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We study here the recursion theoretic complexity of the perfect (Herbrand) 
models of stratified logic programs. We show that these models lie arbi
trarily high in the arithmetic hierarchy. As a byproduct we obtain a simil?-r 
characterization of the recursion theoretic complexity of the set of conse
quences in a number of formalisms for non-monotonic reasoning. We show 
that under some circumstances this complexity can be brought down to 
recursive enumerability. 

l. INTRODUCTION 
A substantial amount of the recent research in logic programming concen
trated on the "safe" use of negation. This research led to an identification 
of a subclass of general logic programs, called stratified programs, which 
restrict the ways in which recursion and negation can be combined. Intui
tively, the use of negation is restricted by only applying it to already known 
relations. Thus, in defining a collection of relations some of them are first 
defined, perhaps recursively in terms of themselves, without the use of 
negation. New relations may then be defined in terms of themselves without 
using negation, and in terms of the previously defined relations and their 
negations. The process can be iterated until all of the relations in the collec
tions have been defined. 

Stratified programs were introduced in APT, BLA1R and WALKER 
[ABW87] and VAN GELDER [VG86]. They form a simple generalization of a 
class of database queries introduced in CHANDRA and HAREL [CH85]. 

Stratified programs have a natural semantics associated with them in the 
form of a specific Herbrand model. The special character of these models 
was captured by PRzYMUSINSKI [P87] who introduced the concept of perfect 
models. The designated model of a stratified program is its unique perfect 
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Herbrand model. In this paper we study the recursion theoretic complexity 
of the perfect (Herbrand) models of stratified programs. We show that 
they lie arbitrarily high in the arithmetic hierarchy. We also show that 
under certain circumstances their complexity can be brought down to recur
sive enumerability. 

The recent rise of interest in non-monotonic reasoning led to intensive 
research of the relative strength and expressive power of the formalisms 
involved. In this paper we take advantage of this fact by indicating that the 
results obtained here directly translate into results concerning default logic 
of REITER [R80], pointwise circumscription of LIFSCHITZ [L86] and Iterated 
Closed world Assumption of GELFOND, PRzYMUSINSKA and PRZYMUSINSKI 
[GPP86]. This allows us to assess the recursion theoretic complexity of 
these formalisms, too. 

Our results improve upon an observation of KOLAITIS [K87] who showed 
that the perfect models of stratified programs are A. j relations. Similarly as 
[CH85], [K87] is mainly concerned with the complexity of perfect models of 
stratified programs, in the absence of function symbols. 

2. PRELIMINARIES 
In this section we review the basic results and definitions dealing with 
stratified programs which form a basis for this paper. All logic program
ming notation and terminology not defined in this paper may be found in 
LLOYD [Ll84]. 

Recall that by a clause we mean a construct of the form A +...B 1'···,Bn, 
where A, B 1, ••• ,Bn (n ;;a.O) are atoms. A program is a finite, non-empty set 
of clauses. 

In turn, by a general clause we mean a construct of the form 
A~Li. ... ,Ln, where A is an atom and Li. ... ,Ln (n;;;i.O) are literals. A gen
eral program is a finite, non-empty set of general clauses. 

2.1. Stratified programs 
Given a general program P, we define its dependency graph Dp by putting 
for two relation symbols p,q 

(p,q)eDp iff there is a general clause in P using p in its head and q in its body. 

The arc(p,q) is called positive (resp. negative) if there is a general clause in 
P such that p appears in its head and q appears in a positive (resp. nega
tive) literal of its body. Note that an arc may be both positive and negative. 

Now, a general program is called stratified if in its depending graph Dp 
there is no cycle with a negative arc. 

We say that a relation symbol occurs negatively in a general program P, if 
it appears in a negative literal of a body of a general clause from P. By a 
definition of a relation symbol r (within P) we mean the set of all general 
clauses of P in whose heads r appears. 

