5,761 research outputs found

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    On Modal {\mu}-Calculus over Finite Graphs with Bounded Strongly Connected Components

    Full text link
    For every positive integer k we consider the class SCCk of all finite graphs whose strongly connected components have size at most k. We show that for every k, the Modal mu-Calculus fixpoint hierarchy on SCCk collapses to the level Delta2, but not to Comp(Sigma1,Pi1) (compositions of formulas of level Sigma1 and Pi1). This contrasts with the class of all graphs, where Delta2=Comp(Sigma1,Pi1)

    Model Checking Synchronized Products of Infinite Transition Systems

    Full text link
    Formal verification using the model checking paradigm has to deal with two aspects: The system models are structured, often as products of components, and the specification logic has to be expressive enough to allow the formalization of reachability properties. The present paper is a study on what can be achieved for infinite transition systems under these premises. As models we consider products of infinite transition systems with different synchronization constraints. We introduce finitely synchronized transition systems, i.e. product systems which contain only finitely many (parameterized) synchronized transitions, and show that the decidability of FO(R), first-order logic extended by reachability predicates, of the product system can be reduced to the decidability of FO(R) of the components. This result is optimal in the following sense: (1) If we allow semifinite synchronization, i.e. just in one component infinitely many transitions are synchronized, the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend the expressive power of the logic under consideration. Already a weak extension of first-order logic with transitive closure, where we restrict the transitive closure operators to arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely synchronized) product, namely for the infinite grid.Comment: 18 page

    Enhancing Approximations for Regular Reachability Analysis

    Get PDF
    This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachable sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols

    Partially-commutative context-free languages

    Get PDF
    The paper is about a class of languages that extends context-free languages (CFL) and is stable under shuffle. Specifically, we investigate the class of partially-commutative context-free languages (PCCFL), where non-terminal symbols are commutative according to a binary independence relation, very much like in trace theory. The class has been recently proposed as a robust class subsuming CFL and commutative CFL. This paper surveys properties of PCCFL. We identify a natural corresponding automaton model: stateless multi-pushdown automata. We show stability of the class under natural operations, including homomorphic images and shuffle. Finally, we relate expressiveness of PCCFL to two other relevant classes: CFL extended with shuffle and trace-closures of CFL. Among technical contributions of the paper are pumping lemmas, as an elegant completion of known pumping properties of regular languages, CFL and commutative CFL.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244
    • …
    corecore