
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

K.R. Apt, H.A. Blair

Arithmetic classification of perfect models of stratified programs
(Extended version)

Computer Science/Department of Software Technology Report CS-R8928 July

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Arithmetic Classification of

Perfect Models of Stratified Programs
(Extended Version)

Krzysztof R. Apt
C8ntre for Mathemtiitics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Nefflerlands

and
Department of CorrJ)IJl6r Sciences, l.Jniversity of Texas at Austin,

Austin, Tt»CaS 78112-1188, U.S.A.

Howard A. Blair
School of Computer and lnformetiOn Science,

313 Link Hall,
Syracuse University, Syracuse, N. Y. 13244, U.S.A.

We study here the recursion theoretic complexity of the perfect (Herbrand) models of stratified logic pro
grams. We show that these models lie arbitraruy high in the arithmetic hierarchy. As a byproduct we obtain
a similar characteriZation of the reclll'Sion theoretic complexity of the set ot consequences in a number of
formalismS for non-monotonic reasoning. We show that undel' some circumstances this complexity can be
bfought down to recursrveness and recursiVe enumerability. To this purpose we study a class of recursion -
tree programs.

1985 Mathema.tics Classification: 68099, 68T99.
1980 CR Categories: F.3.2, F.4.1.
Key Words & Phrases: stratification, arithmetical hierarchy, non-monotonic reasoning.
Nole: to appear in Fundamenta lnformaticae. First version ot this paper appeared in Proc. 5th International
Conference on Logic Programming, The MIT Press, 1988,

1. INTRODUCTION

1

A substantial amount of the recent research in logic programming concentrated on the .. safe" use of
negation. This research led to an identification of a subclass of general logic programs, called stratified
programs, which restrict the ways in which recursion and negation can be combined. Intuitively, the
use of negation is restricted by only applying it to already known relations. Thus, in defining a collec
tion of relations some of them are first defined, perhaps recursively in terms of themselves, without
the use of negation. New relations may then be defined in terms of themselves without using negation,
and in terms of the previously defined relations and their negations. The process can be iterated until
all of the relations in the collections have been defined.

Stratified programs were introduced in APT, BLAIR and w ALKER [ABW88] and VAN GELDER
[VG88]. They form a simple generalization of a class of database queries introduced in CHANDRA and
HAR.EL [CH85].

Stratified programs have a natural semantics associated with them in the form of a specific Her
brand model. The special character of these models was captured by PRzYMUSINSXI [P88] who intro
duced the concept of perfect models. The designated model of a stratified program is its unique per
fect Herbrand model. In this paper we study the recursion theoretic complexity of the perfect (Her
brand) models of stratified programs. We show that they lie arbitrarily high in the arithmetic hierar
chy. We also show that under certain circumstances their complexity can be brought down to recur
siveness and recursive enumerability. To this purpose we study a class of recursionfree programs. We
prove that Clark's [C78] completions of recursion-free programs together with a first order domain

Report CS-A8928
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsteidam, The Netherlands

2

closure assumption, constitute complete and decidable theories.
The recent rise of interest in noo-monotonic reasoning led to intensive rcscarch of the relative

strength and expressive power of tl . formalisms involved. In this paper we take advantage of this fact
by indicating that the results obtained bcrc directly translate into results coru:crning default logic of
REITBll {R801 poi.ntwisc circumscription of LIPSCHITZ [L88] and Iterated Ooscd World Assumption
of GELFOND, PllYMUSINKA and PllYMUSINSIU [GPP88]. This allows us to assess the recursion
tboorctic complexity of these formalisms, too.

Our results improve upon an observation of KOLAJTIS (K87} who showed that the perfect models of
stratified programs arc Al relations. Similarly as [CH851 [K87} is mainly concerned with the complex
ity of perfect models of stratified programs, in the absence of function symbols.

2.PltwMINAIUES
In this section we review the basic results and definitions dealing with stratified programs which form
a basis for this paper. All logic progranuning notation and terminology not defined in this paper may
be found in LLoYD (U84}.

Rocall that by a clause we mean a construct of the form A +-B h .•• , Bn, where A, Bi. ... , Bn
(n ;;;ioO) are atoms. A program is a finite, non-empty set of clauses.

In turn. by a general clause we mean a construct of the form A +-Li. ... , L,., where A is an atom
and L 1, ••• , L,. (n ;;;i.Q) arc literals. A general program is a finite, non-empty set of general clauses.

2.1. Stratified programs
Given a general program P, we define its dependency graph Dp by putting for two relation symbols p,q

(p,q}eDp iff there is a general clause in P using p in its head and q in its body.

The arc (p,q) is called positive (resp. negative) if thc:rc is a general clause in P such that p appears in its
head and q appears in a positive (rcsp. negative) literal of its body. Note that an a.re may be both
positive and negative.

Now, a general program is called stratified if in its dependency graph Dp there is no cycle with a
negative arc.

We say that a relation symbol occurs negatively in a general program P, if it appears in a negative
literal of a body of a general clause from P. By a definition of a relation symbol r (within P) we
mean the set of all general clauses of P in whose heads r appears.

An alternative definition of a stratified program is as follows. A general program P is stratified if
for some partition

P = P1U ... UPn

the following two conditions hold for i = 1, ... , n:
i) if a relation symbol appears in a positive literal of a general clause from P;, then its definition is

contained within u {PJ[j..;i},
ii) if a relation symbol appears in a negative literal of a general clause from P;, then its definition is

contained within U{Pj(j<i}.
We allow P 1 to be empty. A head of a general clause is viewed here as one of its positive literals. We
call each P; a stratum. Note that the definition of any relation symbol is either empty or a subset of
exactly one stratum.

To study the semantics of stratified programs we first discuss operators on complete lattices.