An alternative definition of a stratified program is as follows. A general 
program P is stratified if for some partition 
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P = P1 U ... UPn 

the following two conditions hold for i = 1, ... ,n: 
i) if a relation symbol appears in a positive literal of a general clause 

from P;, then its definition is contained within U {Pj[j:i;;;;i}, 
ii) if a relation symbol appears in a negative literal of a general clause 

from P;, then its definition is contained within U{Pj[j<i}. 
We allow P 1 to be empty. A head of a general clause is viewed here as one 
of its positive literals. We call each P; a stratum. Note that the definition 
of any relation symbol is either empty or a subset of exactly one stratum. 

To study the semantics of stratified programs we first discuss operators 
on complete lattices. 

2.2. Finitary and growing operators 
Consider an arbitrary but fixed, non-empty, countable set. We denote its 
elements by A,B. Its subsets form a complete lattice with the order relation 
C, the least upper bound operator U and the greatest lower bound opera
tor n. We denote its elements by I,J,M. We now consider operators on 
this lattice. 

Given an operator T, we define its powers by 

TfO(l) =I, 

Tf(n + l)(l) = T(Tfn(I))U Tfn(I), 

Tfw(I) = U {Tfn(J)jn<w}. 

We call an operator T finitary if for every infinite sequence 

lo Cl1 c ... , 
T(U{lnln<w})C U{T(/n)Jn<w} 

holds. 
We call an operator T growing if for all l,J,M 

I c,J CM CTfw(/) 

implies 

T(J)CT(M). 

Thus "growing" is a restricted form of monotonicity. The following lemma 
will be needed in Section 3. 

LEMMA 1: Let T be a finitary and growing operator. For all A,l and n ~ 1, 

A eTfn(l) 

if! there exists a finitely branching tree of depth ~n such that 
• A is its root, 
• for every node B with direct descendants B t.····Bk> k >0, we have 

3 
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B eT(JU {B !>····Bk}), 
• every leaf is an element of Ttl(J). 

PROOF. For all I and n;;ai.l, Ttn(I) is countable, so for some sequence 
So CS 1 c ... of finite subsets of Ttn(I) 

Ttn(J) = U {J USklk<w}. 

Since T is finitary and growing 

T(Ttn(I)) = U{T(JUSk)ik<w}. 

Thus for all A,I and n ;;;i.1, 

A eT(Ttn(I)) 

iff for some Bi. ... ,Bk eTtn(I), k~O. we have A eT(I U {B I>····Bk}). 
From this the claim follows by a simple induction on n. 0 

2.3. Semantics of stratified programs 
We now summarize the notions and results of [ABW87]. Given a general 
program P, we denote by ground (P) the set of all ground instances of gen
eral clauses of P. To avoid some uninteresting complications we assume 
that ground (P) is always non-empty. Consider now the complete lattice 
consisting of all subsets of the Herbrand base Bp of P. These subsets are in 
the sequel identified with Herbrand interpretations of P. We only study 
here Herbrand interpretations and models, so we drop the qualification 
"Herbrand". 

Given a general program P and an interpretation M of P, we put 

Tp(M) = {A I for some literals Li. ... ,Ln 

A ~L I>···•Ln is in ground (P) 

and Mt=L1/\. .. /\Ln}· 

We call a general program P semi-positive, if no relation symbol which 
appears in a head of a general clause of P, also appears negatively in P. 
The following lemma summarizes the results we shall need in the sequel. 

LEMMA 2: 
i) For a general program P, Tp is finitary. 
ii) For a semi-positive program P, Tp is growing. 
iii) A stratum of a stratified program is semi-positive. 0 

Thus for a stratum P of a stratified program, we can use lemma 1 to 
characterize the sets Tptn(I). 

Consider now a stratified program P with a stratification 

P = P 1 U ... UPn. 
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We assign to P a Herb rand model M p by putting 

M 1 Tp, fw(0), 

M1 Tp2 fw(M1), 

and letting 

Mp =Mn. 

