
Fundamenta Informaticae XIII (1990) 1-17
TQS Press

ARITHMETIC CLASSIFICATION OF PERFECT MODELS
OF STRATIFIED PROGRAMS*

Krzysztof R. APT

Centre for Mathematics and Computer Science,
P.O. Box4079, 1009 AB Amsterdam, Netherlands

Howard A. BLAIR

School of Computer and Information Science,
313 Link Hall, Syracuse University,
Syracuse, NY 13244, USA

We study here the recursion theoretic complexity of the perfect (Herbrand)
models of stratified logic programs. We show that these models lie arbi­
trarily high in the arithmetic hierarchy. As a byproduct we obtain a simil?-r
characterization of the recursion theoretic complexity of the set of conse­
quences in a number of formalisms for non-monotonic reasoning. We show
that under some circumstances this complexity can be brought down to
recursive enumerability.

l. INTRODUCTION
A substantial amount of the recent research in logic programming concen­
trated on the "safe" use of negation. This research led to an identification
of a subclass of general logic programs, called stratified programs, which
restrict the ways in which recursion and negation can be combined. Intui­
tively, the use of negation is restricted by only applying it to already known
relations. Thus, in defining a collection of relations some of them are first
defined, perhaps recursively in terms of themselves, without the use of
negation. New relations may then be defined in terms of themselves without
using negation, and in terms of the previously defined relations and their
negations. The process can be iterated until all of the relations in the collec­
tions have been defined.

Stratified programs were introduced in APT, BLA1R and WALKER
[ABW87] and VAN GELDER [VG86]. They form a simple generalization of a
class of database queries introduced in CHANDRA and HAREL [CH85].

Stratified programs have a natural semantics associated with them in the
form of a specific Herbrand model. The special character of these models
was captured by PRzYMUSINSKI [P87] who introduced the concept of perfect
models. The designated model of a stratified program is its unique perfect

~biKJrrre~
Centrum voor W1sk1¥1de en n~<?

1990, Polish Mathematical Society A.m1:t,.,r'11!"'

2 K.R. Apt, HA. Blair I Classification of Perfect Models

Herbrand model. In this paper we study the recursion theoretic complexity
of the perfect (Herbrand) models of stratified programs. We show that
they lie arbitrarily high in the arithmetic hierarchy. We also show that
under certain circumstances their complexity can be brought down to recur­
sive enumerability.

The recent rise of interest in non-monotonic reasoning led to intensive
research of the relative strength and expressive power of the formalisms
involved. In this paper we take advantage of this fact by indicating that the
results obtained here directly translate into results concerning default logic
of REITER [R80], pointwise circumscription of LIFSCHITZ [L86] and Iterated
Closed world Assumption of GELFOND, PRzYMUSINSKA and PRZYMUSINSKI
[GPP86]. This allows us to assess the recursion theoretic complexity of
these formalisms, too.

Our results improve upon an observation of KOLAITIS [K87] who showed
that the perfect models of stratified programs are A. j relations. Similarly as
[CH85], [K87] is mainly concerned with the complexity of perfect models of
stratified programs, in the absence of function symbols.

2. PRELIMINARIES
In this section we review the basic results and definitions dealing with
stratified programs which form a basis for this paper. All logic program­
ming notation and terminology not defined in this paper may be found in
LLOYD [Ll84].

Recall that by a clause we mean a construct of the form A +...B 1'···,Bn,
where A, B 1, ••• ,Bn (n ;;a.O) are atoms. A program is a finite, non-empty set
of clauses.

In turn, by a general clause we mean a construct of the form
A~Li. ... ,Ln, where A is an atom and Li. ... ,Ln (n;;;i.O) are literals. A gen­
eral program is a finite, non-empty set of general clauses.

2.1. Stratified programs
Given a general program P, we define its dependency graph Dp by putting
for two relation symbols p,q

(p,q)eDp iff there is a general clause in P using p in its head and q in its body.

The arc(p,q) is called positive (resp. negative) if there is a general clause in
P such that p appears in its head and q appears in a positive (resp. nega­
tive) literal of its body. Note that an arc may be both positive and negative.

Now, a general program is called stratified if in its depending graph Dp
there is no cycle with a negative arc.

We say that a relation symbol occurs negatively in a general program P, if
it appears in a negative literal of a body of a general clause from P. By a
definition of a relation symbol r (within P) we mean the set of all general
clauses of P in whose heads r appears.