2.2. Finitary and growing operators
Consider an arbitrary but fixed, non-empty, countable set. We denote its elements by A,B. Its subsets
form a complete lattice with the order relation \;;;, the least upper bound operator U and the greatest
lower bound operator n. We denote its elements by l,J,M. We now consider operators on this lat
tice.

Given an operator T, we define its powers by

TtO(J) =I,

Tt(n + lXJ) = T(Ttn(I))U Ttn(I),

Ttw(J) = U { Tfn(/)ln <c..i }.

We call an operator T finitary if for every infinite sequence

/ 0 <;;;,.11 <;;;,. ... ,

T(U{lnln<c..i})<;;;,. U {T(Jn)jn<c..i}

holds.
We call an operator T growing if for all J,J,M

I <;;;,.J <;;;,.M <;;;,. Ttw(I)

implies

T(J)<;;;,.T(M).

3

Thus "growing" is a restricted form of monotonicity. The following lemma will be needed in Section
5.

LEMMA 2.1. Let T be a finitary and growing operator. For all A,I and n ;;;;.1,

A ETtn(J)

if! there exists a finitely branching tree of depth ...:;n such that
• A is its root,
e for every node B with direct descendants B b ... , Bk> k >0, we have BE T(l U { B 1, ... , Bk}).
e every leaf is an element of Ttl(/).

PROOF. For all I and n;;;;.l, Ttn(J) is countable and includes/, so for some sequence S0 <;;;,.S 1 <;;;,. ... of
finite subsets of Tfn(J)

Ttn(J) = U{JUSkjk<c..i}.

Since T is fini tary

T(Ttn(J))<;;;,. U {T(/USk)jk<c..i}.

Also, for k <c..i we have I <;;,.I u Sk <;;;,. Ttn(J) <;;;,. Ttw(J), so since T is growing

U {T(JUSk)jk<w} <;;;,.T(Ttn(l)).

Thus

T(Tfn(l)) = U {T(J U Sk)!k<c..i }.

Hence for all A,l and n ;;;;.1,

A E T(Tfn(/))

iff for some BI> ... ,Bk ETfn(l), k;;;;.O, we have A ET(JU {B 1' ... ,Bk}).
From this the claim follows by a simple induction on n.

D

4

2.3. Semantics of stratified programs
We now summarize the notions and results of [ABW88]. Given a general program P, we denote by
ground (P) the set of all ground instances of general clauses of P. To avoid some uninteresting com
plications we assume that ground (P) is always non-empty. Consider now the complete lattice consist
ing of all subsets of the Herbrand base Bp of P. These subsets are in the sequel identified with Her
brand interpretations of P. We only study here Herbrand interpretations and models, so we drop the
qualification "Herbrand".

Given a general program P and an interpretation M of P, we put

Tp(M) = {A I for some literals LI• ... , Ln

A-Li. ... ,Ln is in ground (P)

and MtL1/\ ... /\Ln}·

We call a general program P semi-positive, if no relation symbol which appears in a head of a gen
eral clause of P, also appears negatively in P.
The following lemma summarizes the results we shall need in the sequel.

LEMMA 2.2.
i) For a general program P, Tp is finitary.
ii) For a semi-positive program P, Tp is growing.
iii) A stratum of a stratified program is semi-positive.

Thus for a stratum P of a stratified program, we can use lemma 1 to characterize the sets Tpjn(I).
Consider now a stratified program P with a stratification

P = P 1 U ... UPn.

We assign to Pa Herbrand model Mp by putting

M1 = Tp1 jw{0),

M2 = Tp,iw(M1),

and letting

Mp =Mn.

Mp is called in [ABW88] the standard model of P.

D

Some general results on non-monotonic operators on complete lattices, like lemma 2.2, were esta
blished in [ABW88], to prove the properties of stratified programs and their standard models that are
listed in the following theorem. In the theorem, a supported ~odel M has the property that if ground
atom A is true in M, then there is a ground instance A-LI> ... ,Ln of a clause in P such that
L 1 /\. .• /\Ln is true in M. L 1 /\. .. l\Ln can then be viewed as an explanation for A. Thus in a supported
model every true ground atom has an explanation.

THEOREM 2.3. Let P be a stratified program Then:
i) Mp is independent of the stratification of P.
ii) Mp is a minimal supported model of P.
iii) There is an alternative definition of M p that uses iteratively smallest models as follows:

MI = n { MIM is supported model of p I},

M1 = n {MIM is supported model of P 2 and MnBp, =Mi},

Mn = n {MIM is supported model of Pn and MnBP,u ... uP._, =Mn-d•

Mp =Mn.

iv) Mp is a model of comp(P'), CLARK's [Cl78] completion of P.

5

v) When P has no function symbols, there is a backchaining interpreter for P which combines negation
as failure with loop checking to test for membership in M p. On each inference cycle the interpreter
fully instantiates a clause.

0

Other properties of stratified programs were proved in [VG88].
When Pisa program, Mp=Tptw(0) and Mp coincides with the least Herbrand model of P intro

duced in v AN EMDEN and Kow ALSKI [VEK76].

2.4. Perfect model semantics
Further characterization of the model M p was provided by PRzYMUSINSKI [P88] who introduced the
concept of perfect models. The essence of his approach can be summarized as follows.

Consider a general program P. Let< be a well founded ordering on the Herbrand base Bp of P. If
A <B then we say that A has a higher priority than B.

Let M,N be interpretations of P. We call N preferable to M if M=f=N and for every BeN\M there
exists A eM \ N such that A <B. We call a model of P perfect if no other model of P is preferable to
it.