Mp is called in [ABW87] the standard model of P. 
Some general results on non-monotonic operators on complete lattices, 

like lemma 2, were established in [ABW87], to prove the properties of 
stratified programs and their standard models that are listed in the follow
ing theorem. In the theorem, a supported model M has the property that if 
ground atom A is true in M, then there is a ground instance A~Li, ... ,Ln 
of a clause in P such that L 1 /\. .. /\Ln is true in M. L 1 /\. .. ALn can then be 
viewed as an explanation for A. Thus in a supported model every true 
ground atom has an explanation. · 

THEOREM 3: Let P be a stratified program. Then: 
i) M p is independent of the stratification of P. 
ii) Mp is a minimal supported model of P. 
iii) There is an alternative definition of M p that uses iteratively smallest 

models as follows: 

MI n { MIM is supported model of pi}, 

M 2 n {MIM is supported model of P 2 and M nBp, =Mi}, 

5 

Mn n {M\M is supported model of Pn and MnBP,u ... uP._, =Mn-i}, 

Mp =Mn. 

iv) Mp is a model of comp(P), CLARK'S [Cl 78] completion of P. 
v) When P has no function symbols, there is a backchaining interpreter for 

P which combines negation as failure with loop checking to test for 
membership in M p. On each inference cycle the interpreter fully instan
tiates a clause. 0 

Other properties of stratified programs were proved in [VG86]. 
When P is a program, M p = T p f w( 0) and M p coincides with the least 

Herbrand model of p introduced in VAN EMDEN and KOWALSKI [VEK76]. 
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2.4. Perfect model semantics 
Further characterization of the model Mp was provided by PRZYMUSINSKI 

[P87] who introduced the concept of perfect models. The essence of his 
approach can be summarized as follows. 

Consider a general program P. Let < be a well founded ordering on the 
Herbrand base Bp of P. If A <B then we say that A has a higher priority 
than B. 

Let M,N be interpretations of P. We call N preferable to M if M¥:=N 
and for every B EN \ M there exists A EM\ N such that A <B. We call a 
model of P perfect if no other model of P is preferable to it. 

Intuitively, N is preferable to M if it is obtained from M by possibly 
adding/removing some atoms and an addition of an atom to N is always 
compensated by the simultaneous removal from M of an atom of higher 
priority. This reflects the fact that we are determined to minimize higher 
priority atoms even at the cost of adding atoms of lower priority. 

The above definitions are parameterized by the well founded ordering <. 
We now consider a fixed stratified program P and a well founded ordering 
on B p obtained by first, putting for two relation symbols 

p <q iff there is a path from q top in Dp with a negative arc, 

and then putting for two ground atoms A,B 

A <B iff p <q where p appears in A and q appears in B. 

Note that if p < q, then in any stratification of P, p is defined in a lower 
stratum than q is. Thus < is well founded. This implies that the latter ord
ering < is indeed a well founded ordering on Bp. In this ordering ground 
atoms with a relation symbol from a lower stratum have a higher priority. 
The following theorem from [P87] characterizes the model M p of P. 

THEOREM 4: Let P be a stratified program. Then Mp is the unique perfect 
model of P. 0 

3. COMPUTABILITY 

3.1. Preliminaries 
The results given in the next section are based on a recursion-theoretic 
characterization of the relations computable by logic programs. We recall 
here the basic concepts of recursion theory. We assume the reader is fami
liar with the inductive definition of (total) recursive functions over the 
natural numbers, N, obtained by closing a set of basic functions by compo
sition and application of minimization under certain totality conditions; 
see, for example rules Rl, R2 and R3 in SHOENFIELD [Sh67, chapter 6]. By 
removing the restriction on when minimization is applicable the partial 
recursive functions are obtained. A relation over N is recursive iff its 
characteristic function is recursive. (Our usage of the term relation differs 
from that of Shoenfield). 
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We can relativize the total recursive functions by adding new functions 
to the set of basic functions from which we previously obtained the rest of 
the recursive functions. If F is a set of functions, let Ree (F) be set of func
tions obtained in this way. The functions in Ree (F) are said to be recursive 
in F. A relation R is recursive in a set of relations C iff the characteristic 
function of R is recursive in the set of characteristic functions of relations 
in C. The arithmetic hierarchy is defined as follows. 

