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We consider McCarthy's notions of predicate circumscription and formula circumscription. 
We show that the decision problems "does 0 have a countably infinite minimal model" and 
"does ~ hold in every countably infinite minimal model of 0" are complete Z~ and complete 
H~ over the integers, for both forms of circumscription. The set of structures definable (up to 
isomorphism) as first order definable subsets of countably infinite minimal models is the set of 
structures which are A2 ~ over the integers, for both forms of circumscription. Thus, restricted to 
countably infinite structures, predicate and formula circumscription define the same sets and 
have equally difficult decision problems. With general formula circumscription we can define 
several infinite cardinals, so the decidability problems are dependent upon the axioms of set 
theory. 

1. Introduction and definitions 

In order to deal precisely with a form of non-monotonic inference, McCarthy ([8] 
and [9]) proposed two forms of a formalism called circumscription. He proposed 
it partly to express a sort of default logic: we have a default assumption which we 
apply whenever we cannot deduce the contrary; hence, if R represents the set of 
objects which violate the default, R should be as small as possible. The two forms 
are called predicate circumscription and formula circumscription. 

For both forms we start with a finite language L and a symbol R not in L. 
(Normally R is a relation symbol.) For formula circumscription we have another 
symbol U not in L. The interpretation of R is to be minimized; the interpretation 
of U is allowed to vary freely as we try to minimize R; and the interpretations of 
the symbols in L stay fixed. We have a first-order formula O[R] in L[R], or 
O[R, U] in L[R, U], and we wish to consider only models of 0 in which the 
interpretation of R is minimal. We shall use Fraktur ~ ,  92, 92 to denote 
L-structures, and the corresponding Latin M, N, A to denote their ground 
structures. So to denote an L[R] structure we write (~CI~; R ). (We use R both for 
the symbol and for its interpretation in a structure; context should resolve any 
ambiguity.) 

McCarthy has also proposed a third form, called prioritized circumscription. 
However, Lifschitz [5] has shown it to be no stronger than formula 
circumscription. 

0168-0072/87/$3.50 t~) 1987, Elsevier Science Pubfishers B.V. (North-Holland) 



174 J.S. Schlipf 

For predicate circumscription we have the following definitions: Given L, R, 
U, and 0 as above, let MOD-P= { ( ~ ; R ) ~  0[R]}. For (~IRx;R~) and (ff~2;R2) 
in Mod-P set (~0~1; Rx) <p (~2; R 2 )  if ~I~l = if/2 and R1 ~ R2.  We restrict 
attention to <p-minimal models in MOD-P. Note that (~IR; R) is a <p-minimal 
model of o[g] iff (~R;R)~O[R]&VR'(R'~R--~-~O[R]), iff (~R;R)~VR' 
(0[R] & (R' ~ R ~ ~O[R'])). (Here "R'  ~ R" abbreviates the obvious first-order 
formula.) Thus, to say ( ~ ;  R) is a <p-minimal model of O[R] is H~, i.e., it can 
be expressed by a formula consisting of a finite number of universal quantifiers 
VR' over relations on the structure followed by a first-order formula in 
L[R, R']. 

For formula circumscription we have analogous definitions: MOD-F= 
{ (~1~; R, U) ~ O[R, U]}, and (~1;  RI,/./1) <F (~I~2; R2, U2) if ~IR1 = ~ and g~ 
R2.  (Note that no relationship is required between /-/1 and U2.) We restrict 
attention to <r,-minimal models in MOD-F. Being a <F-minimal model of 
O[R, U] is also H~: 

( ~ ;  R, U) ~ O[R, U] & VR', U' (g' ~ g--~-~o[g', U']). 

Remark. We shall often want to have several relations R1. • • Rn rather than just 
one R, or several relations UI. •. Uk. If we are allowed to assume every model of 
O[R~. • • Rn] contains at least two elements and to add constant symbols Cl, c2 for 
two distinct elements, we can then combine all the Ri's into one R for our 
definition. For example, to combine Rl(x), RE(X, y), and Ra(x, y, z), we let R be 
5-ary and set 

R ( u , v , x , y , z )  iff U = C l & V = C l & R l ( X ) & y = c l & z = c l  

or u = c l & v = c 2 & R 2 ( x , y ) & z = c l  

o r  u = C 2 & V -" C 1 & R3(x, y, z). 

The notion of minimality resulting from this encoding is 

(~IR; R~, R~, R~) <p (~; R1, RE, R3) iff 

R~ ~_ R1 & R~ c_ R2 & R3 ~_ Ra & (R~ 4:R1 v R~ :/: R2 v R; :/: R3). 

Convention. We shall always use R, Ri, R*, etc., for the relations to be 
minimized, and U, U, U*, etc., for the relations which are allowed to vary 
freely. Whenever we speak of a formula O[R, U] in a first-order language L, we 
mean that R, U are not in L, and that 0 is a formula in the language L[R, U]. 

Proposition 1.1. Let O[R, U] and O'[R', U'] be first-order formulas in L. 
(A) ff ( ~ ;  R, U) is a <p model of O[R, U] and ( ~ ;  R', U') is a <p-minimal 

model of O'[R', U'], then (~ ;  R ,R ' ,  U, U') is a <p-minimal model of 
O[R, U] & O'[R', U']. 

(B) If  R, U, R', and U' are all distinct, the converse to (A) holds. 
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(C) I f  R = R' or U = U' the converse to (A) may fall. 
Also, all the analogous results for predicate circumscription also hold. 

Proof. Note that R, R' ,  U, U' are assumed not to be in L. Proofs of (A) and (B) 
are short and obvious. For (C) with R = R' :  Let O[R] say R has 1 or 3 elements; 
let O'[R] say R has 2 or 3 elements. In a minimal model of 0, R has 1 element; in 
a minimal model of 0 ' ,  R has 2 elements, and in a minimal model of 0 & 0' ,  R 
has 3 elements. (It is also easy to find such 0, 0'  so that neither 0 nor 0'  has a 
minimal model but 0 & 0'  has minimal models.) For (C) with U = U': letfl[R, U] 
say R has 1 or 3 elements and R = U; let 0'  [R',  U] say R has 2 or 3 elements and 
R '  = U; then proceed as before. 