Intuitively, N is preferable to M if it is obtained from M by possibly adding/removing some atoms
and an addition of an atom to N is always compensated by the simultaneous removal from M of an
atom of higher priority. This reflects the fact that we are determined to minimize higher priority
atoms even at the cost of adding atoms of lower priority.

The above definitions are parameterized by the well founded ordering <. We now consider a fixed
stratified program P and a well founded ordering on Bp obtained by first, putting for two relation
symbols

p <q iff there is a path from q top in Dp with a negative arc,

and then putting for two ground atoms A,B

A <B iff p <q where p appears in A and q appears in B.

Note that if p <q, then in any stratification of P, p is defined in a lower stratum than q is. Thus < is
well founded. This implies that the latter ordering < is indeed a well founded ordering on Bp. In
this ordering ground atoms with a relation symbol from a lower stratum have a higher priority.
The following theorem from [P88] characterizes the model Mp of P.

THEOREM 2.4. Let P be a stratified program. Then M p is the unique perfect model of P.
0

6

3. COMPUTABILI1Y

3.1. Preliminaries
The results given in the next sectio11s are based on a recursion-theoretic characterization of the rela
tions computable by logic programs. We recall here the basic concepts of recursion theory. We assume
the reader is familiar with the inductive definition of (total) recursive functions over the natural
numbers, 1\1, obtained by closing a set of basic functions by composition and application of minimiza
tion under certain totality conditions; see, for example rules Rl, R2 and R3 in SHOENFIELD [Sh67,
chapter 6]. By removing the restriction on when minimization is applicable the partial recursive func
tions are obtained. A relation over 1\1 is recursive iff its characteristic function is recursive. (Our usage
of the term relation differs from that of Shoenfield).

We can relativize the total recursive functions by adding new functions to the set of basic functions
from which we previously obtained the rest of the recursive functions. If F is a set of functions, let
Ree (F) be set of functions obtained in this way. The functions in Ree (F) are said to be recursive in F.
A relation R is recursive in a set of relations C iff the characteristic function of R is recursive in the
set of characteristic functions of relations in C. The arithmetic hierarchy is defined as follows.

Here and elsewhere m stands for a sequence of natural numbers. Similar convention is used for
terms and variables.

:I8 is the set of all relations whose characteristic functions are in Ree (0), which is the set of all
recursive relations.

II~ is the set of all relations whose complement (with respect to 1\1) is in :I~.

:I~ + 1 is the set of all relations R satisfying

meR iff 3n[(m,n)eQ]

for some Q in IT~.

(t)

In general, if R is defined via an equivalence of the form given in (t) and Q is recursive in a set of
relations C, then R is said to be recursively enumerable in C. Note that II8 =:I8, and that the familiar
recursively enumerable relations are just those relations recursively enumerable in II8.
Now, a relation R is (many-one) complete for a class of relations C iff R eC and for each relation
Q e C there is a total recursive function f such that

meQ ifff(m)ER

Intuitively, R is representative of the hardest decision problem in C. (One may note that the dis
tinction between Turing completeness and many-one completeness is immaterial for our results in the
next section.)

LEMMA 3.1. A relation R is in :I~ + 1 if! R is recursively enumerable in II~.
D

The preceding lemma is less trivial than it may seem since for R to be recursively enumerable in II~
there must be a relation Q which is recursive in IT~ such that (t), but this does not mean that Q itself
need be in IT~. However Q is recursive in II~ iff Q is recursive in :I~. Thus

COROLLARY 3.2. A relation R is in :I~+l if! R is recursively enumerable in :I~.
D

7

3.2. Computability over the Herbrand universe
Our task is to adapt the entire previous discussion of computability over the natural numbers to com
putability over Herbrand universes. Of course this can be done in one stroke by effectively identifying
the ground terms with the natural numbers. However, if we want to characterize what general pro
grams compute in recursion-theoretic terms, the correspondence between the Herbrand universe and
1\1 is delicate. This point can be brought out vividly by reflecting on the following task: write a pro
gram P such that for a ground term t, -E--r(t) succeeds iff t is a constant. Note that this cannot be
done if, for example, the underlying Herbrand universe contains infinitely many constant symbols and
infinitely many functions symbols. It follows that if the Herbrand universe is generated by an infinite
alphabet then not every computable relation over such a Herbrand universe can be computed by a
logic program.

We now analyse what logic programs compute in recursion-theoretic terms under the assumption
that the underlying Herbrand universe is finitely generated: We assume a fixed finitely generated Her
brand universe UL with at least one constant and one function symbol. All general programs P con
sidered in this paper are such that their Herbrand universe Up coincides with UL.

A program P computes a relation Rover UL using a relation symbol r if for all sequences t of ele
ments from UL

t ER iff there exists an SLD-refutation of PU { -E--r(t) }.

A program P de.fines a relation R over UL using a relation symbol r if for all sequences t of ele
ments from UL

-
t ER iff P1=r(t).

Here and elsewhere _we assume that R and r have the same arity which also coincides with the
length of the sequence t.

The following theorem links computability and definability and the least Herbrand model of a pro
gram, and is fundamental in logic programming (cf APT and VAN EMDEN [AVE82]; see also Theorem
4.1 in APT [A]).

THEOREM 3.3. Let P be a program, Ra relation over Vi,, and r a relation symbol. Then
i) P computes R using r if! P defines R usi_!!g r.
ii) P de.fines R using r iff for all sequences t of elements from U i.,,

tER iff r(t)EMp. D

This theorem allows us to identify computability with definability and reduce the latter to definability
over the least Herbrand model. Note that this theorem also holds when UL is finite and nonempty,
which arises when UL consists of a finite set of constants.

The identification of UL with 1\1 is obtained via the next theorem.