Here and elsewhere m stands for a sequence of natural numbers. Similar 
convention is used for terms and variables. 

};g is the of all relations whose characteristic functions are in Ree ( 0 ), 
which is the set of all recursive relations. 

II~ is the set of all relations whose complement (with respect to N) is in 
};~. 

};~ + 1 is the set of all relations R satisfying 

m eR iff 3n[(m,n)eQ] 

for some Q in n~. 

(t) 

In general, if R is defined via an equivalence of the form given in (t) and 
Q is recursive in a set of relations C, then R is said to be recursively enumer
able in C. Note that II8=~8. and that the familiar recursively enumerable 
relations are just those relations recursively enumerable in rrg. 
Now, a relation R is (many-one) complete for a class of relations C iff R eC 
and for each relation Q e C there is a total recursive function f such that 

m eQ iff /(m)eR. 

Intuitively, R is representative of the hardest decision problem in C. (One 
may note that the distinction between Turing completeness and many-one 
completeness is immaterial for our results in the next section.) 

LEMMA 5: A relation R is in };~ + 1 if! R is recursively enumerable in Il~. 
0 

The preceding lemma is less trivial than it may seem since for R to be 
recursively enumerable in IT~ there must be a relation Q which is recursive 
in IT~ such that (t), but this does not mean that Q itself need be in Il~. 
However Q is recursive in IT~ iff Q is recursive in ~~. Thus 

COROLLARY 6: A relation R is in };~+ 1 iff R is recursively enumerable in};~. 
0 
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3.2. Computability over Herbrand universe 
Our task is to adapt the entire previous discussion of computability over 
the natural numbers to computability over Herbrand universes. Of course 
this can be done in one stroke by effectively identifying the ground terms 
with the natural numbers. However, if we want to characterize what general 
programs compute in recursion-theoretic terms, the correspondence between 
the Herbrand universe and N is delicate. This point can be brought out 
vividly by reflecting on the following task: write a program P such that for 
a ground term t, +-r(t) succeeds iff t is a constant. Note that this cannot be 
done if, for example, the underlying Herbrand universe contains infinitely 
many constant symbols and infinitely many functions symbols. It follows 
that if the Herbrand universe is generated by an infinite alphabet then not 
every computable relation over such a Herbrand universe can be computed 
by a logic program. 

We now analyse what logic programs compute in recursion-theoretic 
terms under the assumption that the underlying Herbrand universe is 
finitely generated. We assume a fixed finitely generated Herbrand universe 
UL with at least one constant and one function symbol. All general pro
grams P considered are such that their Herbrand universe Up coincides 
with UL· 

A program P C:f!mputes a relation R over UL using a relation symbol r if 
for all sequences t of elements from UL 

t ER iff there exists an SLD-refutation of PU { +-r(t) }. 

A program J' defines a relation R over UL using a relation symbol r if for 
all sequences t of elements from UL 

- -
t ER iff Pt=r(t). 

Here and elsewhere we assume that R and _r have the same arity which 
also coincides with the length of the sequence t. 

The following theorem links computability and definability and the least 
Herbrand model of a program, and is fundamental in logic programming 
(cf APT and VAN EMDEN [AVE82]; see also Theorem 4.1 in APT [A]). 

THEOREM 7: Let P be a program, Ra relation over Uz., and r a relation ~m
bol. Then 
i) P computes R using r iff P defines using_(. 
ii) P defines R using r iff for all sequences t of elements from U z., 

- -
t ER iff r(t)EMp. 0 

This theorem allows us to identify computability with definability and 
reduce the latter to definability over the least Herbrand model. Note that 
this theorem also holds when UL is finite and nonempty, which arises when 
UL consists of a finite set of constants. 
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The identification of UL with N is obtained via the next theorem. 