2. Examples of circumscription 

Example 2.1 (default logic). Let O[R] be 4 &  (R(a)&R(b)) ,  where 4 does not 
involve R and a, b are constant symbols in L. Then for ~[1~ 4, (~2; R)  is a 
<v-minimal model of O[R] iff R = {a, b}. 

Example 2.2 (default logic) McCarthy [8]. O[R] is 4 &  (R(a )v  R(b)) with 4, a, 
and b as above. Then for ~[1~ 4, (~2; R)  is a <v-minimal model of O[R] iff 
R = {a} or g = {b}. 

Example 2.3 (transitive closure) Davis [2]. Let L = {S, O, +, *, <}. Let 4 be 

Vx'a(S(x) = O) & Vxy (S(x) = S(y)--> x = y) & Vx (x = 0 v :ly (x = S(y))) 

& Vx'a(x < 0 ) &  Vxy(x  <S(y)--->x < y  v x = y )  

& Vxy ( x < y  v x = y  v y < x )  & Vx~(x  < x ) &  Vxyz(x < y & y<z--->x <z )  

Vx (x + 0 = x) • Vxy (x + S(y)  = S(x + y)) 

& Vx (x*0 = 0) & Vxy ( x * S ( y ) = x * y  +x).  

(This formula 4 is a small modification of Davis' formula, since we need that in a 
later example. The difference is insignificant for this example.) Any model 92 of 4 
will be linearly ordered by < ,  starting out with 0, S(0), S(S(O)), . . . .  Let us call 
those elements the standard part of 92. The standard part of any such 92 with the 
relations and functions S, +,  *, and < of 92 restricted to the standard part can 
easily be shown to be isomorphic to the natural numbers (to) under the intended 
operations. (Convention: we henceforth use the term 'integers' to be synonymous 
with 'natural n u m b e r s ' m  denoting only the non-negative natural numbers.) The 
structure (to; S, 0, + ,  *, < )  is itself a model of 4 ;  every other model has a 
nonstandard par t - -  the part above (under the < of the model) all elements in the 
standard part. There can be no least element in the nonstandard part m since if x 
is nonstandard, x = S(y) for some y, and y must be nonstandard also. 
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Let 01[R1] be ~p & RI(0) & Vx (R~(x)--~ R~(S(x)), and let (92, R1) ~ O~[R~]. It is 
easy to see that (92, R~) is minimal iff R1 is the standard part of 92. 

More generally, we get transitive closures: Let L contain a unary function 
symbol S and a constant symbol c. Let O[R] be tp & R(c) & Vx (R(x)--~R(S(x)), 
where tp does not involve R. Then if M ~ ¢, (~2; R)  is a <p-minimal model of 
O[R] iff R = {c, S(c), S(S(c)),. . .) .  R is a transitive closure, a special case of 
an inductively-definable set. Yet more generally, we can define inductively definable 
sets (see Moschovakis [11]). Transitive closures are an especially interesting sort 
of non-first-order definable sets in computer science since they correspond to very 
natural notions, such as ancestor and relative. They have been studied in several 
contexts, including circumscription. (See, e.g., Perlis-Minker [13] and Schlipf 

[141). 

Example 2.4. Let L = {e, SET}, the language of a theory of sets and classes. (A 
class is a collection of sets, which may be too large to be a set. Some classes are 
sets; some are not. Everything is a class.) Let GB denote the conjunction of the 
axioms of G6del-Bernays set theory. (For those unfamiliar with G6del-Bernays: 
the set part of a model of GB is always a model of ZF. Given a model of ZF we 
can always form a model of GB by taking as classes all first-order definable 
subsets of the model of ZF, and by taking the elements of that model to be sets. 
In general, there will also be lots of other collections of classes we could also take 
to form models of GB.) We use ( , )  here to denote the ordered pair construction 

in set theory. 
Let O[R] be 

GB & 3z Vx Vy (g(x, y),-~ SET(x) & SET(y) & (x, y ) E Z) 

& Vx Vy (g(x, y)---~y ex) & Vx (x :/:O& SET(x)-*  3y g(x, y)). 

The first line of 0 says R "is one of the classes of the model" so we shall now 
use R both for the relation to be minimized and for the class. The second line says 
that R picks out at least one element from each nonempty set x. Now any model 
of GB contains some such class R, e.g., {(x ,y):y  ex}. But not every model 
contains a minimal such R. 

Claim. If <~; R) satisfies O[R], then it is <p-minimal iff R picks out exactly one y 
from each nonempty x. 

Proof. The 'if' part is obvious. Suppose R picks out two elements, y and z, from 
some x. Then R - { (x, y )} also satisfies 0, so R is not minimal. 

Such an R is called a global choice function. Its existence implies, among other 
things, that the underlying model of ZF satisfies the axiom of choice. So not every 
model of GB contains a global choice function. 

Remark. Example 2.4 is interesting in that we are concerned not only with the 
minimal R but also with what the existence of a minimal R tells us about the 
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structure. Other studies have dealt with circumstances which ensure that minimal 
R's exist (e.g. Etherington-Mercer-Reiter [3], Lifschitz [4]); we here exploit the 
reverse, making it difficult for minimal R's to exist and thus using their existence 
to conclude strong properties about the model ~92. In our next example we 
strengthen Davis' example in 2.3 in a similar way. 

Example 2.5. Let tp and 01[R1] be as in Example 2.3. 
Let 02[R1, R2] be 

OI[RI] & Vx (Rl(x)--> RE(X)) 

(Vx R2(x) v az  Vx (R2(x) ,-, x < z)). 

Note that every model 92 of ¢ can be expanded to a model (92;R1, R2) of 
02[R1, R2]: let R~ = R2 = the entire model. 

Claim. Suppose (92; Ra, R2) is a <p,minimal model of 02[R1, R2]. Then 92 is the 
standard model, i.e., has empty nonstandard part. 

Proof. Suppose (92; R~, R2) is such a minimal model. Let St denote its standard 
part and Nst its nonstandard part, and suppose Nst is not empty. As with 01, 
dearly St is the minimal possible R~, so St = R1. Since Nst is nonempty, the 
minimal R2 must be {x: x < z} for the minimal z in Ns t - -which  doesn't exist. 

