106 research outputs found

    Decidability and definability with circumscription

    Get PDF
    AbstractWe consider McCarthy's notions of predicate circumscription and formula circumscription. We show that the decision problems “does θ have a countably infinite minimal model” and “does φ hold in every countably infinite minimal model of θ” are complete Σ12 and complete π12 over the integers, for both forms of circumscription. The set of structures definable (up to isomorphism) as first order definable subsets of countably infinite minimal models is the set of structures which are Δ12 over the integers, for both forms of circumscription. Thus, restricted to countably infinite structures, predicate and formula circumscription define the same sets and have equally difficult decision problems. With general formula circumscription we can define several infinite cardinals, so the decidability problems are dependent upon the axioms of set theory

    Semantic interpolation

    Full text link
    We treat interpolation for various logics

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class

    Complexity of Nested Circumscription and Nested Abnormality Theories

    Full text link
    The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose L_{CIRC}, which is an extension of generic propositional circumscription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of L_{CIRC} and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierarchy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In particular, we show that the generalization of Horn circumscription in the NAT framework remains CONP-complete, and that Horn NATs without fixed letters can be efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the ``cost'' of using L_{CIRC} (resp. NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.Comment: A preliminary abstract of this paper appeared in Proc. Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 169--174. Morgan Kaufmann, 200

    Preferential and Preferential-discriminative Consequence relations

    Full text link
    The present paper investigates consequence relations that are both non-monotonic and paraconsistent. More precisely, we put the focus on preferential consequence relations, i.e. those relations that can be defined by a binary preference relation on states labelled by valuations. We worked with a general notion of valuation that covers e.g. the classical valuations as well as certain kinds of many-valued valuations. In the many-valued cases, preferential consequence relations are paraconsistant (in addition to be non-monotonic), i.e. they are capable of drawing reasonable conclusions which contain contradictions. The first purpose of this paper is to provide in our general framework syntactic characterizations of several families of preferential relations. The second and main purpose is to provide, again in our general framework, characterizations of several families of preferential discriminative consequence relations. They are defined exactly as the plain version, but any conclusion such that its negation is also a conclusion is rejected (these relations bring something new essentially in the many-valued cases).Comment: team Logic and Complexity, written in 2004-200

    The Logic of Empirical Theories Revisited

    Get PDF
    • …
    corecore