THEOREM 8: (Enumeration Theorem) A program successor which defines the 
successor relation on UL using the binary relation symbol succ can be con
structed. More precisely, an ordering < on UL of order-type w can be con
structed such that for all terms s, t EU v t is an < - successor of s iff successor 
1=succ(s,t). D 

The enumeration theorem above is due to ANDREKA and NEMET! [AN78]. 
BLAIR [B 186] gives a version in which the successor program satisfies addi
tional semantic constraints related to finite failure of goals. 

This theorem allows us to identify a finitely generated Herbrand universe 
UL of the form assumed at the beginning of this section with natural 
numbers. This identification allows us to transfer the notions of recursion 
theory from N to UL, and subsequently from UL to Bp. Our subsequent 
investigations rely on this transfer. 

The following lemma due to ANDREK.A and NEMETI [AN] (see Corollary 
4.5 in [A]) connects the notion of definability by programs with the recur
sion theoretic concepts. 

LEMMA 9: A relation R on UL is recursively enumerable iff some program P 
defines R using a relation symbol r. D 

3.3. Computability by programs 
We start our investigations with the following lemma which strictly speak
ing, is not needed to prove our main results. However, it is interesting in 
itself. 

LEMMA 10: For a program P, the relation {(n,A)IA ETptn(0),n<w} is 
recursive. 

PROOF. Following WOLFRAM, MAHER and LASSEZ [WML], by a BF
derivation of P'U {N} for a program P' and a goal N we mean a refinement 
of the usual SLD-derivation in which in each goal all atoms are selected. 
(BF stands for Breadth-Fust.) If the last goal is empty, such a derivation is 
called a refutation. 

Now, 

A ETpjn(0) iff there is a BF-refutation 

of ground(P) U { <E-A} 

of length at most n. 

However, by a lifting lemma for BF-resolution, proved in [WML], in fact 
the following equivalence holds: 

A ETpjn(0) iff there is a BF-refutation 
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of PU{~A} 

of length at most n. 

But the relation 

{(A,n,~)I~ is a BF-refutation of Pu {~A} of length at most n} 

is recursive. Moreover, ignoring the choice of variables in goals and mgu's, 
there are only finitely many BF-refutations of PU {~A} of length at most 
n. Tbis proves the claim. D 

COROLLARY 11: For a program P, Tptw( 0) is recursively enumerable. D 

Perhaps surprisingly, lemma I 0 does not relativize. Indeed, for a program 
P, Tptn(M) is not recursive in M. To see this, note that Tp(M) need not be 
recursive in M. 

EXAMPLE 12: Let Q be a recursively enumerable, non-recursive, subset of 
UL. For some recursive relation R 

sEQ itf 3t[(s,t)ER]. 

Let P be the program 

q(X)~r(X, Y), 

and let M={r(s,t)i(s,t)ER}. Then Tp(M)={q(s)isEQ}. M is recursive; 
Tp(M) is not. D 

3.4. Computability by semi-positive programs 
However, Tptn(M) is recursively enumerable in M. Tbis holds for semi
positive programs, as well. We need this fact later; to establish it we first 
need the following observation. Here, <Bi. ... ,Bk> stands for a natural 
number associated with the sequence of atoms B 1>···,Bk in a standard way 
(see [Sh67, chapter 6)). 

LEMMA 13: For a general program P, the relation 

{(A, <Bi. ... ,Bk>)IA ETp(MU {BI>····Bk})} 

is recursively enumerable in M. 

PROOF. Direct, by the definition of Tp and the standard techniques of 
recursion theory. D 

We can now prove the desired lemma. 

LEMMA 14: For a semi-posztzve program P, the relation 
{(n,A)IA ETptn(M),n<w} is recursively enumerable in M. 
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PROOF. Thanks to lemma 2 we can use lemma 1 to characterize the rela
tion in question. This characterization implies by lemma 13 and the stan
dard techniques of recursion theory, that this relation is indeed recursively 
enumerable in M. D 
The following generalizes corollary 11. 