THEOREM 3.4. (Enumeration Theorem) A program successor which defines the successor relation on UL
using the binary relation symbol succ can be constructed. More precisely, an ordering< on UL of order
type w can be constructed such that for all terms s,t E Ui.,, t is an <- successor of s if! successor
1=succ(s,t).

D

The enumeration theorem above is due to ANDREKA and NEMETI [AN78]. BLAIR [B86] gives a version
in which the successor program satisfies additional semantic constraints related to finite failure of
goals.

This theorem allows us to identify a finitely generated Herbrand universe UL of the form assumed
at the beginning of this section with natural numbers. This identification allows us to transfer the

8

notions of recursion theory from 1\1 to UL, and subsequently from UL to Bp. Our subsequent investi
gations rely on this transfer.

The following simple consequence to the above theorem, due to ANDREKA and NEMETI [AN78] (see
Corollary 4.5 in APT [A87D, connects the notion of definability by programs with the recursion
theoretic concepts. It will be used in Section 5.

LEMMA 3.5. A relation Ron UL is recursively enumerable iff some program P defines R using a relation
symbol r.

0

4. RECURSION-FREE PROGRAMS

We say that a general program P is recursionfree if in its dependency graph Dp there is no cycle.
Oearly recursion-free programs form a subclass of stratified programs. Recursion-free programs form
a very simple generalization of the class of hierarchical programs introduced in [C78]. Hierarchical
programs satisfy an additional condition on variable occurrences in clauses that prevents floundering,
i.e. a forced selection of a non-ground negative literal in an SLDNF- derivation. In this section we
study the complexity of perfect models of recursion-free programs.

4.1. Hierarchical stratifications
We call a stratification

P=P1 U · ·· UP11

of a general program hierarchical if for i = 1,. . .,n and for every relation symbol which occurs in a
body of a general clause from P;, its definition is contained within some Pi for j <i.

The following lemma shows that general programs admitting hierarchical stratifications and
recursion-free programs coincide. It is in fact a special case of the well known fact that a finite rela
tion can be topologically sorted iff it is acyclic. Therefore we omit the proof.

LEMMA 4.1. A general program P is recursion-free iff there is a hierarchical stratification of P. 0

4.2. Completions of recursion-free programs
In the sequel we shall study comp(P), Cl.ARK'S [C78] completion of a general program P. Its
definition can be found in [Ll84]. comp(P) is a theory whose language is the first order language L (P)
of the general program P augmented by the equality relation symbol "= ". Given a general program
P we denote by L(=) the language obtained by deleting from L(P) all relation symbols and by
adding "=" to it. From now on in presence of a general program P we denote L (P) by L.

comp(P) is a set of formulas which consists of free equality axioms, which we denote by Eq,
together with certain other formulas, about which we only need to know the following two properties.

PROPERTY I: For every m-ary relation symbol q of L with the empty definition in P, the formula

'Vx1 ... 'Vxm-.q(xi. ... , Xm)

is in comp (P).

PROPERTY 2: For every m-ary relation symbol q of L with the non-empty definition in P, there is in
comp (P) a formula of the form

q(x i. ... , Xm) ~1/iq

such that every relation symbol occurring in if9, other than"=", occurs in the definition of q in P.
In the proof of the next lemma we shall need the following result from mathematical logic (see

[Sh67] p. 34).

9

THEOREM 4.2. (Equivalence Theorem). Let T be a theory and cp a formula. Suppose that q,' is obtained
from '/> by replacing some, possibly all occurrences of subformulas t/11, • • • , t/ln by tfi' 1, • • • , if! n respec
tively. Then if for i = l, ... , n,

Tt-lf;;~if/;,

then

0

Here replacing involves an appropriate renaming of variables performed in order to avoid variable
clashes.

LEMMA 4.3. Let P be a recursion-free program. For every atom A of L there exists a fonnula .PA of
L (=) all of whose free variables occur in A and such that

comp(P)l-A ~<PA· (1)

PROOF. Let P = P 1 U · • · U Pn be a hierarchical stratification of P whose existence is guaranteed by
lemma 4.1. We define a mapping height from relation symbols of L into {O, 1, ... , n} as follows.

Let r be a relation symbol of L whose definition within P is empty. Then we put height (r)=O.
Otherwise we put height (r)=i iff the definition of r is contained in P;.

Suppose that A=r(ti. . .. , tm) for a relation symbol rand terms ti. ... , tm. We prove the lemma
by induction on the height of r. If height (r)=O, then by property I

comp(P) 1-A ~false,

so we can take false for 'i>A.
If height (r)= 1, then by property 2 tfr is a formula from L(=) with free variables xi. ... , Xm· Let
if;', stand for t[i,{x 11ti. ... , Xmltm}· Then t/I', is a formula from L(=) all of whose free variables
occur in A and such that

comp(P)t-A ~t/I',, (2)

so we can take t/I' r for '/>A.
Assume now that the claim holds for all relation symbols with height <k and suppose that

height (r)=k. By property 2 (2) holds and every relation symbol q occurring in tf', and different from
"=" occurs in the definition of r in P. But the stratification

P=P1 U ·· · UPn

of P is hierarchical, so every such relation symbol q is of height <k. Thus by the induction
hypothesis, for every atom B occurring in tfi' r and whose relation symbol differs from "= ", there
exists a formula <Ps if L (=) all of whose free variables occur in B and such that

comp(P) t- B ~ cp8 • (3)

Now, replace each occurrence of such an atom Bin t/I', by q,8 and call the resulting formula .P.A.· Note
that .P.A. is a formula of L(=) and that all its free variables appear in A. Now by theorem 4.2 we get
(I} by virtue of (2) and (3).

