413 research outputs found

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page

    The first cohomology group of the trivial extension of a monomial algebra

    Get PDF
    Given a finite--dimensional monomial algebra AA we consider the trivial extension TATA and provide formulae, depending on the characteristic of the field, for the dimensions of the summands HH1(A)HH_1(A) and \Alt(DA) of the first Hochschild cohomology group HH1(TA)HH^1(TA). From these a formula for the dimension of HH1(TA)HH^1(TA) can be derived.Comment: Final version to be published in Journal of Algebra and Its Applications (JAA). Small changes from previous version. 13 page

    CC-circuits and the expressive power of nilpotent algebras

    Get PDF
    We show that CC-circuits of bounded depth have the same expressive power as polynomials over finite nilpotent algebras from congruence modular varieties. We use this result to phrase and discuss an algebraic version of Barrington, Straubing and Th\'erien's conjecture, which states that CC-circuits of bounded depth need exponential size to compute AND. Furthermore we investigate the complexity of deciding identities and solving equations in a fixed nilpotent algebra. Under the assumption that the conjecture is true, we obtain quasipolynomial algorithms for both problems. On the other hand, if AND is computable by uniform CC-circuits of bounded depth and polynomial size, we can construct a nilpotent algebra with coNP-complete, respectively NP-complete problem.Comment: 14 page

    Satisfiability of Circuits and Equations over Finite Malcev Algebras

    Get PDF
    We show that the satisfiability of circuits over finite Malcev algebra A is NP-complete or A is nilpotent. This strengthens the result from our earlier paper [Idziak and Krzaczkowski, 2018] where nilpotency has been enforced, however with the use of a stronger assumption that no homomorphic image of A has NP-complete circuits satisfiability. Our methods are moreover strong enough to extend our result of [Idziak et al., 2021] from groups to Malcev algebras. Namely we show that tractability of checking if an equation over such an algebra A has a solution enforces its nice structure: A must have a nilpotent congruence ? such that also the quotient algebra A/? is nilpotent. Otherwise, if A has no such congruence ? then the Exponential Time Hypothesis yields a quasipolynomial lower bound. Both our results contain important steps towards a full characterization of finite algebras with tractable circuit satisfiability as well as equation satisfiability

    Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

    Get PDF
    Satisfiability of Boolean circuits is NP-complete in general but becomes polynomial time when restricted for example either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is connected with solving equations over finite algebras. This in turn is one of the oldest and well-known mathematical problems which for centuries was the driving force of research in algebra. Let us only mention Galois theory, Gaussian elimination or Diophantine Equations. The last problem has been shown to be undecidable, however in finite realms such problems are obviously decidable in nondeterministic polynomial time. A project of characterizing finite algebras m A with polynomial time algorithms deciding satisfiability of circuits over m A has been undertaken in [Pawel M. Idziak and Jacek Krzaczkowski, 2018]. Unfortunately that paper leaves a gap for nilpotent but not supernilpotent algebras. In this paper we discuss possible attacks on filling this gap

    Towards the classification of finite-dimensional diagonally graded commutative algebras

    Full text link
    Any finite-dimensional commutative (associative) graded algebra with all nonzero homogeneous subspaces one-dimensional is defined by a symmetric coefficient matrix. This algebraic structure gives a basic kind of AA-graded algebras originally studied by Arnold. In this paper, we call them diagonally graded commutative algebras (DGCAs) and verify that the isomorphism classes of DGCAs of dimension 7\leq 7 over an arbitrary field are in bijection with the equivalence classes consisting of coefficient matrices with the same distribution of nonzero entries, while dramatically there may be infinitely many isomorphism classes of dimension nn corresponding to one equivalence class of coefficient matrices when n8n\geq 8. Furthermore, we adopt the Skjelbred-Sund method of central extensions to study the isomorphism classes of DGCAs, and associate any DGCA with a undirected simple graph to explicitly describe its corresponding second (graded) commutative cohomology group as an affine variety.Comment: 19 page
    corecore