An alternative definition of a stratified program is as follows. A general
program P is stratified if for some partition

K.R. Apt, HA. Blair I Classification of Perfect Models

P = P1 U ... UPn

the following two conditions hold for i = 1, ... ,n:
i) if a relation symbol appears in a positive literal of a general clause

from P;, then its definition is contained within U {Pj[j:i;;;;i},
ii) if a relation symbol appears in a negative literal of a general clause

from P;, then its definition is contained within U{Pj[j<i}.
We allow P 1 to be empty. A head of a general clause is viewed here as one
of its positive literals. We call each P; a stratum. Note that the definition
of any relation symbol is either empty or a subset of exactly one stratum.

To study the semantics of stratified programs we first discuss operators
on complete lattices.

2.2. Finitary and growing operators
Consider an arbitrary but fixed, non-empty, countable set. We denote its
elements by A,B. Its subsets form a complete lattice with the order relation
C, the least upper bound operator U and the greatest lower bound opera­
tor n. We denote its elements by I,J,M. We now consider operators on
this lattice.

Given an operator T, we define its powers by

TfO(l) =I,

Tf(n + l)(l) = T(Tfn(I))U Tfn(I),

Tfw(I) = U {Tfn(J)jn<w}.

We call an operator T finitary if for every infinite sequence

lo Cl1 c ... ,
T(U{lnln<w})C U{T(/n)Jn<w}

holds.
We call an operator T growing if for all l,J,M

I c,J CM CTfw(/)

implies

T(J)CT(M).

Thus "growing" is a restricted form of monotonicity. The following lemma
will be needed in Section 3.

LEMMA 1: Let T be a finitary and growing operator. For all A,l and n ~ 1,

A eTfn(l)

if! there exists a finitely branching tree of depth ~n such that
• A is its root,
• for every node B with direct descendants B t.····Bk> k >0, we have

3

4 K.R. Apt, HA. Blair I Classification of Perfect Models

B eT(JU {B !>····Bk}),
• every leaf is an element of Ttl(J).

PROOF. For all I and n;;ai.l, Ttn(I) is countable, so for some sequence
So CS 1 c ... of finite subsets of Ttn(I)

Ttn(J) = U {J USklk<w}.

Since T is finitary and growing

T(Ttn(I)) = U{T(JUSk)ik<w}.

Thus for all A,I and n ;;;i.1,

A eT(Ttn(I))

iff for some Bi. ... ,Bk eTtn(I), k~O. we have A eT(I U {B I>····Bk}).
From this the claim follows by a simple induction on n. 0

2.3. Semantics of stratified programs
We now summarize the notions and results of [ABW87]. Given a general
program P, we denote by ground (P) the set of all ground instances of gen­
eral clauses of P. To avoid some uninteresting complications we assume
that ground (P) is always non-empty. Consider now the complete lattice
consisting of all subsets of the Herbrand base Bp of P. These subsets are in
the sequel identified with Herbrand interpretations of P. We only study
here Herbrand interpretations and models, so we drop the qualification
"Herbrand".

Given a general program P and an interpretation M of P, we put

Tp(M) = {A I for some literals Li. ... ,Ln

A ~L I>···•Ln is in ground (P)

and Mt=L1/\. .. /\Ln}·

We call a general program P semi-positive, if no relation symbol which
appears in a head of a general clause of P, also appears negatively in P.
The following lemma summarizes the results we shall need in the sequel.

LEMMA 2:
i) For a general program P, Tp is finitary.
ii) For a semi-positive program P, Tp is growing.
iii) A stratum of a stratified program is semi-positive. 0

Thus for a stratum P of a stratified program, we can use lemma 1 to
characterize the sets Tptn(I).

Consider now a stratified program P with a stratification

P = P 1 U ... UPn.

K.R. Apt, HA. Blair I Classification of Perfect Models

We assign to P a Herb rand model M p by putting

M 1 Tp, fw(0),

M1 Tp2 fw(M1),

and letting

Mp =Mn.

Mp is called in [ABW87] the standard model of P.
Some general results on non-monotonic operators on complete lattices,

like lemma 2, were established in [ABW87], to prove the properties of
stratified programs and their standard models that are listed in the follow­
ing theorem. In the theorem, a supported model M has the property that if
ground atom A is true in M, then there is a ground instance A~Li, ... ,Ln
of a clause in P such that L 1 /\. .. /\Ln is true in M. L 1 /\. .. ALn can then be
viewed as an explanation for A. Thus in a supported model every true
ground atom has an explanation. ·

THEOREM 3: Let P be a stratified program. Then:
i) M p is independent of the stratification of P.
ii) Mp is a minimal supported model of P.
iii) There is an alternative definition of M p that uses iteratively smallest

models as follows:

MI n { MIM is supported model of pi},

M 2 n {MIM is supported model of P 2 and M nBp, =Mi},

5

Mn n {M\M is supported model of Pn and MnBP,u ... uP._, =Mn-i},

Mp =Mn.

iv) Mp is a model of comp(P), CLARK'S [Cl 78] completion of P.
v) When P has no function symbols, there is a backchaining interpreter for

P which combines negation as failure with loop checking to test for
membership in M p. On each inference cycle the interpreter fully instan­
tiates a clause. 0

Other properties of stratified programs were proved in [VG86].
When P is a program, M p = T p f w(0) and M p coincides with the least

Herbrand model of p introduced in VAN EMDEN and KOWALSKI [VEK76].

6 K.R. Apt, HA. Blair I Classification of Perfect Models

2.4. Perfect model semantics
Further characterization of the model Mp was provided by PRZYMUSINSKI

[P87] who introduced the concept of perfect models. The essence of his
approach can be summarized as follows.

Consider a general program P. Let < be a well founded ordering on the
Herbrand base Bp of P. If A <B then we say that A has a higher priority
than B.

Let M,N be interpretations of P. We call N preferable to M if M¥:=N
and for every B EN \ M there exists A EM\ N such that A <B. We call a
model of P perfect if no other model of P is preferable to it.

Intuitively, N is preferable to M if it is obtained from M by possibly
adding/removing some atoms and an addition of an atom to N is always
compensated by the simultaneous removal from M of an atom of higher
priority. This reflects the fact that we are determined to minimize higher
priority atoms even at the cost of adding atoms of lower priority.

The above definitions are parameterized by the well founded ordering <.
We now consider a fixed stratified program P and a well founded ordering
on B p obtained by first, putting for two relation symbols

p <q iff there is a path from q top in Dp with a negative arc,

and then putting for two ground atoms A,B

A <B iff p <q where p appears in A and q appears in B.

Note that if p < q, then in any stratification of P, p is defined in a lower
stratum than q is. Thus < is well founded. This implies that the latter ord­
ering < is indeed a well founded ordering on Bp. In this ordering ground
atoms with a relation symbol from a lower stratum have a higher priority.
The following theorem from [P87] characterizes the model M p of P.

THEOREM 4: Let P be a stratified program. Then Mp is the unique perfect
model of P. 0

3. COMPUTABILITY

3.1. Preliminaries
The results given in the next section are based on a recursion-theoretic
characterization of the relations computable by logic programs. We recall
here the basic concepts of recursion theory. We assume the reader is fami­
liar with the inductive definition of (total) recursive functions over the
natural numbers, N, obtained by closing a set of basic functions by compo­
sition and application of minimization under certain totality conditions;
see, for example rules Rl, R2 and R3 in SHOENFIELD [Sh67, chapter 6]. By
removing the restriction on when minimization is applicable the partial
recursive functions are obtained. A relation over N is recursive iff its
characteristic function is recursive. (Our usage of the term relation differs
from that of Shoenfield).

KR. Apt, HA. Blair I Classification of Perfect Models 7

We can relativize the total recursive functions by adding new functions
to the set of basic functions from which we previously obtained the rest of
the recursive functions. If F is a set of functions, let Ree (F) be set of func­
tions obtained in this way. The functions in Ree (F) are said to be recursive
in F. A relation R is recursive in a set of relations C iff the characteristic
function of R is recursive in the set of characteristic functions of relations
in C. The arithmetic hierarchy is defined as follows.

Here and elsewhere m stands for a sequence of natural numbers. Similar
convention is used for terms and variables.

};g is the of all relations whose characteristic functions are in Ree (0),
which is the set of all recursive relations.

II~ is the set of all relations whose complement (with respect to N) is in
};~.

};~ + 1 is the set of all relations R satisfying

m eR iff 3n[(m,n)eQ]

for some Q in n~.

(t)

In general, if R is defined via an equivalence of the form given in (t) and
Q is recursive in a set of relations C, then R is said to be recursively enumer­
able in C. Note that II8=~8. and that the familiar recursively enumerable
relations are just those relations recursively enumerable in rrg.
Now, a relation R is (many-one) complete for a class of relations C iff R eC
and for each relation Q e C there is a total recursive function f such that

m eQ iff /(m)eR.

Intuitively, R is representative of the hardest decision problem in C. (One
may note that the distinction between Turing completeness and many-one
completeness is immaterial for our results in the next section.)