0

COROLLARY 4.4. Let P be a recursionfree program. For every formula 4> of L there exists a formula t/I of
L (=) all of whose free variables occur as free variables in cp and such that

comp(P)t-4'~1/I+·

PROOF. By lemma 4.3 for every atom A occurring in 4' there exists a formula 4>A of L(=} all of

10

whose free variables occur in A and such that (1) holds. Now, replace each occurrence of an atom A
in q, by q,,. and call the resulting formula 1/J+· Then 1/1.p is a formula of L(=) all of whose free variables
occur as free variables in q,. By theorem 4.2 we now get the desired conclusion by virtue of (1).

D

4.3. Domain closure axiom
In the sequel we shall refer to a number of basic concepts from mathematical logic which we now
briefty recall.

By a closed formula we mean a formula without free variables. A theory T is called complete if for
all closed formulas c/> either Tl-c/> or T1-....,q,. A theory T is called consistent if for no closed formula q,
both T1-q, and T1-....,q,. Finally, a theory T is called decidable if (after the standard encoding) the set
{cf>:T1-cf>} is recursive.

Let L be a first order language with finitely many function symbols and constants. By DCA (the
domain closure axiom) we mean the following first order formula of L:

'tfx V3y1 ... 3yn(x=f(y1> · · · •Yn)),
I

where f is an n-ary function symbol if n >0 and a constant if n =O. Thanks to the restriction on L,
DCA is indeed a first order formula. For example, if L contains one constant a, one unary function
symbol f and one binary function symbol g, then DCA can be taken as

't/x(x =a V 3y(x = f (y) V 3y13J2(x =g(y1>Y2))).

We now need the following result due to MAHER [M88].

THEOREM 4.5. Let L be a first order language with finitely many fanction symbolv and constants but at
least with one constant. Then Eq U {DCA } is a complete and decidable theory. D

Nott:. that the Herbrand base corresponding to the language L augmented by .. =" is a model of
Eq U {DCA}, so Eq U {DCA} is also a consistent theory.

Recall that in Section 3.2 we assumed that each general program P contains at least one constant
and one function symbol. So we can apply here the above theorem. We can now prove the main
result of this section.

THEOREM 4.6. Let P be a recursion free program. Then comp(P) U {DCA } is a complete and decidable
theory.

PROOF. Let q, be a closed formula of L(comp(P) U{DCA}). Then the formula 1/J+ from corollary 4.4
is closed, as well. By corollary 4.4

comp(P) U {DCA }1- c/> iff comp(P) U {DCA } 1- 1/1+ •

Moreover by theorem 4.5

comp(P) U {DCA } 1- 1/1.p iff Eq U {DCA }1-1/1.p ,

since comp(P) U {DCA } is consistent. Combining these two equivalences we get

comp(P) U {DCA} 1-c/> iff Eq U {DCA} 1-1/J.p.

But by the form of 1/1+ we have 1/1_,.p = -.1/J.p, so since,q, is a closed formula, as well,

comp(P) U {DCA}l--.c/> iff U Eq U {DCA}1--.1'i+·

(4)

(5)

Now by virtue of theorem 4.5, (4) implies that comp (P) U {DCA} is decidable and (4) and (5) imply
that comp (P) U {DCA } is complete.

D

COROLLARY 4. 7. Let P be a recursion free program. Then for every ground atom A

A EMp ijf comp(P) U {DCA }t-A .

11

PROOF. Mp is a model of comp(P)U {DCA}. Thus A eMp implies that comp(P)U {DCA} t--.A does
not hold which by theorem 4.6 implies comp(P)U{DCA}~A. Also, A (£Mp implies that comp
(P)U{DCA}t-A does not hold.

0

We can obtain the desired conclusion.

COROLLARY 4.8. Let P be a recursion-free program. Then M p is recursive.

PROOF. By corollary 4.7 and theorem 4.6.
0

5. PERFECT MODELS OF STRATIFIBD PROGRAMS

We now study the case of arbitrary stratified programs.

5.1. De.finabi/ity by programs
We start this section with the following lemma which strictly speaking, is not needed to prove the
main results. However, it is interesting in itself.

LEMMA 5.1. For a program P, the relation {(n,A)~ eTp'tn(0),n<w} is recursive.

PROOF. Following WOLFRAM, MAHER and LAssEZ [WML84], by a BF-derivation of P'U {N} for a
program P' and a goal N we mean a refinement of the usual SLD-derivation in which in each goal all
atoms are selected. (BF stands for Breadth-First.) If the last goal is empty, such a derivation is
called a refutation.

Now,

A e Tpfn(0) iff there is a BF-refutation

of ground(P) U {+-A }

of length at most n.

However, by a lifting lemma for BF-resolution, proved in [WML84], in fact the following equivalence
holds:

A eTpfn(0) iff there is a BF-refutation

of PU{+-A}

of length at most n.

But the relation

{(A, n, f)I~ is a BF-refutation of P U {+-A} of length at most n}

is recursive. Moreover, ignoring the choice of variables in goals and mgu's, there are only finitely
many BF-refutations of P U {+-A } of length at most n. This proves the claim.

D
In contrast, the following corollary to the above lemma will be needed.

COROLLARY 5.2. For a program P, Tpfw(0) is recursively enumerable.

12

D

5.2. Definability by semi-positive programs
Perhaps surprisingly, lemma 5.1 does not relativize. Indeed, for a program P, Tpfn(M) need not be
recursive in M. To see this, note that Tp(M) need not be recursive in M.

Ex.AMPLE 5.3. Let Q be a recursively enumerable, non-recursive, subset of UL· For some recursive
relation R

s eQ iff 3t[(s,t)ER].