Thus 02[R1,/2] has a unique <v-minimal m o d e l - - t h e  standard integers. 

Example 2.6. Let the formula ¢ be as in Example 2.5, and let O[R, U] be 

¢ &  (F maps {x:x<~a} 1-1 and onto {x:x<~b} &a<b)  

& (Vx R(x) v az Vx (R(x),-,x 

& (U maps R 1-1 onto the entire model). 

We show ¢ has <v-minimal models, but every <rminimal  model is uncountable. 
First, we show there is a <F-minimal model: We know there are 'oJl-like' models 
of Peano Arithmetic, that is, models such that each element has only countably 
many predecessors, but where the entire model has cardinality R1. Furthermore, 
¢ is provable in Peano Arithmetic. So let 92 be an tOl-like model of Peano 
Arithmetic, and let a, b be interpreted by any two elements with infinitely many 
predecessors. Since U maps R 1-1 onto the entire model, R must be uncountable; 
it follows that R must be the entire model. So with R equal to the entire model 
and U the identity function, we have a <F-minimal model. Second, we show that 
there is no countable <v-minimal model. For by the axiom about F, the standard 
integers cannot be a model. Suppose we had a countably infinite model. The 
axioms concerning R and U tell us that R would have to be {x: x ~< z } for some z 
where the set is inf ini te--and for R to be minimal that z would have to be the 
first z with infinitely many predecessors. As in Example 2.5, such a z cannot exist. 
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3. Definability and decidability 

We are interested in three questions: 
(1) How complex is the question "Does O[R] (resp. O[R, U]) have a 

<v-minimal (resp. <F-minimal) model?" 
(2) How complex is the question "Does tp[R] (resp. ~[R, U]) hold in every 

<v-minimal (resp. <v-minimal) model of O[R] (resp. O[R, U])?" 
(3) What structures are definable using circumscription? (We shall define 

precisely below what we mean by 'definable'.) 
We could ask these three questions in three contexts: 
(A) Limited to finite ~2. 
(B) Limited to infinite ~R. 
(C) Limited to countably infinite ~ .  
A good deal of work in circumscription has dealt with context (B). We deal 

primarily with context (C), avoiding problems of changing cardinalities and 
allowing us to build all our structures over the integers. We shall answer the three 
questions in that case. We shall also show that when we move to context (B), 
with formula circumscription far more is definable, and decidability problems are 
dependent upon our axioms for set theory. 

Remark. Since predicate circumscription is a special case of formula circumscrip- 
tion, the two decision problems are at least as complicated for formula 
circumscription as for predicate circumscription, and anything definable using 
predicate circumscription is also definable using formula circumscription (under 
any plausible definition of definable, including the one we give below). 

A formula is said to be Z~ if its is of the form 3S1- • • 3Sn • where • is /II .  A 
formula is/-/~ if it is of the form VS1. - • VSn • where ~ is ZI. 

Theorem 3.1. (A) The predicate "0[R] (resp. O[R, U]) has a countably infinite 
<v-minimal (resp. <F-minimal) model" is ~ over the integers. 

(B) The predicate "t~[R] (resp. ~p[R, U]) holds in every countably infinite 
<v-minimal (resp. <F-minimal) model of  O[R] (resp. O[R, U])" is II~ over the 
integers. 

Proof. (A) Since the model is to be countably infinite, we may assume it to have 
universe the integers. For simplicity, assume that 0 has only relation symbols 
$ 1 " "  Sk in addition to R (and possibly U). Then the formula saying 0 has a 
minimal model with universe the integers is 

:]$1.. .  :~S k 3R 3U (O[SI, . . . , Sk, R, U] & VR' ~ g  VU' 

. . . , R ' ,  u'])) 

(or the analogous formula without the U), which is clearly Z~. 
The proof of part (B) is analogous. 
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In our next definitions we define the notion of defining a structure. For 
notational convenience only (to avoid awful subscripting) we shall state the 
definitions for structures with two binary relations; generalizations to structures 
for any finite language are obvious. Similarly, we speak in the following theorems 
only about structures with one or two binary relations. We shall give several 
analogous definitions, indicating only the changes made from one definition to the 
next. 

Definition. We say that a formula O[R] (resp. O[R, U]) defines a structure 
(N; $1, $2) using predicate (resp. formula) circumscription if for some tim-order 
formulas ~P0, tPl, 4~2 (possibly involving R and U): 

(1) O[R] has a <l-minimal model (resp., O[R, U] has a <v-minimal model); 
(2) in every minimal model (~[1~; R)  (or ( ~ ; R ,  U)) of O, 

i f N ' =  {x: (~R;R, U) ~tP0(x)} and S;= {(x, y); (~2;R, U)~ i ( x , y ) } ,  then 

(N', S;, S~) ~- (N, S~, $2). 

We say that the formula defines the structure using (predicate or formula) 
circumscription over countably infinite models if we require that the minimal 
model be countably infinite in (1) and (2) above or, equivalently, if we redefine 
MOD-P and MOD-F to include only the countably infinite models of the 
sentences. 

We say that the formula defines the structure using (predicate or formula) 
circumscription by restriction (possibly over countably infinite models) if the 
defining formulas ~Pi do not involve the symbols R and U. (The idea is that we do 
not explicitly use R or U to define the structure; rather, we use circumscription 
only to restrict the class of models we consider, to those models ~IR for which a 
minimal R exists. Recall Examples 2.4, 2.5, and 2.6, where we used circumscrip- 
tion to restrict the class of models.) 

Remark. Example 2.3 shows we can define the integers using predicate cir- 
cumscription, and Example 2.5 shows us we can define the integers using 
predicate circumscription by restriction. 

Remark. For countably infinite structures 92, 92 is definable using circumscription 
over countably infinite models iff for some formula 0', 92 is isomorphic to the 
reduct of every minimal model of 0' to the language {$1, $ 2 } - - i f  0 defines 92 in 
the sense of our definition, we need merely additionally assert in 0' that F is an 
isomorphism from the entire structure to {x" 4~o(X)} carrying { (x, y)'dpi(x, y)} to 
s,. 