LEMMA 5: A relation R is in };~ + 1 if! R is recursively enumerable in Il~.
0

The preceding lemma is less trivial than it may seem since for R to be
recursively enumerable in IT~ there must be a relation Q which is recursive
in IT~ such that (t), but this does not mean that Q itself need be in Il~.
However Q is recursive in IT~ iff Q is recursive in ~~. Thus

COROLLARY 6: A relation R is in };~+ 1 iff R is recursively enumerable in};~.
0

8 K.R. Apt, HA. Blair I Classification of Perfect Models ·

3.2. Computability over Herbrand universe
Our task is to adapt the entire previous discussion of computability over
the natural numbers to computability over Herbrand universes. Of course
this can be done in one stroke by effectively identifying the ground terms
with the natural numbers. However, if we want to characterize what general
programs compute in recursion-theoretic terms, the correspondence between
the Herbrand universe and N is delicate. This point can be brought out
vividly by reflecting on the following task: write a program P such that for
a ground term t, +-r(t) succeeds iff t is a constant. Note that this cannot be
done if, for example, the underlying Herbrand universe contains infinitely
many constant symbols and infinitely many functions symbols. It follows
that if the Herbrand universe is generated by an infinite alphabet then not
every computable relation over such a Herbrand universe can be computed
by a logic program.

We now analyse what logic programs compute in recursion-theoretic
terms under the assumption that the underlying Herbrand universe is
finitely generated. We assume a fixed finitely generated Herbrand universe
UL with at least one constant and one function symbol. All general pro­
grams P considered are such that their Herbrand universe Up coincides
with UL·

A program P C:f!mputes a relation R over UL using a relation symbol r if
for all sequences t of elements from UL

t ER iff there exists an SLD-refutation of PU { +-r(t) }.

A program J' defines a relation R over UL using a relation symbol r if for
all sequences t of elements from UL

- -
t ER iff Pt=r(t).

Here and elsewhere we assume that R and _r have the same arity which
also coincides with the length of the sequence t.

The following theorem links computability and definability and the least
Herbrand model of a program, and is fundamental in logic programming
(cf APT and VAN EMDEN [AVE82]; see also Theorem 4.1 in APT [A]).

THEOREM 7: Let P be a program, Ra relation over Uz., and r a relation ~m­
bol. Then
i) P computes R using r iff P defines using_(.
ii) P defines R using r iff for all sequences t of elements from U z.,

- -
t ER iff r(t)EMp. 0

This theorem allows us to identify computability with definability and
reduce the latter to definability over the least Herbrand model. Note that
this theorem also holds when UL is finite and nonempty, which arises when
UL consists of a finite set of constants.

K.R. Apt, HA. Blair I Classification of Perfect Models 9

The identification of UL with N is obtained via the next theorem.

THEOREM 8: (Enumeration Theorem) A program successor which defines the
successor relation on UL using the binary relation symbol succ can be con­
structed. More precisely, an ordering < on UL of order-type w can be con­
structed such that for all terms s, t EU v t is an < - successor of s iff successor
1=succ(s,t). D

The enumeration theorem above is due to ANDREKA and NEMET! [AN78].
BLAIR [B 186] gives a version in which the successor program satisfies addi­
tional semantic constraints related to finite failure of goals.

This theorem allows us to identify a finitely generated Herbrand universe
UL of the form assumed at the beginning of this section with natural
numbers. This identification allows us to transfer the notions of recursion
theory from N to UL, and subsequently from UL to Bp. Our subsequent
investigations rely on this transfer.

The following lemma due to ANDREK.A and NEMETI [AN] (see Corollary
4.5 in [A]) connects the notion of definability by programs with the recur­
sion theoretic concepts.

LEMMA 9: A relation R on UL is recursively enumerable iff some program P
defines R using a relation symbol r. D

3.3. Computability by programs
We start our investigations with the following lemma which strictly speak­
ing, is not needed to prove our main results. However, it is interesting in
itself.

LEMMA 10: For a program P, the relation {(n,A)IA ETptn(0),n<w} is
recursive.

PROOF. Following WOLFRAM, MAHER and LASSEZ [WML], by a BF­
derivation of P'U {N} for a program P' and a goal N we mean a refinement
of the usual SLD-derivation in which in each goal all atoms are selected.
(BF stands for Breadth-Fust.) If the last goal is empty, such a derivation is
called a refutation.

Now,

A ETpjn(0) iff there is a BF-refutation

of ground(P) U { <E-A}

of length at most n.

However, by a lifting lemma for BF-resolution, proved in [WML], in fact
the following equivalence holds:

A ETpjn(0) iff there is a BF-refutation

10 K.R. Apt, HA. Blair I Classification of Perfect Models

of PU{~A}

of length at most n.