Let P be the program

q(X)~r(X, Y),

and let M= {r(s,t)i(s,t)eR}. Then Tp(M)= {q(s)ls eQ}. Mis recursive; Tp(M) is not.
D

However, Tpfn(M) is recursively enumerable in M. This holds for semi-positive programs, as well.
We need this fact later; to establish it we first need the following observation. Here, <B1>···•Bk>
stands for a natural number associated with the sequence of atoms B 1>···,Bk in a standard way (see
[Sh67, chapter 6]).

LEMMA 5.4. For a general program P, the relation

{(A, <B1 •... ,Bk>)IA ETp(MU {BI> ... ,Bk})}

is recursively enumerable in M.

PROOF. Direct, by the definition of Tp and the standard techniques of recursion theory. D

We can now prove the desired lemma.

LEMMA 5.5. For a semi-positive program P, the relation {(n,A)j.A ETpfn(M),n<w} is recursively enu
merable in M.

PROOF. Thanks to lemma 2.2 we can use lemma 2.1 to characterize the relation in question. This
characterization implies by lemma 5.4 and the standard techniques of recursion theory, that this rela
tion is indeed recursively enumerable in M. D

The following generalizes corollary 5.2.

COROLLARY 5.6. For a semi-positive program P, the relation Tpfw(M) is recursively enumerable in M. D

For an interpretation Mand a relation symbol r, let

Mir= {AIA eM and the relation symbol of A is r}.

We say that an interpretation M of P is strongly recursively enumerable, (or strongly RE., in short) if
M is recursively enumerable and for each relation symbol r which appears negatively in P, Mir is
recursive.

We now show that under some circumstances the relations studied in lemmata 5.4 and 5.5 and
corollary 5.6 can be characterized in a more precise way.

LEMMA 5.7. Consider a general program P and an interpretation M. Suppose that M is strongly R.E.

13

Then Tp(M) is recursively enumerable.

PROOF. We have for all ground atoms A

A ETp(M)

iff for some literals L I> • . • , Ln
i) A~L., ... ,Ln is in ground (P),
ii) for every positive literal B from L 1, ••• , Ln we have B EM,
iii) for every negative literal -.B from L 1, •.• , Ln whose relation symbol is r, we have B iiM!r.

Now by the standard techniques of recursion theory, Tp(M) is indeed recursively enumerable. O

LEMMA 5.8. Consider a semi-positive program P and an interpretation M. Suppose that M is strongly
R.E. Then the relation {(n,A)jA ETptn(M),n<w} is recursively enumerable.

PROOF. Analogous to the proof of lemma 5.5 but using lemma 5.7 instead of lemma 5.4. 0

COROLLARY 5.9. Consider a semi-positive program P and an interpretation M. Suppose that M is
strongly RE. Then the relation Tpf«>{M) is recursively enumerable. 0

5.3. Arithmetic classification of Mp
We are now ready to prove the desired results concerning perfect models of stratified programs.

THEOREM 5.10. If P is a stratified program with n strata,, then M p is ~~-

PROOF. We proceed by induction on n. If n == 1, then P is a program and the theorem follows from
corollary 5.2. . .

Now suppose the statement of the theorem holds for n -1, and P is stratified by P 1 U ... UP,.. We
have Mp = Tp. fw(Mp, u ... uP._,), so by corollary 5.6 and lemma 2.2 iii) Mp is recursively enumerable in

MP,u ... uP._,. By the induction hypothesis, MP,u ... uP._, is~~-!· Therefore by corollary 3.2, Mp is~~

THEOREM 5.11. Let P be a stratified program. Suppose that for each relation symbol r which occurs
negatively in P, M p lr is recursive. Then M p is recursively enumerable.

PROOF. Consider a stratification P 1 U ... UP,. of P with the corresponding sequence of models
Ml> ... ,Mn with Mp=Mn. We prove by induction on i==l, ... ,n that each M; is recursively enu
merable.

For i = l it is the content of corollary 5.2. Assume the claim holds for some i, 1 :s;;,i <n.
Consider a relation symbol r which occurs negatively in P; + 1• Then the definition of r is contained

in U { PJlj,,,;;;;; i}, so M p lr = M;jr. By assumption, for every r which occurs negatively in P; +i. M; lr is
recursive. Thus by lemma 2.2 ili) and corollary 5.9 applied to P; + 1 and M;, M; + 1 is recursively enu
merable. 0

Of course, it is in general not clear how to check that for a relation symbol r and an interpretation
M, Mir is recursive. However, in some situations this a consequence of the result established in Sec
tion 4, namely when r is defined by means of a recursion-free program. Then for every such r, Mplr is
recursive by virtue of corollary 4.8.

Call a general program strongly stratified if each relation symbol which occurs negatively in P is
defined by means of a recursion-free program. Thus a general program is strongly stratified if no path
in Dp starting with a negative arc contains a cycle. Obviously, every strongly stratified program is
stratified. By the above observation and theorem 5.11 we have:

14

COROLLARY 5.12. Let P be a strongly stratified program Then Mp is recursively enumerable. 0
Finally, we prove the following:

THEOREM 5.13. For each n;;a.l there is a stratified program P with n strata for which Mp is ~~
complete.

PROOF. We prove the following stronger claim from which the theorem follows by choosing R to be
.};~-complete: for each ~~ relation R over UL we can find a stratified program P with n strata such
that for some relation symbol r

seR iff r(S)eMp.

We now proceed by induction on n.
For n = I the claim is a consequence of lemma 3.5 and theorem 3.3 ii). Now assume the claim holds

for a particular n ;a. I. Let R be a ~~ + 1 relation over U v For some II~ relation S over UL

s eR iff 3t[(s,t) eS].

Let Q be the complement of Sin UL· Q is~~. By the induction hypothesis we can find a stratified
program P with n strata such that for some relation symbol q

(s,t)eQ iff q(s;t)EMp.