The importance of definition by restriction is shown in the following proposi- 
tion, which allows us to compose definitions using circumscription. (Since the 
result holds for both predicate and formula circumscription, we shall avoid saying 
so explicitely.) 
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Proposition 3.2. Suppose X = {x: Ox(X)} in every minimal model of Ox[Rx]. And 
suppose, for a formula Oy[Px, Ry] in the language extended with a relation Px 
intended to denote X, in every minimal model of Oy[Px, Ry] in which Px happens 
to be X, Y =  {y : t~y(y)}. Let O*[Rx, Ry] be Ox[Rx] & Oy[~Px, Ry], where that last 
formula denotes the result of substituting the definition dpx of X in for Px (using an 
alphabetic variant if needed to avoid variable scope problems). Assume Ox does 
not involve Ry, and Oy does not involve Rx. If dpx does not involve Rx ~ that is, 
if Ox defines X by restriction--then in every minimal model of 0", Y = 
{y : dpy(y)}. That need not hold if ~Px involves Rx. 

Proof. Suppose ~x does not involve Rx. Then the first conjunct of O* does not 
involve Ry, and the second conjunct of O* does not involve Rx, so, by 
Proposition 1.1(B), a minimal model of O* is minimal for each conjunct. So 
{x : dpx(X)} is X in the model, and, as a result, {y : ~Y(Y)} is Y in the model. 

To construct a counterexample when ~x does involve Rx one need only modify 
the example of Proposition 1.1(C). 

Proposition 3.3. If  a structure is definable using predicate (resp. formula) 
circumscription over countably infinite models, it is definable using predicate (resp. 
formula) circumscription. If  a structure is definable using predicate (resp. formula) 
circumscription over countably infinite models by restriction, it is definable using 
predicate (resp. formula) circumscription by restriction. 

Proof. Suppose the structure is definable by O[R] using circumscription over 
countably infinite models. Let 0'[R'] be the formula of Example 2.5, where all 
symbols are chosen to be distinct from those of O[R]. Let O*[R, R'] be 
O[R] & O'[R']. Then, by Theorem 1.1(B), the minimal models of O*[R, R'] are 
the models which are simultaneously minimal models of O[R] and O'[R']. By 
Example 2.5, those are the countably infinite minimal models of O[R], which, as 
noted above, are exactly the minimal models in the class of countably infinite 
models. 

Remark. We immediately see that far more is definable using circumscription 
than is definable in first-order logic, or in first-order logic restricted to countably 
infinite models. 

Definition. A relation S on the integers is A~-definable over the integers if it is 
definable by both Z~ and H~ formulas over the integers. A structure (N; S, T) is 
A~-definable over the integers if N, S, and T are all A~-definable over the 
integers. 

Theorem 3.4. Suppose a structure (N;S,  T) is definable using predicate or 
formula circumscription over countably infinite models. Then some isomorphic 
copy of it is A~-definable over the integers. 
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Proof. Our problem here is dealing with isomorphic models. Every countably 
infinite structure is isomorphic to a structure with universe the integers. Now if 
one of those models, together with the structure of the integers, were definable 
using predicate circumscription over countably infinite models, we could finish as 
in the proof of Theorem 3.1, but we don't know that any single such model is 
definable. But the result is a corollary of wellknown generalized recursion- 
theoretic results: Suppose O[R] defines (N; S, T),  and formulas 40, ~1, and 42 
are as in the definition of defining using circumscription. For ~ a structure with 
universe the integers, to say that (~2; R) is minimal is HI over the integers. So 
for (N; S, T) a structure over the integers, to say that there is some structure 
(~)2;R) over the integers which is a minimal model of O[R] and ifi which 
(N; S, T) is definable by the ¢i'S is "Yi. Now the Basis Theorem for -Yi (see 
Moschovakis [12, p. 236]) implies that at least one such structure (N; S, T) is A i 
definable over the integers, which is what we want. (The Basis Theorem for A i is 
a corollary of the Novikov-Kondo-Addison Theorem of Kondo [7]; it appears in 
Moschovakis [12, p. 235].) 

Definition. A Zi  relation R on the integers is complete Zi  if for each ,V.' i relation 
S on the integers there is a recursive function F such that, for all integers n, S(n) 
iff R(F(n)). (Note that we have defined only completeness only for unary 
relations, since that is all we need here; the extension to other relations gives no 
important extensions since there is a recursive function mapping the n-tuples of 
integers 1-1 onto the integers. When we speak of the pair of integers n and m 
below, we mean the pair as encoded by an integer using some such function.) 

The term 'complete Hi '  is defined analogously. 

Theorem 3.5. (A) The relation "there exists a countably infinite <p-minimal 
model of O[R]", considered as a relation on the Gtdel number of O, is complete 

(B) The relation " 4  holds in every countably infinite <p-minimal model of 
O[R]", considered as a relation on the pair of the Gtdel number of dp and the 
Gfdel number of O, is complete Hi. 

Proof. Deferred to Section 4. 

Although the formulas expressing notions of circumscription are of these 
familiar categories, they are still quite restrictive. Saying that R is the minimal 
relation on the integers satisfying some formula is far more restrictive than an 
arbitrary H~ relation on the integers. For example, the VR' quantifies (in effect) 
only over subsets of the relation R. At first glance it appears that circumscription 
is not much more complicated than a logic that allows construction of a finite 
number of transitive closures (or more generally, a finite number of inductively 
definable sets). (Circums.eription also allows a sort of non-determinacy, as shown 
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in Example 2.2. However, this only partially enters into our three questions.) 
Thus, Theorems 3.5 and 3.7 are rather surprising. 

Corollary 3.6. The complexities of  our two decision problems (1) and (2) from the 
top of  this section, restricted to countably infinite models, are the same for 
predicate circumscription as they are for formula circumscription. 

This corollary, and Corollary 3.8, are particularly surprising since formula 
circumscription seems such a significant extension of predicate circumscription. 

Theorem 3.7. Suppose a structure (N, S, T) is A~ definable over the integers. 
Then (N, S, T)  is definable using predicate circumscription by restriction over 
countably infinite structures. 

Proof. Deferred to Section 4. 