But the relation

{(A,n,~)I~ is a BF-refutation of Pu {~A} of length at most n}

is recursive. Moreover, ignoring the choice of variables in goals and mgu's,
there are only finitely many BF-refutations of PU {~A} of length at most
n. Tbis proves the claim. D

COROLLARY 11: For a program P, Tptw(0) is recursively enumerable. D

Perhaps surprisingly, lemma I 0 does not relativize. Indeed, for a program
P, Tptn(M) is not recursive in M. To see this, note that Tp(M) need not be
recursive in M.

EXAMPLE 12: Let Q be a recursively enumerable, non-recursive, subset of
UL. For some recursive relation R

sEQ itf 3t[(s,t)ER].

Let P be the program

q(X)~r(X, Y),

and let M={r(s,t)i(s,t)ER}. Then Tp(M)={q(s)isEQ}. M is recursive;
Tp(M) is not. D

3.4. Computability by semi-positive programs
However, Tptn(M) is recursively enumerable in M. Tbis holds for semi­
positive programs, as well. We need this fact later; to establish it we first
need the following observation. Here, <Bi. ... ,Bk> stands for a natural
number associated with the sequence of atoms B 1>···,Bk in a standard way
(see [Sh67, chapter 6)).

LEMMA 13: For a general program P, the relation

{(A, <Bi. ... ,Bk>)IA ETp(MU {BI>····Bk})}

is recursively enumerable in M.

PROOF. Direct, by the definition of Tp and the standard techniques of
recursion theory. D

We can now prove the desired lemma.

LEMMA 14: For a semi-posztzve program P, the relation
{(n,A)IA ETptn(M),n<w} is recursively enumerable in M.

K.R. Apt, HA. Blair I Classification of Perfect Models 11

PROOF. Thanks to lemma 2 we can use lemma 1 to characterize the rela­
tion in question. This characterization implies by lemma 13 and the stan­
dard techniques of recursion theory, that this relation is indeed recursively
enumerable in M. D
The following generalizes corollary 11.

COROLLARY 15: For a semi-positive program P, the relation Tpt"'(M) is
recursively enumerable in M. D

For an interpretation Mand a relation symbol r, let

Mir= {AIA eM and the relation symbol of A is r}.

We say that an interpretation M of P is strongly recursively enumerable,
(or strongly R.E., in short) if Mis recursively enumerable and for each rela­
tion symbol r which appears negatively in P, Mir is recursive.

We now show that under some circumstances the relations studied in
lemmata 13 and 14 and corollary 15 can be characterized in a more precise
way.

LEMMA 16: Consider a general program P and an interpretation M. Suppose
that Mis strongly R.E. Then Tp(M) is recursively enumerable.

PROOF. We have for all ground atoms A

A eTp(M)

iff for some literals L 1, ••• ,Ln
i) A.,....Ll>···•Ln is in ground (P),
ii) for every positive literal B from Ll>···•Ln we have BeM,
iii) for every negative literal --.B from Li. ... ,Ln whose relation symbol is r,

we have B l!Mlr.
Now by the standard techniques of recursion theory, Tp(M) is indeed

recursively enumerable. D

LEMMA 17: Consider a semi-positive program P and an interpretation M.
Suppose that Mis strongly R.E. Then the relation {(n,A)IA ETptn(M),n<"'}
is recursively enumerable.

PROOF. Analogous to the proof of lemma 14 but using lemma 16 instead
of lemma 13.

CoROLLARY 18: Consider a semi-positive program P and an interpretation M.
Suppose that M is strongly R.E. Then the relation Tpt~M) is recursively
enumerable. D

12 KR. Apt, HA. Blair I Classification of Perfect Models

4. ARITHMETIC CLASSIFICATION OF Mp
We are now ready to prove the main results of the paper.

THEOREM 19: If Pisa stratified program with n strata, then Mp is~~-

PROOF. We proceed by induction on n. If n = 1, then Pisa program and
the theorem follows from corollary 11.

Now suppose _the. statement of the theorem holds for n - I, and P is
stratified by P1 U ... UPn· We have Mp= Tp. t"'(MP,u ... uP._,), so by corol­
lary 15 and lemma 2 iii) Mp is recursively enumerable in,MP,u ... uP._,. By
the induction hypothesis, MP,u ... uP._, is ~~- 1 . Therefore by corollary 6,

0 .
Mp is ~n· D

THEOREM 20: Let P be a stratified program. Suppose that for each relation
symbol r which occurs negatively in P, Mplr is recursive. Then Mp is recur­
sively enumerable.