COROLLARY 15: For a semi-positive program P, the relation Tpt"'(M) is 
recursively enumerable in M. D 

For an interpretation Mand a relation symbol r, let 

Mir= {AIA eM and the relation symbol of A is r}. 

We say that an interpretation M of P is strongly recursively enumerable, 
(or strongly R.E., in short) if Mis recursively enumerable and for each rela
tion symbol r which appears negatively in P, Mir is recursive. 

We now show that under some circumstances the relations studied in 
lemmata 13 and 14 and corollary 15 can be characterized in a more precise 
way. 

LEMMA 16: Consider a general program P and an interpretation M. Suppose 
that Mis strongly R.E. Then Tp(M) is recursively enumerable. 

PROOF. We have for all ground atoms A 

A eTp(M) 

iff for some literals L 1, ••• ,Ln 
i) A.,....Ll>···•Ln is in ground (P), 
ii) for every positive literal B from Ll>···•Ln we have BeM, 
iii) for every negative literal --.B from Li. ... ,Ln whose relation symbol is r, 

we have B l!Mlr. 
Now by the standard techniques of recursion theory, Tp(M) is indeed 

recursively enumerable. D 

LEMMA 17: Consider a semi-positive program P and an interpretation M. 
Suppose that Mis strongly R.E. Then the relation {(n,A)IA ETptn(M),n<"'} 
is recursively enumerable. 

PROOF. Analogous to the proof of lemma 14 but using lemma 16 instead 
of lemma 13. 

CoROLLARY 18: Consider a semi-positive program P and an interpretation M. 
Suppose that M is strongly R.E. Then the relation Tpt~M) is recursively 
enumerable. D 



12 KR. Apt, HA. Blair I Classification of Perfect Models 

4. ARITHMETIC CLASSIFICATION OF Mp 
We are now ready to prove the main results of the paper. 

THEOREM 19: If Pisa stratified program with n strata, then Mp is~~-

PROOF. We proceed by induction on n. If n = 1, then Pisa program and 
the theorem follows from corollary 11. 

Now suppose _the. statement of the theorem holds for n - I, and P is 
stratified by P1 U ... UPn· We have Mp= Tp. t"'(MP,u ... uP._,), so by corol
lary 15 and lemma 2 iii) Mp is recursively enumerable in,MP,u ... uP._,. By 
the induction hypothesis, MP,u ... uP._, is ~~- 1 . Therefore by corollary 6, 

0 . 
Mp is ~n· D 

THEOREM 20: Let P be a stratified program. Suppose that for each relation 
symbol r which occurs negatively in P, Mplr is recursive. Then Mp is recur
sively enumerable. 

PROOF. Consider a stratification P 1 U ... UPn of P with the corresponding 
sequence of models Ml>···,Mn with Mp=Mn. We prove by induction on 
i = l, ... ,n that each M; is recursively enumerable. 

For i = 1 it is the content of corollary 11. Assume the claim holds for 
some i, 1 es;;;i <n. 

Consider a relation symbol r which occurs negatively in P; + 1. Then the 
definition of r is contained in U {Pj[jo;;;;;i}, so Mpir=M;lr. By assumption, 
for every r which occurs negatively in P; + 1, M; lr is recursive. Thus by 
lemma 2 iii) and corollary 18 applied to P; + 1 and M;, M; + 1 is recursively 
enumerable. D 

Of course, it is in general not clear how to check that for a relation sym
bol r and an interpretation M, Mir is recursive. However, in some situa
tions this is obvious - when r is defined by enumeration, i.e. exclusively by 
a list of unit clauses. Then for every such r, Mplr is recursive. 

Call a general program strongly stratified if each relation symbol which 
occurs negatively in P is defined exclusively by unit clauses. Obviously, 
every strongly stratified program is stratified. By the above observation 
and theorem 20 we have: 

COROLLARY 21: Let P be a strongly stratified program. Then Mp is recur-
sively enumerable. D 
Finally, we prove the following: 

THEOREM 22: For each n;;;..: I there is a stratified program P with n strata for 
which Mp is ~~-complete. 