We now add to P two clauses defining R in terms of Sand Sin terms of Q. Let Pn + 1 consist of
the clauses

PR(X).,._ps(X, Y),
- -

Ps(X, Y).,._...,q(X, Y)

wherepR andps are relation symbols not occurring in P. Let P'=PUPn+I· Then

Mr = Mp U {pR(s)!3t[{S,t)eS]} U {ps{S,t)l{S,t)e:Q}

= Mp u {pR(s)fSeR} u {ps(S,t)l(S,t)ES}.

Thus,

6. APPLICATIONS TO NON-MONOTONIC REASONING

We now relate our results to three formalisms commonly used in the area on non-monotonic reason
ing. We follow here their description given in PRzYMUSINSK.I [P87].

6.1. Default logic
One of them is default logic introduced in REITER [R80]. In default logic, apart of the usual rules of
first order logic, also default rules are used. They have the form

B: MC 1, ••• ,MCn

A

where A, B, C 1, ••• , Cn are first order formulas. Such a rule intuitively means: "if B holds and each
of C;-s can be (separately) consistently assumed, then conclude A". The usual rules and the default
rules induce a natural concept of an extension of a set of first order formulas. We omit here its formal
definition. This extension, if it is unique, denotes the set of consequences of a set of formulas under
the default rules.

BIDOIT and FROIDEVAUX [BF87] related general programs to default logic by noting that a general
clause A .,._A i. ... ,Am, -,B 1'··.,...,Bn where n >0 naturally translates into a default rule

15

A 1/\. .. 1\Am : M-.B" ... ,M-.Bn

A

Given a general program P, let T denote the set of (positive) clauses of P and let Dp denote the set of
defa':11t rules obtained by the above translation. BIDOIT and FROIDEVAUX [BF87] showed that given a
stratified program P, the default rules in Dp induce a unique extension Dp(T) of T which coincides
with the set of formulas true in the perfect model of P.

By theorems 5.10, 5.11, 5.13 and corollary 4.8 we immediately obtain

COROLLARY 6.1.
i) Let P be a recursionfree program. Then Dp(T) is recursive.
ii) Let P be a stratified program with n strata. Then Dp(T) is~~.
iii) Let P be a strongly stratified program Then Dp(T) is~?.
iv) For each n;;;::: l there is a default theory whose set of consequences is ~~-complete.

6.2. Circumscription

0

Another approach to non-monotonic reasoning is based on the circumscription method of McCarthy.
We discuss here its variant called prioritized circumscription described in [MC86].

Let q,(R, Q) be a first order formula whose relation symbols appear in R = {r I> ••• , r m} or
Q={qi. ... ,qn}, where RnQ=0, and let R'={r'1> ... ,r'm} and Q'={q'1, ••• ,q'n} be sets of
relation symbols of the same arities as those in R and Q, correspondingly. By a parallel circumscrip
tion of R in</> with variables Q we mean the following second order formula CIRC(cp;R;Q):

q,(R,Q)f\'1R',Q'[cp(_R',Q')f\(R'~R) ~ R'=R],

where R '~ R stands for
m

/\ '1x(r';(.X)~r;(.X))
i =I

and R' = R stands for
m

/\ '1x(r';(.X)(-+r;(.X)).
i =1

Intuitively, CIRC(cp;R ;Q) states that relation symbols from R are minimal under the assumption
that 3Q'q,(R,Q') holds and moreover, cp(_R,Q) does hold.

Now, consider disjoint sets of relation symbols R I> ••• , Rn. By a prioritized circumscription of a
second order formula </> with priorities R 1 > ... >Rn we mean the following second order formula
CIRC(<J>,R 1 > ... >Rn):

CIRC(<1>;R1 ;{R2 u ... URk})f\CIRC(<[>;R2;{R3 u ... URn})f\ ... f\CJRC(q,;Rn; 0)

Intuitively, this formula states that the relation symbols in R 1, ..• , Rn are minimized in a particular
order given by the priorities R 1 > ... >Rn.

Denote the set of first order formulas impli~ by a second formula </> by Cn(<P). Consider now a
stratified program P with a stratification P 1 U ... UP n· Let R I> •.. , Rn be the sets of relation symbols
defined in PI> ... , Pn, respectively. After an identification of P with a conjunction of its general
clauses, P can be viewed as a second order formula whose relation symbols are those in R 1, •.. , Rk·

LIFSCHITZ [L88] showed that the set of formulas Cn (CIRC(P,R 1 > ... >Rk)) coincides with the set
of formulas true in the perfect model of P.

Again, by theorems 5.10, 5.11, 5.13 and corollary 4.8 we obtain

COROLLARY 6.2. Let P be a stratified program with a stratification P1 U ... UPn. Let Ri, ... ,Rn be the

sets of relation symbols defined in P 1 , • • • , P n, respectively.
i) If P is recursionfree then Cn(CIRC(P,R 1> ... >Rn)) is recursive.

ii)
if

iv) each n ;;ii l there is a second ordl!r sets rt'Ultion .n•ll'!'!hnls. Q i. . . . , Qn
swh that , >. .. D

6.3. lteraud dosed world assumptum
Finally, we consider the Iterated Oosed World (ICWA) introduced in [GPP88]. ICWA
is a generalization of the Closed World Assumption of REITER [R78] (CWA).

Given a set of (first order) formu.llll! P we define first

= P U is a ground atom such that P1=A does not hold}

[R78] showed that for a program P, CWA is consistent. Unfortunately, this result does not hold
for a program P. To resolve this problem [GPP88] concentrated on the case of stratified pro-
grams. .

Consider a stratified program P with a stratification P 1 U ... We define

lCWA(Pi) = CWA(P1),

JCWA(P,..,, 1) = CWA(P;+ 1 UlCWA(P1)) for l...;t<n,

ICWA(P) = JCWA(P11).

