the many Super Mario Bros. sequels,
but this remains to be explored.
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