1,117 research outputs found

    Cirrhosis Classification Based on Texture Classification of Random Features

    Get PDF
    Accurate staging of hepatic cirrhosis is important in investigating the cause and slowing down the effects of cirrhosis. Computer-aided diagnosis (CAD) can provide doctors with an alternative second opinion and assist them to make a specific treatment with accurate cirrhosis stage. MRI has many advantages, including high resolution for soft tissue, no radiation, and multiparameters imaging modalities. So in this paper, multisequences MRIs, including T1-weighted, T2-weighted, arterial, portal venous, and equilibrium phase, are applied. However, CAD does not meet the clinical needs of cirrhosis and few researchers are concerned with it at present. Cirrhosis is characterized by the presence of widespread fibrosis and regenerative nodules in the hepatic, leading to different texture patterns of different stages. So, extracting texture feature is the primary task. Compared with typical gray level cooccurrence matrix (GLCM) features, texture classification from random features provides an effective way, and we adopt it and propose CCTCRF for triple classification (normal, early, and middle and advanced stage). CCTCRF does not need strong assumptions except the sparse character of image, contains sufficient texture information, includes concise and effective process, and makes case decision with high accuracy. Experimental results also illustrate the satisfying performance and they are also compared with typical NN with GLCM

    Machine Learning with Abstention for Automated Liver Disease Diagnosis

    Get PDF
    This paper presents a novel approach for detection of liver abnormalities in an automated manner using ultrasound images. For this purpose, we have implemented a machine learning model that can not only generate labels (normal and abnormal) for a given ultrasound image but it can also detect when its prediction is likely to be incorrect. The proposed model abstains from generating the label of a test example if it is not confident about its prediction. Such behavior is commonly practiced by medical doctors who, when given insufficient information or a difficult case, can chose to carry out further clinical or diagnostic tests before generating a diagnosis. However, existing machine learning models are designed in a way to always generate a label for a given example even when the confidence of their prediction is low. We have proposed a novel stochastic gradient based solver for the learning with abstention paradigm and use it to make a practical, state of the art method for liver disease classification. The proposed method has been benchmarked on a data set of approximately 100 patients from MINAR, Multan, Pakistan and our results show that the proposed scheme offers state of the art classification performance.Comment: Preprint version before submission for publication. complete version published in proc. 15th International Conference on Frontiers of Information Technology (FIT 2017), December 18-20, 2017, Islamabad, Pakistan. http://ieeexplore.ieee.org/document/8261064

    The Role of the Superior Order GLCM in the Characterization and Recognition of the Liver Tumors from Ultrasound Images

    Get PDF
    The hepatocellular carcinoma (HCC) is the most frequent malignant liver tumor. It often has a similar visual aspect with the cirrhotic parenchyma on which it evolves and with the benign liver tumors. The golden standard for HCC diagnosis is the needle biopsy, but this is an invasive, dangerous method. We aim to develop computerized,noninvasive techniques for the automatic diagnosis of HCC, based on information obtained from ultrasound images. The texture is an important property of the internal organs tissue, able to provide subtle information about the pathology. We previously defined the textural model of HCC, consisting in the exhaustive set of the relevant textural features, appropriate for HCC characterization and in the specific values of these features. In this work, we analyze the role that the superior order Grey Level Cooccurrence Matrices (GLCM) and the associated parameters have in the improvement of HCC characterization and automatic diagnosis. We also determine the best spatial relations between the pixels that lead to the highest performances, for the third, fifth and seventh order GLCM. The following classes will be considered: HCC, cirrhotic liver parenchyma on which it evolves and benign liver tumors

    Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm

    Get PDF
    PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage

    The usefulness of ultrasound in the classification of chronic liver disease

    Get PDF
    Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%

    State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma

    Get PDF
    The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor
    corecore