PROOF. Consider a stratification P 1 U ... UPn of P with the corresponding
sequence of models Ml>···,Mn with Mp=Mn. We prove by induction on
i = l, ... ,n that each M; is recursively enumerable.

For i = 1 it is the content of corollary 11. Assume the claim holds for
some i, 1 es;;;i <n.

Consider a relation symbol r which occurs negatively in P; + 1. Then the
definition of r is contained in U {Pj[jo;;;;;i}, so Mpir=M;lr. By assumption,
for every r which occurs negatively in P; + 1, M; lr is recursive. Thus by
lemma 2 iii) and corollary 18 applied to P; + 1 and M;, M; + 1 is recursively
enumerable. D

Of course, it is in general not clear how to check that for a relation sym­
bol r and an interpretation M, Mir is recursive. However, in some situa­
tions this is obvious - when r is defined by enumeration, i.e. exclusively by
a list of unit clauses. Then for every such r, Mplr is recursive.

Call a general program strongly stratified if each relation symbol which
occurs negatively in P is defined exclusively by unit clauses. Obviously,
every strongly stratified program is stratified. By the above observation
and theorem 20 we have:

COROLLARY 21: Let P be a strongly stratified program. Then Mp is recur-
sively enumerable. D
Finally, we prove the following:

THEOREM 22: For each n;;;..: I there is a stratified program P with n strata for
which Mp is ~~-complete.

PROOF. We prove the following stronger claim from which the theorem

K.R. Apt, HA. Blair I Classification of Perfect Models 13

follows by choosing R to be I~-complete: for each I~ relation Rover UL
we can find a stratified program P with n strata such that for some relation
symbolr

s eR iff r(i)eMp.

We now proceed by induction on n.
For n =I the claim is a consequence of lemma 9 and theorem 7 ii). Now

assume the claim holds for a particular n ;;;i.: 1. Let R be a I~+ 1 relation
over UL· For some II~ relation S over UL

s eR iff 3t[(i,t) eS].

Let Q be the complement of S in UL· Q is I~. By the incjuction
hypothesis we can find a stratified program P with n strata such that for
some relation symbol q

(i,t)eQ iff q(i,t)EMp.

We now add to P two clauses defining R in terms of S and S in terms of
Q. Let P n + 1 consist of the clauses

PR(X)+-ps(X, Y),
- -

Ps(X, Y)+--.q(X, Y)

where PR and Ps are relation symbols not occurring in P. Let
P'=P UPn+l· Then

Thus,

Mr = Mp U {pR(i)l3t[(i,t)eS]} U {p5{i,t)l(s,t)EQ}

= Mp U {pR(i)is eR} U {ps(i,t)l(i,t)eS}.

5. APPLICATIONS TO NON-MONOTONIC REASONING

We now relate our results to three formalisms commonly used in the area
on non-monotonic reasoning. We follow here their description given in
PRzYMUSINSKI (P87].

5.1. Default logic
One of them is default logic introduced in [R80]. In default logic, apart of
the usual rules of first order logic, also default rules are used. They have the
form

B: MC ,MCn

A

where.A, B, c ,Cn are first order formulas. Such a rule intuitively means:
"if B holds and each of C;-s can be (separately) consistently assumed, then

14 K.R. Apt, HA. Blair I Classification of Perfect Models

conclude A". The usual rules and the default rules induce a natural con­
cept of an extension of a set of first order formulas. We omit here its for­
mal definition. This extension, if it is unique, denotes the set of conse­
quences of a set of formulas under the default rules.

PRzYMUSINSK.A [Pa87] related general programs to default logic by noting
that a general clause A-A ., ... ,Am, -,B., .. ,-,Bn where n>O naturally
translates into a default rule

A 11\. .. AAm : M-.Bi. .. ,M-,Bn

A

Given a general program P, let T denote the set of (positive) clauses of P
and let Dp denote the set of default rules obtained by the above transla­
tion. PRzYMUSINSKA [Pa87] showed that given a stratified program P, the
default rules in Dp induce a unique extension Dp(T) of T which coincides
with the set of formulas true in the perfect model of P.

By theorems 19, 20 and 22 we immediately obtain

CoROLLARY 23:
i) Let P be a stratified program with n strata. Then Dp(T) is l':~.
ii) Let P be a strongly stratified program Then Dp(T) is :IY.
iii) For each n ;;;;.1 there is a default theory whose set of consequences is :I~­

complete. 0

5.2. Circumscription
Another approach to non-monotonic reasoning is based on the circumscrip­
tion method of McCarthy. We discuss here its variant called prioritized cir­
cumscription described in [MC86].