Corollary 3.8. Exactly the same structures are 
cumscription over countably infinite models as 
circumscription over countably infinite models. 

definable using predicate cir- 
are definable using formula 

Corollary 3.9. Exactly the same structures are definable using circumscription over 
countably infinite models as are definable using circumscription by restriction over 
countably infinite models. 

It is instructive to use this analysis to compare the expressive power of 
circumscription to the expressive poser of dynamic logic. Dynamic logic is a logic 
of programs, expressing the idea of state changing over time. It was shown by 
Meyer and Parikh [10] to be equivalent to the fragment of infirdtary logic in the 
admissible set L(co~k), where co~ k is the least ordinal not the order type of a 
recursive well-ordering of a subset of the integers, L is G~Sdel's constructible 
universe, and for a~ any ordinal, L(a 0 denotes the sets contructable in the first cr 
levels of the construction. In infmitary logic we extend finitary logic by allowing, 
among our formula building techniques, taking conjunctions and disjunctions of 
infinite sets of formulas. (In the cases we are interested in, these will be countably 
infinite sets of formulas.) For further information on infmitary logic see, e.g., 
Barwise [1]. 

Let ao denote the least ordinal not the order type of a A2 ~ wellordering of the 
integers. More is said about a0 in Section 4; for further information there are 
many standard references, including Barwise [1], Moschovakis [12], and Hinman 
[6]. We merely wish to note here that, although it is countable, it is far larger 
than ~o~ k, and hence that the set of infinitary sentences in the admissible set L(oo) 
is far larger, and hence more expressive, than the set of infinitary sentences in the 
admissible set L(~o~). These ordinals are both admissible ordinals (see, e.g., 
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Barwise [1]). (The admissible ordinals were originally identified as nice ordinals 
on which to do generalized recursion theory.) Wellknown results about the size of 
ao include: Let ~ denote the trth admissible ordinal. So 7o = to. And ~rl = took. 
An ordinal tr is said to be recursively inaccessible if tr = L~. Oo is recursively 
inaccessible. Moreover, tro is the troth recursively inaccessible ordinal. 

Theorem 3.10. (A) For every (infinitary) sentence • in L(cro) in any finite 
language K there are a finite language K' extending K and a first-order sentence 
O'[R] in K' such that the models of • are just the reducts of the <p-minimal 
models of O'[R] to the language K. 

(B) For every (infinitary) sentence • in L(cro) in any finite language K and for 
every first-order sentence O[R] (resp. O[R, U]) in K, there are a finite language K' 
extending K and a first-order sentence O'[R] (resp. O'[R, U]) in K' such that the 
<p-minimal (resp. <F-minimal) models of • & 0 are just the reducts of the 
<p-minimal (resp. <F-minimal) models of 0 & O' to K. 

Proof. Deferred to Section 4. 

Accordingly, circumscription is far more powerful than dynamic logic 
hence far more difficult, in general, to prove theorems about. 

and 

In the remainder of this section we drop our limitation to countably infinite 
models. 

Definition. A formula O[R] (resp. O[R, U]) defines a cardinal x using predicate 
(resp. formula) circumscription if it defines a structure (K)  for the empty 
language using predicate (resp. formula) circumscription, where the cardinality of 
Kisx .  

We define O[R] (resp. O[R, U]) defining a cardinal x by restriction using 
predicate (resp. formula) circumscription analogously. 

We say O[R] (resp. O[R, U]) defines an ordinal tr using circumscription n in 
any of the possible variations if O[R] (resp. O[R, U]) defines the structure 

<). 

Remark. Example 2.5 shows we can define Ro using predicate circumscription by 
restriction. 

Our final main theorem is proved by using a variant of the trick of Example 2.6 
over and over again. We defer the proof to Section 4 since it is long. It is 
interesting to note that our proof fails if we do not include in the hypothesis 
below that the ordinal is defined using circumscription by restriction. 

Theorem 3.111. Suppose we can define an ordinal tr using formula circumscription 
by restriction. Then "re can define the cardinal R~ using formula circumscription by 
restriction. 
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Corollary 3.12. For each ordinal ol < fro, we can define the cardinal R~ using 
formula circumscription by restriction. 

Corollary 3.13. There is a formula O[R, U] which has a <v-minimal model iff the 
continuum hypothesis fails (in the real world). In fact, for each ordinal ol < Oo, 
there is a formula O~,[R, U] which has a <F-minimal model iff there are at least ~ 
subsets of  the integers. 

Proof Sketch. We can define the model in three parts: the first part is used to 
define the integers (e.g., as in Example 2.5), the second part defines the cardinal 
~ by restriction, and the third part is used to code up b~ distinct subsets of the 
integers from the first part. We know we correctly define the integers and the 
cardinal ~ by Proposition 3.2. 

Questions. (1) If a countable structure is definable using circumscription, is it 
definably using circumscription over countably infinite models? 

(2) Are any uncountable structures definable using predicate circumscription? 
(3) Are any cardinals and ordinals, other than those mentioned above, 

definable using circumscription? 

4. Proofs of main results 

In this section we use a good deal of the theory of admissable sets and infinitary 
languages. All needed background material can be found in Chapters I - V  of 
Barwise [1]. We shall include here a little intuitive description of the theory for 
the reader who is unfamiliar with it but who is familiar with basic ZF set theory 
and basic model theory. 

KP (Kripke-Platek)  set theory is a much weaker theory than ZF. It has no 
axiom of infinity and no powerset axiom. It has variants of the separation and 
replacement axiom schemes; most notably, they are restricted to A o formulas, 
i.e., formulas where all quantifiers ae bounded: '¢x ca  or 3x ca .  (We shall 
usually be interested in models of KP + the axiom of infinity.) 

For any infinite cardinal r ,  let H ( r )  be {x: card( t rans-c los(x))<r} ,  where 
trans-clos(x), the transitive closure of a set x, is the smallest y such that x ~_ y and 
Vz (z ~ y----> z ~ y). Then (H(k) ,  e } ~ KP. (Notational change: from now on, 
when we write a structure ( A ; . . . ,  e , . . . }  we mean t he r ea l  e relation. If we 
have some other relation E interpreting the symbol e,  we shall write 
( A ; . . . ,  E , . . .  }.) Let L(fl) denote the sets constructible in G6del's constructible 
universe by stage ft. For X a transitive set, let L(X,  t )  denote the sets 
constructible by stage fl starting from X. Then for any infinite cardinal r ,  
( L ( r ) ,  e} ~KP. (Here we must formulate the construction of L using some 
variant of G6del 's  F functions, not iterated A o definability.) Also (L(to~k), e } 
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KP and (L(tro), ~) ~ KP. We use L to denote the collection of sets constructible 
at any stage, and L(X), for transitive X, to denote the collection of sets 
constructible from X at any stage. 