[GPP88) showed that for a stratified program P, ICWA(P) has exactly one model, namely the perfect
model of P.

By theorems 5.l l, 5.13 and corollary 4.8 we obtain

COROLLARY 6.3.
i) Let P be a recursion-free program. Then ICWA (P) is recursive.
ii) Let P be a stratified program with n strata. Then ICWA (P) is ~~-
iii) Let P be a strongly stratified program. Then ICWA(P) is ~Y.
iv) For each n;;;.I there is a stratified program with n strata such that JCWA(P) is ~~-complete. D

For every reasoning method it is preferable from the logic point of view that the set of conse
quences obtained by it is decidable (recursive) or semi-decidable (recursively enumerable). We showed
here that this is not. the case for a majority of commonly used formalisms in the area of non
monotonic reasoning. However, we also indicated a reasonable restriction - to recursion-free and
strongly stratified programs, which allows us to bring down this complexity to recursiveness and
recursive enumerabili ty, respectively.

ACKNOWU!DGEMEN1'

We would like to thank Marc Bezem for helpful comments and Ms Caroline Swagerman for speedy
typing of the manuscript.

REFERENCES

[AN78]

[A87]

[ABW88]

H. ANDREKA and I. NEMEn, The Generalised Completeness of Hom Predicate Logic as
a Programming Language, Acta Cybemetica, vol. 4, no. 1, 1978, pp. 3-10.
K.R. APT, Introduction to Logic Programming, Centre for Mathematics and Computer
Science, Amsterdam, Technical Report CS-R874l, 1987 (to appear in Handbook of
Theoretical Computer Science (J. van Leeuwen, Managing Editor)).
K.R. APT, R. BLAIR and A. WAI.KER, Towards a Theory of Declarative Knowledge, in:
Foundations of Deductive Databases and Logic Programming, (J. Mink.er, ed.), Morgan
Kaufmann, Los Altos, CA., 1988.

[AVE82]

[BF87]

[B86]

[CH85]

[078]

[GPP88]

[K87]

[L88]

[Ll84]
[M88]

[MC86]

[P87]

[P88]

[R78]

[R80]

[Sh67]
[VEK.76]

[VG88]

[WGM84]

17

K.R. APT and M.H. v AN EMDEN, Contributions to the Theory of Logic Programming,
JACM, voL 29, No. 3, 1982, pp. 841-862.
N. Bmorr and C. FROIDEVAUX, Declarative Semantics of Stratified Logic Programs and
Databases: Minimalism Subsiones Default U>gic and Circumscription, Technical Report,
Universite Paris Sud, Orsay, 1987.
H.A. BLAIR, Decidability in the Herbrand Base, Workshop on Foundations of Deductive
Databases and Logic Programming. Washington, D.C., manuscript, 1986.
A. CHANDRA and D. liAREL, Hom Clause Queries and Generalizations, Journal of
Logic Programming, vol. 2, no. 1, 1985, pp. 1-15.
K.L. Cl.ARK. Negation as Failure, in: Logic and Databases, (H. Gallaire and J. Minker,
eds.), Plenum Press, New York, 1978, pp. 293-322.
M. GELFOND, T. PllznruSINSIO and H. PRznruSINSKA, On the Relationship between
Circumscription and Negation as Failure, to appear in Journal of Artificial Intelligence.
P.O. KoLAITIS, The Expressive Power of Stratified Logic Programs, manuscript, Nov.
1987.
V. LIFSCIDTZ, On the Declarative Semantics of Logic Programs with Negation, in:
Foundations of Deductive Databases and Logic Programming (J. Mink.er, ed.), Morgan
Kaufmann, Los Altos, C.A., 1988.
J.W. LLOYD, Foundations of Logic Programming. Springer-Verlag, 1984.
MJ. MAHER, Complete Axiomatizations of the Algebras of Finite, Rational and Infinite
Trees, in: Proc. of the 3rd Logics in Computer Science Conference, 1988, pp. 348-357.
J. McCARTHY, Applications of Circumscription to Formalizing Common Sense
Knowledge, Journal of Artificial Intelligence, vol. 28, 1986, pp. 89-116.
T. PRzYMUSINSIO, Non-monotonic Reasoning vs. Logic Programming: A New Perspec
tive, to appear in Handbook on the Formal Foundations of A.I. (Y. Wilks and D.
Patridge, eds.).
T. PRzYMUSINSIO, On the Declarative and Procedural Semantics of Logic Programs, in:
Foundations of Deductive Databases and Logic Programming (J. Mink.er, ed.), Morgan
Kaufmann, Los Altos, C.A., 1988.
R REITER, On Oosed-World Data Bases, in: Logic and Databases, (H. Gallaire and J.
Minker, eds.), Plenum Press, New York, 1978, pp. 55-76.
R REITER., A Logic for Default Theory, Jornal of Artificial Intelligence, vol. 13, 1980,
pp. 81-132.
J. SHOENFIEW, Mathematical Logic. Addison-Wesley, Reading, Mass. 1967.
M.H. v AN EMDEN and R.A. KowALSIO, The Semantics of Predicate Logic as a Pro
gramming Language, JACM, vol. 23, no. 4, 1976, pp. 733-742.
A. VAN GELDER, Negation as Failure using Tight Derivations for General Logic Pro
grams in: Foundations of Deductive Databases and Logic Programming (J. Minker, ed.),
Morgan Kaufmann, Los Altos, CA, 1988.
D.A. WOLFRAM, MJ. MAHER and J.-L. LAssEZ, A Unified Treatment of Resolution
Strategies for Logic Programs, in: Proc. of the Second International Conference on Logic
Programming. 1984, pp. 263-276.