Let q,(_R,Q) be a first order formula whose relation symbols appear in
R ={r., ... ,rm} or Q={q1>···•qn), where R nQ= 0, and let R'={r'., ... ,r'm}
and Q'={q'., ... ,q'n} be sets of relation symbols of the same arities as those
in R and Q, correspondingly. By a parallel circumscription of R in f/> with
variables Q we mean the following second order formula CIRC(q,;R;Q):

q,(R,Q)/\\'R',Q'[q,(_R',Q')/\(R'-+R)-+ R'=RJ,

where R'-+R stands for
m
/\ \fi(r';(i)-+r;(i))

i=l

and R' = R stands for
m
/\ \fi(r';(i~r;(i)).

i=l

Intuitively, CJRC(q,;R ;Q) states that relation symbols from R are
minimal under the assumption that 3Q'q,(_R,Q') holds and moreover,
q,(_R,Q) does hold.

Now, consider disjoint sets of relation symbols R 1, ••• ,Rn. By a prioritized

K.R. Apt, HA. Blair I Classification of Perfect Models

circumscription of a second order formula cp with priorities R 1 > ... >Rn we
mean the following second order formula CIRC(cp,R 1 > ... >Rn):

15

CIRC(cj>;R l ;{R2 u ... u Rk})/\CIRC(cp;R1; { R3 u ... u Rn})/\. .. /\CJRC(cp;Rn; 0)

Intuitively, this formula states that the relation symbols in R 1, ... ,Rn are
minimized in a particular order given by the priorities R 1 > ... >Rn.

Denote the set of first order formulas implied by a second formula cp by
Cn(~)- . Consider now a stratified program P with a stratification
P 1 U ... UP n. Let R 1>···· Rn be the sets of relation symbols defined in
PI>···•Pm respectively. After an identification of P with a conjunction of its
general clauses, P can be viewed as a second order formula whose relation
symbols are those in Rl>···•Rk.

LIFSCHITZ [L87] showed that the set of formulas Cn
(CIRC(P,R 1> ... >Rk)) coincides with the set of formulas true in the per­
fect model of P.

Again, by theorems 19, 20 and 22 we obtain

COI~.OL1:ARY 24: Let P be a stratified program with a stratification
P 1 U ... UP n· Let R 1'···, Rn be the sets of relation symbols defined in P 1'··. ,P"'
respectively.
i) Cn(CIRC(P,R1 > ... >Rn)) is~~-
ii) If P is strongly stratified, then Cn(CIRC(P,R 1 > ... >Rn)) is ·~s.
iii) For each n ~ 1 there is a second order formula cp with disjoint sets of rela­

tion symbols Q1>--.Qn such that Cn(CIRC(cp,Q 1> ... >Qn)) is ~~­
complete. 0

5.3. Iterated closed world assumption
Finally, we consider the Iterated Closed World Assumption (ICWA) intro­
duced in [GPP86]. ICWA is a generalization of the Closed World Assump­
tion of REITER [R78] (CWA).

Given a set of (first order) formulas P we define first

CWA(P) = PU {-.A IA is a ground atom such that PFA does not hold}

[R78] showed that for a program P, CWA (P) is consistent. Unfortunately,
this result does not hold for a general program P. To resolve this problem
[GPP86] concentrated on the case of stratified programs. . .

Consider a stratified program P with a stratification P 1 U ... UP n. We
define

ICWA(P 1) = CWA(P1),

ICWA(P;+i) = CWA(P;+i UJCWA(P;)) for I:o;;;;;i<n,

ICWA(P) = ICWA(Pn)-

[GPP86] showed that for a stratified program P, ICWA(P) has exactly one

16 K.R. Apt, HA. Blair I Classification of Perfect Models

model, namely the perfect model of P.
By theorems 19, 20 and 22 we obtain

COROLLARY 25:
i) Let P be a stratified program with n strata. Then ICWA(P) is~~.
ii) Let P be a strongly stratified program. Then JCWA(P) is~~.
iii) For each n;;;;;.: 1 there is a stratified program with n strata such that

ICWA(P) is ~~-complete. 0
For every reasoning method it is preferable from the logic point of view

that the set of consequences obtained by it is decidable (recursive) or semi­
decidable (recursively enumerable). We showed here that this is not the case
for a majority of commonly used formalisms in the area of non-monotonic
reasoning. However, we also indicated a reasonable restriction - to strongly
stratified programs, which allows us to bring down this complexity to recur­
sive enumerability.