An admissible set is a transitive model (A, e)  of KP. An admissible ordinal is 
an ordinal a~ such that (L(a 0, e )  ~KP. Every wellfounded (A, E)  ~KP is 
isomorphic to an admissible set (A' ,  e )  (by Mostowski collapsing). Of course, 
there are also non-wellfounded models of KP. 

Inside KP we can formalize the construction of L, and whenever transitive 
(A, e )  ~ KP and fl is an ordinal of A, the L(fl) constructed inside A is the real 
L(fl) (absoluteness), and if a~ is the least ordinal not in A, the L of (A, e)  is 
L(a 0 and (L(t~), e ) ~ K P .  Similarly, if transitive X e A ,  then the analogous 
results hold for L(X,  fl) and L(X,  o O. (See Barwise [1, §2.5], for details.) We 
shall be most interested in the theory KP + V = L(X).  

We need a finitely axiomatizable theory T in a language extending the language 
{e} of KP such that the reducts of models of T are exactly the models of 
KP + V = L(X)  for some transitive X. We shall call the conjunction of that 
theory by the awful acronym GKPLX. Its construction is routine, and we shall 
merely sketch it. We add to our language new predicates Form and Ao-fOrm to 
represent the sets of formulas and Ao-fOrmulas. We add closure axioms 
appropriate to these classes, but we do not assert any axioms that would force 
them to contain nonstandard formulas (or nonstandard integers as G/Sdel 
numbers of formulas). We add a satisfaction predicate Sat and axioms saying it 
obeys the inductive definition of a satisfaction predicate (for formulas in the sets 
above). The infinite axiom schemes of KP can be replaced by single formulas 
which quantify over Form and A0-form. Then we add G/Sdel F functions plus 
axioms saying they obey their definitions and that the model is L(X).  

We need the following facts about models of KP. We phrase the first as a result 
about models of GKPLX merely because that is where we use it. 

Property 4.1 (Variant of Truncation Lemma). Let 93 = (A,  E, X , . . .  ) be a model 
of GKPLX. Let 0 = the set of  standard ordinals of  the model, i.e., the set of  
ordinals whose predecessors really are wellordered by E. Assume that the formulas 
in Form and Ao-fOrm are all standard. 

Suppose X is in the wellfounded part of  93. 
Let A* =[..J~,o {a cA:  (A, ~ ) ga ~ L(X,  a0}. 
Then (A*, E, X , . . .  ) ~ GKPLX, and (A*, E, X, . . .  ) is wellfounded (and thus 

isomorphic to some (A ', ~, X ' ,  . . . ) ~ GKPLX). 

(If our formulas are not all standard, we can take the subsets of Form and 
Ao-fOrm whose formulas are standard, and the resultant 93 is still a model of 
GKPLX. But in our examples, they will be standard.) 

Property 4.2 (Special Case of Barwise Completeness). Suppose {A, e )~KP;  
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suppose a structure f fReA.  Then for any 1Ill formula O = V R 1 . . . V R n  
~p[R~... R.] in the language of ~ ,  ~ ~ • iff there is an infinitary proof in A of  
dp[R~ . . . R,] from the infinitary diagram of  YfR. (See Barwise [1, Chapters III-IV], 
for details.) 

Note that this result fails for non-wellfounded 92 ~ KP since the proof may be in 
the non-wellfounded part of 92 and may contain an infinite regression of 
falsehoods. 

The ordinal o0 (also called 6~) is the least ordinal which is not the order type of 
a A~ wellordering of a subset of the integers. It is also the least ordinal c~ such 
that whenever a formula :lx~. • • 3xn tp holds in the universe of sets, for tp Ao, the 
formula also holds in L(c~). And (L(a:), e ) ~ KP. 

In the following proofs, when we write a Greek letter ac or fl, we imply it varies 
over the ordinals of the model. Recall that when we use the symbol • in a 
formula, we mean the formal symbol • ,  but when we speak of a structure 
(A, • ), we mean that the symbol e is interpreted by the actual • relation. 

Lemma 4.3. Suppose a structure (B; • ) is definable using formula (resp. 
predicate) circumscription by restriction, where B is a transitive set. Then there is a 
formula On[R0, R1, R2, R3, R'] (resp. Os[Ro, R1, RE, R3, R' ,  U']) such that: 

(1) For any Co_B, if o: is the least ordinal such that L(B t.J {C}, tr) is 
admissible, then (L (B  t.J {C}, tr); • )  can be expanded to a <p-minimal (resp. 
<v-minimal) model o f  08.  

(2) Ira model (A; E, Y , . . .  ) of 6)a is <p-minimal (resp. <v-minimal), then for 
some subset C of  B, (A; E, Y)  ~ (L (B  t.J {C}, tr); • ,  B O {C}) where o: is the 
least ordinal such that (L (B  t.J {C}, tr); • ) is admissible. 

(3) Let dp be a sentence in the language {• ,  X }  ~ the language of  set theory plus 
the symbol X for our B LI {C}. Then @B & dp has a <p-minimal (resp. <F" 
minimal) model iff cp holds in some (L(X ,  tr); e ,  X )  where X =  B LI {C} for 
some C c_ B and te is the least ordinal such that the structure is an admissible set. 

Proof. We prove this only for predicate circumscription; the other proof is 
virtually identical. Suppose that O'[R'] defines the structure (B; • ) using 
circumscription by restriction. So there are formulas ~1, (P2 such that in any 
minimal model ( ~ ; R ' )  of 0', ({x:tPo(X)}, {(x, y):(Pl(x, y)}) ---- (B, • ). (Note 
that for any C ~_ B, B t_J {C} is also transitive.) 