PROOF. We prove the following stronger claim from which the theorem 
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follows by choosing R to be I~-complete: for each I~ relation Rover UL 
we can find a stratified program P with n strata such that for some relation 
symbolr 

s eR iff r(i)eMp. 

We now proceed by induction on n. 
For n =I the claim is a consequence of lemma 9 and theorem 7 ii). Now 

assume the claim holds for a particular n ;;;i.: 1. Let R be a I~+ 1 relation 
over UL· For some II~ relation S over UL 

s eR iff 3t[(i,t) eS]. 

Let Q be the complement of S in UL· Q is I~. By the incjuction 
hypothesis we can find a stratified program P with n strata such that for 
some relation symbol q 

(i,t)eQ iff q(i,t)EMp. 

We now add to P two clauses defining R in terms of S and S in terms of 
Q. Let P n + 1 consist of the clauses 

PR(X)+-ps(X, Y), 
- -

Ps(X, Y)+--.q(X, Y) 

where PR and Ps are relation symbols not occurring in P. Let 
P'=P UPn+l· Then 

Thus, 

Mr = Mp U {pR(i)l3t[(i,t)eS]} U {p5{i,t)l(s,t)EQ} 

= Mp U {pR(i)is eR} U {ps(i,t)l(i,t)eS}. 

5. APPLICATIONS TO NON-MONOTONIC REASONING 

We now relate our results to three formalisms commonly used in the area 
on non-monotonic reasoning. We follow here their description given in 
PRzYMUSINSKI (P87]. 

5.1. Default logic 
One of them is default logic introduced in [R80]. In default logic, apart of 
the usual rules of first order logic, also default rules are used. They have the 
form 

B: MC .... ,MCn 

A 

where.A, B, c .... ,Cn are first order formulas. Such a rule intuitively means: 
"if B holds and each of C;-s can be (separately) consistently assumed, then 
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conclude A". The usual rules and the default rules induce a natural con
cept of an extension of a set of first order formulas. We omit here its for
mal definition. This extension, if it is unique, denotes the set of conse
quences of a set of formulas under the default rules. 

PRzYMUSINSK.A [Pa87] related general programs to default logic by noting 
that a general clause A-A ., ... ,Am, -,B., .. ,-,Bn where n>O naturally 
translates into a default rule 

A 11\. .. AAm : M-.Bi. .. ,M-,Bn 

A 

Given a general program P, let T denote the set of (positive) clauses of P 
and let Dp denote the set of default rules obtained by the above transla
tion. PRzYMUSINSKA [Pa87] showed that given a stratified program P, the 
default rules in Dp induce a unique extension Dp(T) of T which coincides 
with the set of formulas true in the perfect model of P. 

By theorems 19, 20 and 22 we immediately obtain 

CoROLLARY 23: 
i) Let P be a stratified program with n strata. Then Dp(T) is l':~. 
ii) Let P be a strongly stratified program Then Dp(T) is :IY. 
iii) For each n ;;;;.1 there is a default theory whose set of consequences is :I~

complete. 0 

5.2. Circumscription 
Another approach to non-monotonic reasoning is based on the circumscrip
tion method of McCarthy. We discuss here its variant called prioritized cir
cumscription described in [MC86]. 

Let q,(_R,Q) be a first order formula whose relation symbols appear in 
R ={r., ... ,rm} or Q={q1>···•qn), where R nQ= 0, and let R'={r'., ... ,r'm} 
and Q'={q'., ... ,q'n} be sets of relation symbols of the same arities as those 
in R and Q, correspondingly. By a parallel circumscription of R in f/> with 
variables Q we mean the following second order formula CIRC(q,;R;Q): 

q,(R,Q)/\\'R',Q'[q,(_R',Q')/\(R'-+R)-+ R'=RJ, 

where R'-+R stands for 
m 
/\ \fi(r';(i)-+r;(i)) 

i=l 

and R' = R stands for 
m 
/\ \fi(r';(i~r;(i)). 

i=l 

Intuitively, CJRC(q,;R ;Q) states that relation symbols from R are 
minimal under the assumption that 3Q'q,(_R,Q') holds and moreover, 
q,(_R,Q) does hold. 