ACKNOWLEDGEMENT
We would like to thank Marc Bezem for helpful comments and Ms Caro­
line Swagerman for speedy typing of the manuscript.

REFERENCES
[AN78]

[A87]

[ABW87]

[AVE82]

[Bl86]

[CH85]

[Cl78]

[GPP86]

H. ANDREKA and I. NEMETI, The Generalised Completeness
of Horn Predicate Logic as a Programming Language, Acta
Cybernetica, vol. 4, no. I, 1978, pp. 3-10.
K.R. APT, Introduction to Logic Programming, Centre for
Mathematics and Computer Science, Amsterdam, Technical
Report CS-R8741, 1987 (to appear in Handbook of Theoreti­
cal Computer Science (J. van Leeuwen, Managing Editor)).
K.R. APT, R. BLAIR and A. w ALKER, Towards a Theory of
Declarative Knowledge, in: Foundations of Deductive Data­
bases and Logic Programming, (J. Minker, ed.), Morgan­
Kaufmann, Los Altos, CA., 1987.
K.R. APT and M.H. VAN EMDEN, Contributions to the
Theory of Logic Programming, JACM, vol. 29, No. 3, 1982,
pp. 841-862.
H.A. BLAIR, Decidability in the Herbrand Base, Workshop on
Foundations of Deductive Databases and Logic Programming,
Washington, D.C., manuscript, 1986.
A. CHANDRA and D. HAREL, Horn Clause Queries and Gen­
eralizations, Journal of Logic Programming, vol. 2, no. 1,
1985, pp. 1-15.
K.L. CLARK, Negation as Failure, in: Logic and Databases,
(H. Gallaire and J. Minker, eds.), Plenum Press, New York,
1978, pp. 293-322.
M. GELFOND, T. PRzYMUSINSKI and H. PRzYMUSINSKA, On
the Relationship between Circumscription and Negation as

[K87]

[L87]

[Ll84]

[MC86]

[P86]

[P87]

[Pa87]
[R78]

[R80]

[Sh67]

[VEK76]

[VG86]

[WGM]

KR. Apt, HA. Blair I Classification of Perfect Models 17

Failure, to appear in Journal of Artificial Intelligence.
P.G. KoLAITIS, The Expressive Power of Stratified Logic Pro­
grams, manuscript, Nov. 1987.
V. LIFSCHITZ, On the Declarative Semantics of Logic Pro­
grams with Negation, in: Foundations of Deductive Databases
and Logic Programming (J. Minker, ed.), Morgan Kaufmann,
Los Altos, C.A., 1987.
J.W. LLOYD, Foundations of Logic Programming, Springer­
Verlag, 1984.
J. McCARTHY, Applications of Circumscription to Formaliz­
ing Common Sense Knowledge, Journal of Artificial Intelli­
gence, vol. 28, 1986, pp. 89-116.
T. PRzYMUSINSK.I, On the Declarative and Procedural Seman­
tics of Logic Programs, in: Foundations of Deductive Data·
bases and Logic Programming (J. Minker, ed.), Morgan Kauf­
mann, Los Altos, C.A., 1987.
T. PRzYMUSINSK.I, Non-monotonic Reasoning vs. Logic Pro­
gramming: A New Perspective, to appear in Handbook on
the Formal Foundations of A.I. (Y. Willes and D. Patridge,
eds.)
H. PR.zYMUSINSKA, personal communication.
R. REITER, On Closed-World Data Bases, in: Logic and
Databases, (H. Gallaire and J. Minker, eds.), Plenum Press,
New York, 1978, pp. 55-76.
R. REITER, A Logic for Default Theory, Jornal of Artificial
Intelligence, vol. 13, 1980, pp. 81-132.
J. SHOENFIELD, Mathematical Logic, Addison-Wesley, Read­
ing, Mass. 1967.
M.H. VAN EMDEN and R.A. Kow ALSKI, The Semantics of
Predicate Logic as a Programming Language, JACM, vol. 23,
no. 4, 1976, pp. 733-742.
A. VAN GELDER, Negation as Failure using Tight Derivations
for General Logic Programs in: Proc. of the 3rd IEEE Sympo­
sium on Logic Programming, Salt Lake City, Utah, 1986.
D.A. WOLFRAM, M.J. MAHER and J.-L. LASSEZ, A Unified
Treatment of Resolution Strategies for Logic Programs, in:
Proc. of the Second International Conference on Logic Pro­
gramming, 1984, pp. 263-276.