Let 0*[Ro, R1] be the conjunction of the universal quantifications of 

Ro(~), Ro(x)--~ Ro(Succ(x)), Ro(x)-~ RI(x), 

Vx (RI(x) ~--~x is a finite ordinal) v 3m • to Vx (Rl(x) ~ , x  <~ m) 
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and let O**[R2, R3] be the conjunction of the universal quantifications of 

R2(a)--~ Vx •aRE(X), Vfl (RE(fl) ~--~ RE(L(X, fl)), 

Vfl (RE(fl)--+ RE(SUcc(b))), 

(g2, e ,  X , . . . )  ~GKPLX, gE(x)-~Ra(x), 

Vx Ra(x) v 3fl Vx (Ra(x)~--~x • L(X, fl)). 

Let @B denote the formula that defines a structure ( N ; . . . )  which consists of 2 
disjoint pieces, a set-theory part and an X-part,  which consists of 

GKPLX & Vfl-n((L(X, fl), • ,  X , . . . )  ~ GKPLX) & 0*[R0, RII & 0**JR2, R3I 
all restricted to the set-theory part of the model 

& O[R'] restricted to the ~IR part of the model 
& X = B U {C} for some transitive set B and some C ~_ B 
& F maps ({x" ,/,o(C)}, { (x, y)"  ~l(x, y)} ) (defined in the X-part) 

isomorphically onto that (B, • ). 

(Note that we have an innocuous triple use of the symbol B: as the transitive 
set B, as the ground structure of any isomorphic copy of (B; e ), and as the 
formal symbol to denote the set B in our model. Which we intend should always 
be clear from context.) 

Proof of part (1). We already remarked that any such (L(B{C}, tr); • ,  
B U (C) )  can be expanded to a model of GKPLX. That it is then also a model of 
the second conjunct of 0s is trivial from a being the least such ordinal. Now let 
R0 and R1 both be interpreted by to, and let RE and R3 be interpreted by the 
entire model. Let (~EI~; R ' )  be any minimal model of O'[R']; inside it we define an 
isomorphic copy of (B, • ), so let F be the isomorphism between B and the 

isomorphic copy. 
We claim the resultant structure is minimal. As in Example 2.5, R0 is obviously 

minimal, so R1 is also minimal. To show that RE is minimal: our axioms guarantee 
that R2 is transitive and a model of V = L; thus RE must be some L(B t.J {C}, fl). 
But the least such admissible L(B U {C}, fl) is L(B U {C), tr). Since RE c R3, 13 
is also minimal. So, by Proposition 1.1(A), the entire structure is minimal. 

Proof of part (2). Let (A; E, Y , . . . ,  R0, R1, RE, R3, R ' )  be a <p-minimal 
model of OB. By Proposition 1.1(B), it is minimal as a model of 0*[R0, R1], as a 
model of O**[R 2, R3], and as a model of O'[R'] restricted to B. By minimality as 
a model of 0", as in Example 2.5, it is to-standard. Hence the Form and Ao-fOrm 
of the model contain only standard formulas (or G6del numbers), so we can 
apply our Truncation Lemma (4.1). By minimality as a model of 0', we have an 
isomorphic copy of (B, • ) .  Since (B, • )  is wellfounded, B, and hence Y, is in 
the wellfounded part of (A; E , . . .  ). 
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Now, so far, we don't  know whether (A; E, . . .  } is standard. Let A* be as in 
4.1. So ( A * ; E , . . . ) ~ G K P L X .  For simplicity of language we shall identify 
(A*; E , . . . }  with its transitive (Mostowski) collapse. Let a~ be the least ordinal 
such that (L(Y, o:), e} is admissible. Then tr is not in A* since otherwise 
(A; E, Y, . . .  } would not be a model of the second conjunct of 0n (which says 
" (A;  E, Y , . . .  ) thinks it is the minimal mode of GKPLX for this Y"). (Here we 
use heavily the absolutness of the construction of L(Y, f l ) ' s - - t h e  construction 
inside (A;E, Y , . . . }  is the same as the construction in the real world.) So 
A * =  L(Y, oi). 

Suppose A*:/: A. Then the minimal R E is obviously A*. And no minimal R 3 

could exist since it would have to be L(Y, fl) for th minimal fl in A - A * ,  and if 
such a fl existed it would have to be in the wellfounded part of A also. 

Proof of part (3). Immediate from part (2) and Proposition 1.1(B). 

Remark. We showed in Example 2.5 that we can define to by restriction. Thus 
we have a formula O~, as above. 

4.4. Proof of Theorem 3.5. (A) Suppose U is a 2~2 ~ unary relation on the integers. 
So n e X iff (the integers are a model of) 3Y VZ 4(Y, Z, n) for some first order 
¢. So n e U iff for some C ~_ to, some transitive set A, and some p 

((A, e } ~ K P ) & ( t o e A ) & ( C e A ) & ( p e A )  
& (p is an infinitary proof of O(C, D, n)). 

Furthermore,  such a p exists in every such admissible set, in particular, the least 
one. So n e U iff for some C ~ to, if X = co U {C}, 

(L(X, oc); e } ~ 3p (p is an infinitary proof of 4(C,  D, n)), 

where ac is the least ordinal for which that structure is admissible. Let ¢~ be the 
formula 

3C, p (C ~_ to & X = to tJ {c} 

& p  is an infinitary proof of ~p(C, D, n) (over the integers)), 

where n appears in 4n as a numeral for n m e.g. ~ for 0, Succ(t~) for 1, etc. Then, 
by 4.3, n is in U iff Oo, & 4n has a <p-minimal model. 

(B) Part (B) follows from part (A), since 3x (x~x) holds in all countably 
infinite minimal models iff there are no countably infinite minimal models. 