Now, consider disjoint sets of relation symbols R 1, ••• ,Rn. By a prioritized 
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circumscription of a second order formula cp with priorities R 1 > ... >Rn we 
mean the following second order formula CIRC(cp,R 1 > ... >Rn): 
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CIRC(cj>;R l ;{R2 u ... u Rk} )/\CIRC(cp;R1; { R3 u ... u Rn})/\. .. /\CJRC(cp;Rn; 0) 

Intuitively, this formula states that the relation symbols in R 1, ... ,Rn are 
minimized in a particular order given by the priorities R 1 > ... >Rn. 

Denote the set of first order formulas implied by a second formula cp by 
Cn(~)- . Consider now a stratified program P with a stratification 
P 1 U ... UP n. Let R 1>···· Rn be the sets of relation symbols defined in 
PI>···•Pm respectively. After an identification of P with a conjunction of its 
general clauses, P can be viewed as a second order formula whose relation 
symbols are those in Rl>···•Rk. 

LIFSCHITZ [L87] showed that the set of formulas Cn 
(CIRC(P,R 1> ... >Rk)) coincides with the set of formulas true in the per
fect model of P. 

Again, by theorems 19, 20 and 22 we obtain 

COI~.OL1:ARY 24: Let P be a stratified program with a stratification 
P 1 U ... UP n· Let R 1'···, Rn be the sets of relation symbols defined in P 1'··. ,P"' 
respectively. 
i) Cn(CIRC(P,R1 > ... >Rn)) is~~-
ii) If P is strongly stratified, then Cn(CIRC(P,R 1 > ... >Rn)) is ·~s. 
iii) For each n ~ 1 there is a second order formula cp with disjoint sets of rela

tion symbols Q1>--.Qn such that Cn(CIRC(cp,Q 1> ... >Qn)) is ~~
complete. 0 

5.3. Iterated closed world assumption 
Finally, we consider the Iterated Closed World Assumption (ICWA) intro
duced in [GPP86]. ICWA is a generalization of the Closed World Assump
tion of REITER [R78] (CWA). 

Given a set of (first order) formulas P we define first 

CWA(P) = PU {-.A IA is a ground atom such that PFA does not hold} 

[R78] showed that for a program P, CWA (P) is consistent. Unfortunately, 
this result does not hold for a general program P. To resolve this problem 
[GPP86] concentrated on the case of stratified programs. . . 

Consider a stratified program P with a stratification P 1 U ... UP n. We 
define 

ICWA(P 1) = CWA(P1), 

ICWA(P;+i) = CWA(P;+i UJCWA(P;)) for I:o;;;;;i<n, 

ICWA(P) = ICWA(Pn)-

[GPP86] showed that for a stratified program P, ICWA(P) has exactly one 
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model, namely the perfect model of P. 
By theorems 19, 20 and 22 we obtain 

COROLLARY 25: 
i) Let P be a stratified program with n strata. Then ICWA(P) is~~. 
ii) Let P be a strongly stratified program. Then JCWA(P) is~~. 
iii) For each n;;;;;.: 1 there is a stratified program with n strata such that 

ICWA(P) is ~~-complete. 0 
For every reasoning method it is preferable from the logic point of view 

that the set of consequences obtained by it is decidable (recursive) or semi
decidable (recursively enumerable). We showed here that this is not the case 
for a majority of commonly used formalisms in the area of non-monotonic 
reasoning. However, we also indicated a reasonable restriction - to strongly 
stratified programs, which allows us to bring down this complexity to recur
sive enumerability. 
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