4.5. Proof of Theorem 3.7. Suppose (N; S, T} is A~-definable over the integers. 
Say that n is in N iff 3YVZ 41(Y, Z, n), and n is not in N iff 3Y'CZ 42(Y, Z, n). 
Similarly, (n, m} is in S iff 3YVZ43(Y, Z, (n, m}), and (n, m)  is not in S iff 
3YVZ 44(Y, Z, (n, m}), and analogously for T and 45 and 46, where inside a 
formula ( ,  } denotes some recursive function mapping to 1-1 onto to. Let 4 say 
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X = to t.J {C}, and that for each integer n, 
(i) if C1,, denotes {m: (n, (1, m ) )  • C }  either 

(a) there is an infinitary proof of ¢0(C1, Z, n) or 
(b) there is an infinitary proof of ¢1(C1, Z, n), and 

(ii) if C2n denotes {(ml, m2): (n, (2, (ml, m 2 ) ) ) • C }  either 
(a) there is an infinitary proof of ¢2(C2, Z, n) or 
(b) there is an infinitary proof of ¢3(C2, Z, n), and 

(iii) similarly for C3n, ¢4, and ¢5. 
Let 0 = Oo~ & ¢. 

Now we can easily construct a minimal model for this 0: for each n in N pick a 
Y such that VZ ¢0(Y, Z, n), and for each m in Y put (n, (1, m) )  into t~. For 
each n not in N pick a Y such that VZ ¢1(Y, Z, n), and for each m in Y put 
(n, (1, m ) )  into C. Similarly, add elements (n, (i, (ml,  m2)))  for i = 2  to 3 
using the definitions of S and T as in (ii)-(iii) above. Let X = to t.J {C} as usual, 
and our model, by 4.3(i), is an expansion of L(X, tr) for the minimal tr where 
that is admissible. By Barwise completeness, the required proofs all exist in that 
model. 

On the other hand, any minimal model of 0 contains sets CIn-C3,, as described. 
Since our admissible set is standard, so the infinitary proofs are valid, it follows 
that {n: there is a proof of VZ ¢o(C~, Z, n)} =_ N, and that {n: there is a proof 
of VZ ¢1(Cln, Z, n)} ~_ to - N. Since for each n either (ia) or (ib) holds, those 
two sets are complements of each other, so the former set is N. The same 
argument shows that S and T are defined correctly also, so (N, S, T) is a 
definable subset of every minimal model. (It is actually definable only up to 
isomorphism since we may get only an isomorphic copy of the admissible set.) 

4.6. Proof of Theorem 3.10. (A) Our formula is in some L(~) for c~ < ao, so we 
can define that (L(c 0,  • ) and the formula • using predicate circumscription. (To 
show that • is definable: every element of L(~) is definable via F functions from 
a finite number of ordinals <~,  and each such ordinal is definable.) We now 
define a model in three parts: (1) L(c~) with • distinguished; (2) a K structure 
plus the admissible set H F ( ~ )  ~92 together with all hereditarily finite subsets of 
~CI~; (3) a satisfaction predicate for formulas in L(~) and sequences of elements of 
~12. Finally, we assert that • is in the satisfaction predicate. 

(B) Immediate from part (A) and Proposition 1.1(B). 

Our final proof to fill in is the proof of Theorem 3.11. As the previous proofs 
extended the trick of Example 2.5, so this proof extends the trick of Example 2.6. 

Lemma 4.7. Suppose we can define an infinite cardinal R# using formula 
circumscription by restriction. Then we can define the cardinal ~+1 using formula 
circumscription by restriction. 



190 J.S. Schlipf 

Proof. Suppose that there is a formula Ot3[R, U] such that in every <F-minimal 
model of 0t3, {x: ~t3(x)} has cardinality Nt3- 

We define a model in 3 parts: 
Part I: a model of Oa[R, U]. 
Part II: a model of the formula ~ from Examples 2.3 and 2.5-2.6. (Recall that 

that formula was a weak axiom for number theory.) 
Part III: a model of GB set theory-powerset. 

In addition, we assert the existence of the following functions: 
F1 maps {x: t~,(x)} in Part I 1-1 onto Part II. 
F2 maps {x: Ca(x)} in Part I 1-1 onto (the ordinals which are predecessors of) 

some infinite cardinal x in the model of GB-powerset, and that x is not the 
largest cardinal of the model. 

F3 maps Part II 1-1 onto the predecessors of some c in Part II. (Thus the 
predecessors of c have the same cardinality as all of Part II.) 

Finally, we assert the following: 
< is the linear ordering consisting of Part I of the model followed by the 

ordinals of Part III < r  +, the least cardinal of the model of GB > r .  
O is the field of < ,  i.e., {x: 3y (x < y  v y  <x)}.  
Either R = O or for some d in O, R = {x e O: x < d}. 
U is a 1-1 function from R onto O. 

First we show that in any minimal model of the theory, the cardinality of the 
x + of the model is Rt3+I. By Proposition 1.1(B), in any minimal model the 
cardinality of {x:x < x} is R e, and any minimal model is minimal with respect to 
the last two clauses above (regarding R and U). Clearly the cardinality of x ÷ is 
~<Ra+I since each predecessor of r + has at most ~a predecessors. Now suppose 
that the cardinality of r + is R e. Then the cardinality of the x ÷ is the same as the 
cardinality of {x in Part II: x < c } .  So for R to be minimal, R must be 
{x e O: x < d} for some d ~< c. And d must be the first element of Part II with Rt~ 
predecessors. But then the predecessor of d would also have Rt3 predecessors, 
giving us a contradiction. 

Second, we wish to show that our axioms have a minimal model. This is easy. 
As the sets of our model of GB-powerset choose H(Ra+2), and choose its 
powerset as the classes. Interpret x as Rt3, x + as Rt3+l, and the rest of the model 
in obvious ways. 

4.8. Proof of 3.11. As usual, our model will be built in several parts, and we 
shall use the trick of composing definitions that definition by restriction allows. 
One part will define, by restriction, the ordering (tr + 1, < }. A second will be a 
model of GB-powerset, and we shall have a function F mapping the ordinals 
<a~ + 1 1-1 and increasing onto an initial segment of the cardinals of that model. 
We shall want to prove by transfinite induction on fl ~< tr that the cardinality of 
the set of ordinals of the model of GB-powerset <F(f l )  actually is R e. For fl - 0  
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we shall use the trick of  Example 2.5. For each successor ordinal fl we shall use 
the trick of Lemma 4 . 7 - - s o  we shall have a family of models of tp indexed by 
ordinals fl <~ or, a family of R's and U's indexed by ordinals fl ~< or, etc. The step 
for limit ordinals fl is trivial. 
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